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ABSTRACT

Tension is a complex multidimensional concept that is
not easily quantified. This research proposes three meth-
ods for quantifying aspects of tonal tension based on the
spiral array, a model for tonality. The cloud diameter mea-
sures the dispersion of clusters of notes in tonal space; the
cloud momentum measures the movement of pitch sets in
the spiral array; finally, tensile strain measures the distance
between the local and global tonal context. The three meth-
ods are implemented in a system that displays the results
as tension ribbons over the music score to allow for ease of
interpretation. All three methods are extensively tested on
data ranging from small snippets to phrases with the Tris-
tan chord and larger sections from Beethoven and Schubert
piano sonatas. They are further compared to results from
an existing empirical experiment.

1. INTRODUCTION

Musical tension forms an essential part of the experience
of listening to music. According to [1], increasing tension
can be qualitatively described as “a feeling of rising inten-
sity or impending climax, while decreasing tension can be
described as a feeling of relaxation or resolution”. How-
ever, defining tension in a more quantitative, formalized
way is a difficult problem. In previous studies, different
characteristics have been used to try to model musical ten-
sion. These aspects are usually rooted in either the domain
of psychology or that of music. From the psychological
point of view, models look at influential factors such as ex-
pectation and emotion [2, 3, 4]; and semantic meaning of
lyrics [5]. From a more low-level musical point of view,
examined features include rhythm and timing [6, 7, 1];
harmonic tonal perception through Lerdahl’s tonal tension
model [8, 9, 10]); pitch height/melodic contour [11, 12];
dynamics [13, 12]; timbral elements (roughness, bright-
ness, and density) [14, 6]; and pitch register [12, 7]. It
must be noted that most of the above mentioned low-level
musical features can also be linked to expectation.
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No one particular feature, however, seems to be decisive
in predicting the experience of tension [14]. Listening to
music is an aggregate experience that requires the integra-
tion of many different features. A listener’s attention can
focus on one feature at a particular time and then shift to a
different feature or combination of features [1].

In this research we explore tonality as one of the dimen-
sions of musical tension. Three methods for quantifying
aspects of tension are developed based on the spiral ar-
ray [15], a geometric model for tonality. The system devel-
oped outputs the results of the methods as ribbons over a
musical score. In the next section, these different methods
are discussed, followed by an analysis of selected musical
fragments, which include snippets previously analysed in
an empirical study by [1].

2. THEORY

In this paper, three methods that capture aspects of per-
ceived tonal tension are developed and discussed based on
the spiral array, a model for tonality. We first give a brief
review of the spiral array, then introduce the three methods:
cloud diameter, cloud momentum, and tensile strain.

2.1 Spiral array

The spiral array is a three dimensional representation of
pitch classes, chords and keys. Each pitch class is rep-
resented as spatial coordinates along a helix [16]. The
three dimensional representations allows higher level mu-
sical entities such as chords and keys to be embedded in
the helix. The exact formula of the pitch class helix imple-
mented in this paper is as follows:

x = r × sin(t), y = r × cos(t), z = a× t, (1)

where r = 1, a =
√

2
15 ×

π
2 , t ∈[−∞,∞] and t ∈ IR.

Close tonal relationships (such as the perfect fifth) are
mirrored by their spatial proximity in the spiral array. Fig-
ure 1 shows that notes which sound tonally close are in fact
positioned close to each other inside the array. This is il-
lustrated by the C major chord, which only consists of spa-
tially close pitches. Notes are positioned one perfect fifth
away from each other (a quarter turn in the spiral), which
results in notes positioned “above” each other representing
a major third [15].
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Figure 1: The Spiral Array with a C major chord.

Pitches can be spelled in multiple ways, for instance G]
and A[. The spiral array takes pitch spelling into account
by assigning a different geometric position to enharmoni-
cally equivalent (but differently-spelled) pitches. Because
the pitch class representations are a helical arrangement of
the line of fifths, pitches with sharps are located above the
D and those with flats are located below D.

2.2 Cloud diameter

Tension in musical pieces is a property that varies over
time. Therefore, a sliding window approach was used,
whereby a musical piece is divided into equal length win-
dows. Within each of those windows, all of the notes can
be represented as a cloud in the spiral array.

The idea of cloud diameter is to capture the largest dis-
tance between any two notes in a cloud. When a chord or
a cloud of notes contains intervals that are tonally far apart
(i.e. dissonant), the distance between these pitches in the
spiral array will be large. A first method tries to capture
this type of harmonic tension by looking at the largest Eu-
clidean distance within the cloud, or the cloud diameter.
To illustrate this, Figure 2 shows the cloud diameter of the
C major triad and its diminished counterpart. The larger
diameter of the diminished triad can be explained by the
large tonal distance between C and G[, which is a dimin-
ished fifth. This is illustrated in the spiral array in Figure 3.

Figure 2: Cloud diameter of the C major triad and the C
diminished triad (min: 2.3, max 3.0).

2.3 Cloud momentum

Musical information can be condensed in the spiral array
by one set of three dimensional coordinates which repre-
sents the centre of effect (ce) of a cloud. This ce has been
previously used for key detection [17], whereby the key
with the ce closest to the ce of the fragment is selected.
It has equally proved to be useful for chord detection [15]
and finding key boundaries [16].

Figure 3: The spiral array with a C diminished triad.

For a cloud consisting of i notes, each note has a pitch
position pi in the spiral array and a duration di. The centre
of effect, ce, of the cloud can be calculated as:

ce =

N∑
i=1

di
D
× pi whereby D =

N∑
i=1

di. (2)

The idea of cloud momentum is to capture how large
the distance between the centres of effect of two clouds of
points is, thus capturing the movement in tonality. The ce’s
of tonally similar chords or groups of notes are positioned
close to each other in the spiral. When there is a change
in tonality, this will cause the centres of effect to shift to
a new area from one cloud to the next, thus resulting in
a larger cloud momentum. The cloud momentum mea-
sures this type of tonal tension by calculating the Euclidean
distance between the centres of effect of each window or
cloud of notes. In the example in Figure 4, a large move-
ment in tonality between the C chord and the C] chord can
be seen. This is followed by no movement to the inverted
C] chord.

Figure 4: Cloud momentum of C major chord moving to-
wards C] major (min 0, max 2.8).

Cloud momentum is a characteristic of movement. It can
therefore be seen that its value for the first note of a frag-
ment is non-existent (represented as zero). In the case that
the window size is smaller than the duration of a note, it
might occur that the cloud momentum drops during the
span of that note, as it represents the “movement” in the
spiral array and there is no movement within a note or clus-
ter of notes.

2.4 Tensile strain

The previous methods capture the span of the cloud and
the distance between adjacent centres of effect. The tensile
strain captures the tonal distance between the ce of a cloud



Figure 5: C major and C] major chord together with the
ce (in green).

of notes and the key. By implementing the key detection al-
gorithm developed in [15], the Euclidean distance between
ce of the cloud of notes and the ce of the global key (as
described in [15]) is calculated. This distance represents
the tensile strength. The short example in Figure 6 has a
(given) global key of C major. The tensile strain is largest
on the C] major chord, which is to be expected since it is
tonally more distant than both C major or A minor from
the given key. Figure 7 illustrates how the tensile strain
was calculated, by marking the distance from the ce of all
three chords (in green) to the ce of the key of C major (in
orange) in the spiral array.

Figure 6: Tensile strain of C major – C] major – A minor
chord given that the key is C major (min 1.0, max 1.5).

The distance to the ce of the key in the spiral array is
illustrated in Figure 6.

Figure 7: C major – C] major – A minor chord together
with their distance from the ce of the key (in orange).

In the next section, all three methods are studied in greater

detail by means of examples.

3. EXAMPLES

In this section a number of example pieces are discussed.
Short snippets from an empirical study by Farbood [1] are
first analysed, followed by a few famous phrases and more
extensive sections of music.

The methods above were implemented in java are avail-
able online 1 . The system developed takes a musicXML
file as input and outputs an INScore file [18] which repre-
sents the results of each of the methods as a coloured rib-
bon overlaid on the score. To represent these ribbons, the
output of each method was normalised within a piece, or, in
the case of the examples based on Farbood (Section 3.1.1),
over all samples. In order to emphasise the changes in ten-
sion visibly, zero values (which occur when there are rests)
are not taken into account when normalising.

3.1 Snippets

This section considers the application of the tension measures—
cloud diameter, cloud momentum, and tensile strain—to
the harmonically-motivated tension examples from Farbood,
and compares the results to known user annotations of per-
ceived tension for these samples.

3.1.1 Tension examples from Farbood

The above methods each capture some aspect of harmonic
tension. In order to validate this claim, the methods were
applied to examples from an empirical study. While each
of the proposed methods captures part of the harmonic ten-
sion, one could argue that it is not possible to capture ten-
sion as an aggregate feature, as the attention of the listener
constantly shifts between different features when evaluat-
ing tension [1].

Mary Farbood performed an extensive online question-
naire, whereby a total of 2,661 participants (17% of which
self-categorised as musicians) annotated the perceived ten-
sion after listening to a snippet of music [1]. The partic-
ipants were asked to select one out of six possible shapes
for the perceived tension (see Figure 8).

Figure 8: Possible responses in Farbood’s study. Figure
adapted from [1].

1 dorienherremans.com/tension

dorienherremans.com/tension


(a) A03

(b) A04

(c) A05

(d) A06

(e) A07

(f) A08

(g) A11

(h) A12

(i) A13

(j) A14

Figure 9: Computed tension parameters for selected stimuli from [1]. In sequence: cloud diameter (orange), cloud mo-
mentum (yellow), and tensile strain (red).



In this study, relevant stimuli pertaining to harmonic ten-
sion were selected and the results of the three methods
were represented as tension ribbons overlaid on the score
snippets in Figure 9. The colour-coded ribbons represent
(in sequence): the cloud diameter (orange), the cloud mo-
mentum (yellow), and the tensile strain (red). The algo-
rithm was run with one window per measure, except for
stimulus A14, whereby a window size of two quarter notes
was selected. In order to make the changes in the results of
the methods clearly visible, the data for each type of ribbon
was normalised over the results of all the stimuli.

Stimulus cloud cloud tensile
ID diameter momentum strain

A03 (d) (a) (d)
A04 (d) (a) (d)
A05 (d) (a) (d)
A06 (d) (a) (d)
A07 (d) (a) (d)
A08 (d) (a) (d)
A11 (a)(d) (b) (d)
A12 (d) (b) (a)(d)
A13 (a)(d) (a) (a)(b)
A14 (f) (e) (f)(g)

Table 1: Correspondence between computed tension pat-
terns and templates in Figure 8.

ID % 1st % 2nd % 3rd

A03 54% (b) 15% (a) 11% (d)
A04 41% (b) 16% (a) 13% (d)
A05 50% (d) 13% (g) 11% (f)
A06 46% (d) 19% (g) 14% (a)
A07 26% (g) 18% (e) 18% (f)
A08 25% (e) 20% (a) 16% (d)
A11 24% (a) 21% (g) 17% (d)
A12 27% (g) 25% (a) 18% (d)
A13 29% (a) 15% (d) 15% (i)
A14 78% (d) 7% (g) 5% (a)

Table 2: Top three responses for perceived tension for each
stimulus (shown in Figure 8) as found by [1].

The results in Figure 9 are mapped to the patterns in
Figure 8, as presented in Table 1, for direct comparison
with the top three responses of Farbood’s empirical study,
shown in Table 2. In the analysis below, a few results from
less popular responses (not in the top three) are used. For a
full overview of the empirical results, the reader is refered
to [1]. (When examining the cloud momentum, we have
to take into account the fact that the first window will not
have a momentum, and hence will always be zero. The first
value can therefore be ignored when analysing the results.)
The comparison confirms that the above defined methods
for tonal tension do capture different nuances of tension.

For the first two stimuli (A03 & A04), the cloud diame-
ter and tensile strain have the same movement as the third
most popular pattern, (d), identified by 11% and 13%, re-

spectively, of the respondents. Another 15% and 16%, re-
spectively, chose the same response as cloud momentum,
(a). It is worth noting here that some of the features that
may play a role in listeners’ evaluation of perceived tension
may not be captured in the spiral array. Therefore it is ex-
tremely difficult to simplify the cause of tension perception
to just one feature. For example, since the last chord is in
essence the same as the first chord, with a doubling of the
third at the octave, they are represented by the same cloud
of points in the spiral array. An increasing line of tension
in the first two fragments might have been captured by ap-
plying a method that takes into account the highest pitch
or melodic contour [19], both features which are not cov-
ered in this paper. Since the spiral array uses pitch classes,
our model will not capture tension which arises from chord
inversions.

The three methods defined in this paper capture 58% (50%
(d) + 8% (a)) and 60% (46% (d) + 14% (a)), respectively,
of the responses for stimuli A05 and A06 [1]. For the next
two stimuli (A07 & A08), 30% (17% (d) + 13% (a)) and
36% (20% (a) + 16% (d)), respectively, is captured [1].
This decrease can be due to the fact that many participants
selected response (e) and (f) from Figure 8. Since a win-
dow size of one whole note was used for this experiment,
a maximum of three points were calculated for the stim-
uli. Hence it is not possible to get an output like (e) and
(f), both of which require at least four points. More exper-
iments with the window size might be useful in the future
to test this influence, however, for now a window size per
onset produces reasonable results.

The fact that tension is a characteristic which is perceived
through different, alternative features is yet again confirmed
in stimuli A11 and A12, where the top response (being (a))
is only selected by 24% and 27%, respectively. In the case
of A11, 17% of the participants selected (d) and chose 14%
(e) [1]. These two answers could even be seen as a reversed
or opposite movement of tension. The calculated tensile
strain varies over the fragments, as indicated by 21% and
27%, respectively, of the participants. The cloud diame-
ter captures the perceived increase followed by a decrease
very well. This tension profile corresponds to 17% and
18%, respectively, of the responses. These results yet again
confirm the multidimensional aspect of perceived tension.

The cloud momentum is (perhaps) surprisingly small in
stimuli A13. This can be attributed to the fact that the ce
is calculated from many notes at the same time, thus di-
minishing the effect of changing only one note from one
cloud to the next. When many notes are sounding at any
given time in a slow changing sequence, cloud diameter
and tensile strain might be more sensitive to tonal tension
than cloud momentum.

For stimulus A14, a window size of two notes was se-
lected. Due to the chromatic nature of this stimulus, the
distance to the key is, as to be expected, very large. Most
participants indicate an increase in tension followed by a
decrease. This is also apparent when looking at the cloud
momentum and cloud diameter. Although these ribbons
also register tension in the beginning and ending.

From this analysis, it is apparent that the three measures—



cloud diameter, momentum, and tensile strain—can help
us understand different aspects of perceived tension in mu-
sic.

3.2 Phrases

Next, we consider slightly longer examples in the form of
phrases excerpted from Wagner’s Tristan and Isolde and
Beethoven’s Sonata Op. 31 No. 3.

3.2.1 Tristan chord

A famous tension-inducing chord, which typically has an
unusual relationship to the implied key of its surroundings,
is the Tristan chord. Its unusual composition has been the
topic of many musicological works [20]. [21] described
it as “that Sphinx-chord, which has already occupied so
many minds”. The Tristan chord consists of an augmented
fourth, augmented sixth, and augmented ninth above a bass
note, for example, {F, B, D], G]}. The chord was given
its name because the leitmotif associated with Tristan in
Richard Wagner’s opera “Tristan und Isolde” contains this
chord [22]. In the opera, Tristan and Isolde fall in immortal
love after drinking a magic potion when they try to commit
suicide together. Wagner uses the Tristan chord every time
the potion or its effects are mentioned, thus connecting it
to the build-up of suspense in the story. When the Tris-
tan chord is represented in the spiral array (see Figure 10)
it becomes clear that it is a very dispersed chord in tonal
space.

An example of the Tristan chord is displayed in the first
beat of bar 3 in the excerpt shown in Figure 11. This figure
also displays the results when applying the three methods
(with 6 windows per bar) to the fragment. A large increase
in cloud momentum and cloud diameter are seen when the
chord appears, indicating its tonally disperse nature and
large tonal distance to the previous chord/notes. The ten-
sile strain is more difficult to evaluate, as the key of this
short phrase is not entirely clear. The example shows the
tensile strain with A minor.

3.2.2 Beethoven Sonata Op. 31 No. 3 in E[ major

The Tristan chord has appeared in other compositions be-
fore Wagner wrote the opera. In Beethoven’s Sonata No.
18, Op. 31 No. 3, in E[ major (see Figure 12) the Tristan

Figure 10: The Tristan chord in the spiral array.

(a) Cloud diameter

(b) Cloud momentum

(c) Tensile strain

Figure 11: The Tristan chord in Wagner’s Tristan Prelude.

chord appears with the exact intervals albeit with a differ-
ent spelling in the fourth bar. When enharmonically rewrit-
ing the Tristan chord in this way, it becomes less disperse
in tonal space, as can be seen in Figure 13. This is reflected
by the spiral array, which takes pitch spelling into account.
For example, The G] in the Tristan chord is much farther
away from F than the A[ used by Beethoven (see Figure 10
and 12). We assume that the composers choices reflect the
pitch relations they intend for the listener to perceive. The
tension values calculated reflect these choices.

Figure 12 shows the cloud diameter and momentum, and
tensile strain behaviour for the Beethoven Op. 31 No. 3
example. Recall that there was a global peak in the tensile
strain and a local peak in the cloud momentum values for
Wagner’s Tristan phrase. The peak tension as evaluated by
the tensile strain has now shifted to the chord preceding
the Tristan chord. For cloud diameter, although the Tristan
chord produces a high value, the value remains high for
the following chord. Thus this different spelling may lead
to different interpretations of the tension, even though the
notes are enharmonically equivalent.

3.3 Sections

Here, we turn to tension in larger sections of music: namely,
Adagio (in A-flat major), the second movement of Schu-
bert’s Piano Sonata in C minor D958 (beginning and end),
and the first sixteen bars of Beethoven’s Les Adieux (Sonata
No. 26, opus 81a, in E[ major).

To obtain the results, the methods used eight windows
per bar and the results were normalized within each piece.
During normalisation, rests were ignored, so as to make the
difference between higher tensions more readily visible.



(a) Cloud diameter

(b) Cloud momentum

(c) Tensile strain

Figure 12: Opening bars of Beethoven’s Sonata Op. 31
No. 3.

3.3.1 Schubert

Figure 14 and 15 display the harmonic tension ribbons for
the first 17.25 bars and the last 14 bars of Schubert’s Pi-
ano Sonata in C minor D958, second movement: Adagio
in A[ major. The last bars contain basically the same ma-
terial, but are harmonised differently to sound even more
tense. It is noticeable that sections with increased tension
are mostly captured by one of the three suggested methods,
yet not always by all three methods at the same time.

For example, the cloud diameter does a good job of cap-
turing the heightened tension in the middle of the first bar
of the ending segment, but less so the cloud momentum or
the tensile strain because there is very little movement. Al-
ternatively, in the second and third systems of the ending
segment, the tensile strain has elevated values due to the
tension of the pull away from the A[ major key to the more
distant regions of D major/minor and A major. For the D
major/minor zone, the cloud diameter is low because the
pitches are fairly self-consistent even though the keys vac-
illate between D major and minor, the tonic remains the
same and the cloud momentum is only higher at the be-
ginning. The cloud diameter is also high in the A major
region, but not the cloud momentum.

3.3.2 Beethoven

Figures 16 and 17 show the harmonic tension ribbons for
the first 16 bars of Beethoven’s Les Adieux (Sonata 26,
opus 81a, in E[ major). This is an example that is fraught
with tension, as reflected in the high tensile strain through-
out. The tensile strain is only not high at regions with the
E[ major chord (as in the second eighth note of bar 6) or E[
major seventh chord (towards the end of the excerpt). The

Figure 13: The Tristan chord in Beethoven’s Sonata Op.
31 No. 3, enharmonically equivalent to Wagner’s Tristan
chord, but less dispersed in the spiral array space.

(a) Beethoven intro – Tensile strain (min 0.1, max 1.8)

Figure 17: Analysis of Sonata 26, op 81a (first 16 bars).

cloud diameter varies, with the highest values at the right
hand’s melodic turn in bars 3, 9, and 10, where the accom-
panying harmonies are also moving chromatically. The
cloud momentum turns out to be less informative for this
example as the highest values are associated with melodic
leaps when there are very few notes, as in the end of bar 4.

4. CONCLUSIONS

Tension is a complex concept which is not easy to define
or quantify. In this paper we have developed and imple-



(a) Schubert beginning – Cloud diameter (min 1.5, max 3.6) (b) Schubert ending – Cloud diameter (min 0.2, max 3.0)

(c) Schubert beginning – Cloud Momentum (min 0.1, max 2.6) (d) Schubert ending – Cloud Momentum (min 0.2, max 3.5)

Figure 14: Comparison of the beginning and ending of Schubert’s Piano Sonata in C minor D958, second movement:
Adagio (in A-flat major).



(a) Schubert beginning – Tensile strain (min 0.2, max 3.0) (b) Schubert ending – Tensile strain (min 0.2, max 3.0)

Figure 15: Comparison of the beginning and ending of Schubert’s Piano Sonata in C minor D958, second movement:
Adagio (in A[ major).

(a) Beethoven intro – Cloud diameter (min 1.5, max 4.2) (b) Beethoven intro – Cloud momentum (min 0.1, max 1.9)

Figure 16: Analysis of Sonata 7826, op 81a (first 16 bars).



mented three methods for measuring aspects of tonal ten-
sion. These methods are based on the spiral array, a model
for tonality. The implemented system is able to display
tension ribbons over the input musical scores, thus allow-
ing for easy interpretation. An analysis of existing pieces
and a comparison with an empirical study [1] revealed that
cloud diameter, cloud movement and tensile strain all con-
tribute to capturing the composite feature humans refer to
as tension.

This work only attempted to model aspects of tonal ten-
sion. The proposed measures relate to perceived distance
between notes in a cluster, between consecutive clusters
of notes, and between the global and local tonal contexts.
They fail, however, to consider tension that is caused by
other kinds of expectation, such as that due to delay of ca-
dential closure—modeling this kind of tension is trickier
because not all dominant-tonic pairs form cadences. Much
work remains to understand the many different parameters
that contribute to the perception of musical tension.

Future research includes conduct a more thorough em-
pirical study of how the quantitative measures produced
by the methods discussed in this paper correlate with what
listeners describe as tension. The current model could be
expanded to more completely capture the composite char-
acteristics of tension. Further extensions could take into
account features related to melodic contour, rhythm and
timbre. Beyond score features, another interesting expan-
sion would be to capture the influence of performance (e.g.
timing and dynamics) variations on tension.
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