
MACAQUE – A TOOL FOR SPECTRAL
PROCESSING AND TRANSCRIPTION

Georg Hajdu

Center for Microtonal Music and Multimedia (ZM4)
Hamburg University of Music and Theater (HfMT)

Harvestehuder Weg 12
20148 Hamburg

georg.hajdu@hfmt-hamburg.de

ABSTRACT
This paper describes Macaque, a tool for spectral process-
ing and transcription, in development since 1996. Macaque
was programmed in Max and, in 2013, embedded into the
MaxScore ecosystem. Its GUI offers several choices for the
processing and transcription of SDIF partial-track files into
standard music notation. At the core of partial-track tran-
scription is an algorithm capable of “attracting” partial
tracks (and fragments thereof) into single staves, thereby
performing an important aspect of “spectral orchestration.”

1. INTRODUCTION
Macaque is a component of the MaxScore notation soft-
ware package for Max [1] allowing the transcription of
analysis data in the Sound Description Interchange File
Format (SDIF) into standard music notation. It has a long
history dating back to March 1996 when, during a ZKM
residency in Karlsruhe, Germany, I tried to recreate the
workflow I used for my doctoral work at UC Berkeley’s
Center for New Music and Audio Technologies (CNMAT).
At CNMAT, I took advantage of the analysis component of
the their additive synthesis tool (CAST) running on a Sili-
con Graphics Indigo computer [2][3]. In contrast, the soft-
ware available to me in Karlsruhe consisted of an applica-
tion called Lemur running on the classic Mac OS for par-
tial-tracking analysis as well as Finale by Coda (now
MakeMusic) for music notation. Lemur implemented the
McAulay and Quatieri algorithm [4] capable of modeling
non-harmonic and polyphonic sounds [5] and was further
developed into Loris, an “Open Source sound modeling and
processing software package based on the Reassigned
Bandwidth-Enhanced Additive Sound Model” [6]1. I used
Lemur for partial-tracking analysis and a Max patch to
translate the analysis data from binary into text format and,
eventually, into a MIDI file. Once imported into Finale, the
files were exported in Enigma format—Finale’s file ex-
change format until it was superseded by MusicXML. The
Enigma format (despite its name) allowed me to alter the
appearance of my scores by changing the cryptic code in
specific locations. To this aim, I developed a number of
Max patches. For instance, in the first scene of the second

1 Macaque was named after another simian whose name con-
notes the name of the platform it was developed on as well as
the tongue-in-cheek reference to “aping” real sounds with addi-
tive or instrumental resynthesis.

act of my opera Der Sprung – Beschreibung einer Oper [7]
I used the MIDI velocity information of the transcribed note
events to alter the size of their note heads so that the sight-
reading musicians had instantaneous visual feedback per-
taining to the dynamics of the music to be performed. In
other instances, I have used a technique called “velocoding”
to encode microtonal pitch deviation in eighth-tone resolu-
tion into the velocity part of a MIDI note-on message to
modify the Enigma file in such ways that the resulting score
displayed the corresponding pitch alterations. Another early
example of using Macaque is my piece Herzstück for two
player pianos from 1999 which premiered at the Cologne
Triennale in 2000. This piece was written for two of Jürgen
Hocker’s instruments which he also used to tour Conlon
Nancarrow’s compositions for player piano [8]. These
instruments had been retrofitted with a mechanism allowing
them to be controlled via MIDI. In my piece, the two pianos
were to “speak” the eponymous comical dialog by Heiner
Müller, once dubbed the world’s shortest theatre piece, with
its length well below a minute. I used an audio recording by
the Berliner Ensemble and also translated the background
noises such as the frantic applause at the end.

Figure 1. Excerpt from the first scene of the second act
from the author’s opera Der Sprung – Beschreibung
einer Oper.

In the early 2000s, Macaque went through several steps
until it reached its current incarnation, among these were:

• Adaption of the SDIF format co-developed by
IRCAM and CNMAT

• Switch to SPEAR and AudioSculpt as a source
for SDIF files

• Implementation of spectral transforms and time
stretching

• Development of a collapsible GUI with three
separate panes

• Integration into the MaxScore ecosystem

2. SPECTRAL COMPOSITION AND
ORCHESTRATION

At the core of Macaque is a technology intelligently
assigning partial tracks to event tracks (see section 3.3).
Partial-tracking analysis of complex sounds typically
produces more tracks than an ensemble of musicians can
handle. They typically either exceed the number of avail-
able musicians or the playable range of their instruments.
Therefore, files generated with SPEAR should be pre-
pared in advance. These preparations involve:

• Setting appropriate values in SPEAR’s Sinusoi-
dal Partials Analysis window (Figure 2) de-
pending on the source type (instrumental sounds,
music, noise, speech)

• Defining a cut-off frequency and removing par-
tials outside the range with the Frequency Re-
gion Selection tool (typically 3000 Hz)

• Removing short partial tracks (typically <=0.2”)
• Deleting soft partial tracks or “false” tracks con-

sisting of noise
• Manually editing partial tracks where a signal

has fused with noise

Figure 2. It is crucial to start with the right settings in
the Sinusoidal Partials Analysis window before analyz-
ing an audio file in SPEAR.

Still, this may not be enough to sufficiently reduce the
number of tracks. In section 3.3, I will therefore describe
an algorithm that “attracts” separate partial tracks into an
instrumental staff and thereby performs, on a rudimentary
level, a task which can be called Spectral Orchestration.

There have been a number of projects by other composers
and developers tackling aspects of spectral orchestration.
Those known to me include the works by the French
spectralists, the software Clarence Barlow’s developed
for his piece Am Januar am Nil (1980) in which non-
sense sentences are “spoken” by an ensemble, the piece
Speakings by Jonathan Harvey for which the Matlab-
based software Orchidée was developed at IRCAM [9];
more on this in a paper by Aurélien Antoine and Eduardo
R. Miranda [10]. Other projects include the soundalikes
by Michael Iber, the text compositions by Peter Ablinger,
as well as OpenMusic [11] and the bach/cage libraries
[12] capable of converting SDIF files into music notation.

3. WORK FLOW

Figure 3. An example of partial tracks in SPEAR.
These tracks were actually drawn by hand.

Including Macaque into the MaxScore ecosystem has
simplified the workflow to a great extent and allowed me
to work mainly in the Max environment. The following
sections will give an overview of the crucial steps from
SDIF import to score generation.

3.1 Importing from Spear

SDIF files such as the one displayed in Figure 3 should
be exported from SPEAR as “SDIF 1TRC – Exact Inter-
polated”. Macaque can be conveniently accessed from
within a patch called Macaque Environment, which is
part of the MaxScore ecosystem and also comprises an
instance of the MaxScore editor, a Macaque sound file
recorder (for resynthesized SDIF files) and two modules
for microtonal and multitimbral playback.

3.2 The GUI

Macaque sports three panes and four tabs for the top pane
(Figure 4). The default view displays (i) the partial
tracks in the top pane with the Transcribe button under-
neath (triggering the transcription of partial tracks into
notation), (ii) the spectral content of a vertical time slice
(spectral frame) in eighth-tone notation in the central

pane as well as (iii) curves for centroid (green) and sum
of amplitudes (black) in the bottom pane.

Figure 4. The Macaque GUI with its collapsible panes

These curves serve as the basis for event detection and
markup, as we will see in section 3.5. A second Tran-
scribe button triggers event transcription according to the
markers created by the user.

The other three views of the top pane display:

• Break-point functions for spectral transforms
(Figure 5)

• A tempo curve for time stretching/compression
and

• A preferences pane with over 15 parameters af-
fecting the outcome of the transcription (Figure
6)

Figure 5. Break-point functions for spectral transforms

Figure 6. Preference pane with parameters affecting the out-
come of the transcription

3.3 Partial-track transcription

Figure 7. Transcription of the partial tracks from Figure 3

Macaque relies to a great extent on the CNMAT sdif ob-
jects (sdif-buffer, sdif-info, sdif-ranges, sdif-tuples) [11].
Upon opening an SDIF file in 1TRC format and loading
stream number 0 (higher stream numbers are currently not
supported) into the sdif-buffer, relevant information about
the file is extracted and the spectral content displayed in
the top pane by reading the data from the SDIF matrix
contained in the buffer.

3.3.1 MIDIfication
Pressing the transcribe button will now pass the spectral
data to the transcriber, at the time interval defined as
MIDIfication in the Granularity preference section. This
interval is calculated by taking current meter, tempo and
beat subdivision settings into consideration (Figure 7).
Note that the quantizer offers another beat subdivision
scheme [14] which can either be aligned with the MIDIfi-
cation interval or not. When aligned the subdivision is
regular, if not the subdivision is irregular and notes may be
lumped together such as in Figure 8.

Figure 8. Transcription of the same partial tracks with mis-
aligned MIDIfication and beat subdivision scheme settings.
This may or may not be a desired effect.

After applying the spectral transforms (see section 3.3.3)
the partial tracks are resampled according to their index
in a 32-bit Jitter matrix. Each track is converted and ana-
lyzed according to Pitch and MIDI Velocity tolerance
thresholds, i.e. the analysis looks for leaps in the resam-
pled values exceeding a given threshold.

Figure 9. Transcription of the same partial tracks with vastly
different Pitch and MIDI Velocity tolerance thresholds.

If a value is greater than the threshold value, a new event
is assumed and the events collected in a Max coll (see
Table 1). Each track now consists of a track velocity
value (based either on the first collected amplitude value
or an average of all amplitude values), an average track
pitch value and four values for each event consisting of
time tag (in MIDIfication intervals), event frequency,
event velocity and duration (in MIDIfication intervals).

Events in track
0 0.14899 65.489636 1 62.14 31. 2 3 59.07 48. 2 5

64.84 53. 1 6 68.16 58. 2 8 67.11 65. 3 11 69.62 61.
1 12 71.21 51. 2 14 67.95 51. 1;

1 0.050958 59.706389 1 51.49 25. 1 2 53.14 33. 1 3
48.67 38. 2 5 53.91 38. 1 6 61.9 40. 1 7 64.54 39. 1
8 63.05 40. 1 9 61.18 42. 1 10 62.37 42. 1 11 65.33
41. 1 12 67.69 41. 2 14 66.28 41. 1;

Table 1. Event collection. Each track is represented by
average velocity, average pitch and a sequence of four
values denoting time tag, frequency, velocity and dura-
tion for each individual event.

3.3.2 Event Attractor
These data serve as the basis for an algorithm assigning
these events to event tracks. It works as follows: The
track velocity serves as a measure for its relevance; the
louder the track the more relevant. All tracks are indexed
according to this measure. For the first partial track (the
most relevant track), all events are written to another
Jitter matrix and now serve as an attractor to events
which exist in the other tracks. If the events of the next
track are close enough in pitch (defined by Attractor Size
in the Preference pane) and can be inserted into empty
regions of the current event track, they will be written to
this track, otherwise a new event track will be created
(Figures 10-12). This process is iterated until all events
have either been assigned to event tracks or discarded, the
maximum count being 32.

Figure 10. Transcription of overlapping partial tracks yields
separate staves.

Figure 11. Transcription of consecutive partial tracks within
attractor range yields one staff.

Figure 12. Transcription of consecutive partial tracks outside
attractor range yields two staves.

The next steps involve sorting event tracks according to
their average pitch as well as converting time tags and
durations into their respective values in seconds. This is
where time stretching and compression is applied (Figure

14). Finally, these values are fed into the MaxScore tran-
scriber and displayed in standard notation.
Once transcribed the original SDIF file and its companion
score file can be played back in sync by pressing the
“Sync Play” button.

3.3.3 Spectral transforms
Macaque can apply time-variant transforms to spectral
data. These transforms can be set by changing break-
point functions (BPFs) for amplitude, trajectory, spectral
stretch, reference frequency and transposition. They are
also being applied to the playback of the SDIF file. I used
Emmanuel Jourdan’s ej.function.js JavaScript object
capable of drawing multiple BPFs on top of each other
and sharing its curves with an efficient Java object called
ej.fplay for real-time processing.
While the terms amplitude and transposition don’t need
further elucidation, I’d like to explain the function and
meaning of trajectory and spectral stretching. Trajectory
refers to the path playback and transcriber take through
the SDIF file. A straight upward line causes the sample to
be played regularly, i.e. forward, a straight downward
line causes the sample to be played backwards. By using
any number of break points, playback and transcription
can be broken up into forward and backward segments.
Spectral stretching is performed according to the formula
given by Mathews and Pierce [15]. It requires the partial
index (defined as the ratio between partial and reference
frequency), a pseudo-octave (or stretch factor; 2 = no
stretch) and reference frequency (or fundamental) as
inputs.

Figure 13. The transcription of the same file with spectral-
stretching applied. The stretch factor is 2.95 at the beginning
shrinking linearly to 1.68 over the length of the file.

Figure 14. The subpatch in Macaque where spectral transforms
are applied. Note the use of the ej,fplay object which shares the
break-point functions of the Curves pane.

3.3.4 Tempo curve
Another editor can be used to warp time according to a
time-variant tempo curve, i.e. portions of the sample can
be sped up or slowed down. This tempo curve will then
be applied to transcription. This is performed by calculat-
ing the integral under the tempo curve to obtain the val-
ues for duration and onset times of the note events to be
used by the MaxScore transcriber.

3.3.5 Selection
Playback, transcription and transforms all scale to the
selection made in the partial-track pane. This affords the
user the possibility to specify select parts of the SDIF
file.

3.3.6 Effects processing
Since all transforms are also applied to the resynthesis of
the SDIF file, Macaque can also be used as an effects
processor. Two of my compositions (see Table 2) have
taken advantage of this capability.

3.4 Spectral frames

As mentioned before, the spectral slices pane displays the
spectral content at the position of the play head. Its par-
tials can be played back at once by holding the space bar
or arpeggiated by pressing the “Play Partials” button.
They can be saved as a MaxScore XML file or a Max
coll. In addition, the notes can be copied and pasted into a
MaxScore score for compositional or analytical purposes.

3.5 Event detection and transcription

The third pane is dedicated to event detection. Here, the
term event is applied to the entire analysis file, in contrast
to partial track transcription where “event” refers to the
detection of significant amplitude and frequency changes
within a single track. As automatic event detection poses
some challenges [16], I have opted to (i) offer markers
for manual event detection (for which the amplitude and

centroid curves lend themselves as guides) or (ii) for the
import of markers generated in AudioSculpt, whose algo-
rithm performs better than the one employed in an earlier
version of Macaque. Once an SDIF file has been marked
up with on-markers and off-markers, the obtained tempo-
ral structure serves as the basis for transcription and fur-
ther processing. Two adjacent on-markers delineate a
time interval within which the spectral frame with the
highest sum of amplitudes is searched for. From this
frame, the following events can be derived:

• Temporal structure with x-ed note heads.
• f0 pitch, applying the harmonic histogram

technique implemented in Mikhail Malt and
Emmanuel Jourdan’s zsa.fund object

• Lowest partial
• Most salient partial
• Centroid
• The nearest neighbor of the centroid, as the

latter is typically not contained in the spec-
trum

• All partials as a chord (an amplitude thresh-
old can be set in the preference pane to skim
off softer partials)

While the markup should ideally follow sharp rises or
drops in the amplitude and/or centroid curves, markers
can also be set to apply arbitrary rhythms to the spectrum
of a sounds (Figure 15-17).

Figure 15. An (arbitrary) markup of the SDIF file from Figure 3

Figure 16. The transcription of the markup displaying the

strongest partials within the delineated segments.

Figure 17. Same markup displaying f0 pitch.

4. COMPOSITIONS
After a hiatus of nearly 10 years during which I mainly
focused on networked multimedia performance, I started
to create spectral music again in 2009. Since then I have
used Macaque in the following compositions (see
http://georghajdu.de):

Composition	 Year	 Instrumentation	 SRC	 PT	 SF	 MU	 ASUP	 RSYN	
Blueprint	
	

2009	 sax,	 egtr,	 db,	 pno,	
perc,	elec	

speech,	
noises	

x	 x	 x	 x	 	

Schwer...	
unheimlich	schwer	
	

2009	 bcl,	 vla,	 pno,	 perc,	
elec	

speech	 	 x	 x	 x	 	

Swan	Song	
	

2011	 vc,	perc,	elec	 Beijing	
opera,	
noises	

x	 	 x	 x	 x	

In	ein	anderes	Blau	
	

2012	 sop,	bfl,	cbcl,	vn,	va,	
vc,	db,	perc,	elec	

music	 	 x	 	 x	 x	

noiwont	 2014	 19-tone	trp,	elec	 speech	 x	 	 x	 x	 	
aɪd	laɪk	tuː	meɪk	ə	ʃɔːt	ˈsteɪtmənt		
	

2016	 fl,	 cl,	 va,	 vc,	 pno,	
perc,	elec	

speech	 	 x	 x	 x	 	

Table 2. Compositions by the author composed with the aid of Macaque. SRC = source material, PT = partial-track transcrip-
tion, SF = spectral frame, MU = Markup and event transcription, ASUP = audio superimposition, RSYN = SDIF to audio re-
synthesis.

5. CONCLUSION AND OUTLOOK
Emerging from a situation in which I desperately needed
to replace software I had relied on during my doctoral
work at CNMAT, Macaque has become, over the years, a
serious tool used by me, and others, for spectral analysis
and composition. It has become fairly stable in its feature
set for the past 4 years with development mainly focusing
on bug fixes and support for 64-bit Max.
However, there are a few areas that are still worthwhile
exploring:

• Transcription and notation of glissandi for
events belonging to the same partial track

• Implementation of an efficient automatic event
detection algorithm with a “rubber-band” tempo
curve editor capable of taking tempo fluctua-
tions and microtiming into consideration (see
also [17])

• Implementation of a fast method for tempo
curve integration

• Zooming
• Improvements of the GUI

Since the code base largely emerged before the release of
Max 5, it is tempting to recreate the functionality of the
partial-track transcriber and other components in the Max
js object as well as improve control of the additive syn-
thesis as a Max gen~ script.

Acknowledgments

I would like to thank the Behörde für Forschung und
Wissenschaft Hamburg for supporting our research in the
framework of its Landesforschungsförderung.

6. REFERENCES
[1] G. Hajdu, and N. Didkovsky, “MaxScore – Current

State of the Art,” in Proceedings of the International
Computer Music Conference, Ljubljana, 2012, 156-
162.

[2] A. Freed, X. Rodet and Ph. Depalle, “Synthesis and
Control of Hundreds of Sinusoidal Partials on a
Desktop Computer without Custom Hardware,” in
ICSPAT (International Conference on Signal Proc-
essing Applications & Technology, 1992, San José,
United States. 1992

[3] http://cnmat.org/CAST/

[4] R.J. McAulay and T.F. Quatieri, “Speech
analysis/synthesis based on a sinusoidal
representation,” in IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. ASSP-34, no. 4,
1986, 744-754.

[5] K. Fitz and L. Haken, “Lemur: A bandwidth-
enhanced sinusoidal modeling system,” in The
Journal of the Acoustical Society of America, vol.
103, 1998, 2756.

[6] http://www.hakenaudio.com/Loris/

[7] G. Hajdu, “Research and Technology in the Opera
Der Sprung,” in Nova Acta Leopoldina, vol. 92, no.
341, 2005, 63-89.

[8] J. Hocker, Faszination Player Piano - Das
Selbstspielende Klavier von den Anfängen bis zur
Gegenwart. Kapitel 15 - Conlon Nancarrow und die
Renaissance des Player Pianos, Edition Bochinsky,
2009, 238-267.

[9] G. Nouno, A. Cont, G. Carpentier and J. Harvey,
“Making an Orchestra Speak,” in Proceedings of the
Sound and Music Computing Conference (SMC),
Porto, 2009, 277-282.	

[10] A. Antoine and E. R. Miranda, “Towards Intelligent
Orchestration Systems,” in Proceedings of the 11th
International Symposium on Computer Music
Multidisciplinary Research (CMMR): Music, Mind,
and Embodiment, Plymouth University, UK, 2005.

[11] J. Bresson and C. Agon, “SDIF sound description
data representation and manipulation in computer
assisted composition,” in Proceedings of the Inter-
national Computer Music Conference, Miami, USA,
2004, 520–527.

[12] A. Agostini, E. Daubresse and D. Ghisi, “cage: a
high-level library for real-time computer-aided com-
position,” in Proceedings of the Joint ICMC and
SMC conference, Athens, 2014, 308-313.

[13] M. Wright, R. Dudas, S. Khoury, R. Wang and D.
Zicarelli, “Supporting the Sound Description
Interchange Format in the Max/MSP Environment,”
in Proceedings of the International Computer Music
Conference, Beijing, 1999, 182-185.

[14] N. Didkovsky, “Java Music Specification Language,
v103 update,” in Proceedings of the International
Computer Music Conference, Miami, 2004, 742-
745.

[15] M. Mathews and J.R. Pierce, “Harmony and Non-
harmonic Partials,” in The Journal of the Acoustical
Society of America, vol. 68, 1980, 1252.

[16] N. Collins, “A Comparison of Sound Onset
Detection Algorithms with Emphasis on
Psychoacoustically Motivated Detection Functions,”
in Proceedings of AES118 Convention, 2005.

[17] http://fab.cba.mit.edu/classes/864.05/people/lieb/lev.
html

Webpages all accessed on November 23, 2016.

