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ABSTRACT 
This paper describes Macaque, a tool for spectral process-
ing and transcription, in development since 1996. Macaque 
was programmed in Max and, in 2013, embedded into the 
MaxScore ecosystem. Its GUI offers several choices for the 
processing and transcription of SDIF partial-track files into 
standard music notation. At the core of partial-track tran-
scription is an algorithm capable of “attracting” partial 
tracks (and fragments thereof) into single staves, thereby 
performing an important aspect of “spectral orchestration.” 

1. INTRODUCTION 
Macaque is a component of the MaxScore notation soft-
ware package for Max [1] allowing the transcription of 
analysis data in the Sound Description Interchange File 
Format (SDIF) into standard music notation. It has a long 
history dating back to March 1996 when, during a ZKM 
residency in Karlsruhe, Germany, I tried to recreate the 
workflow I used for my doctoral work at UC Berkeley’s 
Center for New Music and Audio Technologies (CNMAT). 
At CNMAT, I took advantage of the analysis component of 
the their additive synthesis tool (CAST) running on a Sili-
con Graphics Indigo computer [2][3]. In contrast, the soft-
ware available to me in Karlsruhe consisted of an applica-
tion called Lemur running on the classic Mac OS for par-
tial-tracking analysis as well as Finale by Coda (now 
MakeMusic) for music notation. Lemur implemented the 
McAulay and Quatieri algorithm [4] capable of modeling 
non-harmonic and polyphonic sounds [5] and was further 
developed into Loris, an “Open Source sound modeling and 
processing software package based on the Reassigned 
Bandwidth-Enhanced Additive Sound Model” [6]1. I used 
Lemur for partial-tracking analysis and a Max patch to 
translate the analysis data from binary into text format and, 
eventually, into a MIDI file. Once imported into Finale, the 
files were exported in Enigma format—Finale’s file ex-
change format until it was superseded by MusicXML. The 
Enigma format (despite its name) allowed me to alter the 
appearance of my scores by changing the cryptic code in 
specific locations. To this aim, I developed a number of 
Max patches. For instance, in the first scene of the second 

                                                             
1 Macaque was named after another simian whose name con-
notes the name of the platform it was developed on as well as 
the tongue-in-cheek reference to “aping” real sounds with addi-
tive or instrumental resynthesis. 
 

act of my opera Der Sprung – Beschreibung einer Oper [7] 
I used the MIDI velocity information of the transcribed note 
events to alter the size of their note heads so that the sight-
reading musicians had instantaneous visual feedback per-
taining to the dynamics of the music to be performed. In 
other instances, I have used a technique called “velocoding” 
to encode microtonal pitch deviation in eighth-tone resolu-
tion into the velocity part of a MIDI note-on message to 
modify the Enigma file in such ways that the resulting score 
displayed the corresponding pitch alterations. Another early 
example of using Macaque is my piece Herzstück for two 
player pianos from 1999 which premiered at the Cologne 
Triennale in 2000. This piece was written for two of Jürgen 
Hocker’s instruments which he also used to tour Conlon 
Nancarrow’s compositions for player piano [8]. These 
instruments had been retrofitted with a mechanism allowing 
them to be controlled via MIDI. In my piece, the two pianos 
were to “speak” the eponymous comical dialog by Heiner 
Müller, once dubbed the world’s shortest theatre piece, with 
its length well below a minute. I used an audio recording by 
the Berliner Ensemble and also translated the background 
noises such as the frantic applause at the end.  

 
Figure 1. Excerpt from the first scene of the second act 
from the author’s opera Der Sprung – Beschreibung 
einer Oper. 

 



In the early 2000s, Macaque went through several steps 
until it reached its current incarnation, among these were: 
 

• Adaption of the SDIF format co-developed by 
IRCAM and CNMAT  

• Switch to SPEAR and AudioSculpt as a source 
for SDIF files  

• Implementation of spectral transforms and time 
stretching 

• Development of a collapsible GUI with three 
separate panes 

• Integration into the MaxScore ecosystem 

2. SPECTRAL COMPOSITION AND  
ORCHESTRATION 

At the core of Macaque is a technology intelligently 
assigning partial tracks to event tracks (see section 3.3). 
Partial-tracking analysis of complex sounds typically 
produces more tracks than an ensemble of musicians can 
handle. They typically either exceed the number of avail-
able musicians or the playable range of their instruments. 
Therefore, files generated with SPEAR should be pre-
pared in advance. These preparations involve: 
 

• Setting appropriate values in SPEAR’s Sinusoi-
dal Partials Analysis window (Figure 2) de-
pending on the source type (instrumental sounds, 
music, noise, speech) 

• Defining a cut-off frequency and removing par-
tials outside the range with the Frequency Re-
gion Selection tool (typically 3000 Hz) 

• Removing short partial tracks (typically <=0.2”) 
• Deleting soft partial tracks or “false” tracks con-

sisting of noise 
• Manually editing partial tracks where a signal 

has fused with noise 
 

 
Figure 2. It is crucial to start with the right settings in 
the Sinusoidal Partials Analysis window before analyz-
ing an audio file in SPEAR. 

Still, this may not be enough to sufficiently reduce the 
number of tracks. In section 3.3, I will therefore describe 
an algorithm that “attracts” separate partial tracks into an 
instrumental staff and thereby performs, on a rudimentary 
level, a task which can be called Spectral Orchestration.  
 
There have been a number of projects by other composers 
and developers tackling aspects of spectral orchestration. 
Those known to me include the works by the French 
spectralists, the software Clarence Barlow’s developed 
for his piece Am Januar am Nil (1980) in which non-
sense sentences are “spoken” by an ensemble, the piece 
Speakings by Jonathan Harvey for which the Matlab-
based software Orchidée was developed at IRCAM [9]; 
more on this in a paper by Aurélien Antoine and Eduardo 
R. Miranda [10]. Other projects include the soundalikes 
by Michael Iber, the text compositions by Peter Ablinger, 
as well as OpenMusic [11] and the bach/cage libraries 
[12] capable of converting SDIF files into music notation. 

3. WORK FLOW 

 
Figure 3. An example of partial tracks in SPEAR. 
These tracks were actually drawn by hand. 

Including Macaque into the MaxScore ecosystem has 
simplified the workflow to a great extent and allowed me 
to work mainly in the Max environment. The following 
sections will give an overview of the crucial steps from 
SDIF import to score generation. 

3.1 Importing from Spear 

SDIF files such as the one displayed in Figure 3 should 
be exported from SPEAR as “SDIF 1TRC – Exact Inter-
polated”.  Macaque can be conveniently accessed from 
within a patch called Macaque Environment, which is 
part of the MaxScore ecosystem and also comprises an 
instance of the MaxScore editor, a Macaque sound file 
recorder (for resynthesized SDIF files) and two modules 
for microtonal and multitimbral playback.  
 

3.2 The GUI 

Macaque sports three panes and four tabs for the top pane 
(Figure 4).  The default view displays (i) the partial 
tracks in the top pane with the Transcribe button under-
neath (triggering the transcription of partial tracks into 
notation), (ii) the spectral content of a vertical time slice 
(spectral frame) in eighth-tone notation in the central 



pane as well as (iii) curves for centroid (green) and sum 
of amplitudes (black) in the bottom pane.  
 

 
Figure 4. The Macaque GUI with its collapsible panes  

These curves serve as the basis for event detection and 
markup, as we will see in section 3.5. A second Tran-
scribe button triggers event transcription according to the 
markers created by the user.  
 
The other three views of the top pane display: 
 

• Break-point functions for spectral transforms 
(Figure 5) 

• A tempo curve for time stretching/compression 
and  

• A preferences pane with over 15 parameters af-
fecting the outcome of the transcription (Figure 
6) 

 
 

 
 
Figure 5. Break-point functions for spectral transforms 

 

 
 
Figure 6. Preference pane with parameters affecting the out-
come of the transcription 

3.3 Partial-track transcription 

 
Figure 7. Transcription of the partial tracks from Figure 3 
 
Macaque relies to a great extent on the CNMAT sdif ob-
jects (sdif-buffer, sdif-info, sdif-ranges, sdif-tuples) [11]. 
Upon opening an SDIF file in 1TRC format and loading 
stream number 0 (higher stream numbers are currently not 
supported) into the sdif-buffer, relevant information about 
the file is extracted and the spectral content displayed in 
the top pane by reading the data from the SDIF matrix 
contained in the buffer.  

3.3.1 MIDIfication 
Pressing the transcribe button will now pass the spectral 
data to the transcriber, at the time interval defined as 
MIDIfication in the Granularity preference section. This 
interval is calculated by taking current meter, tempo and 
beat subdivision settings into consideration (Figure 7). 
Note that the quantizer offers another beat subdivision 
scheme [14] which can either be aligned with the MIDIfi-
cation interval or not. When aligned the subdivision is 
regular, if not the subdivision is irregular and notes may be 
lumped together such as in Figure 8.  

 
Figure 8. Transcription of the same partial tracks with mis-
aligned MIDIfication and beat subdivision scheme settings. 
This may or may not be a desired effect. 



 
After applying the spectral transforms (see section 3.3.3) 
the partial tracks are resampled according to their index 
in a 32-bit Jitter matrix. Each track is converted and ana-
lyzed according to Pitch and MIDI Velocity tolerance 
thresholds, i.e. the analysis looks for leaps in the resam-
pled values exceeding a given threshold.  

 
Figure 9. Transcription of the same partial tracks with vastly 
different Pitch and MIDI Velocity tolerance thresholds. 
 
If a value is greater than the threshold value, a new event 
is assumed and the events collected in a Max coll (see 
Table 1). Each track now consists of a track velocity 
value (based either on the first collected amplitude value 
or an average of all amplitude values), an average track 
pitch value and four values for each event consisting of 
time tag (in MIDIfication intervals), event frequency, 
event velocity and duration (in MIDIfication intervals). 
 
# Events in track 
0 0.14899 65.489636 1 62.14 31. 2 3 59.07 48. 2 5 

64.84 53. 1 6 68.16 58. 2 8 67.11 65. 3 11 69.62 61. 
1 12 71.21 51. 2 14 67.95 51. 1; 

1 0.050958 59.706389 1 51.49 25. 1 2 53.14 33. 1 3 
48.67 38. 2 5 53.91 38. 1 6 61.9 40. 1 7 64.54 39. 1 
8 63.05 40. 1 9 61.18 42. 1 10 62.37 42. 1 11 65.33 
41. 1 12 67.69 41. 2 14 66.28 41. 1; 

Table 1. Event collection. Each track is represented by 
average velocity, average pitch and a sequence of four 
values denoting time tag, frequency, velocity and dura-
tion for each individual event. 

3.3.2 Event Attractor 
These data serve as the basis for an algorithm assigning 
these events to event tracks. It works as follows: The 
track velocity serves as a measure for its relevance; the 
louder the track the more relevant. All tracks are indexed 
according to this measure. For the first partial track (the 
most relevant track), all events are written to another 
Jitter matrix and now serve as an attractor to events 
which exist in the other tracks. If the events of the next 
track are close enough in pitch (defined by Attractor Size 
in the Preference pane) and can be inserted into empty 
regions of the current event track, they will be written to 
this track, otherwise a new event track will be created 
(Figures 10-12). This process is iterated until all events 
have either been assigned to event tracks or discarded, the 
maximum count being 32. 

 

 
Figure 10. Transcription of overlapping partial tracks yields 
separate staves. 

 

 
Figure 11. Transcription of consecutive partial tracks within 
attractor range yields one staff. 
 

 

 
Figure 12. Transcription of consecutive partial tracks outside 
attractor range yields two staves. 
 
The next steps involve sorting event tracks according to 
their average pitch as well as converting time tags and 
durations into their respective values in seconds. This is 
where time stretching and compression is applied (Figure 



14). Finally, these values are fed into the MaxScore tran-
scriber and displayed in standard notation. 
Once transcribed the original SDIF file and its companion 
score file can be played back in sync by pressing the 
“Sync Play” button. 

3.3.3 Spectral transforms 
Macaque can apply time-variant transforms to spectral 
data. These transforms can be set by changing break-
point functions (BPFs) for amplitude, trajectory, spectral 
stretch, reference frequency and transposition. They are 
also being applied to the playback of the SDIF file. I used 
Emmanuel Jourdan’s ej.function.js JavaScript object 
capable of drawing multiple BPFs on top of each other 
and sharing its curves with an efficient Java object called 
ej.fplay for real-time processing. 
While the terms amplitude and transposition don’t need 
further elucidation, I’d like to explain the function and 
meaning of trajectory and spectral stretching. Trajectory 
refers to the path playback and transcriber take through 
the SDIF file. A straight upward line causes the sample to 
be played regularly, i.e. forward, a straight downward 
line causes the sample to be played backwards. By using 
any number of break points, playback and transcription 
can be broken up into forward and backward segments. 
Spectral stretching is performed according to the formula 
given by Mathews and Pierce [15]. It requires the partial 
index (defined as the ratio between partial and reference 
frequency), a pseudo-octave (or stretch factor; 2 = no 
stretch) and reference frequency (or fundamental) as 
inputs.  
 

 
 

 
Figure 13. The transcription of the same file with spectral-
stretching applied. The stretch factor is 2.95 at the beginning 
shrinking linearly to 1.68 over the length of the file. 

 

 
Figure 14. The subpatch in Macaque where spectral transforms 
are applied. Note the use of the ej,fplay object which shares the 
break-point functions of the Curves pane. 

3.3.4 Tempo curve 
Another editor can be used to warp time according to a 
time-variant tempo curve, i.e. portions of the sample can 
be sped up or slowed down. This tempo curve will then 
be applied to transcription. This is performed by calculat-
ing the integral under the tempo curve to obtain the val-
ues for duration and onset times of the note events to be 
used by the MaxScore transcriber.  

3.3.5 Selection 
Playback, transcription and transforms all scale to the 
selection made in the partial-track pane. This affords the 
user the possibility to specify select parts of the SDIF 
file. 

3.3.6 Effects processing 
Since all transforms are also applied to the resynthesis of 
the SDIF file, Macaque can also be used as an effects 
processor. Two of my compositions (see Table 2) have 
taken advantage of this capability. 

3.4 Spectral frames 

As mentioned before, the spectral slices pane displays the 
spectral content at the position of the play head. Its par-
tials can be played back at once by holding the space bar 
or arpeggiated by pressing the “Play Partials” button. 
They can be saved as a MaxScore XML file or a Max 
coll. In addition, the notes can be copied and pasted into a 
MaxScore score for compositional or analytical purposes. 

3.5 Event detection and transcription 

The third pane is dedicated to event detection. Here, the 
term event is applied to the entire analysis file, in contrast 
to partial track transcription where “event” refers to the 
detection of significant amplitude and frequency changes 
within a single track. As automatic event detection poses 
some challenges [16], I have opted to (i) offer markers 
for manual event detection (for which the amplitude and 



centroid curves lend themselves as guides) or (ii) for the 
import of markers generated in AudioSculpt, whose algo-
rithm performs better than the one employed in an earlier 
version of Macaque. Once an SDIF file has been marked 
up with on-markers and off-markers, the obtained tempo-
ral structure serves as the basis for transcription and fur-
ther processing. Two adjacent on-markers delineate a 
time interval within which the spectral frame with the 
highest sum of amplitudes is searched for. From this 
frame, the following events can be derived: 
 

• Temporal structure with x-ed note heads. 
• f0 pitch, applying the harmonic histogram 

technique implemented in Mikhail Malt and 
Emmanuel Jourdan’s zsa.fund object 

• Lowest partial  
• Most salient partial 
• Centroid  
• The nearest neighbor of the centroid, as the 

latter is typically not contained in the spec-
trum 

• All partials as a chord (an amplitude thresh-
old can be set in the preference pane to skim 
off softer partials) 

 
 
While the markup should ideally follow sharp rises or 
drops in the amplitude and/or centroid curves, markers 
can also be set to apply arbitrary rhythms to the spectrum 
of a sounds (Figure 15-17). 

 

    
Figure 15. An (arbitrary) markup of the SDIF file from Figure 3 

 

 
Figure 16. The transcription of the markup displaying the 

strongest partials within the delineated segments. 
 

 
Figure 17. Same markup displaying f0 pitch. 

 
 

4. COMPOSITIONS 
After a hiatus of nearly 10 years during which I mainly 
focused on networked multimedia performance, I started 
to create spectral music again in 2009. Since then I have 
used Macaque in the following compositions (see 
http://georghajdu.de): 

 
Composition	 Year	 Instrumentation	 SRC	 PT	 SF	 MU	 ASUP	 RSYN	
Blueprint	
	

2009	 sax,	 egtr,	 db,	 pno,	
perc,	elec	

speech,	
noises	

x	 x	 x	 x	 	

Schwer...	
unheimlich	schwer	
	

2009	 bcl,	 vla,	 pno,	 perc,	
elec	

speech	 	 x	 x	 x	 	

Swan	Song	
	

2011	 vc,	perc,	elec	 Beijing	
opera,	
noises	

x	 	 x	 x	 x	

In	ein	anderes	Blau	
	

2012	 sop,	bfl,	cbcl,	vn,	va,	
vc,	db,	perc,	elec	

music	 	 x	 	 x	 x	

noiwont	 2014	 19-tone	trp,	elec	 speech	 x	 	 x	 x	 	
aɪd	laɪk	tuː	meɪk	ə	ʃɔːt	ˈsteɪtmənt		
	

2016	 fl,	 cl,	 va,	 vc,	 pno,	
perc,	elec	

speech	 	 x	 x	 x	 	

Table 2. Compositions by the author composed with the aid of Macaque. SRC = source material, PT = partial-track transcrip-
tion, SF = spectral frame, MU = Markup and event transcription, ASUP = audio superimposition, RSYN = SDIF to audio re-
synthesis. 



 

5. CONCLUSION AND OUTLOOK  
Emerging from a situation in which I desperately needed 
to replace software I had relied on during my doctoral 
work at CNMAT, Macaque has become, over the years, a 
serious tool used by me, and others, for spectral analysis 
and composition. It has become fairly stable in its feature 
set for the past 4 years with development mainly focusing 
on bug fixes and support for 64-bit Max.  
However, there are a few areas that are still worthwhile 
exploring: 
  

• Transcription and notation of glissandi for 
events belonging to the same partial track 

• Implementation of an efficient automatic event 
detection algorithm with a “rubber-band” tempo 
curve editor capable of taking tempo fluctua-
tions and microtiming into consideration (see 
also [17]) 

• Implementation of a fast method for tempo 
curve integration  

• Zooming  
• Improvements of the GUI 

 
Since the code base largely emerged before the release of 
Max 5, it is tempting to recreate the functionality of the 
partial-track transcriber and other components in the Max 
js object as well as improve control of the additive syn-
thesis as a Max gen~ script. 
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