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ABSTRACT

Standard western notation supports the understanding and
performance of music, but has limited provisions for re-
vealing overall musical characteristics and structure. This
paper presents several visualisers for highlighting and pro-
viding insights into musical structures, including rhythm,
pitch, and interval transitions, also noting how these el-
ements modulate over time. The visualisations are pre-
sented in the context of Shneidermans Visual Information-
Seeking Mantra, and terminology from the Cognitive Di-
mensions of Music Notations usability framework. Such
techniques are designed to make understanding musical
structure quicker, easier, less error prone, and take better
advantage of the intrinsic pattern recognition abilities of
humans.

1. INTRODUCTION

Standard western notation serves as a strict, formal set of
instructions for the performance of composed music. How-
ever, it omits explicit representation of a rich amount of
hidden data that exists between individual notes, and the
location of the notes within an overarching musical struc-
ture. One way to understand this structure is to analyse the
music: either manually, requiring an experienced musicol-
ogist; or via computer, resulting in several multi-dimensional
data fields, which may be difficult to represent and com-
prehend. Representing this data visually utilises the brains
pattern detection abilities, supporting easier and faster com-
prehension of material to enable insight and speculation
that can inform further formal analysis.

Visualisation presents non-visual data in a visual format,
usually as 2D/3D images or video. Shneiderman [1] intro-
duces a framework for guiding the design of information
visualisation systems, known as the Visual Information-
Seeking Mantra (VISM). The framework consists of seven
tasks for presenting information in a visual form to a user
(Table 1). Craft and Cairns [2] elaborate on this by stating
the VISM serves as inspiration and guidelines for practi-
tioners designing visual information systems. /par
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Task Description
Overview Gain an overview of the data.
Zoom Zoom in on items of interest.
Filter Filter out uninteresting items.
Details-on-
Demands

Selected an item or group and get
details when needed.

Relate View relationships between items.
History Keep a history of actions to sup-

port undo, replay, and progressive
refinement.

Extract Allow extraction of sub-collections
and of the query parameters.

Table 1. The 7 tasks of the VISM.

Shneiderman emphasises that humans have remarkable
perceptual abilities, allowing them to easily detect changes
of and patterns in size, colour, shape, movement or texture
in visual media. Such advanced and robust feature extrac-
tion capabilities are considerably more difficult to encode
as automated analysis using computer systems.

In a musical context, visualisers also enable rapid, auto-
mated methods for visualising not only a single piece of
music, but an entire corpus - allowing understanding and
comparisons of musical material at a higher and more gen-
eralised level to that of manual score analysis.

The level meter which features in the majority of con-
sumer audio products, represents a ubiquitous visualisation
method, whereby the current sound level is visualised us-
ing vertical bars, and for the majority of situations a more
useful presentation than a display of audio sample values
(amplitudes). Digital audio is stored as a series of num-
bers, a sequence of amplitude measurements with respect
to time. Sonograms convert this information to visualise
the distribution of frequency content. An example of this
is illustrated in Figure 1, whereby the musical score has
been synthesized using piano samples on a computer and
analysed with a sonogram.

This paper focuses on visualizing scores at the note-level
(e.g. MIDI), avoiding the many difficulties of audio feature
extraction. Sequenced music, encoded as MIDI, by con-
trast allows for rapid and reproducible analysis [3]. The
aim of the paper is to present novel techniques that support
the analysis of music.

The remainder of the paper is broken down as follows.
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Figure 1. Sonogram plot of the score.

Section 2 presents relevant prior work and theory, followed
by a brief discussion in Section 3 of the software system
developed to support this research. Section 4 reviews visu-
alisation techniques for pitch, contours, intervals and key,
followed by Section 5 looking at rhythmic elements. Sec-
tion 6 discusses visualisation techniques that integrate both
pitch and rhythmic elements. The final section consid-
ers future work for the area and proposes evaluation tech-
niques.

2. RELATED WORK

Prior work in music visualisation can be broadly categorised
into two groups: those exploring sampled audio data and
those exploring sequenced music data (scores and MIDI).
Soriano et al [3] present methods for browsing an audio-
based music collection, using graphical metaphors designed
to convey the underlying song structure. This analysis is
performed via feature extraction from MIDI files, enabling
easy identification of simple and meaningful musical struc-
ture, such as pitch and rhythm.

Foote [4] and Wolkowicz & Brooks [5] both used self-
similarity matrix visualisations to reveal similarity in mu-
sic. This visualisation approach relies on the measure-
ment of pitch content at quantised time intervals, and plot-
ting this against all other intervals. Figure 2 shows a self-
similarity matrix visualisation, whereby the music proceeds
through time from the bottom left to the top right, with re-
gions of similar patterns appearing as clusters of squares.
Both axes represent the same input vector. The music ex-
ample uses a repeating motif of one bar, with a modulation
at bars 2 and 4.

Bergstrom [6] presents several visualisers that convey in-
formation about interval quality, chord quality, and the chord
progressions in a piece of music, helping users to compre-
hend the underlying structure of music. Feedback from
engagement with the system revealed users who having

Figure 2. Self-Similarity visualisation of the score.

quickly understood the basics, wanted to compare music
from multiple genres and composers. Holland [7] presents
a similar system (Harmony Space) to allow beginners to
interact with harmony using a visual grid.

Jeong and Nam [8] discuss a system that visualises au-
dio streams, to show audio features such as, volume, onset
density, and dissonance. The authors also state that as mu-
sic is an auditory art, visual representations can contain
information that cannot be transferred or perceived accu-
rately with sound. Herremans and Chew [9] use visualisa-
tion to highlight tonal tension in music, creating an explicit
representation of something that is not easily quantifiable,
presenting graphics alongside the scored elements.

Established analytical frameworks for music, such as the
Generative Theory of Tonal Music (GTTM) [10] and Schenke-
rian analysis [11], also present ways to annotate music and
reveal structure. The GTTM proposes a series of prefer-
ence rules for determining the different musical structures
that underlie the perception of western music. Schenkerian
analysis is an established musical analysis technique that
aims to explicitly reveal hidden dependencies and struc-
tures implicit in the music. This analysis primarily aids
score reading by marking it with elements of musical struc-
ture. Both of these theories have been mechanised in soft-
ware [12][13].

Nash [14] presents research that adapts the Cognitive Di-
mensions of Music Notations framework (CDMN) [15],
for use in designing and analyzing music notations and
user interfaces for digital and traditional music practice
and study. This paper utilises the framework as a vocabu-
lary for comparing visualised music content and metadata
against western notation and other forms of visualisation.
However not all of the 16 core dimensions originally spec-
ified are of relevance here. A list of the terms and their
definitions relevant in this research are listed in Table 2.

Using the self-similarity visualisation in Figure 2 as an



Dimension Description
Visibility How easy is it to view and find ele-

ments of the music during editing?
Juxtaposabillity How easy is it to compare ele-

ments within the music?
Hidden Depen-
dencies

How explicit are the relationships
between related elements in the
notation?

Hard Mental
Operations

How difficult is the task to work
out in your head?

Conciseness How concise is the notation?
Provisionality How easy is it to experiment with

ideas?
Consistency Where aspects of the notation

mean similar things, is the similar-
ity clear in the way they appear?

Viscosity Is it easy to go back and make
changes?

Role Expres-
siveness

Is it easy to see what each part of
the notation means?

Error Prone-
ness

How easy is it to make annoying
mistakes?

Closeness of
mapping

Does the notation match how you
describe the music yourself?

Table 2. Terms of the Cognitive Dimensions of Music No-
tations framework used in this paper [14].

example of the terms used in the table, the visibility of the
figure is good, showing a clear overview of the entire piece,
likewise the juaxtaposability scores highly as the patterns
can be compared much more easily than sequences in the
score. There are high hidden dependences as the original
information has been transformed, with each square rep-
resenting a smaller amount of information. The simplistic
nature of the visualiser scores high on provisionality, con-
sistency and conciseness. The visualisation does not have
any meaning unless related to the score, with the under-
lying notated elements looked up, so has a poor closeness
of mapping. Comparing sequences using just the notation
would require both hard mental operations, and would be
prone to error (error proness), whereas the automated anal-
ysis used to build the self-similarity visualisation is easily
reproducible and more accurate.

A core concept of visualisation for notated music is its
ability to reduce the hard-mental operations arising from
manual score analysis [14]. Computer aided analysis also
reduces the error proneness of operations. Visualisation
can remove un-needed details (filtering [1]) from the score,
for example performance markings, therefore improving
the conciseness of the results.

Temperley [16] [17] uses visualisation to inform, explain,
and evaluate formal analysis by computer. Often using
these techniques when analysing a large corpus of music,
to immediately show data that would otherwise be difficult
to extract from looking directly at the score, or in fact thou-
sands of individual pieces. Temperley also uses these as a
way of comparing and refining models for music analysis.

3. INTERACTIVE VISUALISATION

This paper discusses visualisers developed for an original
software package (Figure 3), the design of which has been
influenced by the seven principles of the VISM (listed in
Table 1). In general, it allows different pieces of music in
MIDI format, to be opened and visualised quickly, in order
to support high provisionality and enable rapid experimen-
tation with analysis techniques. The software can analyse
and compare entire corpora or individual pieces, as well as
sub-sections or voices (tracks). A historic list of analyses
is kept so these can be recalled and modified, retaining low
levels of viscosity and commitment, therefore further fa-
cilitating experimentation and evaluation (provisionality).

Software and automated analysis has the advantage of
processing large amounts of data quickly (compared to man-
ual techniques), but takes considerable amounts of time
and care to design and implement. Visualisation tools,
such as that described, allow a user to speculatively inter-
rogate data, before committing to more detailed and formal
music analysis methods, be they traditional (e.g. Schenke-
rian) or computer-based (e.g. machine learning see Section
4.4).

4. VISUALISING PITCH

The set of visualisers presented in this section focus on el-
ements of pitch, contour, and melodic interval. Some tech-
niques present the material as overviews of the piece as a
whole, others present excerpts in time. For the purposes of
discussion and comparison, the majority of visualisations
present Bachs Two-part Invention No. 1 (BWV 772) [18],
but can be applied to many other examples and genres of
music, including non-Western.

4.1 Melodic Contours

A contour representation of music can simply be defined as
information about the up and down pattern of pitch changes,
regardless of their exact size [19]. Melodic contours are
also a key psychological part of music, one that aids the
recollection of musical themes [20].

Melodic contours themselves can be illustrated using a
score, where it is usually clear in which direction the pitch
is going (Figure 4, top). However, once accidentals are in-
troduced (Figure 4, bottom), it becomes less visually dis-
tinct. A piano roll (Figure 5) provides a clearer representa-
tion of melodic contour. This provides improved closeness
of mapping [14], and increases the ease with which se-
quences can be compared (improving juxtaposability).Piano
rolls provide ways for shapes, patterns and contours to be
identified. Wood [21] presents related research in which
the standard note head is visually modified to show the
pitch degree in a more role expressive way, and reports im-
proved speed for sight-reading when compared with stan-
dard note heads.

This type of visualisation can also be used to reduce a
search space, allowing sequences represented as contours
to be visually clustered. The items in Figure 6 show a se-
ries of monophonic melodies extracted from Bachs BWV
772. Visually, we can see that the first two patterns are



Figure 3. Software created to support visualisation tasks.

Figure 4. Score with clear melodic contour (top) and ob-
fuscated melodic contour (bottom).

Figure 5. Piano roll representation of Figure 4.

similar, and that pattern 14 is the same pattern inverted.
This kind of visualisation allows the viewer to employ the
gestalt principles of visual perception, in this case similar-
ity, to group together similar shapes [22]. In this situation
the data has filtered out everything but the contour, giving
a better overview of the types of contours, which can then
be easily related against one another.

Figure 6. Selection of melodic contours from Bach’s
BMW 772.

4.2 Intervals

The contour plots provide an overview of the melodic pat-
terns present in the music, but reduce the visibility and
role expressivity of the intervals. Temperley [16] uses a
histogram of melodic intervals to show the distribution of
interval leaps between melodic note sequences within an
entire corpus of music material, revealing wider patterns
and trends in music. In-so-doing, this hides dependencies
in the music, such as the local context and note-to-note re-
lationships (i.e. certain pitches are more unlikely to transi-
tion to those depicted in the figure because of their relation
to the home key and sensitivity to tonal context). The dia-
gram in Figure 7 shows the interval profile for Bachs BWV
772.



Figure 7. Interval distribution over two octaves in Bach’s
BWV 772.

Figure 8. 2D Markov plot of Bach’s BWV 772.

A different way to analyse this data, in a way that al-
lows interpretation of pitch, intervals and range, is to use
a Markov type model, defining the transition probability
between any given notes, in a numeric table format. This,
however produces a data table of size 127x127 elements,
which is difficult to comprehend in a numeric format, but
easily visualised to reveal musical trends and characteris-
tics as illustrated in Figure 10. The design of this once
again takes an overview of the data, filtering out the timed
elements of the music, to give a detailed overview of the
pitch and interval elements. Parts of the plot can be further
inspected to reveal exact transition probabilities (details on
demand).

From the plot, it can be noted that the intervals in the up-
per ranges are more likely to jump down in interval, while
the opposite effect can be observed in the lower range.
Towards the middle the width of the melodic jumps are
slightly larger. The blue line along the leading diagonal
represents the unison interval (repeated notes), the hori-
zontal deviation from which reflects transitions to subse-
quent notes. The darker the marker, the more likely the
transition. The diagram can also be thought of as a lay-
ered series of melodic interval distributions (as in Figure
7), given different starting notes (y-axis).

Figure 9. 100 randomly-selected common repertoire
Baroque pieces.

Figure 10. 100 randomly-selected common repertoire Jazz
pieces.

Two more plots are shown in this style, but illustrating
trends in, and differences between, larger corpora of music:
respectively, a collection of 100 pieces of baroque music
(Figure 9) and jazz music (Figure 10), selected randomly
from a larger corpus. The visualisation process helps to
reveal differences between the corpora that would other-
wise be harder to discover or articulate. For example, the
range of intervals in the jazz corpus is far wider, whereas
the baroque is limited to mostly to an octave, and multiples
thereof and appears more uniform throughout the range.

4.3 Pitch Distribution

It is instructive to consider pitch usage in general terms.
Temperley [16] considers the distribution of pitches within
a piece to be an intrinsic element that grounds the overall
tonality and key in western music. Key is something that



Figure 11. Major Key Profile.

Figure 12. Pitch distribution in Bach’s BWV 772.

musicians are trained to detect [16], but for which Temper-
ley has developed automated methods. To illustrate, Figure
11 shows an ideal key profile describing the average distri-
bution of pitches within a piece in C major, which can also
be considered a coarse measure of pitch-class appropriate-
ness in relation to key. For comparison Bachs BWV 772
(Figure 12) is also visualised. It is easy to visually infer the
similarity of the distribution within the piece (known to be
in the key of C) and the generalised representation (Figure
11). Smaller more nuanced details are also visible, such as
the fact that the piece, although in C major, has more in-
stances of D than the tonic C. Such details can be enough
to fool automated analysis, as detailed in the next section,
but things are clearer to the eye.

Other metadata can also loosely be inferred. A less pro-
nounced distribution may indicate a piece that uses several
different keys or tonalities beyond the diatonic. Atonal mu-
sic, such as serialism, may confound such analysis and ap-
pear entirely different when visualised, such as Schoenberg
Op.11-1 (Figure 13).

4.4 Key

Visualisation can help guide and test formal analysis. For
example, a machine learning algorithm was developed that
could infer the key based on the pitch profile of a piece.
Bachs Well-tempered Clavier (Book 2) [24] was chosen
as a test set, as it has two pieces in each of the 24 keys,
providing an ordered pattern of tonality.

Figure 13. Pitch Distribution in Schoenberg Op.11-1 [23].

Figure 14. Pitch Distribution for Bach’s BWV 870.

Figure 15 presents the detection results of the model, for
each piece, ordered by their BWV number. The results of
this experiment show that the algorithm is mostly able to
predict each of the keys, and the graph can be inspected
to find the relative confidence of each prediction as well
as identify anomalies and deviations from the expected re-
sults. Bachs methodical progression through alternating
major and minor keys within the collected work produces
a visual pattern in the plot (discernable from the gestalt law
of good continuance [22]), the deviations from which iden-
tify errors in the key detection model and, in turn, nuances
in Bachs approach to key.

The algorithm makes three mistakes, out of a total of 48
predictions, corresponding to the anomalies circled in the
figure. In one instance, the algorithm has predicted a key
of D minor when the nominal key is C-Major. By visual-
izing the pitch profile of the piece (Figure 14), using the
techniques suggested in Section 4.3 it can be observed that
the overall ratio of pitch D, is higher than the tonic and
5th compared with an ideal plot (Figure 11), Indeed, this
detection anomaly is attributable to Bachs actual use of D
minor (and other keys) in the piece. This indicates a limi-
tation of the analysis technique, in conflating the pitch pro-
file of an entire piece without sensitivity to modulation, but
nonetheless raises an interesting musicological question of
why this and not other pieces from the set fall foul of this
limitation.



Figure 15. Visualisation of a machine learning algorithms prediction of the 48 pieces of Bachs well-tempered clavier book
2 [24]. The 3 mistakes are BWV numbers 870 part 1, 871 part 1 and 880 part 1. The red highlighting shows the mistakes
and the green shows the actual keys.

Figure 16. Distribution of rhythm for Bach’s BWV 772.

5. VISUALISING TIME

Visualisation can also be used to reveal patterns in mu-
sical time, as in the case of rhythm, tempo, and density.
Time also provides the metrical structure to a sequence of
pitches. Taking the Bach piece BWV 772 as before, and
visualizing the rhythmic aspects of the piece, several pat-
terns are revealed. The elements under consideration are
Note Onset, Note Length, and Density should be merged.

5.1 Note Onset

The basic rhythmic plot, note onset (Figure 16) shows the
ratio of note onsets in each position of the bar for the entire
piece. The events are first quantised to 1/32nd of a note,
to remove noise caused by micro variations in time. The
plot shows us, that simpler divisions of the bar are more

Figure 17. Distribution of rhythm for Beethoven’s Op.
53..

likely to contain notes than more complex ones, shown
by the regular distribution and preponderance of quavers
and semi-quavers. The middle of the bar has the least note
activity in general, whereas the 1st quaver beat, and 4th
quaver beat have the most. Comparing this to Beethovens
piano sonata No.21 Op. 53 (Figure 17), a piece from a
much later period, shows a complete contrast in the struc-
ture, with a much more uniform distribution of note onsets,
with the second semi-quaver bar position (3/32) being the
most likely place for a note to be played.

5.2 Note Length

Note length visualisation (Figure 18) does not reveal as
much information as some other techniques, but confirms



Figure 18. Software created to support visualisation tasks.

Figure 19. Distribution of note length in Bach’s BWV
772.

this piece uses mostly note lengths of a semi-quaver in
length. Roughly four times as many as using a quaver note.
However, comparing this with other examples of music,
for example Beethovens piano sonata No.21 Op. 53 (Fig-
ure 19), shows for example the use of a dotted semi-quaver
(3/32) note length is more common than either a quaver or
crotchet, and a value not even used in the Bach piece.

5.3 Rhythmic Density

Rhythmic density can be defined as the number of note on-
sets that happen during a beat or other window of time.
The analysis is computed by calculating the number of on-
sets in each density window, and plotting the changes over
time for each voice (note that only the first 12 measures are
shown in Figure 20). Using Bachs BWV 772 again, sev-
eral repeating patterns are visually observable between the
two voices.

Figure 20 shows that only three of 48 windows have both
voices indicating a density reading of 4 simultaneously.
The sharp peak in Voice 1 at 23-24, is indicated as the most
intense, a result of the piece using demi-semi-quavers (see
figure 21). From windows 25 to 41, the voices are alternat-

Figure 20. Distribution of note length in Beethoven’s Op.
53.

ing in a strict pattern. This representation provides a con-
cise overview, but does not differentiate between chords
and rapid melodic phrases, reducing the visibility and jux-
taposability of data. However, while a finer resolution could
reveal more detail, it would also reduce conciseness, with
four times as many data points. This represents a common
trade-off between the dimensions, as observed in other no-
tations [14].

In general, the techniques discussed in this section show
that one method will reveal certain information at the sake
of obscuring others, and that sometimes multiple perspec-
tives are needed to fully understand the data.

6. INTERGRATED VISUALISATIONS

Previous sections considered elements of music in isola-
tion, but visualisations can also reveal relationships be-
tween different dimensions of music. The ability to in-
tegrate musical characteristics and model the complex in-
terwoven principles between them is a prime objective of
music analysis and visualisation. The diversity and variety
of such interconnections makes this difficult, but it is pos-
sible to combine multiple dimensions of characteristics to
reveal more complex and interesting patterns.



Figure 21. Demi-semi-quavers in bars 6. Relative to
points 23-24 on figure 20.

Two related elements of music that can be integrated for
visualisation and analysis are rhythm and pitch. A se-
quence of notes can be considered a pitch change after a
given length of time, and it is possible to build up the fre-
quency of these different event combinations and display
the result. Given a standard composition the number of
options is vast, and represents a complex problem. How-
ever, this is relatively easy to visualise (Figure 22) by plot-
ting the change in interval against the difference between
note onset, with the colour level (brightness) showing the
ratio. In the example (Figure 22), a visualisation of Bachs
Brandenburg concerto BWV 1046 [24] is shown, using this
method.

Looking at the analysis, it is clear how consistent the
timing of the piece is, with most events falling on quaver
note divisions. There is some evidence of quaver-triplets as
shown between 12 TPQ (Ticks Per Quarter Note or Crotchet)
equivalent to a semi-quaver and 24 TPQ (Crochet), with
these taking a value of 16 TPQ. Looking at the overall
pitch range the widest range of pitch intervals is a note
following on a quavers length after the previous note, with
events ranging from +24 semitones, to -17 semitones. This
is also where the most events are likely to be played, shown
by the density of red dots. At the 1 and 2 semi-quaver
duration (12 and 24 TPQ) the pitch is more likely to in-
crease, on any value greater than this, the pitch is likely to
decrease. At the semiquaver difference, almost all inter-
vals are present, but compare this to longer duration differ-
ences, and intervals start to disappear. An interval change
of +4 semitones (major 3rd) does not happen following a
previous note whose duration was a quaver. This is quite
possibly linked to the rules of strict counterpoint, a tech-
nique regularly employed by the composer, but further in-
vestigation is subsequently required before drawing spe-
cific conclusions. Finally, at the 3-semi quaver duration
(32 TPQ) interval, a pitch increase is more likely, but at
the crotchet level (48 TPQ) a pitch decrease is more likely.

7. CONCLUSIONS

This paper has reviewed a variety of basic music visual-
isations to demonstrate their utility to reveal implicit de-
tails, patterns, and structures in musical phrases, pieces and
broader corpora. Although the visualisations have been
informally evaluated with reference to the CDMN frame-
work, another way to evaluate the use of visualisation is to
establish whether or not it revealed something that was ei-

Figure 22. Visualisation of change in interval vs time be-
tween note onsets for Bachs BWV 1046. TPQ is defined
as the number of ticks per quarter (crotchet) note.

ther not known before or complicated to reveal using other
methods. As several of these techniques have made such
novel observations about musical structure, they can there-
fore be considered successful.

Other further types of studies are also planned in this area,
including embedding these visualisation techniques inside
music composition software. Such investigations will ex-
plore the pedagogical benefits of alternative visual repre-
sentations of music, looking at how visualisations can in-
form students understanding of musical process and struc-
ture.

Visualisation techniques can also inform the design of
generative musical techniques. They allow the identifica-
tion of characteristics that can become factors of a com-
puter composition models, such as the parameters of a ma-
chine learning process. It also allows a degree of quan-
titative evaluation and comparison between music gener-
ated algorithmically and the target musical result. Vick-
ery [25] advocates re-sonifying visualised music represen-
tations, formed through analysis of the original music.

While this review of visualisation techniques only scratches
the surface of both visual and musical possibilities, it is
clear the visual domain can be exploited to provide dif-
ferent perspectives on musical patterns and structures, and
make hidden information and insights more accessible to
musicians and scholars.
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