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ABSTRACT

The RISM A/II database contains metadata and incipits of
more than a million compositions. The Monochord search
engine can retrieve incipits that are similar to a query using
several alignment methods based on pitch raters, weight-
based raters and duration-based raters. The performance
of all 27 search methods is evaluated using Mean Average
Precision metrics and the TREC framework for retrieval
performance analysis. The difference in exact pitch be-
tween melodies turns out to be the best factor to search
with for musical similarity retrieval.

All melodies have metadata such as a composer name,
but a portion of the database is labelled as Anonymus. A k-
Nearest Neighbours algorithm is optimised for the purpose
of deanonymisation and used to classify several Anonymus
songs to test the applicability of this classifier for com-
poser labelling. Using a classifier as a first selection step
for deanonymisation purposes turns out to be viable with
human correction.

1. INTRODUCTION

The RISM A/II database is a collection of melodies that are
stored as incipits, excerpts from the beginnings of notated
music in manuscripts collected from libraries, archives, monas-
teries and schools [1, 2]. This database is not only a use-
ful tool for information look-up on one song, but also to
collect similar melodies that give a broader context of the
researched melody. As over a million melodies have been
stored in this database, having an effective search engine
is crucial. While the RISM website 1 has a search func-
tion for both metadata and music notation, the power of
the search method is limited since it cannot take musical
similarity into account. This is why an alternative search
engine, Monochord 2 , employing more advanced and pos-
sibly more accurate search techniques, has been developed.

Monochord is a music retrieval system that is able to find
melodies in the RISM A/II database [3]. Monochord com-

1 The RISM database can be queried on:
http://www.rism.info/

2 As an alternative to the RISM search engine, Monochord can
be queried on: https://www.projects.science.uu.nl/
monochord/risma2/
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pares two melodies by aligning them and calculating a sim-
ilarity score. The higher this score is, the better the match
between the melodies. This search engine has several re-
trieval methods at its disposal. The performances of these
methods have not been researched previously, yet these
have to be known before any claims about the performance
relative to RISM’s search engine can be made.

The goal of this research is twofold. Our first problem is
finding an optimal combination of settings that finds simi-
lar melodies. Second, after having determined this combi-
nation of settings, we use it in an experiment to deanonymise
a part of the RISM database.

We begin with an evaluation of the search methods pro-
vided by the Monochord search engine. In testing the work-
ings of this engine, we not only gain better understanding
of the capabilities and limits of the music similarity re-
triever, but also gain insights in how to improve the search
methods. This part is modelled on previous research con-
ducted by Typke [2], who used similar techniques to create
a ground truth set and to evaluate the retrieval results.

Of the 1.148.478 melodies currently stored in the Mono-
chord database, 214.162 have an unknown composer: these
are labelled Anonymus. Some of these melodies might ac-
tually be composed by a composer whose name is impos-
sible for us to retrieve. Others are similar to melodies of
which the composer is known. A third type of Anonymus
songs is that of traditional material that has no single ap-
parent composer. It is desirable to know the true composer
of a melody to give credit to the musician, but also to place
the works in their context, which may lead to new insights
in music history. Using the metadata of similar melodies,
we create a classification procedure to determine the com-
poser of the anonymous incipits.

This experiment has a preparation phase and an analytical
phase. First off, it is important to understand the mecha-
nisms behind Monochord, how it uses alignment of melodies
and several raters to determine melodic similarity, and which
aspects differ from the RISM search engine [3]. The re-
trieval results have to be compared to a ground truth set,
which is an expanded version of the one created by Typke
[2]. This comparison is made based on precision-recall
curves created by means of standard retrieval evaluation
tools. The Monochord engine resembles the top k selection
used by a k-Nearest Neighbours algorithm. A k-NN model
is thus prepared to suggest composer labels for Anonymus
melodies.

Next, a quantitative comparison of the methods results in
the best retrieval method in this experiment. All methods
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are used in determining which method is best suited for the
purpose of deanonymising melodies using a k-NN. After a
quantitative analysis, the best deanonymisation method is
qualitatively evaluated by manually checking the plausibil-
ity of the composer labels given to Anonymus incipits.

2. METHODS

2.1 Pairwise alignment of melodies

Several methods have been researched for modelling melodic
similarity. Some examples of these are n-gram methods [4]
and geometric methods [5], each with their merits and dis-
advantages. Alignment of melodies has been implemented
before by Kranenburg et al.[6]. Their method compares
two sequences x and y by taking two symbols from each
sequence. These symbols can either be aligned, or there is
a gap between the two. Using a substitution score and a
gap score, the total alignment score of the two sequences
is calculated. This alignment score is to be minimised, as
the two most aligned sequences have the least difference
in notes and the smallest gaps between two elements of the
sequences.

Before alignment, the melodies are transposed using a
histogram approach where the pitch shift that maximises
overlap in histogram bins is chosen [3]. The Monochord
search engine employs these techniques to retrieve similar
melodies [3]. All melodies are represented in the base40
representation.

2.2 Querying with the RISM engine

RISM shows the graphical notation of the incipits to the
user, but internally represents these incipits in the Plaine&Easie
encoding, with strings such as
’4F8-FA’’C/4F8.At3GA’’’4C/’F8-F’’D/4F de-
noting an incipit [7]. A melody is found by first creating a
corresponding FAST-index of the Plaine&Easie encoding,
where the code is reduced to only pitch values. The engine
can then search with or without transposition. In the lat-
ter case, only the created FAST-index is used in the search.
In the case of transposition, all transpositions of the origi-
nal search string are added to the FAST-index. This search
index is then matched on the existing RISM database [7].

2.3 Querying with the Monochord engine

Potential matches between two melodies are tested for their
similarity using a similarity score. This score denotes how
well two melodies match, where a higher score is a better
match between the melodies. The similarity score of two
melodies is calculated during their alignment. The calcula-
tion of the scores is where the selected search method plays
a role. A search method in the Monochord search engine
consists of three types of raters that calculate a subscore
by deciding how well the melodies match in the area the
rater is specialised in. The sum of these subscores is the
overall score that is used for the ranking of the results. The
melodies with the highest similarity score will be placed at
the top of the list.

Figure 1. Graphs showing the score assigned to a differ-
ence in pitch in base40 representation for the exact pitch
(pi2), zigzag pitch (pi3) and Kranenburg pitch (pi1) raters.

Monochord works with search methods that are a combi-
nation of three factors with three settings each. First, there
is the category of pitch raters that return a value between
−1.0 and 1.0. The settings are exact pitch (pi2), zigzag
pitch (pi3) and Kranenburg pitch (pi1). The simplest one
is exact pitch, which returns a score of 1.0 if aligned notes
have an equal pitch, or a score of−1.0 if they differ. A dif-
ference of one or more octaves is assigned a score of 0.5.
The zigzag pitch rewards notes that are close to each other
and punishes notes that differ more. Notes of equal pitch
return a score of 1.0. This score decreases linearly to −1.0
when the notes are most different at a distance of 20 in the
base40 representation and then increase to 1.0 where the
notes differ by an octave at a distance of 40. The Kranen-
burg pitch is described by Peter van Kranenburg [6, 8]. For
this rater, the score decreases linearly from 1.0 to 0 for in-
tervals up to a fifth; large intervals up to the octaves receive
a score of −1.0.

Graphs of the score assignment for each difference in
pitch is shown for these raters in Figure 1 [3].

Secondly, there is the category of raters based on met-
ric weight. The settings for this rater is no weight rater
(mw0), ima weighted (mw1) and ima combined (mw2). The
metric weight for these raters are computed with the inner
metric analysis (ima) method by Volk [9]. With the ima
weighted method, the influence of a note depends on its
metric weight. The weights of the notes of each melody
are scaled such that the average weight is 1. The value
computed by the pitch rater is multiplied by the average
of the weights of the two notes that are compared. The



effect is that pitch difference on stressed notes have more
influence than differences on less stressed notes. The ima
combined method the metric weight has a more indepen-
dent character than in the previous method. The absolute
difference between the two metric weight values is con-
sidered and multiplied by the value produced by the pitch
rater.

Thirdly, there is the category of duration-based raters.
The settings are duration not included (dur0), fixed du-
ration (dur1) and scaled duration (dur2). With no dura-
tion, the duration of the notes are not taken into account.
With fixed duration, the difference in duration is taken as
notated per incipit without any duration scaling. The scaled
duration method uses histograms of the duration of notes.
We use the duration scaling factor for the query melody
that maximises the overlap of the histogram bins [3].

Each search method produces a result file that contains
the first 50 ranked search results per query in the ground
truth file. A search request consists of a search method
and a query ID. Monochord aligns the query melody with
all other melodies in the database and calculates the sim-
ilarity score between the two melodies in a pair based on
the search method. A higher score means more similar-
ity to the query and thus a more relevant search result.
The resulting melodies are ranked based on their similarity
score. All of this is done automatically with a script. A per-
fect retrieval system will include all the result documents
from the ground truth file as the highest ranked retrieved
melodies [10]. In practice, we’ll encounter melodies that
are ranked lower, or melodies that do not appear in the re-
sult file at all. Misranking or missing a document affects
the performance of a retrieval system.

2.4 Creating a ground truth

The 27 query methods are analysed with a ground truth set
[11]. This set contains all relevant result melody RISM
signatures per query signature. The retrieval results should
show pairs that correspond with those in ground truth: this
means that the search method is a good retrieval system.
The 2005 MIREX evaluation set of Typke [2] is used for
this purpose. Human experts on music were asked to find
matches in the 2002 RISM database for a given melody.
The participants didn’t sift through the whole old database
of half a million incipits. Some selective filtering excluded
all but 300 incipits per query melody. This filtering was
based on for instance large differences in pitch range, du-
ration of the shortest versus the longest note, maximum
interval between subsequent notes and editing distance be-
tween rhythm strings. This number of incipits was brought
down to 50 by manually excluding the remaining incipits
that were perceived as too different. Finally, the human ex-
perts ranked the 50 incipits based on their similarity to the
query melody.

This ground truth data set contains 11 queries with about
10 resulting signatures per query. At the time of construc-
tion of Typke’s data set, the RISM database contained about
half a million melody incipits. The database that powers
Monochord has doubled in size since the original ground
truth research. It is reasonable to assume that some of the

Figure 2. These two melodies are similar and the Similar
button should be pressed in this case. Note how the query
melody is the beginning of the result melody which has
four additional notes.

additions may be truly relevant to one of the ground truth
queries. Therefore, this ground truth set needs to be up-
dated before a meaningful analysis of the query methods
can be conducted. We update the set by manually check-
ing all query-result pairs that appear in the ranked search
results, but not in the original ground truth. These pairs
are potential ground truth candidates, because the match-
ing incipit could have been added after Typke’s research
was conducted. In total 6006 candidate items remain to be
cross-checked for similarity by hand.

For this purpose, we create a comparison procedure for
the query-result pairs. A computer program splits the can-
didates in batches of 1001 pairs and shows one pair at a
time. The query is shown in musical notation on top, with
the result below it. A human evaluator can press one of
three buttons to confirm its comparison. The Similar but-
ton marks the pair as relevant (a line ending in a 1) and
adds it to the ground truth file, then the pair is removed
from the program’s queue. Figure 2 shows a situation in
which the Similar button must be pressed. The Not-similar
button stores the pair as not relevant (a line ending in a 0)
and removes the pair from the queue. The Unsure button
is pressed whenever the evaluator can’t make a decision
at the moment, for whatever reason, and would like to go
on with another pair. The pair is then added to the end of
the queue and will return after all other pairs have been
checked. The evaluator is shown a new pair after pressing
one of these three buttons. Not all images of the musi-
cal notation are available on the RISM website, and thus
they are unavailable in Monochord. Whenever such a pair
comes by, it is handled as Not similar. All pairs without a
definitive conclusion are handled as Not similar as well.

Completing one batch takes around 15-30 minutes and is
less prone to learning effects that Typke described as pos-
sible shortcomings of the experiment [2]. Sequence effects
might still occur, as all queries in sorted order. Filtering
the pairs as Typke did is not necessary, because checking
6006 pairs manually is feasible. Yet some of the filtering
techniques are subconsciously applied, such as rejecting
absurdly long incipits or incipits with a greater pitch range
instantly.



The ground truth has been expanded by adding 117 new
relevant pairs. The new ground truth that is based on the
original queries, but with additional results, is published
and available for other researchers 3 .

2.5 Search method analysis

In evaluating the search methods, we are interested in the
Mean Average Precision or area under curve (which are
interchangeable terms). The search method with the best
Mean Average Precision is designated as the best search
method for this incipit database[12, 10, 13]. The methods
are not only compared amongst each other, but also relative
to an approximation of RISM’s innate search engine. A
reasonable approximation of RISM’s retrieval method is
using method pi2mw0dur0, as this uses only exact pitch
in rating the melodies. This method can be seen as the
baseline with which the other methods are compared.

Every search method is tested for precision and recall,
which are plotted in the precision-recall curves. An im-
portant feature of our TREC files is the ranking of results.
This ranking must be used in the evaluation of the search
method. Several TREC evaluation tools have been made
that utilise ranking (trec eval[14], trec eval online[15, 16],
pytrec eval[17]). We use the Python library pytrec eval be-
cause the previously written scripts can be transferred to
this task.

This evaluation tool requires two types of input: one file
containing the expected results (the ground truth) and one
file containing the retrieved results. The ground truth file
and the result files are stored in the conventional TREC
format. The TREC version of the ground truth file is filled
with tab-separated lines that contain the RISM signature
of the queried document, an iteration number Q0, its result
signature and a relevance rating [18]. Each line has the
following format:

squery Q0 sresult relevance

with squery ∈ RISMSignatures, Q0 = 0, sresult ∈
RISMSignatures and relevance ∈ {0, 1}. The result
file is similar to the ground truth file, but instead of a rele-
vance rating, it returns a ranking for the document found.
Additionally, each line contains a score, representing how
well the result matches to the query, and a constant Exp.
Both the score and Exp are ignored in this experiment by
setting them to zero. A line in the result file has the follow-
ing format:

squery Q0 sresult rank score Exp

with squery ∈ RISMSignatures, Q0 = 0, sresult ∈
RISMSignatures, rank ∈ N, score = 0, Exp = 0.

The evaluation tool uses TREC files, thus we need to con-
vert the information stored in Typke’s HTML files to this
format. The ranking is not taken into account, all incipits
ranked as relevant are used as is. Every melody is referred
to with its RISM signature, which is precisely the format
needed for our TREC files. For every incipit perceived as

3 The revised ground truth is available here:
http://www.projects.science.uu.nl/music/resources/

relevant with signature sresult in a file for a query with
signature squery, we create a line

squery 0 sresult 1

where the 1 at the end signifies this pair of query and result
is a relevant pair, or a match.

2.6 Deanonymisation of melodies

Once the best-performing search method for retrieval based
on melodic similarity has been determined, we can use this
method to create data for the deanonymisation classifica-
tion algorithm. We use a k-Nearest Neighbours algorithm
to classify the anonymous melodies. A k-NN retrieves the
label for the k elements that are most similar to the element
that is to be classified. The most occurring label is said to
be the classification of the unknown element. In the case
of deanonymisation of melodies, the labels are composer
names. As the search results provided by Monochord are
ranked from most similar to least similar, we can simply
take the top k results as the neighbours and use their meta-
data to get their composers.

The composer names are available in the RISM database
as metadata of the melodies. This forms a mapping be-
tween all RISM signatures and their composers or an Anony-
mus label. The correct classifications are thus easily gener-
ated: it consists of looking up the melody signature in the
mapping and then returning the composer-part in the meta-
data. If none of the neighbours have a composer label, the
classification of the melody will simply be Anonymus.

Training and test data for the classification algorithm is
widely available. Of the 1.2 million melodies, about a
million have a known composer. We randomly sample an
amount of incipits with known composer and split the sam-
ple 50%-50% in a training and test set.

During the training phase, we use cross-validation to get
the best value for k. Here, we use a smaller set of 40 in-
cipits, which is split in a training and test set. The cross-
validation consists of testing a k-NN with a certain k on
the provided training data. We perform hyperparameter
optimisation for k by using a grid search to test all val-
ues k ∈ {1, 2, 5, 10, 20, 50, 100} and all n = 27 search
methods [19, 12]. This takes O(k × n) trials and the com-
putation is quite costly, thus we would like to minimise the
amount of trials. We first test the k-values only on the best
retrieval method and find a good value for k. Then, we use
this k to trial all the search methods. Only O(k + n) trials
have to be completed in this manner. The performance of
all such k-NNs are compared, after which the combination
of k and search method of the best k-NN is selected.

These best k-NN settings are used to initialise the final
classifier. A full set of 100 incipits, split in a training and
test set, is used for this phase of the experiment. The per-
formance of the classifier is determined using the test data
set. It is important to test on a set different than the training
set, as overfitting could occur. Overfitting is visible when-
ever there is great performance on the training set, but poor
performance on the new test data. The classifier is stable
whenever the performance of the training and test sets is
similar.



Figure 3. The precision-recall curve for retrieval method
pi2mw2dur1. The area under curve, or mean average pre-
cision is 0.42, the highest in the series.

This trained classifier can in principle now be used to de-
termine the composer of an anonymous song. This could
be done for the 200,000 occurrences, but we randomly
sample 100 melodies and evaluate some of the generated
labels manually.

3. RESULTS

3.1 Search method analysis

Each of the 27 search methods produces a precision-recall
curve from which the mean average precision is calculated.
The mean average precision ranges from 0.03−0.42 in the
plots. The best method seems to be pi2mw2dur1 (exact
pitch, ima combined, fixed duration) with an area under
curve of 0.42. The results are plotted in Figure 3.

Using exact pitch (pi2) gives the best results, with an
average AUC of 0.38 in a range of 0.31 − 0.42. The Kra-
nenburg pitch (pi1) is the worst performer with an aver-
age AUC of 0.21 in a range of 0.03−0.32. The exact pitch
curves are plotted in Figure 8(b) in Appendix A, and the
Kranenburg pitch as a comparison is shown in Figure 8(a)
in Appendix A.

The best duration to use is fixed duration (dur1) with an
average AUC of 0.33 (see Figure 10(b) in Appendix A).
The best use of weight-based raters is by using none (mw0)
with an average AUC of 0.35 (see Figure 9(a) in Appendix
A).

These findings correspond with the best overall method,
except for the weight-based rater factor. After a closer
look, the method pi2mw0dur1 seems to be a close runner-
up with an AUC of 0.41 (see Figure 4). The overall per-
formance of the ima combined (mw2) methods is not that
different from mw0 either, with an average AUC of 0.33.

The baseline approximation of the RISM search engine
by using pi2mw0dur0 results in an AUC of 0.35. Many
of the search methods produced worse results than the base-
line, but most of the exact pitch family produced equal or

Figure 4. The precision-recall curve for retrieval method
pi2mw0dur1. The area under curve, or mean average pre-
cision is 0.41, the runner-up in the series.

Figure 5. The accuracy of a k-NN for different values of
k. The accuracy decreases with an increase in k.

better results.
A full table of AUCs for all search methods is specified

in Appendix B.

3.2 Deanonymisation of melodies

Using 40 melodies as training set, we test the seven differ-
ent values for k ∈ {1, 2, 5, 10, 20, 50, 100} with the best
retrieval method pi2mw2dur1 to gain insight in the ef-
fect of the k-value on composer classification accuracy.
Removing the Anonymus songs based on their ID is falli-
ble process, as the existing set of IDs of known Anonymus
songs turned out to be incomplete. There are still a few
melodies with the Anonymus label hidden in the known
data set. After filtering these out of the 40 melodies, we
are left with 38 incipits.

The accuracy curve in Figure 5 shows that the accuracy
decreases as k increases. This seems to have an intuitive



reason, as with an increasing k, the share of wrong neigh-
bours also increases. As the most similar songs are placed
on the top, a low k will more likely consist of melodies
with the wanted composer. The algorithm with a higher k
will desperately try to come up with matches at the bot-
tom, even when all the matching pairs have already been
found. These bottom suggestions are more likely to be un-
interesting, or even counterproductive, for composer clas-
sification. And yet the voting power of all these incipits is
equal in a k-NN. If some composer turns up in the bottom
results often enough, it will overthrow the correct decision
made by the top results.

The best retrieval method might not be the best method
for composer classification. Therefore another run is per-
formed using k = 1 for all 27 search methods.

Method Accuracy Method Accuracy Method Accuracy
pi1mw0dur0 0.211 pi2mw0dur0 0.263 pi3mw0dur0 0.263
pi1mw0dur1 0.158 pi2mw0dur1 0.158 pi3mw0dur1 0.158
pi1mw0dur2 0.211 pi2mw0dur2 0.211 pi3mw0dur2 0.158
pi1mw1dur0 0.053 pi2mw1dur0 0.263 pi3mw1dur0 0.158
pi1mw1dur1 0.000 pi2mw1dur1 0.263 pi3mw1dur1 0.053
pi1mw1dur2 0.000 pi2mw1dur2 0.316 pi3mw1dur2 0.106
pi1mw2dur0 0.211 pi2mw2dur0 0.316 pi3mw2dur0 0.263
pi1mw2dur1 0.158 pi2mw2dur1 0.263 pi3mw2dur1 0.211
pi1mw2dur2 0.158 pi2mw2dur2 0.316 pi3mw2dur2 0.316

Table 1. Table of accuracies per method, trained on the
smaller set of 40 items. Bold numbers signify the highest
accuracy.

The methods with the highest accuracy are pi2mw1dur2,
pi2mw2dur0, pi2mw2dur2 and pi3mw3dur2 (see Ta-
ble 1). The best retrieval method pi2mw2dur1 has the
second-highest accuracy, which will therefore also be con-
sidered in the possible parameters.

The k-NN is now trained on values for k ∈ {1, 2, 5} and
on the methods pi2mw2dur1, pi2mw1dur2, pi2mw2dur0,
pi2mw2dur2 and pi3mw3dur2. The data consists of
100 incipits randomly selected from the known melodies.
These items are split in a 50% training set and a 50% test
set.

The best classifier parameters turned out to be k = 1 with
the pi2mw2dur1 method (see Table 2). These settings
resulted in a maximum accuracy of 0.375 on the test set.

k=1 k=2 k=5
pi2mw1dur2 0.354 0.292 0.271
pi2mw2dur0 0.354 0.313 0.271
pi2mw2dur1 0.375 0.354 0.313
pi2mw2dur2 0.354 0.316 0.271
pi3mw2dur2 0.354 0.333 0.271

Table 2. Table of accuracies per parameter setting, trained
on the full set of 100 items. The bold number signifies the
highest accuracy.

Of the 100 melodies, 58 were given a non-Anonymus la-
bel. The guessed composers of the first eight such entries
are given below in Table 3.

Using RISM’s search engine [1], we find that incipit
450.202.307-1.1.1 classified as Sperger, Johannes indeed
contains that name in the list of previous owners of the

Signature Composer
450.202.307-1.1.1 Sperger, Johannes
851.002.964-1.1.1 Werner, C.
702.020.071-1.1.1 Simonis, Ferdinando
240.006.107-1.1.1 Spohr, Louis
650.007.101-1.1.2 Meyerbeer, Giacomo
500.195.253-1.2.1 Paisiello, Giovanni
150.204.949-1.1.1 Gräfe, Johann Friedrich
454.013.591-1.1.1 Kluger, Johann Florian

Table 3. Table of deanonymised incipits and their com-
poser labels in random order.

Figure 6. The incipit for 650.007.101-1.1.2, which is the
original query (by Anonymus).

manuscript. The manuscript was put together by Joseph
Michael Zink. This label seems plausible.

Incipit 851.002.964-1.1.1 classified as Werner, C. con-
tains limited information besides the musical notation, thus
a check is impossible.

Incipit 702.020.071-1.1.1 classified as Simonis, Ferdinando
is called Les noces? and is part of a collection of French
and Italian songs produced during Simonis’ lifespan. The
incipit is said to be arranged by the Frenchman André Jean
Baptiste Bonaventure Dupont, and its manuscript is stored
in Saint Omer’s (France) public library. It seems more
likely that Dupont is the composer of this song. The la-
bel of this incipit is questionable.

Incipit 240.006.107-1.1.1 classified as Spohr, Louis is called
Da wir uns niemals wieder finden in B-Dur and is part of a
collection of principally German melodies. The collection
originated in 1808, which is during the German Spohr’s
lifespan. While this contextual evidence seems to make the
attribution of this incipit to Spohr plausible, using any of
the other search methods shows an abundance of related in-
cipits by Mozart. Indeed, this incipit is a piece by Mozart.
This example shows that contextual and music notational
inspection are complementary methods of composer attri-
bution analysis.

Incipit 650.007.101-1.1.2 classified as Meyerbeer, Gia-
como is called Falsibordoni in Phrygian mode and is part
of a homonymous collection of the same melody in dif-
ferent modes. This collection was put together in 1880,
while Meyerbeer died in 1864. Still, it is possible that a
piece Meyerbeer wrote was transposed in all modes after
his death. Meyerbeer started studying music in Italy in
1816 [20], which explains the Italian name and the collec-
tion is stored in the Italian Archivio diocesano. The context
seems to make the composer classification plausible, but
once more music notational analysis shows otherwise. The
query for 650.007.101-1.1.2 is shown in Figure 6, while
the resulting Meyerbeer composition 452.020.643-1.2.1 is
shown in Figure 7 for comparison.

Incipit 500.195.253-1.2.1 classified as Paisiello, Giovanni
is called Tenebre e pianto siamo in F-Dur and is part of a



Figure 7. The incipit for 452.020.643-1.2.1, which is the
resulting incipit (by Giacomo Meyerbeer). Notice how the
incipit differs from the one in Figure 6.

collection of two other Italian melodies, produced in 1770.
This is halfway through the Italian Paisiello’s life, which
makes this attribution plausible.

Incipit 150.204.949-1.1.1 classified as Gräfe, Johann Friedrich
titled Ich hab’ es oft gesagt in G-Dur is part of a collec-
tion that was produced during Gräfe’s life, and his name
appears next to one other melody in this collection: Get-
rost mein Sinn erheitre dich in F-Dur. Furthermore, the
University of California owns another collection [21] that
includes melodies of Gräfe, along with one called Ich hatt’
es oft gesagt in B-Dur. The RISM ID of this collection is
000.114.155, which indeed gives us the melody with signa-
ture 000.114.246-1.1.1 that is an identical, but transposed,
copy of our original incipit. This is a confirmed label.

Incipit 454.013.591-1.1.1 classified as Kluger, Johann Flo-
rian contains limited information besides being a part of
a collection with dances exclusively written by Friedrich
Joseph Kirmair and Josef Gellert. This collection contains
solely German titles and storage locations, while all of the
collections in the RISM database including Kluger’s works
are located in Czech libraries. The only information in
favour of this label is the overlap in timespan of the three
composer’s lives and the 1800-1824 timestamp of the col-
lection. The correctness of this label is questionable.

Three out of eight labels turned out to be quite plausible
guesses. This precisely corresponds with the accuracy of
the best k-NN classifier found using a test set. This finding
makes the classifier results more convincing.

It took a fair amount of time to manually check these la-
bels, but it takes significantly less time than having to come
up with an initial guess via human effort. An effective
strategy proved to consist of three stages. First, the col-
lection the incipit is from can be scanned for similarities in
composers or titles. Next, the timespans of the composer’s
lives and song publications should correspond. Another
strategy is to compare languages, storage locations of the
manuscripts, and country of birth or other important lo-
cations in the life of a composer. A final (or perhaps first)
check is to analyse the matches by musical notation, as this
will sometimes conflict with the results found in the con-
textual analysis. A good amount of music historical knowl-
edge is necessary for this manual effort of label checking.

4. CONCLUSION

The search method pi2mw2dur1 gives the best melodic
similarity retrieval results. The method pi2mw0dur1 is
a good second choice, and might even be preferred when
computation cost is factored in, as the ignored factor doesn’t
need to be calculated. Using exact pitch seems to be much
more accurate than any other pitch rater, while the other

settings do not matter as much and can be toggled off for
an increase in speed.

Whether the best scoring methods are truly nearly equal
in results is an interesting topic for further research. We as-
sumed the RISM search engine uses a search method that
is equal to pi2mw0dur0, it only uses exact pitch, and
used that method as a baseline for the other search meth-
ods. To provide a true comparison with RISM’s search en-
gine, we would have to request the results for our ground
truth queries and use this as the baseline. This is an oppor-
tunity to make our findings more reliable, yet under our as-
sumption we expect that our claims will remain the same.
Another point of improvement would be to look at the
complementarity of search methods. Whereas the search
methods are analysed in isolation, it might be possible that
certain methods are suitable for one type of melody, while
another method covers other types. Together, the range of
accurate retrievals might be greater than they would be in
isolated methods.

The deanonymisation process with a k-NN as described
above has an acceptable accuracy (three out of eight plausi-
ble labels in the manual check), but the procedure is not ac-
curate enough to become automated. A suggestion for fur-
ther research would be to check the resulting labels more
vigorously, and to do this for more classifications than the
eight offered in this paper.

The accuracy of a stand-alone program for deanonymi-
sation of incipits is questionable, but we’ve shown that
using computerised suggestions from classification algo-
rithms can help reduce the manual labour of labelling the
songs. The most cost-efficient approach seems to be a
combined effort of a computer scientist reducing the search
space and offering composer suggestions to a music histo-
rian who analyses only a handful of possible composers,
instead of the thousands the problem originally started with.
For the purpose of giving suggestions, or narrowing the
possible composers down to merely a few names, inter-
esting follow-up research would be to test the accuracy of
a k-NN that returns multiple labels. Instead of returning
the best label, such a k-NN could return the top N com-
poser suggestions. Whenever the true label is in this set
of N labels, it is marked as correct. This will result in
an equal or higher accuracy as the original k-NN used in
this paper (a multiple label k-NN with N = 1), as the
first result is always the same, with the multiple label k-
NN having the benefit of having additional guesses. Such
a classifier could conceivably achieve an accuracy that is
worth automatising, whose result would be a set of possi-
ble composers that the music historian has to inspect for
each incipit.

Points for further research include using the manual ver-
ifying strategies as features in machine learning applica-
tions, such as a k-NN. Perhaps using the collection an in-
cipit is in, the title and composer’s language, and the times-
pans to make a labelling decision can increase the accuracy
of deanonymisation classifiers.

This research suggests that improving RISM’s innate search
engine is worthwhile, as the performance of alternative
search techniques was found to be better than the baseline.



Computerised suggestions for composer labels are found
to be a promising topic with room for improvement.
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(a) All retrieval methods using Kranenburg pitch. The average AUC of the meth-
ods is 0.21.

(b) All retrieval methods using exact pitch. The average AUC of the methods is
0.38.

(c) All retrieval methods using zigzag pitch. The average AUC of the methods
is 0.31.

Figure 8. The precision-recall curve for all methods from
the pitch rater family. The average AUC of the methods is
shown in the titles.

A. PRECISION-RECALL CURVES PER SETTING



(a) All retrieval methods using no duration rater. The average AUC of the meth-
ods is 0.28.

(b) All retrieval methods using the fixed duration rater. The average AUC of the
methods is 0.33.

(c) All retrieval methods using the scaled duration rater. The average AUC of
the methods is 0.30.

Figure 10. The precision-recall curve for all methods from
the duration rater family. The average AUC of the methods
is shown in the titles.

(a) All retrieval methods using no weight-based rater. The average AUC of the
methods is 0.35.

(b) All retrieval methods using the ima weighted rater. The average AUC of the
methods is 0.23.

(c) All retrieval methods using the ima combined rater. The average AUC of the
methods is 0.32.

Figure 9. The precision-recall curve for all methods from
the weight-based rater family. The average AUC of the
methods is shown in the titles.



B. AUC TABLE FOR THE SEARCH METHODS

Method AUC Method AUC Method AUC
pi1mw0dur0 0.30 pi2mw0dur0 0.35 pi3mw0dur0 0.33
pi1mw0dur1 0.31 pi2mw0dur1 0.41 pi3mw0dur1 0.36
pi1mw0dur2 0.32 pi2mw0dur2 0.38 pi3mw0dur2 0.35
pi1mw1dur0 0.06 pi2mw1dur0 0.31 pi3mw1dur0 0.22
pi1mw1dur1 0.12 pi2mw1dur1 0.41 pi3mw1dur1 0.31
pi1mw1dur2 0.03 pi2mw1dur2 0.39 pi3mw1dur2 0.24
pi1mw2dur0 0.24 pi2mw2dur0 0.39 pi3mw2dur0 0.29
pi1mw2dur1 0.27 pi2mw2dur1 0.42 pi3mw2dur1 0.35
pi1mw2dur2 0.26 pi2mw2dur2 0.38 pi3mw2dur2 0.33

Table 4. Table of the AUC for each of the search methods.
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