
SYMBOLIST: AN OPEN AUTHORING ENVIRONMENT FOR
USER-DEFINED SYMBOLIC NOTATION

Rama Gottfried
CNMAT, UC Berkeley, USA

IRCAM, Paris, France / ZKM, Karlsruhe, Germany
HfMT Hamburg, Germany

rama.gottfried@berkeley.edu

Jean Bresson
IRCAM – CNRS – Sorbonne Université

UMR STMS, Paris, France
jean.bresson@ircam.fr

ABSTRACT

We present SYMBOLIST, a graphic notation environment
for music and multimedia. SYMBOLIST is based on an
Open Sound Control (OSC) encoding of symbols repre-
senting multi-rate and multidimensional control data, which
can be streamed as control messages to audio processing
or any kind of media environment. Symbols can be de-
signed and composed graphically, and brought in relation-
ship with other symbols. The environment provides tools
for creating symbol groups and stave references, by which
symbols maybe timed and used to constitute a structured
and executable multimedia score.

1. INTRODUCTION

Contemporary art and music productions frequently rely
on automated computer processes with huge sets of data
and control parameters; and as in other large-scale data-
driven situations, the authoring tools, storage and perfor-
mance of the data are key design factors which have a
marked influence on the aesthetic framework used to com-
pose the artwork [1, 2]. Unlike pen and paper, commercial
software authoring tools have been designed based on a set
of use-cases and decisions about the composition format
and rendering, selected and put forward by different actors
in their development process. This situation prompts the
question: If tools are a shaping factor in art production,
how should authoring environments for artistic production
be designed? In what ways can a computational process
or mechatronic movement be represented in a score so that
it is freely “composable”, without presupposing a specific
use context, or grammar?

While computational tools for creating and parsing sym-
bolic graphic information are readily available, composi-
tion environments which support visualizing, editing, and
synchronously executing multimedia control data streams
are few to none. There exist no actual notational conven-
tion on how to represent control data for computerized au-
tomation systems [3, 4]. In electronic music production,
most often the “score” is authored in a digital audio work-

station (DAW) with MIDI note events and breakpoint func-

Copyright: c� 2018 Rama Gottfried and Jean Bresson. This is an open-access

article distributed under the terms of the Creative Commons Attribution 3.0 Un-

ported License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original author and source are credited.

tion automations; while in theater, a show control system is
typically used to step through a series of cues which send
control messages to stage and lighting mechanisms. These
tools have proved useful through their longevity over 30+
years, however as compositional frameworks, they pro-
scribe specific ways of thinking about data. Breakpoint
function automation works well for situations where you
want to control one parameter over time, but in multivari-
ate situations, for example spatial location where a position
is a vector {x, y, z}, splitting the values into three separate
automation lanes obscures the meaning of the values. 1 In
contrast, a well designed symbolic notation could allow
users to represent many parameters simultaneously [5].

The SYMBOLIST project addresses these issues by pro-
viding composers and media artists with a context-free en-
vironment for the authoring of graphical symbolic nota-
tion, with tools for displaying, editing and generating ar-
bitrary streams of OSC-encoded data. After a general pre-
sentation of the project (Section 2), we will describe the de-
sign features and user interface of the software (Section 3),
and then detail the execution mechanisms behind its score
structure (Section 4). In continuation we will present some
use cases and integration in host environments (Section 5),
and conclude with an open discussion and some consider-
ations about future work directions (Section 6).

2. FOUNDATIONS

SYMBOLIST was designed to address the practical need
of visually representing parameters of electronic perfor-
mances involving dense streams of control data, first con-
ceived in the context of composing for spatial audio sys-
tems [6, 7]. High-dimensional symbolic representation is
common in contemporary instrumental writing, and so for
many composers it is intuitive to also apply symbolic nota-
tion approaches to new kinds of “multimedia instruments”.

A first working prototype was implemented using Scal-
able Vector Graphics (SVG) authored with graphic design
software (Adobe Illustrator), which could then be inter-
preted and performed as a stream of OSC data (Open Sound
Control [8]) in the Max environment [9]. By leveraging
the tools of a professional graphic design program in con-
nection with the widely supported networking capabilities
of OSC, the SVG-OSC project [10] provided a functional
model of how graphic objects could be labeled and grouped

1 The mathematical representation has the same perceptual problem.

TENOR'18 Proceedings of the 4th International Conference on Technologies for Music Notation and Representation

111

mailto:rama.gottfried@berkeley.edu
mailto:jean.bresson@ircam.fr
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


semantically in order to be processed by an interpretive en-
gine and used to control multimedia renderers. Building
on the SVG-OSC project research, SYMBOLIST integrates
the editing and semantic assignment functions into a single
workspace specifically designed for maximum flexibility,
through a minimum number of predefined object defini-
tions.

SYMBOLIST considers a score as a structured set of graph-
ical symbols, where each symbol (basic, or compound group
of symbols) exists internally as an OSC bundle (i.e. a set
of OSC messages describing a consistent data structure)
which potentially includes both graphical attributes and
other musical or control parameters. Although structured
on the surface through staves, groupings and nested sym-
bols (as we will see in the next section), the score is there-
fore viewed (and stored) as a simple, flat and executable

sequence of OSC bundles.
The SYMBOLIST environment was implemented as a C++

application and built using the Juce framework. 2 It can
run as a standalone editor or as an embedded component
in another programming environment such as Max (where
it constitutes a persistent container — a score — to dis-
play, edit and monitor control data streams) or OpenMusic
[11] (where scores can be generated and processed through
visual programs and algorithms).

3. WORKING IN SYMBOLIST

From the user point of view, the current SYMBOLIST proto-
type essentially implements a set of utilities for symbol au-
thoring and composition following standard vector-graphic
editing techniques.

Symbols. Graphical symbols and their associated seman-
tics are defined by the user through interactive graphic and
text-based OSC editing tools. Figure 1 shows a sample
view of the main SYMBOLIST window. The left sidebar
displays a number of default atomic symbol models (cir-
cle, rectangle, triangle, text characters...) which the user
can pick and use as templates for the creation of symbols
in the score page. On Figure 1, a single, big triangle sym-
bol was added to the score. Score symbols are editable in-
teractively using standard graphic transforms (translation,
scaling, rotation, copy/paste, etc.). Their attributes may
also be edited directly in the inspector view at the right of
the window.

As mentioned above, each symbol is stored as an OSC
bundle (i.e. a set of OSC messages), which reflects the set
of attributes visible on the inspector view. The basic at-
tributes shared by all symbols are: the name, symbol type,
position (x, y), size (w, h), color, staff assignment, and id,
a unique identifier of the symbol within the score. 3 Sym-
bols may also include additional attributes. For example,
the triangle symbol in Figure 1 includes fill, stroke thick-

ness, and rotation attributes. The listing below displays the
OSC representation corresponding to this symbol.

2 https://juce.com/
3 By default the name value is same as the type, and the id is the name

followed by a unique instance number. Once a user-defined name is given,
the id is updated.

Figure 1. A single triangle symbol in the SYMBOLIST win-
dow. The inspector on the right side displays the attribute
values of the symbol.

{
/name : ”foo”,
/type : ”triangle”,
/id : ”foo/0”,
/sta� : ””,
/x : 47.,
/y : 134.5,
/w : 123.,
/h : 120.,
/color : [0., 0., 0., 1.],
/fill : 0,
/stroke/thickness : 2.,
/rotation : 0.

}

Custom shapes can be drawn and edited using control
point handles, and are encoded as paths, defined as a se-
quence of linear, quadratic or cubic bézier curve segments
(see Figure 2). The SVG standard is used for storing path
drawing commands in string format [12].

Figure 2. Drawing a custom (path) symbol.

The symbol in Figure 2 is represented in OSC as follows:
{

/name : ”scribble”,
/type : ”path”,
/id : ”scribble/1”,
/sta� : ””,
/x : 33.,
/y : 83.,
/w : 237.,
/h : 175.,
/color : [0., 0., 0., 1.],
/path/str : ”m 2 99.565 q 121 63.565 52 [...]”,
/path/length : 535.956,
/fill : 0,
/stroke/thickness : 2.

}

TENOR'18 Proceedings of the 4th International Conference on Technologies for Music Notation and Representation

112

https://juce.com/


Templates. Any symbol in the score can be turned into
a template via a simple keyboard shortcut. Newly created
templates appear in the symbol palette of the left sidebar
(see Figure 3). They can then be stored in the application
data and potentially shared between scores and projects.

In addition to the set of atomic symbols mentioned pre-
viously in this section, user-defined template symbols may
therefore be selected and copied anywhere in the score as
a new symbol, with all of the same editing and transforma-
tion possibilities.

Figure 3. (a) Storing a user symbol as template in the
SYMBOLIST palette toolbar (left side of the window).
(b) Using this template as a model for creating new sym-
bols.

Compound symbols can be created by graphical compo-
sition of simpler ones, through the grouping command.
Symbols (atomic, custom, or compound) selected for group-
ing are gathered and converted into a single new symbol
(see Figure 4), which can then be positioned, edited, trans-
formed individually, and/or turned into a template in the
symbol palette.

Figure 4. Grouping symbols.

Grouping is a hierarchical operation of unlimited depth
and complexity. After grouping, sub-group symbols can
still be accessed, recomposed and edited individually at
any time, using simple user operations to step through the
hierarchy of compound symbols. Below is an excerpted
example of OSC representation of a SYMBOLIST group

symbol, corresponding to the symbol in Figure 4:
{

/name : ”group”,
/type : ”group”,
/id : ”group/0”,
/sta� : ””,
/x : 78.,
/y : 46.,
/w : 240.,
/h : 209.,
/color : [0., 0., 0., 1.],
/numsymbols : 3,

/subsymbol/1/name : ”path”,
/subsymbol/1/type : ”path”,
/subsymbol/1/id : ”path/0”,
/subsymbol/1/sta� : ””,
/subsymbol/1/x : 45.,
/subsymbol/1/y : 0.,
[...]
/subsymbol/2/name : ”text”,
/subsymbol/2/type : ”text”,
/subsymbol/2/id : ”text/0”,
/subsymbol/2/sta� : ””,
/subsymbol/2/x : 0.,
/subsymbol/2/y : 51.5,
[...]
/subsymbol/3/name : ”circle”,
/subsymbol/3/type : ”circle”,
/subsymbol/3/id : ”circle/0”,
/subsymbol/3/sta� : ””,
/subsymbol/3/x : 225.,
/subsymbol/3/y : 54.5,
[...]

}

Staves and score structure. In order to structure sym-
bols into a temporal score, staff symbols can be created
from any existing symbol (simple or compound). A staff

symbol is considered as a reference which can be used for
global manipulations and creation of polyphonic scores. It
is wrapped in a special staff OSC bundle, and is automati-
cally assigned time values (see Figure 5).

Figure 5. Converting a symbol to a staff.

Any symbol can be attached to a stave by setting the
/staff attribute to link to an existing staff symbol id value.
All non-staff type symbols include the /staff attribute in
their corresponding OSC bundle. Once a symbol has been
linked to a staff, this symbol becomes timed: it is given
a start and duration, to its position and size relative to the
stave origin and the stave numbering (see Figure 6).

Stave start and duration values are currently determined
by their sequential order on in the score, also following tra-
ditional stave system format, reading left to right in lines
down the page, and then continuing at the top of the follow-
ing page. For traditional left to right, top to bottom reading,
the symbol’s start time and end times are calculated using
the left and right edges of the object’s bounds. 4

4 In the future, we envisage time direction could be a user-definable pa-
rameter in the score, for example to facilitate the use of Labanotation [13]
or other types of graphic time arrangements such as trajectories through
the score, and so on.

TENOR'18 Proceedings of the 4th International Conference on Technologies for Music Notation and Representation

113



Figure 6. After attaching a symbol to a staff, time information is added to the symbol’s OSC bundle.

Depending on the context, other internal parameters could
also be effected by the symbol’s horizontal and vertical co-
ordinates in the stave reference, for example effecting pitch
values for notes on traditional scores.

4. TIME AND SCORE PERFORMANCE

Through the creation of time relationships between sym-
bols and staves, the score becomes “executable”, or “per-
formable”. As described above, staves are the key temporal
marker for score performance: they embed a time referen-
tial and a time-map allowing the computation of absolute
time from relative graphical distances.

For the performance of the score, SYMBOLIST provides
methods for outputting control values as OSC, and includes
visual feedback information such as highlighted display for
play-heads or cursors, etc.

SYMBOLIST actually does not include its own schedul-
ing engine, but functions by responding to external time
requests — e.g. from host environments — in order to re-
trieve the active symbol(s) at a given time. In response to
a time location query, SYMBOLIST outputs an OSC bun-
dle containing the values of all symbol “events” existing at
that time in the score (see Figure 7).

To aid with mapping, the output OSC bundle is formatted
using the symbol’s name attribute as user defined identifier.
For example in Figure 7, the staff name is “foo” and the
group symbol name is “glissnote”, which contains “glis-
sando” and “notehead” sub-symbols. Whereas the score
is a flat array of symbols/bundles, the contents of the out-
put bundle are formatted in a hierarchical representation,
where events are located in the OSC namespace of their
associated stave. For example, in Figure 7 note that the
active voices in the bundle, are in prefixed by /staff/foo.

Each event is output with the relative time position within
the symbol called the /time/ratio, where 0 is the beginning

of the symbol and 1 is the end.
To assist in handling overlapping polyphonic symbols,

which may start and stop independently, a voice identifier
is assigned to each symbol which stays constant between
lookup queries. A /state value is also provided which iden-
tifies the symbol’s status: 1 for a new voice, 0 when it is
continuing from the last lookup, and �1 to identify when
a voice is no longer present, which can be used for “note
off” messages.

Symbols can also have internal timing and time referen-
tial — for example imagine a curve, or another graphic
symbol which could represent the evolution of one or sev-
eral parameters over a given amount of time. In path-
symbols the relative time position is used to lookup the
{x, y} location on the path, output at the address /lookup/xy.

For example, in Figure 8, a “frame notation” is used to
control the spatialization of a sequence of events. In this
case, a compound symbol is used, consisting of: (1) a 2D
spatial region defined by the rectangle frame, (2) a path

depicting a trajectory moving through the 2D space, and
(3) a horizontal line which is used to define the duration
of the symbol on the stave. The circle symbols below are
sound events which are positioned using the frame notation
above.

In order to optimize the processing of the time requests
(which can occur at a relatively high rate in playback or
score execution contexts), an internal “time-point array” is
constructed and maintained along with score editing op-
erations, which stores a sorted reference map of the score
symbols’ start and end points.

5. HOST ENVIRONMENTS

SYMBOLIST currently exists as a standalone application,
and as a static or dynamic library. The main entry points of
the application programming interface (API) are read/write

TENOR'18 Proceedings of the 4th International Conference on Technologies for Music Notation and Representation

114



{
/time/lookup : 0.7,
/time/end : 0.89,
/sta�/foo/voice/1/glissnote/state : 0,
/sta�/foo/voice/1/glissnote/time/ratio : 0.631579,
/sta�/foo/voice/1/glissnote/name : ”glissnote”,
/sta�/foo/voice/1/glissnote/type : ”group”,
/sta�/foo/voice/1/glissnote/id : ”glissnote/1”,
/sta�/foo/voice/1/glissnote/sta� : ”foo/palette”,
/sta�/foo/voice/1/glissnote/x : 46.,
/sta�/foo/voice/1/glissnote/y : �87.,
[...]
/sta�/foo/voice/1/glissnote/numsymbols : 2,
/sta�/foo/voice/1/glissnote/time/start : 0.46,
/sta�/foo/voice/1/glissnote/time/duration : 0.38,
/sta�/foo/voice/1/glissnote/subsymbol/1/notehead/name : ”notehead”,
/sta�/foo/voice/1/glissnote/subsymbol/1/notehead/type : ”circle”,
/sta�/foo/voice/1/glissnote/subsymbol/1/notehead/x : 0.,
[...]
/sta�/foo/voice/1/glissnote/subsymbol/2/glissando/name : ”glissando”,
/sta�/foo/voice/1/glissnote/subsymbol/2/glissando/type : ”path”,
/sta�/foo/voice/1/glissnote/subsymbol/2/glissando/x : 4.,
[...]
/sta�/foo/voice/1/glissnote/subsymbol/2/glissando/lookup/xy : [0.268815, 0.234897],
/sta�/foo/voice/0/glissnote/state : 0,
/sta�/foo/voice/0/glissnote/time/ratio : 0.648148,
/sta�/foo/voice/0/glissnote/name : ”glissnote”,
/sta�/foo/voice/0/glissnote/type : ”group”,
/sta�/foo/voice/0/glissnote/id : ”glissnote/2”,
/sta�/foo/voice/0/glissnote/sta� : ”foo/palette”,
[...]
/sta�/foo/voice/0/glissnote/numsymbols : 2,
/sta�/foo/voice/0/glissnote/time/start : 0.35,
/sta�/foo/voice/0/glissnote/time/duration : 0.54,
/sta�/foo/voice/0/glissnote/subsymbol/1/notehead/name : ”notehead”,
/sta�/foo/voice/0/glissnote/subsymbol/1/notehead/type : ”circle”,
[...]
/sta�/foo/voice/0/glissnote/subsymbol/2/glissando/name : ”glissando”,
/sta�/foo/voice/0/glissnote/subsymbol/2/glissando/type : ”path”,
[...]
/sta�/foo/voice/0/glissnote/subsymbol/2/glissando/lookup/xy : [0.657142, 0.553749]

}

Figure 7. An example SYMBOLIST OSC output stream for a time point containing multiple timed symbols.

accessors which allow to build, store, process the score
symbols in host environments, and perform time point look-
up as described above in Section 4. All the data is trans-
ferred back and forth through OSC-encoded bundles. Two
main host environment are currently supported.

Max. SYMBOLIST was embedded in an object for the
Max environment [9], where the score editor can be used to
store, generate and monitor timed streams of data (see Fig-
ure 8). Score readers can be easily implemented to browse
through the score via time requests which output the cor-
responding symbols and associated data.

OpenMusic. SYMBOLIST was also integrated in the O7
prototype implementation of the OpenMusic computer-
aided composition environment [11, 14]. OpenMusic pro-
grams can generate scores (sequences of OSC bundles rep-
resenting staves and timed symbols), which can be con-
nected to interactive, personalized graphical display and
editing (see Figure 9). SYMBOLIST in this context of-
fers alternative graphical representations for musical data
reaching far beyond the expressive potential of traditional
music notation editors or more neutral automation con-
trollers. The editor here also can be easily connected to
OpenMusic’s embedded scheduling engines through the
timed-request function of the SYMBOLIST API, which al-
lows the score be “played”, just as any other musical object
of the environment, via timed transfer of OSC data.

6. DISCUSSION: TOWARDS EMBEDDED SCORES

An important challenge to be considered for the SYMBOL-
IST framework is how, if possible, to integrate these new
notation tools with the current predominant practices in
media art programming. Interactive computer-music and
multimedia artists often make use of programming envi-
ronments such as Max, Pure Data, SuperCollider, Process-
ing, Arduino, Grasshopper, Blender, VVVV, OpenFrame-
works, et al., where the compositional thought is directly
integrated into the program that renders or performs the
work. In these cases, the artist composes the piece directly
in the code itself, embedding the artistic intention into the
computational process which produces the piece [15].

For example in the “circuit scores” of David Tudor, the
“composition” takes the form of an instrument: the instru-
ment’s behavior is composed as the result of an interaction
between electronic components [16]. Chadabe, di Scipio,
Leman, Wessel, and others have discussed this embedded
nature of artistic intentions in interactive instrument sys-
tems, and its relation to cybernetics, systems theory, and
embodied cognition studies [17, 18, 19, 20, 21, 2]. This
merging of “instrument” and “composition” can also be
observed in the “process scores” of Cage, Feldman, Stock-
hausen, et al., and all the way back to the Musikalisches

Würfelspiel pieces by Mozart and Kirnberger, where the
score describes a sequence of musical-cognitive processes
which led to the production of the piece, rather than de-
scribing the results themselves.

TENOR'18 Proceedings of the 4th International Conference on Technologies for Music Notation and Representation

115



Figure 8. An example using SYMBOLIST in Max. Sending a time value into the SYMBOLIST Max object causes output of
an OSC bundle containing the symbol values at that time-point. Spatial location is composed with a frame notation symbol
group where the frame represents a given region in space, and the path is the trajectory distributed over the time of the
horizontal line. Separately, circular symbols are used to notate sound events.

Figure 9. SYMBOLIST integration in OpenMusic (O7). OSC bundles describing symbols are written and generated algorith-
mically in the computer-aided composition environment (here to produce a sine-shaped sequence of small circle symbols),
then displayed and edited in the SYMBOLIST editor.

TENOR'18 Proceedings of the 4th International Conference on Technologies for Music Notation and Representation

116



In all of the above historical examples, the scores were
notated to be read and performed by humans, which natu-
rally requires them to be readily understood and interpreted
by humans in terms of their learned and embodied cul-
tural knowledge. This is no longer necessarily the situation
when working with digital performance systems. Control
parameters for digital processes need to be in a computa-

tion-friendly format which can be parsed and interpreted
by the program, which invisibly transforms the algorithm
and score into executable machine-code.

In this context where compositional processes are em-
bedded into an interactive system, there is rarely a “score”
separate from the instrument itself. This may well be the
most natural approach for this situation, where the code,
the instrument, and the score are all intertwined. How-
ever, it may be limiting as well, since as we discussed in
the introduction, the affordances of a system have a strong
influence on the uses of the system. A number of recent
projects, such as INScore [22], bach [23], or PWGL’s Ex-
pressive Notation Package (ENP) [24], are similarly nav-
igating this hybrid zone between score and programmatic
media generation. The question then for SYMBOLIST is,
in what ways could notation function within the context of
the embedded score?

A potential route of development could be to include in-
terpretive expressions inside a symbol’s OSC bundle which
could be evaluated at performance time. Computational
expressions could be composed in SYMBOLIST, either sym-
bolically or as text, which could then be transcoded into
another environment. The odot expression language would
be a natural choice since it is specifically designed to op-
erate on OSC messages and is well suited to transcoding
between applications [25]. In the simplest case, a symbol
could include anonymous functions which when evaluated
would map the symbol data to the target rendering system
format (spatial audio system, video, motors, etc.).

Attaching expressions to symbols could also be a way
for users to create their own custom designed interaction
tools. In this case, the expression could be evaluated while
editing within SYMBOLIST, to provide additional informa-
tion relevant to the intended output context (e.g. contextual
displays), or used to create interactive drawing tools which
could generate other types of symbolic/graphic informa-
tion.

7. CONCLUSION AND PERSPECTIVES

We presented the first prototype of SYMBOLIST, a software
developed for visualizing, editing, and executing control
data streams for music and media encoded as OSC bundles.
The project was conceived in response to the lack of effi-
cient tools currently available to perform these tasks, and to
expand the possibilities for multimedia and electroacoustic
scores, which, when they exist, are most often incomplete,
non-executable and/or non-editable: there is generally lit-
tle support to symbolically notate computerized music and
media control material.

SYMBOLIST aims at completing contemporary artists’ and
composers’ toolboxes with a simple tool used to realize
and execute such multimedia scores, and joins a burgeon-

ing landscape of computer platforms for computer aided
composition and multimedia notation [22, 23, 26, 27, 28].
As compared to IanniX’s 3D timeline orientation [28], or
to advanced sequencing tools such as i-Score [29] or An-
tescofo’s Ascograph editor [30], which provide advanced
means to program and visualize timing and interactions,
SYMBOLIST emphasizes symbolic, graphical drawing/edit-
ing for new music and media notation.

The OSC foundation for the SYMBOLIST score data struc-
ture is not an arbitrary choice: it is today an established
and widely supported format used for media data encod-
ing and interchange, and we believe in the potential for its
future development — especially through CNMAT’s odot

library — to greatly improve the expressivity of our soft-
ware functionality. The planned future work in this project
will feature the integration of and embedded OSC server,
in order to fully support interaction with external software,
as well as advanced embedded expression programming in
OSC-encoded symbols, as discussed in Section 6.

Other future work directions are to continue development
on the graphical display and rendering of scores, through a
number of features related to page formatting and layout,
printing, export to graphical formats, etc. Finally, in order
to constitute a fully-workable score environment, the soft-
ware will need to embed the possibility to integrate, edit
and merge common music notation with the user-defined
staves and symbols of the SYMBOLIST scores.

Acknowledgments

This work was realized in the context of a joint artistic re-
search residency at IRCAM and ZKM.

8. REFERENCES

[1] J. Greeno, “Gibon’s Affordances,” Psychological Re-

view, vol. 101, no. 2, pp. 336–342, 1994.

[2] T. Magnusson, “Of Epistemic Tools: Musical in-
struments as cognitive extensions,” Organised Sound,
vol. 14, no. 2, pp. 168–176, 2009.

[3] M. Battier, “Describe, Transcribe, Notate: Prospects
and problems facing electroacoustic music,” Organised

Sound, vol. 20, no. 1, pp. 60–67, 2015.

[4] K. Stone, “Problems and Methods of Notation,” Per-

spectives of New Music, vol. 1, no. 2, pp. 9–31, 1963.

[5] E. R. Tufte, The Visual Display of Quantitative Infor-

mation. Graphics Press, 1983.

[6] R. Gottfried, “Studies on the Compositional Use of
Space,” IRCAM, Paris, France, Tech. Rep., 2013.

[7] T. Carpentier, N. Barrett, R. Gottfried, and M. Nois-
ternig, “Holophonic Sound in IRCAM’s Concert Hall:
Technological and Aesthetic Practices,” Computer Mu-

sic Journal, vol. 40, no. 4, pp. 14–34, 2017.

[8] M. Wright, “Open Sound Control: an enabling tech-
nology for musical networking,” Organised Sound,
vol. 10, no. 3, pp. 193–200, 2005.

TENOR'18 Proceedings of the 4th International Conference on Technologies for Music Notation and Representation

117



[9] M. Puckette, “Combining Event and Signal Processing
in the MAX Graphical Programming Environment,”
Computer Music Journal, vol. 15, no. 3, pp. 68–77,
1991.

[10] R. Gottfried, “SVG to OSC Transcoding: Towards a
Platform for Notational Praxis and Electronic Perfor-
mance,” in Proceedings of the International Confer-

ence on Technologies for Notation and Representation

(TENOR’15), Paris, France, 2015.

[11] J. Bresson, D. Bouche, T. Carpentier, D. Schwarz, and
J. Garcia, “Next-generation Computer-aided Compo-
sition Environment: A New Implementation of Open-
Music,” in Proceedings of the International Computer

Music Conference (ICMC’17), Shanghai, China, 2017.

[12] World Wide Web Consortium, “Scalable Vector
Graphics (SVG) 1.1 (Second Edition),” W3C Can-

didate Recommendation, 2011. [Online]. Available:
https://www.w3.org/TR/SVG11/

[13] A. H. Guest, Labanotation: The System of aAalyzing

and Recording Movement. Routledge, 2005.

[14] J. Bresson, C. Agon, and G. Assayag, “OpenMusic:
Visual Programming Environment for Music Compo-
sition, Analysis and Research,” in Proceedings of the

ACM international conference on Multimedia – Open-

Source Software Competition, Scottsdale, AZ, USA,
2011, pp. 743–746.

[15] T. Magnusson, “Algorithms as Scores: Coding Live
Music,” Leonardo Music Journal, vol. 21, pp. 19–23,
2011.

[16] R. Kuivila, “Open Sources: Words, Circuits and the
Notation-Realization Relation in the Music of David
Tudor,” Leonardo Music Journal, vol. 14, pp. 17–23,
2004.

[17] J. Chadabe, “Interactive Composing: An Overview,”
Computer Music Journal, vol. 8, no. 1, pp. 22–27,
1984.

[18] D. Wessel, “An enactive approach to computer music
performance,” in Le Feedback – Acte des Rencontres

Musicales Pluridisciplinaires. Lyon, France: Grame,
2006, pp. 93–98.

[19] M. Leman, Embodied Music Cognition and Mediation

Technology. MIT Press, 2008.

[20] A. Di Scipio, “‘Sound is the interface’: from inter-
active to ecosystemic signal processing,” Organised

Sound, vol. 8, no. 3, pp. 269–277, 2003.

[21] N. Schnell and M. Battier, “Introducing Composed In-
struments, Technical and Musicological Implications,”
in Proceedings of the conference on New Interfaces

for Musical Expression (NIME’02). Dublin, Ireland,
2002.

[22] D. Fober, S. Letz, Y. Orlarey, and F. Bevilacqua,
“Programming interactive music scores with INScore,”
in Proceedings of the Sound and Music Computing

conference (SMC’13), Stockholm, Sweden, 2013, pp.
185–190.

[23] A. Agostini and D. Ghisi, “A Max Library for Musical
Notation and Computer-Aided Composition,” Com-

puter Music Journal, vol. 39, no. 2, pp. 11–27, 2015.

[24] M. Kuuskankare, “ENP: A System for Contempo-
rary Music Notation,” Contemporary Music Review,
vol. 28, no. 2, pp. 221–235, 2009.

[25] J. MacCallum, R. Gottfried, I. Rostovtsev, J. Bresson,
and A. Freed, “Dynamic Message-Oriented Middle-
ware with Open Sound Control and Odot,” in Proceed-

ings of the International Computer Music Conference

(ICMC’15), Denton, TX, USA, 2015.

[26] N. Didkovsky and G. Hajdu, “MaxScore: Music
Notation in Max/MSP,” in Proceedings of the In-

ternational Computer Music Conference (ICMC’08),
Belfast, Northern Ireland / UK, 2008.

[27] C. Hope, L. Vickery, A. Wyatt, and S. James,
“The Decibel Scoreplayer – A digital tool for read-
ing graphic notation,” in International conference on

Technologies for Music Notation and Representation

(TENOR’15), Paris, France, 2015.

[28] T. Coduys and G. Ferry, “Iannix-aesthetical/symbolic
visualisations for hypermedia composition,” in Pro-

ceedings of the Sound and Music Computing confer-

ence (SMC’04), Paris, France, 2004, pp. 18–23.

[29] J.-M. Celerier, M. Desainte-Catherine, and J.-M. Cou-
turier, “Graphical Temporal Structured Programming
for Interactive Music,” in Proceedinsg of teh In-

ternational Computer Music Conference (ICMC’16),
Utrecht, Netherlands, 2016.

[30] G. Burloiu, A. Cont, and C. Poncelet, “A visual frame-
work for dynamic mixed music notation,” Journal of

New Music Research, vol. 46, no. 1, pp. 54–73, 2017.

TENOR'18 Proceedings of the 4th International Conference on Technologies for Music Notation and Representation

118

https://www.w3.org/TR/SVG11/

	01-TENOR2018_8_Skold
	 1. Introduction
	 2. Background
	 3. The Notation System
	 4. Case Study
	4.1 Introduction
	4.2 Participants
	4.3 Method
	4.4 First Notation Assignment and Feedback
	4.5 Modifications
	4.6 Second Assignment and Feedback
	4.7 Case Study Conclusions

	 5. Future Work
	 6. References

	02-TENOR2018_6_Couprie
	 1. Introduction
	1.1 Schaeffer and the transcription of acousmatic music
	1.2 Why would we trancribe?

	 2. The analytical framework
	2.1 Representations
	2.2 Transcriptions
	2.3 The transcription space
	2.3.1 The graphical plane axis
	2.3.2 Background

	2.4 Annotations
	2.4.1 Semiotic correspondences
	2.4.2 Links between sound and visual
	2.4.3 Synoptic transcriptions


	 3. Software
	3.1 Available technologies
	3.2 An example: EAnalysis
	3.2.1 From ideas to software
	3.2.2 The architecture of EAnalysis
	3.2.3 Modes and markers
	3.2.4 From events to filter


	 4. Conclusion
	 5. References

	03-TENOR2018_31_Bell
	 1. Introduction
	 2. Major updates
	2.1 Go web
	2.2 Algorithmic composition/open form
	2.3 Client-side synchronization

	 3. Challenges in Production
	3.1 And the Sea
	3.2 SmartVox, the piece
	3.3 Le temps des nuages

	 4. Technical considerations
	4.1 Description of frequently faced problems
	4.1.1 Standby/sleep mode
	4.1.2 Other Breakdown factors

	4.2 Measurements of timing accuracy
	4.2.1 Drift
	4.2.2 Local server
	4.2.3 Distant server
	4.2.4 Distant server – different networks (3G, 4G, Wifi...)
	4.2.5 Sync Module

	4.3 Synchronization update

	 5. Going further
	5.1 Dialoghi Spezzati
	5.2 Pedagogy in Classroom
	5.3 Smartphones used as an instrument

	 6. Conclusion
	 7. References

	04-TENOR2018_5_Bhagwati
	05-TENOR2018_27_Santini
	 1. Introduction
	 2. Background
	2.1 Graphic notation on paper
	2.2 Real-time scores and animated notation
	2.3 3-D and VR scores
	2.4 Augmented Reality
	2.5 AR and music

	 3. LINEAR
	3.1 Introduction
	3.2 Technical framework
	3.3 The AR app on iPhone
	3.3.1 Startup
	3.3.2 Creation of virtual objects - first three categories
	3.3.3 Creation of virtual objects - fourth category
	3.3.4 VR mode
	3.3.5 OSC communication with Max/MSP

	3.4 Production of sound in Max/MSP
	3.5 The laptop player
	3.6 The perspective of the iPhone performer: graphic gestural 3D notation and virtual tangible scores
	3.7 The perspective of the other players
	3.7.1 Graphic animated notation
	3.7.2 Notational feedback

	3.8 Compositional ecosystem
	3.9 Relation of the score with the audience and with the environment.

	 4. ISSUES AND LIMITATIONS
	 5. Conclusions and future work
	 6. References

	06-TENOR2018_26_Goudard
	07-TENOR2018_24_Gironnay
	08-TENOR2018_9_Louzeiro
	 1. Introduction
	 2. Background
	 3. Development
	3.1 Notation Type
	3.2 Notation Interface Design
	3.2.1 Synchronized Attacks
	3.2.2 Motivic Exploration
	3.2.3 Standard Rhythmic Notation

	3.3 Practice Tool

	 4. A Possible New Direction
	 5. Method
	 6. Results and discussion
	 7. Future Work and Conclusions
	 8. References

	09-TENOR2018_23_Zagorac
	 1. Introduction
	 2. Distributed Music Composition and Performance Model
	2.1 Message-Oriented Middleware
	2.2 Reliable UDP Multicast
	2.3 Precise Network Time Synchronization
	2.4 SVG-based Score Representation
	2.5 Dynamic Notation View Design
	2.6 Alternating Pane Layout
	2.6.1 Time restrictions and allowances


	 3. ZScore Current State
	3.1 Time-space mapping and synchronization
	3.2 Score Authoring
	3.2.1 Hierarchical Layer Structure
	3.2.2 SVG Symbol library
	3.2.3 ZScore Tools JavaScript plugin

	3.3 Distribution and scheduling engine
	3.4 Dynamic notation rendering
	3.5 User trials

	 4. Conclusions and Future Work
	 5. References

	10-TENOR2018_16_OConnor
	11-TENOR2018_12_Foscarin
	 1. Introduction
	1.1 Evaluating a score
	1.2 Defining and measuring quality
	1.3 Our approach

	 2. the GioQoSo online interface
	2.1 Importing and displaying the score
	2.2 Showing/hiding quality annotations
	2.3 Interactions

	 3. Modeling Digitized Scores Quality
	3.1 The score content model
	3.2 The score engraving model
	3.3 Metadata

	 4. The taxonomy
	4.1 Score content issues
	4.1.1 Structural issues
	4.1.2 Music notation issues

	4.2 Score engraving issues
	4.2.1 Staff parameter issues
	4.2.2 Staff layout issues


	 5. Conclusion
	 6. References

	12-TENOR2018_20_Kosta
	 1. Introduction
	 2. Development of Expressive notation and Chopin's works
	 3. Synopsis of the Dataset
	 4. Score beat information
	4.1 Optimal reference audio choice
	4.2 Reference audio selection heuristic
	4.3 Evaluation of score beat positions

	 5. Loudness information
	 6. Recent applications of MazurkaBL
	 7. Future directions
	 8. References

	13-TENOR2018_22_Asmar
	14-TENOR2018_18_Giraud
	 1. Introduction
	1.1 Music Annotation and Web Scores
	1.2 Who Needs to Annotate Music?
	1.3 Motivation and Contents

	 2. User perspective
	 3. Underlying technology
	3.1 Dezrann Components
	3.2 Corpus and Analysis Web Service

	 4. Availability and Roadmap
	4.1 Platform Availability and Roadmap
	4.2 Corpus Availability and Roadmap

	 5. Conclusion
	 6. References

	15-TENOR2018_15_Gottfried
	 1. Introduction
	 2. Foundations
	 3. Working in Symbolist
	 4. Time and score performance
	 5. host environments
	 6. Discussion: Towards Embedded Scores
	 7. Conclusion and Perspectives
	 8. References

	16-TENOR2018_25_Hunt
	 1. Introduction
	 2. Cognitive Dimensions Framework
	 3. Introduction to IGME
	 4. Dimensions of Music Notation
	 5. Visibility
	 6. Juxtaposability
	 7. Hard mental operations
	 8. Progressive Evaluation
	 9. Hidden dependencies
	 10. Conciseness / Diffuseness
	 11. Provisionality
	 12. Secondary notation
	 13. Consistency
	 14. Viscosity
	 15. Role Expressiveness
	 16. Premature Commitment
	 17. Error Proneness
	 18. Closeness of Mapping
	 19. Abstraction Management
	 20. Conclusion
	 21. References

	17-TENOR2018_33_Agostini
	 1. Introduction
	1.1 The problem
	1.2 A proposed solution for Max and bach

	 2. Representation of pitches
	 3. Arithmetic
	3.1 Pitches and intervals
	3.2 Operations
	3.3 Comparisons
	3.4 Chromatic-diatonic representation

	 4. The bach implementation
	 5. Pitch spelling algorithms
	5.1 General outline of the atonal algorithm
	5.2 Detailed description of the atonal algorithm
	5.3 An example case
	5.4 Final considerations

	 6. Conclusion
	 7. References

	18-TENOR2018_29_Hajdu
	19-TENOR2018_6_Ghisi
	 1. Introduction
	 2. Motivation and rationale
	 3. Tools for corpus-based composition
	3.1 Segmentation
	3.2 Analysis
	3.3 Database
	3.4 Interfaces

	 4. Tools for physical or geometrical modelling of music
	4.1 Pinball-like bouncing
	4.2 Gravitation
	4.3 Kaleidoscopes
	4.4 Wave terrain synthesis

	 5. Rule-based systems, graphs, and music as a game
	5.1 Cellular automata
	5.2 Swarm intelligence
	5.3 Graphs
	5.4 Videogames

	 6. Comparison with other software
	 7. Future work
	 8. References

	20-TENOR2018_11_Merlier
	21-TENOR2018_17_Vickery
	22-TENOR2018_39_Noble
	23-TENOR2018_7_Kim-Boyle
	24-TENOR2018_3_Klinkenberg
	25-TENOR2018_28_Hope
	26-TENOR2018_13_Finbloom

