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ABSTRACT 

The latent and unstable nature of networked performances, 
where the delayed transmission and uncertain, unstable, 
and compressed reception of transferred information de-
mands scoring conceptualizations that consider the loss of 
the presence information traditionally expected by musi-
cians when performing together in a shared space and time. 
The focus of this study is to develop electronic network-
aware responsive scoring techniques that consider the pri-
mary constraints of networked music performances: i.e., 
latency, uncertainty, multilocated, and digital. Using ma-
chine-learning techniques to investigate and enhance digi-
tally mediated presence technology, scoring possibilities 
are discussed that promote the experience of performing 
together while being remote from each other—connected 
via a public network and subject to latency. This study also 
looks at compositional and technical approaches to creat-
ing responsive scores for networked music performances 
using analysis of transferred sound as a means to generate 
and control metadata and symbolic notation. 

1. INTRODUCTION

The pianist reaches out and strikes a few notes, and a 
phrase glitters across the piano. A moment later, from 
somewhere that cannot be seen, an echo arrives, yet it is 
not a perfect echo. We can hear clearly another piano—
another pianist—out of sight with a slightly different tim-
bre, a slightly different tuning. Our pianist responds to 
the notes she hears; she plays her own echo back, a slight, 
un-avoidable transformation. Again, notes arrive from 
else-where that mirror the sequence—but not exactly, a 
respon-sive spectral apparition. The pianists iterate 
notes and phrases that sometimes align and sometimes 
do not, result-ing in unexpected harmonies and timbres. 
Separated by distance and connected via a digital 
network, the pianists engage with each other using a score 
that responds to their actions; i.e., a performance takes 
place where synchroni-zation is impossible, but music 
happens.  

With the Internet’s extended reach and the development 
of transmission technologies over the last two decades, 
music has become reproducible in unimaginable ways, 
leading to explorations of performing music together over 
the network. However networked music performance has 
yet to enter the common-use arena. When connecting 
remotely, musical participants experience the loss of sig-
nificant amounts of multisensory information that they 
rely on when playing music together in composite space. 
While we can simulate and transfer certain kinds of sen-
sory data, such as high-quality audio and video, outside 
of dedicated networks, this transfer is subject to latency 
and high compression rates, which cause the loss of 
infor-mation and network instability. These factors cause 
musi-cians to perform in unfamiliar territory where 
traditional forms of scoring and time-keeping fail. We 
may instead look towards designing new forms of 
scores and interac-tion that are well-suited to the 
technical, latent nature of the networked performance 
environment, leading to the development of positive 
conditions with the aim of wider adoption of the medium. 

While technical advances in intermachine music net-
working protocols such as MIDI, Open Sound Control 
(OSC), and Dante may be now ubiquitous, creating music 
together over the Internet is largely limited to 
collabora-tions involving the non-real-time transfer of 
files and per-forming together is extremely limited in 
practice. As Nevejan states, “sharing rhythm, without 
having to make any extra effort, creates an initial 
mutual sense of trust” [1]. The latency and unreliability 
of the Internet affects musicians’ effortless ability to 
trust that they are, or even can be, in rhythm with each 
other. This loss of trust dis-rupts the very act of making 
music together. However, mu-sicians have a deep 
capacity to adapt to new technologies. Considering how 
the Internet is deeply embedded within society, and the 
“transcendence of time and place has been a human drive 
for centuries” [2], musicians and audiences will accept 
networked music as a platform for expression given a 
solution for the disruption of rhythm. 

In this paper, I present an overview of the primary char-
acteristics of networked music performance that must 
be considered when developing network-aware 
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performances over the public Internet. I introduce the 
concept of time-based “musical agents” that act as 
both score and represen-tation of the performance 
environment, where musical agents are detected, 
analyzed, and transformed in real-time by software. 
My work F Not F (2019) is presented as an ongoing 
experiment of this concept into practice. 

2. PRIMARY CHARACTERISTICS OF NET-
WORKED MUSIC PERFORMANCES 

The primary characteristics of networked music perfor-
mances are defined by technology and the imposition of 
that technology on participants. The public Internet is 
a packet-switched network made resilient through its 
decen-tralized design, where data is broken up into 
pieces and transmitted along many possible paths to its 
destination where it is put back together. This design is 
subject to la-tency and instability: i.e., packets may arrive 
late or not at all, which leaves the receiving side unable to 
faithfully re-produce the original. Network latency cannot 
be removed because it is a property of the natural laws of 
physics: i.e., information cannot travel faster than the 
speed of light and latency cannot be reliably 
predetermined or fixed at a cer-tain value. For example, 
latency may change throughout the duration of a 
performance. Consequently, latency and transmission 
uncertainty are primary unavoidable charac-teristics of 
networked music performances. 

The second primary characteristic of networked music 
performances is that participants are multilocated co-
crea-tors. A networked music performance requires at 
least two participants, each inhabiting their own 
distinct acoustic space and influencing a musical result 
that is experienced only by them and their local 
audience. The projection of sound from one location to 
the other creates new acoustic challenges that must be 
considered from a technical stand-point; e.g., is each 
musician provided with a microphone that is mixed with 
as little feedback as possible or are room microphones 
used carefully to provide a reverberant acoustic 
effect? How the acoustic performance details are 
determined often depends on the technical resources 
avail-able from one venue to the next. The third primary 
charac-teristic of networked music performances is that 
presence is digitally mediated: i.e., music is performed 
over a digital network where the signal is certain to be 
digitally encoded, compressed, transmitted, and 
decoded. Sounds, images, and performative relationships 
are managed purely by the means of this digital 
transmission and in the process of this unavoidable 
operation, we afforded the means to further manipulate 
and modify transmissions towards new timbral and 
aesthetic experiences. 

1 Sarah Weaver defines “composite space” as performing in the same 
space at the same time [3], in contrast to “networked space,” where peo-
ple are not in the same space, but are performing at the same time. 

3. VITAL INFORMATION AND RHYTHM

Traditional music performances occur in composite 
spaces,1 i.e., spaces where people are together, here and 
now. In composite spaces, music is synchronized not only 
through music, but also through visual gestures and 
glances, a conductor’s nod, or the down-movement of a 
violinist’s bow. Musicians constantly exchange 
“relational information,” the “tacit, the personal, 
experiential, ethical, aesthetic” [4], and respond to that 
information for the du-ration of their performance. By 
contrast, networked music is mediated presence: i.e., a 
partial presence that lacks the full-sensory relational 
experience of real-life interactions. The performative 
relationships between two or more peo-ple when 
communicating over a network are mediated dig-itally; 
i.e., they cannot sense or exchange presence infor-mation 
without technology. The technology of transmit-ting 
information over the network is full of uncertainties; it is 
latent and unstable. However, it is also capable of 
transmitting what musicians need to perform 
together. Nevejan suggests that “when in trouble, one 
needs good information and good communication; i.e., 
one needs ‘vi-tal information’” [5], which is information 
that “supports survival for a specific person in a specific 
place at a spe-cific time” [5]. 

Transferring vital information in networked music per-
formances is crucial in facilitating synchronization 
be-tween performers. In contrast to the traditional 
perfor-mance setting where ensemble musicians can rely 
on low latency audio and visual communication, when we 
connect remotely, we anticipate that the information that 
informs us about another’s presence will be limited. For 
example, when we video chat with a friend who is on a 
limited net-work, we anticipate glitches and network 
drop-outs that in-terrupt a smooth conversation and we 
accommodate ac-cordingly by perhaps using text chat 
or rescheduling the call for a later time. These 
interruptions result in synchro-nization difficulties where 
we easily misunderstand each other’s rhythmic 
intentions. In a musical performance, par-ticipants must 
consider what conditions can be controlled that limit 
these disruptions and still achieve a sense of shared 
time. Sharing time and rhythm is an important fac-tor 
because it creates performance intimacy between re-
mote participants [6]. 

4. NETWORK-AWARE RESPONSIVE SCORING

A network-aware responsive scoring system is one that is 
in tune with both the conditions of the network and the 
mu-sical performance at the present moment in time. 
Respon-sive scores are graphical scores that in some 
way can be modified in real time to adapt to conditions, 
e.g., graphical scores that are connected to 
environmental input or that update a notation display 
as time passes. Responsive scores present information 
to the musician that reflect how musical relationships 
change over time in ways that static scores cannot, 
offering “ways to deal with time from a realistic 



standpoint” [7]. Responsive scores also afford mu-sicians 
to engage in the moment to change their actions and create 
a meaningful musical experience, where there “might be 
an urgency and a will to do what is required to effectuate 
that change” [8]. Combining responsive scores with 
techniques, such as telemetrics, machine learning, and 
statistics, responsive scores become network-aware: i.e., 
they can now adapt to latency and bandwidth changes as 
they occur, as well as responding to musical content 
from remote musicians as it is arriving over the network. 
Thus, the network-aware score can respond to and provide 
vital information about the performance environment to 
the musicians by addressing the primary constraints. A 
network-aware score must account for latency, it must 
acknowledge that no single location is the primary author 
or focus of a performance, and it must interface with digi-
tal network technology.

4.1 Existing network-aware interfaces 

Network-aware and -responsive interfaces have been de-
veloped since networks have been in existence. For an ex-
cellent overview of historical real-time music systems for 
networked music, see Georg Hadju’s “Automatic Compo-
sition and Notation in Network Music Environments” [9]. 
To date, network-aware scores have been primarily fo-
cused on transmitting and processing metadata or sym-
bolic information or musical instructions for the perfor-
mance itself due to limitations in compression technology 
and bandwidth. Hadju’s Quintet.net transmits events be-
tween locations over the low-latency User Datagram Pro-
tocol (UDP), presenting musicians an interactive score of 
“certain notes or phrases to be played within time brack-
ets” [10]. Extending this concept is Whalley’s Graphic 
Networked Music Interactive Scoring System, where dis-
tributed clients communicate over OSC and map various 
musical parameters for interactive performances, with the 
common purpose of network-aware scores to “address 
practical timing problems in coordinating network-distrib-
uted participants following a score” [11]. Combining vari-
ous approaches, the graphic and animated notation 
Decibel ScorePlayer system connects over a wide area 
network to transfer score instructions and permutations 
in real-time between remote participants [12]. 

With more recent developments and freely available 
high-quality audio transmission due to the growing ubiq-
uity of broadband networks and concurrent software de-
velopments that offer high-quality, low-latency audio, we 
can now also analyze and modify the transmitted audio 
content itself, satisfying the network-aware requirement to 
consider the digitization and transmission of sound as an 
opportunity to seek new aesthetic approaches. Working di-
rectly with the transmitted audio, Ethan Cayko’s to-
porhythmic research addresses “trans-chronotopic met-
ricity” [13] by realigning decoded remote audio streams 
according to a telemetric-derived compensatory delay to 
achieve a fixed latency. This technical manipulation al-
lows musicians to reliably perform precomposed 
rhythmic patterns while acknowledging the multiplicity 
of the distributed performance environment where each

location experiences time—and therefore rhythm—
differently.

4.2 Integrating network characteristics 

Musicians are highly intimate with latency: i.e., the time 
it takes for a generated sound to reach the ears depends 
on the size of the performance environment and the 
distance from each other within that environment when 
performing in composite space where the response time 
is expected to be within some milliseconds. With the 
added network transmission time; however, response 
time is further in-creased. As Chris Chafe notes. 
“response time is variable depending on [the 
musician’s] attention and what they hear, but it’s way 
longer than the network delay” (private interview with 
the author, 2016). When a musician’s re-sponse time is 
disrupted by network transmission, this la-tency extends 
musical opportunities with a unique dimen-sion because 
it affords further machine-processing latency that would 
otherwise be considered a disadvantage in a 
performance situation. 

Network transmissions not only create response time 
de-lays and the inability to synchronize, but also cause 
con-gestion in networks, leading to unstable connections. 
Un-like in composite space, we cannot reliably repeat a 
musi-cal performance when connected over a network 
because of these unforeseen instabilities that may arise at 
any time. The musical score for remote participants 
must be de-signed for uncertainty and therefore be 
considered a guide to be followed rather than a score that 
can be reliably re-produced from one performance to the 
next given similar conditions. 

4.3 Types of music representation 

Hadju and Didkovsky state that in “current 
[networked music performance] environments one can 
typically differentiate three types of music representation 
being transmitted over the network” [14]. They go on to 
list the following: 

1. Low-level audio, which can either be multichannel
uncompressed or compressed (which increases la-
tency, but allows audio transmission over consumer
lines).

2. Mid-level performance data, which include note
event or continuous-control messages generated by
MIDI or alternate controllers.

3. High-level score data for symbolic representation
of music.

I propose a fourth type of representation, i.e., the 
analysis and musical representation of digitally 
captured perfor-mances in audio format. With the aid 
of music infor-mation-retrieval methods and machine-
learning methods, performative behavior patterns or 
“musical agents” can be detected in near-real time, 
processed locally, and transmit-ted over the network.  



5. MUSICAL AGENTS

Hatten states that a “semiotic attribution of agency typi-
cally involves a sentient being that may set into action 
var-ious tools” [15]. Hatten introduces the idea of virtual 
agency, where a musical gesture or idea implies a 
creative force that generated that gesture or idea. The 
gestures then become agents of intent. When performing 
over a remote network where presence is mediated by 
technology, thesource of agency is hidden from us, yet 
we assume some-one, or something, created the sound we 
are hearing or at least triggered a process that set that 
sound into motion. Given we are communicating via 
technical means, we have data to detect and measure 
musical agents, and apply transformations and return 
them back to the remote space. By collecting and 
extracting these data, we can process and analyze these 
agents and expose new methods of operating within the 
constraints of the performance environment. Where 
natural human senses cannot detect the source of an 
action, technology can help us navigate this unknown ter-
ritory through the transmission and generation of vital in-
formation and create new performance perspectives. 

5.1 Detecting and manipulating musical agents 

Musical agents serve to illuminate and respond to the pri-
mary characteristics of networked music performance and 
provide a channel for the transmission of vital 
information. This is achieved by classifying a musical 
gesture for each agent that can be documented, 
performed, modified, and transmitted. For example, the 
agent might be a series of pitch sequences in 
combination with certain loudness en-velopes and timbral 
fingerprints. Given a set of data, dis-tinct patterns can be 
stored and later recognized with the assistance of 
machine-learning applications. By detecting the 
transmission of the pattern, we know whether the agent 
has been transformed in some way, either by the musician 
or the network performance conditions. 

5.1.1 Agent classification 

Classifying a musical agent requires training on a certain 
pattern and consequently detecting that pattern using fea-
ture detection. Once the composer has decided which mu-
sical features [16] she wishes to detect, a convolutional 
neural network, which is “a set of filters that are trained 
to extract the most relevant features for detection from 
the received signal” [17] can be trained and deployed to 
ex-tract these features [18]. Where the agent is comprised 
of multiple components, several passes of sequence 
detection permits classification as a whole. 

Machines are very good at classifying if they have been 
provided with sufficient and suitable training data, and 
the classification challenge matches the training data to 
an ad-equate degree. Deciding how to encode and train 
sound data so that it can be classified becomes an 
aesthetic deci-sion, as does choosing the degree of 
accuracy and accepta-ble processing latency during a 

2 Quality of experience (QoS) is a set of network performance metrics 
(see RFC 6390, https://tools.ietf.org/html/rfc6390). 

performance. Classification also requires significant 
attention to the data-capture method: e.g., when the input 
data changes, the result also changes. For music 
classification, this means that we must clearly define the 
classes and train as many different kinds of input as 
possible that reflect the classes under different conditions, 
i.e., with a variety of recording environments and 
instruments. As classification and pattern detection/
analyses improve, more complex decision-making tasks 
can take place. For now, the processing latency, clas-
sification errors, and statistical uncertainties due to insuf-
ficient data and processing time must be embraced when 
designing machine-learning score integrations. 

5.1.2 Agent comparison 

Once a musical agent has been detected, we can obtain 
fur-ther detail through comparison with ideal, statistical, 
and historical agents. This creates a layer of 
comprehension: i.e., not only have we detected agents, 
but we also have coherence though means and 
variance. We might also compare the real-time 
transmitted model with statistical analysis of randomness 
generated by a computer model to generate yet more 
layers of data. For example, detecting vertical note 
alignment patterns through a loudness-based chromagram 
[18] permits the composer to input a series of 
chromagrams to be matched with more nuance than 
simply detecting a series of pitches. With the additional 
factor of loudness, a variety of variation is allowed for in 
the com-position.

5.2 Data collection 

Networked music performances inherently contain multi-
ple forms of information that expose its past and current 
states, including those of digitization, encoding, transmis-
sion, and decoding. The aim of data collection is strongly 
task-oriented, where data is not inferred through analysis, 
but retrieved from existing sources of measured infor-
mation. Data sources in networked music performances 
in-clude telemetric data from the network itself, 
machine data, and metadata. Data collected from these 
sources do not tend to require additional processing: i.e., 
data in its raw format tell us the state of the system at 
the time we requested it. 

5.2.1 Telemetric data 

Telemetric data are the information automatically derived 
from the information generated by machine protocols dur-
ing the transmission process and are designed for remote 
monitoring of equipment and services, which allows the 
calculation of statistical parameters (usually means and 
variance). Real-time protocol telemetry tells us detailed 
in-formation about the transmission, including latency or 
the time it takes for the data to be transmitted between 
loca-tions, the average rate of packet loss, the rate of 
change or “jitter” in latency, the number of packets 
discarded or re-paired, and a number of other useful 
measurements, such as the cumulative number of packets 
lost. Using this information, we can keep the participants 



informed of the state of the performance environment by 
providing quality of experience,2 and we can use the data 
as variables in musical algorithms and processes, such as 
is demonstrated in section 8. Figure 1 shows a real-time 
matrix of extracted data presented in a format that allows 
participants to absorb the present status of the system over 
the last 60 seconds at a glance. 

Figure 1. Historical real-time output statistics of a net-
worked music performance. 

5.2.2 Music information retrieval 

Music information retrieval primarily takes one of four 
forms [19]: images, such as a score; symbolic, such as 
MIDI; metadata, such as the instrumentation or knowledge 
about the performance and its environment; and digital au-
dio. In networked music, we might classify telemetry as 
metadata. Music information retrieval permits us to make 
decisions specifically pertaining to music and perfor-
mance: i.e., a score provides instructions on how and when 
to emit sound. MIDI and similar note-event systems tells 
us what electronic signals have been emitted, and infor-
mation about digital audio gives us performance cues and 
markers. Such information is highly useful in determining 
context, particularly when musicians are remote from one 
another. 

5.3 Data extraction 

In contrast to data collection, data extraction is a creative, 
analytic process where, instead of gathering readily ex-
posed information, meaningful information is inferred us-
ing algorithms. The extraction itself becomes part of the 
composer’s process as she identifies and implements suit-
able algorithms, selects which data streams to input, and 
determines how to present the output to the data proces-
sors. Two immediate methods in networked music perfor-
mances are those of processing the audio signal itself via 
digital signal processing (DSP) and extracting information 
about the transmission through a time-geography analysis. 

5.3.1 Digital signal processing 

One of the methods for extracting data from sound is DSP. 
As opposed to metadata collection, DSP is an algorithmic 
process that demands consideration of a variety of factors; 
therefore, it is a creative practice. DSP techniques can ex-
tract vertical and horizontal spectral and intensity infor-
mation [20]. From these, we can deduce musical descrip-
tions from the sound, such as invariance in pitch, loudness, 
duration, and spatial position. Using machine-learning 
techniques, we can extract musical features, such as beat 
tracking, chromagrams, and instrument detection and sep-
aration [21]. With this information at hand, the composer 
can implement a system that, e.g., listens to pitch or 

melodic content and responds accordingly, or can synchro-
nize events according to note onsets. 

5.4 Time-geography approach 

Time and space are intertwined in networked music per-
formances. Time-geography [22] is an investigation into 
spatiotemporal processes that tell us about “potential en-
counters between agents” [23] and how those agents are 
constrained by space and time: e.g., by capability, cou-
pling, and authority [22], where capability is the con-
straints dictated by the system in which the agent exists, 
coupling is being together in a place and time, and author-
ity tells us about the forces that the agent is subject to. With 
these topologies, we expose the interconnected nature of 
the performers with the musical environment including the 
transmission network, where time-geography’s “two main 
tenets are that time and space are seen as resources and that 
the constraints which operate on human beings particularly 
in the physical environment, are the primary dictates of hu-
man experience” [24]. A time-geography approach detects 
how agents are moving through time and space, and “dis-
tinguishes between fixed and flexible activities based on 
their degree of pliability in space and time” [25]. By com-
bining telemetric analysis with musical feature analysis, 
time-geography techniques can tell us about under what 
limitations the system is operating: e.g., if a pattern expe-
riences deviation due to congestion occurring over the net-
work, which creates ripple effects for each agent’s re-
sponse time and thereby influences the musicians’ ability 
to perform. 

5.5 Pattern recognition 

Where situations can be described as abstract logical prob-
lems, machine-learning algorithms are better than humans 
at detecting patterns. Automated pattern recognition tech-
niques can use training data to detect relationships to ex-
isting known sequences, or they use the sequence itself to 
describe relationships within that sequence as the time se-
ries occurs. Pattern recognition implies having a pattern to 
recognize. For example, in networked music perfor-
mances, we would simply train a recurrent neural network, 
such as long short-term memory or bidirectional recurrent 
neural networks [17] depending on our requirements, with 
initial telemetric data giving a base reading of the environ-
ment before a performance begins. Once the neural net-
work has been trained, we will output data that can be 
folded back into the score. 

5.6 Sequence deviation 

Statistical reporting of deviations from a sequence, where 
anomalies and detected and measured, can be applied to 
both high-level agent movements in time, and within the 
agent itself when investigation change in pitch or harmonic 
sequences. In networked music performances, this deter-
mines when musical agents are subject to variation, and 
can be applied in scoring situations to detect both the 



creative decisions made by musicians and evaluate trans-
mission performance within the network. 

5.7 Sequence prediction 

To add yet more layers of interpretation to her application, 
the composer may choose to predict the next events in a 
given time-series. Where the objective of a predictive 
model is to estimate unknown variables for two-dimen-
sional sequences, such as pitch prediction, note onsets, en-
velopes, and network telemetrics, statistical forecasting al-
gorithms are most useful where, at least for short-term 
forecasting, machine-learning algorithms offer little bene-
fit at the expense of complexity [26]. 

5.8 Composite models 

Integrating multiple algorithms and processes allows the 
detection and generation of multiple types and layers of 
sequences, allowing a more-sophisticated nonisomorphic 
approach to working with digital interfaces. When a mas-
sive data cloud can be processed, this exposes information 
about music as it happens and delineates the spatiotem-
poral relationships between remote participants. Data anal-
yses give the composer and musicians insight towards both 
creating an informed performance environment and con-
sidering future potential opportunities. 

6. F NOT F: ANALYSIS OF A NETWORK-AWARE
SCORE 

F not F (2019) is a continuous research project that puts 
into practice the principles introduced in this study: i.e., 
using machine-learning and statistical techniques to de-
velop a responsive network-aware score interface. By an-
alyzing the performance conditions, the score reacts to 
time-based pattern synchronization where the intent is to 
react to trajectories and thresholds that must be met before 
making certain decisions. To achieve this, a series of mu-
sical agents are deployed, where musical patterns that are 
distinguishable by the machine are analyzed. 

The title of F not F refers to Nevejan’s work on presence, 
where participants share or do not share time, space, and 
action. They may be “here” or “not here,” and they may be 
participating “now” or “not now.” That is, perhaps the mu-
sicians are responding to each other in real time or they are 
performing alongside a recording [5]. The title F not F sug-
gests the mathematical concept of a function where input 
relates to an output. 

6.1 Version 1 

The first iteration of F not F was a custom Python program 
and a fixed notated score created for a live musical exper-
iment between two pianists located in Ghent, Belgium, and 
Rotterdam, The Netherlands, which was presented at the 
Orpheus Institute’s March 2019 conference on Simulation 

3 Aubio is a C library and Python interface for the extraction of anno-
tations from audio signals (see https://aubio.org). 

4 Librosa is a Python package for music and audio analysis for the pur-
poses of music information retrieval (see https://librosa.github.io). 

and Computer Experimentation in Music and Sound Art. 
During the performance, the pianist’s sound was continu-
ously analyzed by musical feature extraction methods us-
ing the Aubio3 and Librosa4 libraries. The program in-
gested real-time data that was sent to a computer vision 
program built on TensorFlow5 and Keras6 with the aim to 
determine what musical phrase was currently being per-
formed. The program had been trained prior with 16 musi-
cal phrases, recorded hundreds of times in a variety of con-
ditions, and translated into chromagram images (Figure 2). 
The chromagram was selected over the spectrograph or 
other feature- visualization methods after the testing of all 
of Librosa’s options determined that the chromagram was 
the most easily recognized image by the computer vision 
software. 

Figure 2. A musical phrase in F not F v. 1 and the chro-
magram representation of three recordings of that phrase. 

These images served as training data to the program’s 
machine-learning computer vision system. The perfor-
mance consisted of the musicians playing a phrase a pre-
determined number of times, and then moving on to the 
next phrase. The discrete input of each pianist’s mono-
summed signal was recorded in real time by the program, 

5 TensorFlow is a platform for developing and training machine-learn-
ing models (see https://tensorflow.org).

6 Keras is a high-level neural network Python API (see https://keras.io).



saved in 5-second wav files, one for each channel, and then 
immediately translated into chromagram images. The im-
age was sent to the machine-learning program where the 
most-likely match was determined. This process took a 
few milliseconds. Once the program recognized a phrase, 
it triggered playback of samples from a bank selected ac-
cording to the detected phrase. In all, a <6-second delay 
was experienced for the program to ingest and return the 
result. This delay informed the compositional structure 
where the musicians were instructed to repeat the musical 
patterns several times. 

6.2 Version 2 

F not F is a necessarily simplified implementation of the 
technical ideas discussed here; i.e., it is a constant work in 
development as the sophistication of tools improves. Ma-
chine learning is currently prone to error and ambiguity 
must be anticipated. Consequently, F not F is designed to 
embrace machine ambiguity while being structured overall 
for development of compositional narratives. Version 2 al-
lows for a greater number of musicians and a variety of 
instruments to engage with musical agents. While version 
1 was a static instructional score, a real-time score is gen-
erated for version 2, which can be viewed on a tablet con-
nected to a central computer over a local or remote net-
work. Like in the first version, an agent is a predefined mi-
croscore containing a distinct musical pattern where the 
rhythm and pitches can be easily detected by a machine. In 
version 2, agents become more sophisticated: i.e., a soft-
ware program listens to each musician independently for 
the pattern and applies an interactive musical response. Ta-
ble 1 lists events that are sent to the score once analysis has 
returned a result. 

Analysis result Action 
A pattern has been partially 
detected 

Trigger array of detected pattern 
string with threshold float value 

A complete pattern has been 
detected  

Trigger detected pattern string 

The degree of synchronicity 
between any two data streams 

Continuous stream of sync 
percentage (float array) 

The degree of synchronicity 
between all streams (global 
synchronicity) 

Continuous stream of sync 
percentage (float) 

Telemetric data Continuous stream of latency, 
packet loss, etc., to allow for 
synchronization calculations 
(e.g., mixed float, integer array) 

Table 1. Analysis results and corresponding events 

Version 2 of F not F is structured as a series of semi-
notated precomposed instructions. For each series, musi-
cians are presented with a series of notes. Figure 3 shows 
three examples of a note series that correspond to sections 
of a harmonic series, quantized to the semitone. 

The musicians are instructed to improvise on the pro-
vided note series, playing notes in any order at a specified 
tempo and dynamic, but with deviating rhythms and tim-
bres of their own choosing. For example, a resulting 

rhythm might sound something like the two rhythmic pat-
terns shown in Figure 4. 

Figure 3. Three examples of a series: one for each musical 
agent. 

Figure 4. Two musician-determined rhythmic pattern ex-
amples. 

From this improvisation, all instruments in the ensemble 
combine to create a semi-chaotic timbral and rhythmic ef-
fect that continues for an indefinite period of time. The ma-
chine listens for a pattern it recognizes, which initially will 
be a partial pattern. Once this event occurs, the detected 
pattern becomes the focus: i.e., the “musical agent” that 
matches that pattern is initialized and the agent pattern be-
gins to emerge in the score. As illustrated in Figure 5, the 
musicians begin to interleave the agent pattern (top se-
quence) with the chaos series (highlighted lower se-
quence). The score encourages the musicians to gradually 
play the agent pattern gradually more and more by flicker-
ing between the two layers, while the machine increases its 
reading of partial-pattern detection length. 

Figure 5. Two examples of an agent pattern that would be 
animated and interlaced with its corresponding chaos se-
ries. 

The musicians should now be starting to play the agent 
pattern more than not, which allows the machine to match 
complete instances of the agent pattern and calculate the 
level of horizontal rhythmic synchronicity between musi-
cians, reading telemetric data to calculate for latency. Once 



synchronicity crosses a determined threshold, the next se-
ries is triggered: i.e., the previous agent pattern disappears 
and a new chaos pattern is shown to the musicians. This 
cycle can continue as long as the participants and com-
poser wish, by supplying more or fewer patterns until the 
machine has completed its tasks. 

An agent may also have a particular set of parameters 
that determine its musicality: e.g., it may respond to se-
lected types of data streams or unique triggers specific to 
that agent to generate correlated effects using granular syn-
thesis or other processing effects. In F not F, an agent may 
be responsive to the current global sync value in real time 
and react as outlined in Table 2. 

NOT IN SYNC 
(<20%) 

WITHIN 
THRESHOLD 

(>20% to <80%) 

IN SYNC 
(>90%) 

No effects Clicks, noise bursts, 
sine tones 

Agent sample 
triggers 

Increasing granular 
synthesis level 

Granular synthesis 
immersion 
Countdown to next 
series 

Table 2. Triggering electronic effects in F not F 

When the musicians are not in sync, there are no effects. 
This decision was made so they can more easily seek syn-
chronicity with each other. As their sync increases, so do 
the effects and granular synthesis levels. The intent of in-
creasing and decreasing the intensity of electronic effects 
is to offer the musician the musical choice of whether she 
wishes to move towards or away from sync, depending on 
her musical intentions in accordance with the ensemble. 

7. FUTURE WORK

The long-term goal of this research study is to develop ad-
vanced methods for detecting how musical agents are cre-
ated and transmitted between networks. Learning how they 
interact and modified and transformed, whether by musi-
cian or machine, guides us towards understanding how 
participants experience and react to being in-time and in-
rhythm with each other when performing remotely over a 
network. While being a disruptive factor in music, latency 
can be used for positive gains with machine interaction. 
The unavoidable delay can be well-utilized, where the 
transmission wait can be used to analyzed and generate 
performative interfaces for musical developments. Devel-
oping complex network-aware systems demands the inter-
section of real-time machine protocols with human-level 
research on mediated presence technology and theory and 
computer music studies. Collecting data from as many 
sources as possible at the time of creation and processing 
that data with algorithmic approaches allows us to create 
sophisticated sound processing applications and score cre-
ation for distance-aware composition structures while 
building strong musical relationships and transferring the 
vital information that musicians need when performing re-
motely. When working with sophisticated graphical inter-
faces, the transmission latency could be highly beneficial, 

e.g., when developing complex, immersive works using
virtual and augmented reality tools.

Most machine-learning and statistical technologies to 
date are focused on genre classification or harmonic anal-
ysis. A real-time library for detecting and comparing 
sound features such as timbre, note onset and decay, and 
agent detection and comparison, e.g., would allow the 
composer to consider greater score and compositional 
complexities. As detection and analysis tools become more 
sophisticated, such as the real-time application of deep 
learning tools to recognize activities [27], composers will 
have the ability to model and detect musical features at fine 
resolution and great speed at their fingertips [28]. In addi-
tion, structural and decision-making events can be ana-
lyzed and cocreated by musicians and machines. In step 
with advances in analysis, innovations in digital scoring 
technologies increase the possibilities of representing this 
information with highly sophisticated responsive musical 
agents, which leads to more meaningful encounters be-
tween remote musicians and computing systems. As 
greater amounts of data become available, human percep-
tion tends towards perceiving greater meaning; i.e., we at-
tribute a machine’s complex recognizable patterns to 
mechanisms imbued with agency. 

Ultimately, there are undiscovered depths of exploration 
in relation to performance and the machine, and our con-
tinued curiosity will certainly uncover many more aes-
thetic and technical applications. This research works to-
wards the creation of a functional library of performance 
and scoring tools, while growing the portfolio of net-
worked music performance works by this composer. She 
hopes to entice others to approach networked music per-
formance as a source for novel and intriguing aesthetic op-
portunities. 
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