
THE MINIMUM CUT PITCH SPELLING ALGORITHM:
SIMPLIFICATIONS AND DEVELOPMENTS

Benjamin Wetherfield
University of Cambridge
bsw28@cam.ac.uk

ABSTRACT

This paper describes and refines the Minimum Cut Pitch
Spelling Algorithm, designed for flexible use in modern
software and contemporary music settings. In the process
of composing notated music, a decision must be made by
the composer as to which enharmonic spelling should be
assigned to each represented pitch. Spelling assignments
in close proximity on the page are interrelated, with each
choice exerting a pull on the surrounding choices. Hence,
the complexity of the problem can proliferate, especially
where tonal centers are contextually ambiguous or even
non-existent. The minimum cut approach herein presents
a model for spelling pitches efficiently based on their in-
tervallic relationships. Building on the previous presenta-
tion of the model (in the author’s bachelor’s thesis), sim-
plifications and extensions of both the workings of the al-
gorithm and its exposition are given. Among the simpli-
fied components of the presentation are the system of en-
coding applied to pitch spellings, the approach taken to
avoid double-accidentals, and a decoupling of the full com-
plexity of the model from its simplest pitch relationships.
A new practical inverting (or ‘learning’) process for gen-
erating algorithm parameters from collections of spelled
pitches (based on the Edmonds-Karp Maximum Flow al-
gorithm) is also introduced.

1. INTRODUCTION

In the process of composing music, pitch spellings make
up a conduit for sound, an intermediate representation. With-
out due care, however, spellings can lead to a score that is
difficult to read, rehearse or tune. Secondary as it is to
musical sound, the assignment of “correct” spellings – or
at least a good “default” – is an obvious candidate for au-
tomation in modern software. Various pitch spelling pro-
cedures have been proposed, with a number successfully
reproducing the spellings of corpora of canonical works to
a high degree of accuracy [1, 2, 3], but there are further
measures of utility, and indeed further use cases, that can
be applied to pitch spelling algorithms.

In [3], Honigh proposes four criteria for identifying a
useful pitch spelling algorithm: accuracy in reproducing

Copyright: ©2020 Benjamin Wetherfield et al. This is an open-access article 

distributed under the terms of the Creative Commons Attribution 3.0 Unported 

License, which permits unre-stricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited.

the spelling choices present in well-spelled scores, parsi-
mony – a term introduced by Cambouropoulos to signify
the avoidance of accidentals, and particularly doubled ac-
cidentals [4], generalizability – the value of the model in
illuminating other features of music, and cognitive plausi-
bility – the extent to which the pitch spelling approach mir-
rors the mental process of spelling done by a musician. To
these criteria we can add several more. Applicability of the
algorithm to different musical styles and contexts, flexibil-
ity of the algorithm to factor in user-preference and interac-
tion, and extensibility of the algorithm to perform spellings
with microtones. The latter three criteria are emphasized
in the construction of the minimum cut pitch spelling algo-
rithm, along with a reliance on the efficiency of algorithms
studied in graph theory and operations research. A deep
look at the construction of microtonal pitch spelling from
the basic algorithm proves to be beyond the scope of this
paper, but further details can be found in [5].

Despite seeking efficiency, this algorithm does not seek
to be “real-time” in the sense that it could be used to per-
form real-time transcription or other stream-input/output
operations. It should be noted that streaming pitch spelling
algorithms are achieved elsewhere [2, 6]. Rather, the al-
gorithm seeks to make strong use of a static score, taking
advantage of the potential for pitches to exert a tug on each
other forwards and backwards across the page. Interest-
ingly, the static view allows us to abandon “windowing”,
a common feature in pitch spelling algorithms whereby a
moving frame of reference restricts the pitches that can in-
teract with each other as we move through the score from
left to right. Instead, we make use of an extended network
of pitches, the strength of whose connections is dampened
over larger distances in the score.

In this paper, I will describe simplifications to previous
modeling steps, which in turn clarify the exposition of the
algorithm as a whole (see [5] for a comparison). In partic-
ular, I decouple musical context and proximity information
from the pitch relationships governing spelling choices,
leading to a further level of flexibility in allowing a user
fine-grained control over the weight and adjacency struc-
ture of the pitch network. I examine inverting procedures,
by way of which algorithm parameters can be extracted
from spelled input data, and analyze a new inverse ap-
proach, which brings several practical benefits.

2. MINIMUM CUT

A weighted directed graph is a set of nodes, together with
a set of arcs that denote one-way (directed) connections be-

149

mailto:author1@adomain.org
http://creativecommons.org/licenses/by/3.0/


↓ ↑ Encoded spelling
0 0 Flattest spelling
1 1 Sharpest spelling
0 1 Natural spelling

Table 1. Encoding system for all pitch classes except 8,
for which there is no ‘natural’ spelling (only G4 and A2),
and hence, for which the (0, 1) entry is removed (see Table
2).

Figure 1. A flow network, with source s and sink t. The
minimum cut is indicated with a dashed line. Numbers be-
side arcs indicate their weights. Numbers inside of nodes
indicate on which side of the cut they fall: nodes with a 0
lie on the source side, while those with a 1 lie on the sink
side.

tween nodes; each arc is given a numerical weight. A flow
network denotes a weighted directed graph with two spe-
cial nodes, a source and a sink. By convention, no arc starts
at the sink and none ends at the source. Solving for the
minimum cut of a flow network partitions the set of nodes
into nodes strongly connected to the source, nodes strongly
connected to the sink, and (possibly) nodes strongly con-
nected to neither. The first class of nodes can all be as-
signed the value 0, the second class the value 1, and the
third class arbitrarily 0 or 1 (assigned to the class in its en-
tirety). The set of arcs that go from a node of value 0 to
a node of value 1 is referred to as a cut. The cut is a min-
imum cut, when the total weight of its arcs is the least of
all possible cuts in the network. Fast algorithms for solv-
ing for the minimum cut, either directly, or via the ‘dual’
maximum flow property, are well-known [7, 8, 9].

3. PITCH SPELLING MODEL

The strategy for constructing the pitch spelling model pro-
ceeds by encoding spelled pitches using a pair of binary

Flattest Sharpest Natural
Pitch Class Spelling Spelling Spelling

0 D3 B4 C6
1 D2 B5 C4
2 E3 C5 D6
3 F3 D4 E2
4 F2 D5 E6
5 G3 E4 F6
6 G2 E5 F4
7 A3 F5 G6
8 A2 G4 NONE
9 B3 G5 A6

10 C3 A4 B2
11 C2 A5 B6

Table 2. Mapping from the ‘Flattest’, ‘Sharpest’ and ‘Nat-
ural’ signifiers in Table 1 to explicit spellings of pitch
classes 0-11.

variables (or bits). The assignment of 0’s and 1’s to these
bits arises from the solution to a carefully constructed min-
imum cut problem instance.

3.1 Binary Encoding of Spelled Pitches

Slightly adjusting the approach taken in [5], possible spellings
for a given pitch can be encoded by a pair of binary vari-
ables. The system of encoding summarized in Table 1
provides a significantly simplified approach, reducing the
rule-set needed from five tables of cases to a single table
of the same size [5]. I will, moreover, diverge from [5]
by referring to the two bits used to encode a spelled pitch
respectively as ↓ (“down”) and ↑ (“up”).

3.2 Constructing a Flow Network

We start with a collection of pitches that we wish to spell.
We split each pitch into a ↓ and ↑ bit, and for each bit,
we introduce a corresponding node into the flow network.
Ending at each ↓ node is an arc from the source, and start-
ing at each ↑ node is an arc to the sink. Further arcs are
drawn between internal (non-sink and non-source) nodes
with weights based on rules addressed in Section 3.2.3.
Weights are assigned to the arcs based on empirically de-
rived relationships between pitch classes, explored heuris-
tically below and in greater depth in Section 4. Solving for
the minimum cut gives us a 0 or 1 assignment for each ↑
and ↓. Reading off the encoding system via the mapping
in Table 1 gives us a spelling for each pitch.

3.2.1 Arc-Weight Heuristics

To enhance the intuitive intelligibility of the model, we
can give a heuristic derivation of relationships required be-
tween arc weights. To start, for pitches that permit a 3
spelling and no 5 spelling (pitch classes 0, 3, 5, 10) we en-
sure that the weight of the arc from ↑ to the sink is heavier
than the weight of the arc from the source to ↓ (see Fig. 2).
This way, the3 spelling is the most costly option to include
in a cut. Analogously, for pitches that permit a 5 spelling

150



source:

sink:

heavy

pitch class
0, 3, 5 or 10

light

↑:

∞

↓:

Figure 2. Visual representation of the relative arc weights
needed in connecting the ↑ and ↓ nodes corresponding to
pitches of class 0, 3, 5 or 10. The heavy and light arcs are
discussed in Section 3.2.1, while the arc with weight∞ is
discussed in Section 3.2.2.

and no3 spelling (pitch classes 1, 4, 6, 11), we ensure that
the weight of the arc from the source to ↓ is heavier than
the weight of the arc from ↑ to the sink. For pitches that
permit both a 3 spelling and a 5 spelling (pitch classes 2,
7, 9), we merely ensure that the weights from the source to
↓ and from ↑ to the sink are both relatively heavy so that
the natural (indeed, 6) spelling is almost always favored.

By penalizing double accidentals, we enforce the parsi-
mony condition sought extensively in the literature. 1

3.2.2 Avoiding Invalid Encodings

As Table 1 dictates, the assignment (↓: 1, ↑: 0) does not
correspond to a valid spelling for any pitch. We add a fur-
ther condition to our flow network construction to ensure
that no pitch arrives at this state.

Between the ↑ and ↓ nodes of a single pitch in the flow
network, we add an arc from ↑ to ↓ of weight ‘infinity’. 2

Now if, for a given pitch, the ↑ node has state 0 and the ↓
has state 1, the total weight across the cut blows up (since
the infinite weight gets included), and hence our cut is not
minimal.

For pitches of pitch class 8 we can introduce an infinite
weight arc in both directions, enforcing that the ↑ and ↓
nodes associated with the pitch class 8 pitch are always
equal in value.

3.2.3 Connecting Internal Nodes

For each pair of pitches, we add arcs according to one of
two cases.

1. We add arcs in both directions that connect the ↑
node of the first pitch to the ↑ node of the second
pitch and likewise for the ↓ nodes.

1 Penalizing accidentals directly in this way removes the need for a
special ‘parsimony pivot’ as described in the original exposition [5].

2 In our number system we include a value infinity that is greater than
all numbers in the system but itself.

Pitch Class Pair Lowest Cost Spellings
(0, 1) (C6, D2) (B4, C4)
(0, 4) (C6, E6)
(1, 3) (C4, D4) (D2, E2)
(1, 5) (C4, E4) (D2, F6)

(1, 10) (C4, B6) (D2, C2)
(3, 4) (D4, E6)
(3, 6) (D4, F4) (E2, G2)

(3, 11) (D4, B6) (E2, C2)
(4, 5) (E6, F6)
(5, 6) (E4, F4) (F6, G2)

(5, 11) (F6, B6) (E4, B6) (F6, C2)
(6, 10) (F4, A4) (G2, B2)

(10, 11) (A4, B6) (B2, C2)

Table 3. Pitch class pairs for which ↑ node is connected to
↓ and vice versa.

2. We add arcs in both directions that connect the ↑
node of the first pitch to the ↓ node of the second
pitch and vice versa.

Case 1 makes sense for all pairs of pitches where the re-
spective natural spellings of the two pitches form a well-
spelled interval and likewise for the respective sharpest
spellings and flattest spellings (per Table 1). With appro-
priate weights added to the arcs, the ↓ nodes will tend to
be coupled, and end up in the same state (unless there is a
strong pull from another intervallic relationship) and like-
wise for the ↑ nodes.

Case 2 makes sense when we need to keep the pair of
pitches away from problematic “natural” spellings per Ta-
ble 2 (e.g. (C6, C4) as opposed to (C6, D2)). With the
effects of sufficiently heavy source and sink incident arc
weights, as discussed in Section 3.2.1, double spellings
are avoided, and hence Table 3 gives the set of lowest cost
spellings for pairs of pitch classes that should have ↑ nodes
and ↓ nodes connected.

For pairs of pitch classes not listed in Table 3, case 1 ap-
plies (as can be checked exhaustively), and hence we con-
nect the respective ↑ nodes to each other, and likewise for
the respective ↓ nodes.

3.2.4 Phantom Pitches

To pull preferred spellings in one or another direction (more
sharps, more flats, or more balance), we can add phantom
pitches to the graph that do not come from the score in
question, but nevertheless affect its spelling. The source
and sink arcs of phantom nodes can be set to infinity so
that these pitches are always spelled in their ‘natural’ form.
Hence adding 0 as a phantom pitch would function the
same as having an already-spelled C6 among the unspelled
pitches.

3.3 Injecting Musical Context

So far, we have only considered collections of pitches to
spell in a musical vacuum, without temporal or cross-part
information. This boils the problem of pitch spelling down

151



Figure 3. A fully connected network for spelling a pitch
class 1 note against a pitch class 3 note. Arc weights need
to be assigned such that the nodes fall on the sides of the
cut indicated (as per Figure 1). The problem of finding the
right arc weights is addressed in Section 4. When x = 0,
the spelling (C4, D4) results. When x = 1, the spelling
(D2, E2) results (cross-reference with Tables 1 and 2).

to its bare essentials of pitch relationships. But the model
can also be easily be modified to factor in more contextual
information, as would be appropriate in the spelling of a
real score. By scaling arcs, we can increase or decrease the
importance in certain interval relationships in determining
the final spelling. In particular, scaling up the arcs between
two pitches will increase the likelihood that those pitches
are spelled harmoniously as an interval in a given context
of other pitches.

3.3.1 Proximity Information

Pitches, as they occur in a score, can be independent from
each other or exert a distant pull on each other. For pitches
that should not be interrelated in terms of their spelling, 3

the arcs between their nodes can be removed from the flow
network. For pitches that exert a distant pull, the arcs be-
tween their nodes can be scaled down appropriately, and
indeed, adjacency in the score can be treated on a sliding
scale whereby closer pitches have a larger scale factor less
than 1 and more distant pitches have a smaller scale fac-
tor. For example, in [5], the adjacency scale factor – call it
tpq – for pitches in the same part, was implemented as an
exponential factor for some base α > 1:

tpq = α−(p−q) (1)

with p ≥ q ≥ 0 proportional to the sequential posi-
tion of the two pitches in the score. A simple scale factor
0 < β < 1 can also be added similarly, for pitches p and
q that are simultaneous but in separate parts:

t′pq = β (2)

3 Notes that should not be interrelated could include those either sids
of a double barline, or simultaneous but in different sub-tonalities of a
bitonal chord etc..

In a practical software implementation, adjacency infor-
mation, or relevance of different pitches to each other across
parts can be edited by a user, to provide an interactive,
computer-aided spelling of a complex harmonic landscape.
However, rules for removing arcs for pitches that should
not exert an influence on each other are reasonable to gen-
erate. In [5], methods are proposed, such as treating double
barlines and long rests as barriers between pitches, and re-
moving any arcs for pitches on either side of these barriers.

4. INVERSE PROBLEM

While the existence of arcs based on pitch relationships can
be determined heuristically, specific pitch-based weights
can be determined through a solution to the inverse prob-
lem. The inverse problem poses the challenge of extract-
ing arc-weight information from a collection of spelled
pitches, rather than using the arc weights in the context of
the flow network to derive assignments and hence spellings.

4.1 Full Complexity Solution

The original inverse problem solution is conceived by lever-
aging the primal-dual relationship of the maximum flow
problem and the minimum cut problem. In linear optimiza-
tion, a known result states that if a solution to the primal
problem is equal in value to the value of a solution to the
dual problem, then those solutions are optimal [10]. Both
the maximum flow problem and the minimum cut problem
can be stated as linear optimization problems, namely, with
linear objective functions and linear constraints.

4.1.1 Defining Linear Constraints

For the purpose of defining the maximum flow problem,
we assign to each arc a non-negative variable called the
flow fa of the arc a, bounded above by the weight wa of a.
The flow constraint for each node states that the sum of the
flow variables for arcs going into the node should be equal
to the sum of the flow variables for arcs going out from the
node. The value of the total flow through the network as
a whole is the sum of the flow variables for arcs going out
from the source (or equivalently, going into the sink).

By satisfying flow constraints (in the maximum flow prob-
lem) and putting an upper bound B on the size of each
pitch-based arc weightwa, we can maximize the arc-weights
to obtain a valid flow with non-zero arc-weights. By adding
a duality constraint that sets the flow network’s cut value
equal to its total flow value, we ensure that the arc-weights
found result in an optimal solution with pitches as they are
found in the source score or corpus of scores.

From (3)-(8) we give a simplified statement of the con-
strained linear optimization labeled EXACTINVERSE in [5].
Contextual information, which can be injected into the in-
verse problem analogously to the approach discussed in
Section 3.3, is omitted in this statement, for clarity and
brevity. We define an arc type by the pitch classes and ↑/↓
types of its start and end node. To satisfy the model, we
require a constraint, (6), that specifies that arcs with the

152



same type have the same weight. Meanwhile, the objec-
tive in (3) is to maximize the sum of weights wa over all
combinations of pitch classes and ↑/↓ start and end nodes,
indexed by a. (4), (5), (7) and (8) express the flow, duality
and bounding constraints straightforwardly.

max
wa,fa

∑
arcs types α

wα (3)

subject to
flow constraints:∑

ingoing arcs a

fa =
∑

outgoing arcs b

fb for each node (4)

0 ≤ fa ≤wa for each arc a (5)
model constraints:

wa =wb up to context-based scaling 4

for a, b of the same arc type (6)
duality constraint:∑

source arcs: s

fs =
∑

cut arcs: c

wc (7)

upper bound:

0 ≤ wa ≤B for each arc a (8)

[5] provides a mathematical proof that a solution of this
optimization functions as an inverse to the pitch spelling
problem; that is, once weights are extracted using the opti-
mization described in (3)-(8), solving for the minimum cut
using those weights will once again return the same set of
spellings.

The simplex algorithm is, in practical computations, ex-
tremely efficient, and can be used to solve linear optimiza-
tion problems, or linear programs, of the form of (3)-(8)
[10]. Hence, in cases where the intervallic spelling rules
of a score or corpus are consistent, we can compute a set
of weights for constructing pitch spelling flow networks
efficiently.

4.1.2 Robustness Through Approximation

[5] also provides an approximate solution to the inverse
problem, as the existence of a set of weights consistent
with the spelling of a given corpus of music is not guar-
anteed. By loosening the duality constraint and adjusting
a constant λ to set how strict an inverse we seek, we can
guarantee an output even for a corpus with inconsistent in-

4 per Section 3.3

tervallic spelling.

max
wa,fa,∆

∑
arcs types α

wα − λ∆ (9)

subject to
flow constraints:∑

ingoing arcs a

fa =
∑

outgoing arcs b

fb for each node (10)

0 ≤ fa ≤wa for each arc a (11)
model constraints:

wa =wb up to context-based scaling 5

for a, b of the same arc type (12)
approx. duality:∑

source arcs: s

fs ≥
∑

cut arcs: c

wc −∆ (13)

upper bound:

0 ≤ wa ≤B for each arc a (14)

Indeed, the ∆ value provides an interesting measure on
how consistent in terms of the pitch spelling model the
spelling of a corpus of music is. By adding a further con-
straint,

∆ ≤ pB (15)

for some constant 0 < p < 1, we can test whether the
corpus of music can produce a duality of gap of less than
or equal to pB, at which point, according to the termi-
nology of [5] we could say that the corpus of music is
‘p-consistent’ in spelling. B is the upper bound on arc
weights, as given in (15).

Constants such as λ, α and β in (1), (2) and (9) can be
characterized empirically through repeated trials, using a
systematic ‘grid-search’ method or random hyper param-
eter search method (see [11, 12]). Work is underway to
characterize these constants empirically. 6

4.2 Practical Inverse

In the production of practical software, a reliance on the
simplex algorithm for inverse solutions can be limiting.
The fastest simplex implementations tend to be commer-
cial or, at the opposite extreme, use ‘copyleft’ licensing,
with each paradigm placing restrictions on how the pitch
spelling algorithm can be distributed and deployed down-
stream [13]. The optimization of a simplex algorithm, more-
over, is highly technical, making it especially difficult to
effectively implement without the required background in
specialized operations research. In learning from a cor-
pus of music, moreover, it is hard to guarantee that there
is enough saturation of all the intervals to generate a repre-
sentative set of arc weights. As a result, this paper proposes
a more contained implementation for practically generat-
ing a set of arc weights with lower software production
and data wrangling overheads.

5 per Section 3.3
6 A work-in-progress Python implementation with these aims can be

found here: https://github.com/bwetherfield/pitchspell

153



The principle of this inverse problem approach is to gen-
erate arc weights not from a corpus of scores, but rather
from a collection of spelled dyads, triads and/or larger groups
of pitches. Mirroring the context-free approach to pitch
spelling in the ‘forward’ direction, we generate inverses
only from pitch relationships.

We define an unweighted network to be a flow network
where the arcs do not have weights. Using a collection of
spelled groups of pitches, we can construct an unweighted
network with the use of the pitch spelling model outlined
in Section 3. Nodes are given values 0 or 1 according to
the encoding rules in Tables 1 and 2. We stipulate the fol-
lowing condition.

Condition 1. Flattest spellings and sharpest spellings should
never be adjacent in inputs to the practical inverse.

For example, we cannot feed in a chord containing both
D2 and B4.
4.2.1 Adapting the Edmonds-Karp Algorithm

The Edmonds-Karp Algorithm solves for the maximum
flow of a network. As we have noted, the maximum flow
problem is the dual of the minimum cut, and, as such, the
minimum cut solution can be obtained easily from a solved
maximum flow. I will here give a brief description of the
Edmonds-Karp algorithm and then explain how it can be
modified for the purposes of performing the first part of an
inverse solving approach.

In the Edmonds-Karp algorithm, we begin by finding the
shortest path from source to sink such that all arcs in the
path have residual capacity; the path must trace nodes con-
nected in the network, either forward or backward across
arcs. A backward arc has residual capacity if its current
flow value is nonzero. A forward arc has residual capac-
ity if its flow value is strictly less than its weight. Having
found a path, we push flow through it. To push flow, we
increase the flow of all forward arcs and decrease the flow
of all backward arcs in the path by the same amount. In
the algorithm, we push flow equal to the minimum residual
capacity in the path, namely the minimum difference be-
tween the upper bound of a forward arc or the lower bound
of a backward arc and its respective flow. Figure 4 shows a
possible setup. When the flow of an arc equals its weight,
we say the arc is saturated. When an arc is saturated, we
remove it and insert a reversed arc of the same weight in its
place. In the course of the algorithm, another shortest path
with flow capacity is now found and we iterate until no
shortest path with flow capacity remains. It can be shown
that the process terminates after at most as many iterations
as there are nodes [9].

FILLSTORAGE (Fig 5) is a modified Edmonds-Karp algo-
rithm that operates on the unweighted network constructed
in Section 4.2. By analogy with the Edmonds-Karp al-
gorithm, we iterate on finding the shortest available path
from source to sink. For each arc type (characterized by
the pitch classes and ↑/↓ of its endpoints), we store a set of
other arc types. Each arc type’s weight will have to exceed
or equal the weights of the arc types in its storage. We find
the arc in the current path for which the start node has value
0 and the end node has value 1. As we will prove below

Figure 4. A path in a residual network. 3/4 represents a
flow of 3 and a capacity of 4 for the given arc. The above
path can have 1 unit of flow pushed through it, as each of
the arcs has a residual capacity of 1. The first and last arcs
will be saturated and replaced by reversed arcs with 0 flow,
and respectively 4 and 3 as capacity.

(Claim 2), by the construction of the network, there will
only be one such arc for each path found in the algorithm.
For each path, we add this 0 → 1 arc’s type to the STOR-
AGE corresponding to all the other arc types present in the
path. As in the Edmonds-Karp algorithm, we remove the
‘saturated’ arc and insert a reversed copy.

Claim 1. The following arcs cannot be taken in paths found
by the modified Edmonds-Karp algorithm:

1. ↓ with value 1 to ↓ with value 0

2. ↑ with value 1 to ↑ with value 0

3. ↑ with value 1 to ↓ with value 0

4. ↓ with value 1 to ↑ with value 0

Proof.

1. There is a shorter path directly through the node with
value 0.

2. There is a shorter path through the first node directly
to the sink.

3. There is a shorter path through the first node directly
to the sink.

4. The first node must belong to a (↑: 1, ↓: 1) encod-
ing, and the second to a (↑: 0, ↓: 0), hence a sharpest
spelling and a flattest spelling are connected, violat-
ing Condition 1.

Claim 2. There is exactly one arc from a value 0 node to a
value 1 node in each path found by the modified Edmonds-
Karp algorithm described.

Proof. No arc with values 1→ 0 can occur between inter-
nal nodes by Claim 1. Nor can a source or sink arc have
weights 1→ 0 as source and sink always have value 0 and
1 respectively. Since there is no 1→ 0 arc in the path, and
since a 0 → 1 arc must appear between source and sink,
there is exactly one 0 → 1 arc in each path found by the
algorithm.

154



1: function FILLSTORAGE
2: STORAGE(a)← an empty set for each arc type a
3: while p← AUGMENTINGPATH do
4: for a in arcs of p do
5: if a is a “0→ 1” arc then
6: remove a from the network
7: insert REVERSED(a) into the network
8: for b 6= a in p do
9: append type of a to STORAGE(b)

10: end for
11: end if
12: end for
13: end while
14: return STORAGE
15: end function

16: function AUGMENTINGPATH
17: return shortest path from source to sink
18: end function

Figure 5. Modified Edmonds-Karp algorithm used to pop-
ulate the storage assigned to each arc type present in the
network.

4.2.2 Concrete Weight Generation Steps

For each arc we have stored the set of arcs on which its
weight must depend. This forms a linked directed graph
structure (where the arcs are playing the role of nodes in
the new directed graph structure). In the MAIN function
loop (Fig. 6), we can use standard graph algorithms to de-
tect cycles of dependencies (for instance, a modified depth
first search), and consolidate arcs in the storage into groups
of connected components as needed (using Tarjan’s algo-
rithm) [7]. Now the storage is free of cyclic dependencies,
we can recursively ensure each arc type is greater than the
sum of all arc types in its storage, by adding 1 at each level
of the recursion. If Tarjan’s algorithm was called, we need
to undo the grouping of arcs with UNDAGIFY, giving each
arc in the same group the arc weight that was computed for
that group. Since all arcs in the same group have the same
arc weight, they are all greater than or equal to each other
in weight, as needed.

4.2.3 Analysis of Correctness

We now imagine constructing a flow network from the arc
weights derived in the inverse procedure. The flow net-
work represents the same pitches in the same relationships,
so it has the same adjacency structure as the unweighted
network used to generate weights. We wish to show that
it can generate a spelling consistent with the input spelled
pitches.

To show the consistency of the flow network with the in-
put pitches, note that we can run the Edmonds-Karp al-
gorithm and follow the same sequence of paths found in
the inverse procedure, which we will refer to as the route.
If there are no cyclic dependencies in the storage struc-
ture, then the order of cut arcs being saturated and reversed
follows the order of the inverse process, by construction.
Hence the desired minimum cut is found.

1: function MAIN
2: STORAGE← FILLSTORAGE
3: if DETECTCYCLE then
4: DAGIFY
5: GENERATEWEIGHTS
6: UNDAGIFY
7: end if
8: GENERATEWEIGHTS
9: return STORAGE

10: end function

11: procedure GENERATEWEIGHTS
12: map over STORAGE calling WEIGHT on arcs, or

arc groups if DAGIFY has been called
13: function WEIGHT(a)
14: if WEIGHT(a) has not already been called then
15: w← 0
16: for b in STORAGE(a) do
17: add WEIGHT(b) to w
18: end for
19: STORAGE(a)← w + 1
20: end if
21: end function
22: end procedure

23: function DETECTCYCLE
24: perform a cycle detection on STORAGE
25: end function

26: procedure DAGIFY
27: group arcs in STORAGE that have cyclic dependen-

cies using Tarjan’s algorithm for finding strongly con-
nected components

28: end procedure

29: procedure UNDAGIFY
30: unwrap arc groups so that STORAGE maps from

arcs to weights instead of arc groups to weights.
31: end procedure

Figure 6. The entire practical inverse procedure, including
a call to the modified Edmonds-Karp algorithm.

When there is a cyclic dependency, we can show, by a
contradiction argument that the forward solver will find at
least one consistent minimum cut. If not, there would be a
path in the faulty forward solution that contained an unseen
0→1 arc, which contradicts the construction of the inverse.

Informal experiments have shown that all three of the fol-
lowing methods can increase the robustness of an inverse
solution, such that all minimum cuts that were fed in can
be recovered with a forward solver.

1. Supplying more input spelled collections to the in-
verter, including, for example, all correctly spelled
dyads.

2. “Warm starting” the STORAGE data structure with
preset arc type dependencies before running FILL-
STORAGE, using the arc heuristics in Section 3.2.1

155



to enforce the equality of certain pairs of “heavy”
and “light” weights.

3. Supplying a suitable phantom pitch set to the for-
ward problem instance (see Section 3.2.4).

4.2.4 Time Complexity

For the first part of the algorithm, the time complexity can
be reduced to the time complexity of the Edmonds-Karp
algorithm, which is O(V E2) – as it is described in this pa-
per – where V denotes the number of nodes in the network,
and E the number of arcs [9]. For the second part of the
algorithm, note that the number of arc types is fixed, and
so the number of steps needed is bounded (albeit by a large
bound). Though at practical scales, the impact of the sec-
ond half of the algorithm may be felt, its contribution in
asymptotic terms is constant. Hence, we can fully charac-
terize the complexity of the algorithm by that of Edmonds-
Karp.

4.2.5 Simple Set of Results

Running the Practical Inverse procedure against an exhaus-
tive list of well-spelled dyads, we obtain the arc weights
laid out in tables 4, 5, 6 and 7. The exhaustive set of “good”
input spellings contains all plausible spellings of semitones
([C, D2], [C4, D], and so on), tones ([C, D], [C4, D4] and
[D2, E2], and so on), minor thirds, major thirds and perfect
fourths that do not contain any double accidentals. 7

4.2.6 Insufficiency of Results

It is worthy of note that Table 4, unlike Table 5, only fea-
tures 0’s and 1’s. Where ↓ nodes are connected only to ↓
nodes and ↑ nodes are connected only to ↑ in the construc-
tion of a spelling network, the minimum cut set is empty
as the source and sink are already strongly disconnected!
Hence, the algorithm runs only trivially, adding 1 to inter-
nal connected arcs only once. Moreover, the (0, 0)-(11, 11)
diagonal contains only 0’s. The set of dyads used lacks
unisons ([C, C], [C4, C4] and so on), to fill in this diagonal,
in part to cope with limitations in the implementation. At
best, with unisons included, however, we would have seen
a diagonal full of 1’s, which does not give proper weight to
these pitched spelling relationships.

Intuitively, the size of the entries in Table 4 should reflect
how important it is for pitch classes to be spelled in the
same direction when side by side. Hence, it encodes the
pull of pitch class 10 to B2when near a C6, or conversely,
to A4when near a B4.

Analysis of these results demonstrate, therefore, the in-
sufficiency of dyads alone for characterizing all arc weights
in the inverse problem. The dyads prove adequate, how-
ever, for inducing differentiation for half of the internal
arc weights, along with the outer weights to and from the
source and sink nodes.

7 These results were obtained using an open
source Swift implementation hosted on github:
https://github.com/bwetherfield/PitchSpellingModel

pc 0 1 2 3 4 5 6 7 8 9 10 11
0 0 0 1 1 0 1 0 1 0 1 1 1
1 0 0 1 0 1 0 1 0 1 1 0 1
2 1 1 0 1 1 1 1 1 0 1 1 1
3 1 0 1 0 0 1 0 1 0 0 1 0
4 0 1 1 0 0 0 1 1 1 1 0 1
5 1 0 1 1 0 0 0 1 0 1 1 0
6 0 1 1 0 1 0 0 1 1 1 0 1
7 1 0 1 1 1 1 1 0 0 1 1 1
8 0 1 0 0 1 0 1 0 0 1 0 1
9 1 1 1 0 1 1 1 1 1 0 1 1

10 1 0 1 1 0 1 0 1 0 1 0 0
11 1 1 1 0 1 0 1 1 1 1 0 0

Table 4. Empirical arc weights derived for (↓, ↓) arc types.
The empirical results for (↑, ↑) arc types are identical,
thanks to the symmetry of the input set of spellings.

pc 0 1 2 3 4 5 6 7 8 9 10 11
0 1 2 0 0 1 0 0 0 2 0 0 0
1 1 1 0 1 0 1 0 0 0 0 1 0
2 0 0 1 0 0 0 0 0 0 0 0 0
3 0 3 0 1 2 0 3 0 2 0 0 2
4 1 0 0 1 1 1 0 0 0 0 0 0
5 0 2 0 0 1 1 2 0 2 0 0 0
6 0 0 0 1 0 1 1 0 0 0 1 0
7 0 0 0 0 0 0 0 1 2 0 0 0
8 2 0 0 2 0 2 0 2 1 0 3 0
9 0 0 0 0 0 0 0 0 0 1 0 0

10 0 3 0 0 0 0 3 0 3 0 1 2
11 0 0 0 1 0 0 0 0 0 0 1 1

Table 5. Empirical arc weights derived for (↓, ↑) arc
types. The empirical results for (↑, ↓) arc types are the
exact matrix transposition (i.e. reflection along the (0,0)-
(11,11) diagonal) thanks to the symmetry of the input set
of spellings.

pc 0 1 2 3 4 5 6 7 8 9 10 11
13 26 3 1 13 13 26 3 0 3 1 13

Table 6. Empirical arc weights derived for (source, ↓) arc
types.

pc 0 1 2 3 4 5 6 7 8 9 10 11
13 1 3 26 13 13 1 3 0 3 26 13

Table 7. Empirical arc weights derived for (↑, sink) arc
types.

5. CONCLUSIONS AND FURTHER WORK

This paper has summarized the structure and composition
of the minimum cut pitch spelling algorithm, while pre-
senting some theoretical simplifications and extensions to
the original exposition given in [5]. Clarifications to the
system of encoding for pitch spellings, along with the de-

156



coupling of context information from the simple pitch re-
lationships allow us to reason more directly about the core
functionality of the algorithm. The new inverse problem
approach, moreover, reduces the potentially unwieldy de-
pendency on the simplex algorithm in generating sensible
arc weights for the model.

There is still plenty of work to do before the algorithm
presented is practically useful in production software. More
heuristic methods, or larger spelling sets, are needed to
populate the full set of pitch-based arc weights (in response
to the limitations described in Section 4.2.6). Moreover, an
empirical study on a large corpus of scores is still needed
to tune hyper-parameters (as mentioned in Section 4.1.2),
check the validity of heuristic measures (such as those de-
scribed in Section 4.2.3) and compare the accuracy of this
and other algorithms on corpora of canonical scores.

6. REFERENCES

[1] D. Meredith, “Comparing pitch spelling algorithms on
a large corpus of tonal music,” Computer Music Mod-
eling And Retrieval, vol. 3310, pp. 173–192, 2005.

[2] E. Chew and Y.-C. Chen, “Real-Time Pitch Spelling
Using the Spiral Array,” Computer Music Journal,
vol. 29, no. 2, pp. 61–76, June 2005.

[3] A. K. Honingh, “Compactness in the Euler-Lattice: A
Parsimonious Pitch Spelling Model,” Musicae Scien-
tiae, vol. 13, no. 1, pp. 117–138, March 2009.

[4] E. Cambouropoulos, “A general pitch interval repre-
sentation: Theory and applications,” Journal of New
Music Research, vol. 25, no. 3, pp. 231–251, Septem-
ber 1996.

[5] B. Wetherfield, “A graphical theory of musical pitch
spelling,” Bachelor’s Thesis, Harvard University, 2017.
[Online]. Available: https://dash.harvard.edu/handle/1/
38779539

[6] D. Meredith, “Optimizing Chew and Chen’s Pitch-
Spelling Algorithm,” Computer Music Journal, vol. 31,
no. 2, pp. 54–72, June 2007.

[7] R. Tarjan, “Depth-first search and linear graph
algorithms,” SIAM Journal on Computing, vol. 1,
no. 2, pp. 146–160, 1972. [Online]. Available:
https://doi.org/10.1137/0201010

[8] D. S. Hochbaum, “The pseudoflow algorithm: A new
algorithm for the maximum-flow problem,” Operations
Research, vol. 56, no. 4, pp. 992–1009, August 2008.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein, Introduction to Algorithms, Third Edition,
3rd ed. The MIT Press, 2009.

[10] D. Bertsimas, Introduction to linear optimization, ser.
Athena Scientific series in optimization and neural
computation. Belmont, Mass.: Athena Scientific,
1997.

[11] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa,
A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer,
A. Gramfort, J. Grobler, R. Layton, J. VanderPlas,
A. Joly, B. Holt, and G. Varoquaux, “API design
for machine learning software: experiences from the
scikit-learn project,” CoRR, vol. abs/1309.0238, 2013.
[Online]. Available: http://arxiv.org/abs/1309.0238

[12] J. Bergstra and Y. Bengio, “Random search for hyper-
parameter optimization.” J. Mach. Learn. Res., vol. 13,
pp. 281–305, 2012. [Online]. Available: http://dblp.
uni-trier.de/db/journals/jmlr/jmlr13.html#BergstraB12

[13] J. L. Gearhart, K. L. Adair, R. J. Detry, J. D. Dur-
fee, K. A. Jones, and N. Martin, “Comparison of open-
source linear programming solvers.”

157

https://dash.harvard.edu/handle/1/38779539
https://dash.harvard.edu/handle/1/38779539
https://doi.org/10.1137/0201010
http://arxiv.org/abs/1309.0238
http://dblp.uni-trier.de/db/journals/jmlr/jmlr13.html#BergstraB12
http://dblp.uni-trier.de/db/journals/jmlr/jmlr13.html#BergstraB12



