
DISTRIBUTED NOTATION IN THE BROWSER, AN OVERVIEW

Jonathan Bell
Aix Marseille Univ, CNRS, PRISM

Perception, Representations, Image, Sound, Music
Marseille, France

belljonathan50@gmail.com

ABSTRACT

This paper endeavours to discuss a few available technolo-
gies for musical notation, from a user’s point of view, fo-
cusing on “distributed notation”: musical notation rendered
in real time to multiple devices simultaneously. The rapid
evolution of browsers and the cheaper cost of heteroge-
neous (cross-platform) systems inclines us to narrow down
the scope to browser-based solutions. The overview recalls
a few key concepts of the JavaScript ecosystem, typically
addressed to composers with little background in web de-
velopment. The survey then compares three frameworks:
INScore (INScoreWeb), DRAWSOCKET, and SmartVox, fo-
cusing on their respective approach to software architec-
ture/implementation, as well as their “higher” user level.
After highlighting the convergence points between INScore
and DRAWSOCKET - but also their own specificity, such as
INScore’s time model, or DRAWSOCKET’s API, the paper
concludes with a case study: the Tenor 21 choral concert.

1. INTRODUCTION: MUSICAL NOTATION IN
THE DIGITAL AGE

1.1 Animated Notation

Numerous Australian composers/academics have composed
with and written about digital forms of notation: Vickery
sees in animated screen-based notation ‘an important solu-
tion to visualising a range of musical phenomena and tech-
niques including continuous parametrical changes, syn-
chronisation with prerecorded audio or live processing, and
nonlinear formal organisation’ [1]. Hope, citing Winkler,
sees animated notation as ‘a third way between improvi-
sation and fixed scores’ [2]. In such settings, Wyatt ques-
tions the role of the conductor [3] when for instance the
timing is dictated by the advancement of a cursor on the
page. Kim-Boyle, finally, pioneers research at the inter-
section between notation and immersive augmented reality
technologies [4] (see section 4.1.1).

These approaches to notation present a drastic change in
the organisation of musical time, which otherwise still fol-
lows today principles inherited from the theory accompa-

Copyright: c©2021 Jonathan Bell et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

nying the motets of the ars nova. 1 To paraphrase Vickery,
animated notation simplifies the synchronization of human
performers to multimedia, as well as the display of gen-
erative or interactive scores in which the work can render
a different content each time [5], or adapt to the perfor-
mance of the performer [6]. Among these technologies,
three frameworks allow for real-time score display in the
browser.

• INScore, which was operational as early as 2012 [7],
releases in 2020 its web version (INScoreWeb).

• DRAWSOCKET [8, 9], which elaborates on its au-
thors’ former (albeit still actively developed) nota-
tional projects [10, 11, 12, 13]

• SmartVox, best described as a web-based distributed
media player [14].

Whilst SmartVox is dedicated to a very specific task (the
display and synchronisation of mp4 video files), INScore
and DRAWSOCKET - which also both supports videos -
share with the Decibel Score Player (see [15], 2. The Can-
vas scoring mode) the ability to render in real time SVG 2

drawing commands via Open Sound Control (OSC) [16]
messaging in distributed setups (i.e. on multiple devices).

1.2 Web-Based cases

The present study strictly observes browser based solutions
which is why the landmark Decibel Score Player [15], a na-
tive iOS application, is not discussed here. Network com-
munication is evidently simplified by web/browser-based
technologies, however the Decibel Score Player and a few
other projects fully support this key feature of distributed
notation, such as: Pedro Louzeiro’s Comprovisador, which
distributes notation in real-time to several clients using bach
[17] in Max/MSP, communicating through UDP (see sec-
tion 2.1.3), or Slavko Zagorac’s ZScore [18], which is built
on the top of the native version of INScore [7].

After a brief overview of the web technologies most com-
monly used by these notational systems, the paper intro-
duces an non-exhaustive list of recent frameworks/pieces
involving browser-based musical notation (Section 3.1), in
order to compare a few of their general characteristics (Sec-
tion 3.2). The paper then mainly focuses on DRAWSOCKET,

1 Attributed to Philippe de Vitry, the division of large temporal units
(tempus) into smaller one (prolatio), roughly corresponds to today’s time
signatures, see for instance: https://en.wikipedia.org/wiki/Prolation

2 https://en.wikipedia.org/wiki/Scalable Vector Graphics

mailto:belljonathan50@gmail.com
http://creativecommons.org/licenses/by/3.0/
https://en.wikipedia.org/wiki/Prolation
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics

INScore and SmartVox, which are best known by the au-
thor.

2. OVERVIEW OF ASSOCIATED
TECHNOLOGIES

2.1 Communication Protocols

2.1.1 HTTP

Hypertext Transfer Protocol (HTTP) is an application-layer
protocol for transmitting hypermedia documents, such as
HTML. Riding on the top of TCP, it was designed for com-
munication between web browsers and web servers.

2.1.2 WebSocket

WebSocket is distinct from HTTP. WebSocket is a com-
munications protocol that provides full-duplex communi-
cation channels over a single TCP connection. It has be-
come the de facto standard for real-time interaction with
the browser.

2.1.3 TCP-UDP

TCP is a connection oriented protocol. UDP is a connec-
tion less protocol. As TCP provides error checking sup-
port and also guarantees delivery of data to the destination
router this make it more reliable as compared to UDP. On
other hand UDP is faster and more efficient than TCP.

2.1.4 OSC

OSC [16] is a content format developed at CNMAT by
Adrian Freed and Matt Wright. Typically intended for
sharing music performance data (gestures, parameters and
note sequences) between musical instruments either via
UDP (most common scenario) or TCP.

2.1.5 odot

OSC developments at CNMAT later led to odot [19] which
allows to label data with human readable text (associative
arrays). 3 Although discussed in greater detail in later sec-
tions, Figure 2 shows the translation operated by DRAW-
SOCKET, from an OSC bundle (odot) into JSON.

2.2 JavaScript

Javascript is commonly referred to as the language of the
web. Originally client-side, Javascript engines are now em-
bedded in some servers, usually via node.js. The most
comprehensive documentation about the language can be
found at developer.mozilla.org.

2.2.1 JSON

JavaScript’s native format, JSON - JavaScript Object Nota-
tion - has eclipsed XML and thus became the most ubiqui-
tous data exchange format for any publicly available web
service. JSON supports associative arrays as well as or-
dered lists of values (arrays).

3 An associative array, map, symbol table, or dictionary is an abstract
data type composed of a collection of (key, value) pairs, such that each
possible key appears at most once in the collection.

2.2.2 Node.js

Node.js is an open-source, cross-platform, back-end Java-
Script runtime environment that runs on the V8 engine and
executes JavaScript code outside a web browser. Node.js
owes its success to its module exchange platform NPM 4 ,
as well as to the convenience of writing the client and the
server in the same language.

2.2.3 Node for Max

The release of Max 8 in 2018 featured a new Javascript
support with Node for Max. The Max API module helps
interaction and communication with Max from within the
Node context. 5

2.2.4 Frameworks

Node.js is low level, which is why most applications use
frameworks to deal with common server features. Routing,
most importantly, is used to divert users to different parts
of the web applications based on the request made. The
Express framework has emerged as one of the most popu-
lar framework among Electron, koa, meteor and vue.js to
name a few.

2.2.5 WebAssembly

WebAssembly (abbreviated Wasm) is a new type of code
that can be run in modern web browsers. Providing lan-
guages such as C/C++, C# and Rust with a compilation
target so that they can run on the web, the main goal of
WebAssembly is to enable high-performance applications
on web pages designed to run alongside JavaScript.

3. AN OVERVIEW OF WEB TECHNOLOGIES
FOR DISTRIBUTED NOTATION

‘Distributing Music Scores to Mobile Platforms and to the
Internet’ [20], an idea idea expressed by Fober in 2015, en-
joys a growing interest today, as exemplified by two major
frameworks (see table 1) as well as multiple independent
initiatives by individual composers/developers (see table
2), all briefly described in the list below.

3.1 Description

3.1.1 INScore

INScore [7] is an environment for the design of augmented
interactive music scores, open to unconventional uses of
music notation and representation, including real-time sym-
bolic notation capabilities. It can be controlled in real-
time using Open Sound Control [OSC] messages as well
as using an OSC based scripting language, that allows de-
signing scores in a modular and incremental way. INScore
supports extended music scores, combining symbolic no-
tation with arbitrary graphic objects. All the elements of
a score (including purely graphical elements) have a tem-
poral dimension (date, duration and tempo) and can be
manipulated both in the graphic and time space. The IN-
Score engine is based on a MVC architecture. The abstract

4 https://www.npmjs.com/
5 https://docs.cycling74.com/nodeformax/api/module-max-api.html

https://developer.mozilla.org
https://www.npmjs.com/
https://docs.cycling74.com/nodeformax/api/module-max-api.html

Figure 1. The INScore IDE is available online at :
https://inscoreweb.grame.fr/.

model is designed in C++ and can be deployed on any
platform (Windows, MacOS, iOs, Android) including the
Web where it is compiled as a WebAssembly module (see
Section 2.2.5. INScore Web now has an IDE (Integrated
Development Environment) available online (see Figure 1,
and the INScore Web package will be available on NPM in
2021.

3.1.2 DRAWSOCKET

DRAWSOCKET is best described in [8, 9], which is why
only references tracing its genealogy are provided here.
The roots of the DRAWSOCKET project can be traced back
in Hajdu’s quintet.net [11], already a landmark piece of
software in the realms of distributed notation and networked
music performances when the internet was still a young
technology. More recent works by Gottfried on ‘SVG to
OSC transcoding’ [13] also reveal some of its premises.

Figure 2. Comparison between an odot bundle (OSC), and
a JSON object, following DRAWSOCKET’s API syntax.

The transcoding of OSC notational commands to JSON
(see Figure 2) describes it well, and highlights its potential
for versatile real-time notational purposes in the browser.
Taking advantage of the odot [19] library’s ability to dy-
namically format and label OSC bundles, the node.js frame-
work is embedded in Max (via Node for Max, see sec-
tion 2.2.3), but can also run independently from the Max
environment 6 . DRAWSOCKET provides the user with an
API 7 dedicated to real-time communication with connected

6 See https://drawsocket.github.io/index.html
7 See: https://drawsocket.github.io/api.html

clients. As shown in Figure 2, the top level router sends the
bundle to a specific client (here the violin). Replacing /vio-
lon by /* would send the bundle to all. Then each keyword
(/key or ”key” in Figure 2) obeys a slightly different - al-
though consistent - syntax : “svg” will draw an svg on the
page, “tween” will animate the svg according to its target
/id value (in figure 2 the target svg’s id is “bob”), “pdf”,
“sound” and “file” will load the corresponding files (e.g.
pdf, mp3 or JSON). The Elbe Tunnel’s scores repository
provides an apt example for observing DRAWSOCKET in
action. 8

3.1.3 SmartVox

Developed at IRCAM in 2016 in the SoundWorks frame-
work [21] of the CoSiMa project (ANR-13-CORD-0010),
SmartVox [14] consists of distributing and synchronizing
mp4 audiovisual scores on the browsers of the performers’
smartphones (typically on a network heterogeneous local
i.e. on different OS or cross-platform), to help them sing
in polyphony, in site specific settings (e.g. moving around
the audience), and in a spectral language (i.e. microtonal).
Written in Javascript, SmartVox uses the native JSON for-
mat to assign each singer a unique file (see Figure the script
example below).

c o n s t s c o r e = {
d u r a t i o n : 20 ∗ 60 , / / s e c o n d s

/ / d e f i n e t h e d i f f e r e n t p a r t s
p a r t s : {

’ soprano−1’ : {
f i l e : ’ v i d e o s / soprano−1.mp4 ’ ,

} ,
’ soprano−2’ : {

f i l e : ’ v i d e o s / soprano−2.mp4 ’ ,
} ,
/ / . . .

} ,

/ / d e f i n e t h e d i f f e r e n t s e c t i o n s
s e c t i o n s : {

a l p h a : {
t ime : 0 ,
l a b e l : ’ F i r s t s e c t i o n ’ ,

} ,
b e t a : {

t ime : 117 ,
l a b e l : ’ Second s e c t i o n ’ ,

} ,
/ / . . .

} ,
} ;

3.1.4 Prolonged Into the Latent (PITL)

Amongst an ever-increasing number of solutions for web-
based synchronised scores, Justin Yang’s Prolonged into
the latent (PITL) 9 provides a good entry point for consid-
ering how two types of clients (the conductor 10 and one
of the singers 11) can communicate via WebSockets (see
Section 2.1.2). Yang’s notational interface is reminiscent
of the Guitar Hero video game.

8 https://quintetnet.hfmt-hamburg.de/tunnel webviewer/index.html
9 The code is available at: https://github.com/elosine/prolonged into the latent

10 The conductor’s interface can be accessed via the following url:
https://pitl.justinyang.net/?parts=0;1;2;3;4;5;6;7;8;9;10;11;12;13;14;15
&controls=yes

11 The singer’s interface can be accessed via the following url:
https://pitl.justinyang.net/?parts=0, pressing ‘start’ on the conductor will
cause the singer’s part to start playing. Hitting the ready button on the
singer’s interface will

https://inscoreweb.grame.fr/
https://drawsocket.github.io/index.html
https://drawsocket.github.io/api.html
https://quintetnet.hfmt-hamburg.de/tunnel_webviewer/index.html
https://github.com/elosine/prolonged_into_the_latent
https://pitl.justinyang.net/?parts=0;1;2;3;4;5;6;7;8;9;10;11;12;13;14;15&controls=yes
https://pitl.justinyang.net/?parts=0;1;2;3;4;5;6;7;8;9;10;11;12;13;14;15&controls=yes
https://pitl.justinyang.net/?parts=0

3.1.5 John

Goudard’s John, the semi-conductor: A tool for comprovi-
sation 12 [22], is a distributed notation software ‘designed
to help collective free improvisation’. The term Comprovi-
sation refers to the composer and scholar Sandeep Bhag-
wati [23].

3.1.6 Anna und Marie (A&M)

Pirchner 13 [24] developed a real-time score-system for the
composition Anna & Marie (A&M) by Marko Ciciliani.
SuperCollider sends OSC messages to the dedicated score
system generating symbols and playing instructions for each
performer, rendering them on tablet displays.

3.2 Comparison

The six aforementioned frameworks will now be compared
according to the following categories : 1) Which type of
server does the setup rely on. 2) Client side, does the
framework target the web or a specific operating system
3) Does it have WebSocket support (see Section 2.1.2).
4) Does it use a framework such as Express (see Section
2.2.4). 5) Is it a framework, or was the architecture build
for a single piece 6) Does it support sound. 7) Does it
support tradition notation (abbreviated CMN for Common
Music Notation) 8) Does the framework rely on a shared
clock/which library does it use from this 9) Does it sup-
port Scalable Vector Graphics. 10) Does it use pre-existing
graphic libraries.

INScore Drawsocket
Server any server node.js

Web/Native any OS Web
Websockets ws ws

uses a framework no express
is a framework yes yes

Sound faust tone.js
CMN Guido Bravura
Sync native timesync

SVG support yes yes
Graph. lib., animation qt tween d3js

Table 1. Comparison of architectural characteristics of two
major frameworks for distributed notation.

3.2.1 node.js/WebSocket

Most importantly, the first two rows of the tables shed light
on the strong presence of node.js on the server side, to-
gether with WebSockets, today well-known technologies
for implementing real-time communications in the mod-
ern web. The case of INScore is different in the sense that
it privileges self-containedness over server/client architec-
ture: the page can therefore be delivered by servers of any
kind such as python, Apache, or node.js.

The second row of Table 2 shows that three technologies
use socket.io, 14 a JavaScript library built on top of Web-

12 Code available at: https://github.com/vincentgoudard/ReactiveJohn
13 See online repository : https://github.com/asa-nerd/Anna-und-Marie
14 Socket.IO primarily uses the WebSocket protocol with polling as a

fallback option, while providing the same interface. Although it can be
used as simply a wrapper for WebSocket, it provides many more features,
including broadcasting to multiple sockets, storing data associated with
each client, and asynchronous I/O.

Socket. DRAWSOCKET and some parts of PITL use the
express.js framework, SmartVox uses SoundWorks[21].

3.2.2 Sound and Common Music Notation (CMN)

Regarding their sonic capacities, INScore has the advan-
tage to embed faust [25], and therefore promises interest-
ing deployments of DSP and sound synthesis in the realm
of musique mixte. PITL uses the web audio API and DRAW-
SOCKET uses tone.js, a simple library built on the top of it.
For traditional notation (CMN), INScore natively supports
GUIDO. 15

3.2.3 Synchronisation

DRAWSOCKET and PITL show that timesync is today the
most commonly used library to, for instance, make sure
a message arrives to all clients exactly at the same time,
according to a shared clock (Smartvox uses an IRCAM li-
brary [26], based on a similar concept).

3.2.4 Graphics and Animation

Whilst most of the applications discussed so far use SVG
(Scalable Vector Graphics being the prominent solution to
define graphics for the web), only INScore and DRAW-
SOCKET, support SVG rendering in real time.

DRAWSOCKET, as its names states, draws SVG on a page,
without an intermediary library, but uses GSAP-tween for
animation 16 , which can be conceived as ‘high-performance
property setter’. Regarding the use of external libraries for
graphic renderings, no clear convergeance can be found
across the six frameworks considered here.

PITL A&M John SmartVox
Server node.js node.js node.js node.js

Web/Native Web Web Web Web
Websockets socket.io socket.io ∅ socket.io

uses a fr. express electron Meteor SoundWorks
is a fr. no no yes yes
Sound webaudio ∅ ∅ (mp4)
CMN ∅ ∅ ∅ ∅
Sync timesync ∅ ∅ @ircam

SVG support yes yes yes no
Graph. lib. Three.js snap.svg d3js ∅

Table 2. Comparison of architectural characteristics of a
few browser-based frameworks for distributed notation.

After this rapid technical overview of the landscape of
real-time/distributed notation, technical considerations as
well as user experiences with INScoreWeb, SmartVox and
DRAWSOCKET will be discussed in greater detail, in or-
der to highlight what brings them closer and where they
diverge.

4. COMPARATIVE STUDY

When compared two by two, the three aforementioned frame-
works reveal a few striking similarities (see Section 4.3/Fig-
ure 3), but also raise questions when they approach the
same domains differently.

15 https://guidodoc.grame.fr/#welcome-to-guido
16 Available at: https://greensock.com/docs/v3/GSAP/Tween

https://www.npmjs.com/package/ws
https://www.npmjs.com/package/ws
https://expressjs.com/
https://www.npmjs.com/package/@grame/libfaust
https://www.npmjs.com/package/tone
https://guidodoc.grame.fr/
https://www.smufl.org/fonts/
https://www.npmjs.com/package/timesync
https://www.qt.io/product/framework
https://greensock.com/docs/v3/GSAP/Tween
https://d3js.org/
https://github.com/vincentgoudard/ReactiveJohn
https://github.com/asa-nerd/Anna-und-Marie
https://www.npmjs.com/package/socket.io
https://www.npmjs.com/package/socket.io
https://www.npmjs.com/package/socket.io
https://expressjs.com/
https://www.electronjs.org/
https://www.meteor.com/
http://collective-soundworks.github.io/soundworks/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://www.npmjs.com/package/timesync
https://www.npmjs.com/package/@ircam/sync
https://threejs.org/
http://snapsvg.io/
https://d3js.org/
https://guidodoc.grame.fr/#welcome-to-guido
https://greensock.com/docs/v3/GSAP/Tween

4.1 INSCORE and SmartVox

4.1.1 Augmented Reality

The author has documented some of his own artistic works
in the realm of AR notation with SmartVox [27, 28, 29].
Emerging works such as [4, 30] let us envisage rapid devel-
opments in this field, in which the prescription of a gesture
in space should reveal representations far more intuitive
(often called prescriptive, or tablature-like, as opposed to
descriptive i.e. relying on an abstract system such as the 5-
line staff) than those used on paper for centuries, or those
developed on animated screens since a few decades.

Although achieved by [31], in which four performers were
guided by Hololens, the rapid evolution and ephemerality
of such technology lets us favour cheaper smartphone solu-
tions. So far the straightforward method used by the author
consisted a simple display above the head of the performer.
With such cheap setups, however, holographic display -
which requires a different image for each eye - often failed
to provide a comfortable display due to calibration issues
linked to the size of the performer’s phone and length of
his/her inter-pupillary distance.

INScore can run as a native Android application, which
has given evidence of very promising results on EPSON bt-
350 glasses in this domain. INScore’s forwarding mecha-
nism 17 allows for the real-time transfer from one INScore
instance (on a laptop) to another (on glasses), by writing
the following script, in which ‘$glasses’ corresponds to the
ip address of the target device.

g l a s s e s = ” 1 9 2 . 1 6 8 . 0 . 2 6 : 7 0 0 0 ” ;
/ ITL f o r w a r d $ g l a s s e s ;

This proved convenient for debugging purposes, and re-
vealed a comfortable display for the user. The native An-
droid version of INScore enjoyed stable results. The down-
side of EPSON bt-350 glasses, for browser-based tests, is
that it currently fail to load html pages served by DRAW-
SOCKET, INScoreWeb, or SmartVox.

4.1.2 Sound

Sound may not seem a central feature for softwares ded-
icated to musical notation. However, it has been demon-
strated in [32, 33, 34] that many fruitful artistic works rely
on the use of sounds or auditory signals as a score - e.g.
a guide track for a singer rather a sound file to be played
through loudspeakers. SmartVox, essentially a distributed
mp4 player, takes advantage of the HTML video tag, whose
embedded media supports audio as well as video.

INScore’s browser implementation [35], thanks to the re-
cent release of the Faust NPM package 18 (Faust compiled
as a WASM library), currently investigates the possibili-
ties of exploiting the DSP capacities of the web page ren-
dering the score. The feature will therefore allow (among
other possibilities) a precise synchronisation between elec-
tronic transformations and the score, e.g. the opening of
the browser’s microphone when the cursor hits a certain
note.

17 Described here: https://inscoredoc.grame.fr/refs/10-forwarding/
18 https://www.npmjs.com/package/@grame/libfaust

4.2 DRAWSOCKET and SmartVox: cache memory
and delay management

4.2.1 Join the performance at any time

Compared to native applications, web pages are fragile,
the following issues in particular worth be considered: 1)
Web pages can sometimes load improperly due to network
issues 2) Some features may not function depending on
which browser and which OS is being used 3) Smartphones’
defaults behaviours (mute, night shift, sleep mode...), or
unintended user interactions (such as swipes, clicks or ear-
phone pluging) may cause perilous effects in performance
situations.

In such cases, reloading if often required. Then problems
may arise if something goes wrong in the middle of a musi-
cal performance, and if the current state of the application
is not stored in the cache (e.g. which bar in the compo-
sition timeline are we in ‘now’?). In DRAWSOCKET, the
caching system stores automatically all the drawing com-
mands, so that refreshing the page client side keeps trace of
all the drawing commands since the server started, or since
the page was cleared. When a client is late, a mechanism
allows it to catch up delay when a message is received too
late by a client 19 . More precisely, for tween animations
specifically (see footnote No 15), with the ‘cmd’ function,
DRAWSOCKET will check to see the difference between
the start time and the current time (according to the shared
clock discussed in Section 3.2.3) and jump ahead if it is
late. 20

One of the strength of SmartVox consists of its ability to
update the ‘currentTime’ (the instant currently displayed
in the video) on each server tick: when clients periodically
query the shared clock to check whether the drift is not
too important 21 . This feature proved to be very robust in
several performances 22 , if for instance, in the middle of a
piece, a problem occurs, and a performer needs to refresh
his/her page, or if he/she was not ready when the piece
started.

4.2.2 Scheduler

The default behaviour of DRAWSOCKET privileges instant
responsiveness over synchronisation. If for instance a sound
is triggered to all clients, this sound will be played a soon
as possible. Rather than delaying messages of a given
value to make sure every one receives it at the same time,
when using the ‘cmd‘ message, the sound it will jump
ahead if it is late. The mechanism is comparable to the
one explained earlier with tweens (cf. footnote 20).

Each incoming message is automatically time-tagged ac-
cording to a shared clock. While writing this article, two
different messages (‘del’ and ‘schedule’) are being tested,
both locally and in remote setup. ‘schedule’ delays a mes-

19 See the source code :https://github.com/HfMT-ZM4/drawsocket
/blob/master/code/node/lib/drawsocket-client.js,
line 947-1069 and 1567-1613)

20 Reloading the page in the middle of a tween animation:
https://youtu.be/2ahjjbS5s2U

21 See the source code here: https://github.com/belljonathan50/SmartVox0.1
/blob/master/src/client/player/PlayerExperience.js, line 153).

22 e.g. Deliciae, Common Ground, Le temps des nuages, SmartVox...
All described in former TENOR publications by the same author.

https://inscoredoc.grame.fr/refs/10-forwarding/
https://www.npmjs.com/package/@grame/libfaust
https://github.com/HfMT-ZM4/drawsocket/blob/master/code/node/lib/drawsocket-client.js
https://github.com/HfMT-ZM4/drawsocket/blob/master/code/node/lib/drawsocket-client.js
https://youtu.be/2ahjjbS5s2U
https://github.com/belljonathan50/SmartVox0.1/blob/master/src/client/player/PlayerExperience.js
https://github.com/belljonathan50/SmartVox0.1/blob/master/src/client/player/PlayerExperience.js

sage of a given value according to the clock sync offset,
while ‘del’ simply delays it. More specifically, these two
messages are part of an in-development ‘event‘ 23 process-
ing system, that aims to provide a generalized API for syn-
chronizing events.

4.3 INSCORE - DRAWSOCKET, similarities

In order to show how, fundamentally, INScore and DRAW-
SOCKET obey the same kind of OSC-driven drawing com-
mands, both of the following scripts draw a line or rect-
angle named “cursor”, at the top left of the violin part. In
INScore the origin is in the center which is why x and y are
negative (scaled between -1. and 1.). In DRAWSOCKET
the origin is at the top left, and counts in pixels (see Fig-
ure 3, the first 3 line in the INScore script, middle column
in DRAWSOCKET). To animate the cursor object and thus
move it across the score, however, INScore and DRAW-
SOCKET use different methods, (see Figure 3, line 4 un-
til the end in the INScore script, right column in DRAW-
SOCKET), which will be detailed in more details in the fol-
lowing section.

Figure 3. Animating a cursor in INScore and DRAW-
SOCKET.

4.4 INSCORE - DRAWSOCKET, a significant
difference in animation design

4.4.1 INScore Time Model

The description of time in INScore [36] shares with two
other French projects (Antescofo [37, 38] and Iscore [39])
similar concerns about technology’s ability to handle both
continuous and event-driven time. INScore objects there-
fore have a duration and a date in order to be then syn-
chronized graphically according to their temporal relation,
which makes it possible for example to “monitor” an event
to trigger another (e.g. trigger a page turn after a cursor the
cursor finished crossing the staff. . .). In the example above
(see Figure 3) the cursor is synchronised (according to a
given tempo - 60) to a line (a segment of a certain length
in the graphic space, and of a given duration).

In INScore, synchronising an object (a) to another (b)
has a very peculiar meaning, which may be understood
as ’making x adopt the spatial properties of y, function of
time’. Although this is only one way to understand them,

23 See the API, in the ‘event’ keyword section :
https://drawsocket.github.io/api.html#event

but as useful entry point example, INScore graphical ob-
jects may be interpreted as belonging to two different cat-
egories : cursors (a) and trajectories (b), or, in other terms
players/pointers (a) and score (b). Typically, the cursor is
‘synchronised’ to a given trajectory (master). Just like a
traditional (fixed) score, ‘b’ can be executed at a slightly
different speed each time by its interpreter (a), we there-
fore attribute a fixed date and duration the score b, and a
tempo to the cursor a (an example in absolute time is pro-
vided in section 5.5, absolute time constrats with musical
time which is tempo-relative).

We find interesting to recall here how various improve-
ments of INScore eventually led to the new specification
of a ‘tempo’ attribute (see [34], end of the introduction),
giving evidence of the complex demands of musical time.
In Perspective Temporelles 24 , observing how the cursor’s
speed changes at the very beginning might be an apt ex-
emple for illustrating how the time to graphic relationship
often needs refined adjustments ([3], section 2.1, time to
graphic relation). Indeed, in the example mentioned in
Footnote No 24, the horizontal trajectory of the cursor is
divided in two segments [470 , 540[and [540, 2880[, 25 each
being given a corresponding duration, hence the perceived
effect of an acceleration of the cursor.

4.4.2 Animation in DRAWSOCKET

In contrast, DRAWSOCKET offers a simple animation so-
lution, the “tween”, from the GSAP library - a standard for
javascript animation in HTML5. The animation is defined
according to the time and the graphic space to be traversed.
The tween approach is easier to handle that INScore for the
simple cases, but may on the other hand encounter limita-
tions when the temporal unfolding is not linear with re-
spect to the graphic space. To handle such cases, DRAW-
SOCKET’s tween implementation supports ‘multi-segment
tween timelines’ (accessed from DRAWSOCKET’s helpfile,
tween animation tab). 26

5. CASE STUDY: TENOR 21 CHOIR CONCERT

This article is written during a time when the world is pro-
foundly impacted by the aftermath of the Covid-19. Some
constituted vocal ensembles have had to endure a whole
year without any rehearsals. Contemporary musical prac-
tice is suddenly forced to operate massively within a field
that Hajdu [11] had investigated since the early days of the
internet, and which, at the time, was anything but easy to
realise : ‘Devising a network performance environment,
such as my Quintet.net, is probably among the most de-
manding tasks a composer or visual artist can face today’
[11]. Since realtime audio transmission over the internet
was unthinkable at the turn of the millenium, Hajdu had
envisaged a system (quintet.net) in which the music played
by the instrumentalists were recorded and subsequently en-
coded to midi, for distribution over the network. As for-

24 The piece is available at http://berio.grame.fr/perspectives/
25 For an explanation of the Segment definition syntax, see:

https://inscoredoc.grame.fr/refs/12-mapping/#segments-definitions
26 Many built-in easing functions in GSAP do non-linear movement,

and also it’s possible to write one’s own timer functions with GSAP
https://greensock.com/docs/v3/Eases.

https://drawsocket.github.io/api.html#event
http://berio.grame.fr/perspectives/
https://inscoredoc.grame.fr/refs/12-mapping/#segments-definitions
https://greensock.com/docs/v3/Eases

mulated in the title of his article ‘Embodiment and dis-
embodiment in networked music performance’ [40], Ha-
jdu has also anticipated from an early stage the many pos-
sible shortcomings (technical as well as artistic) of per-
formances in which the players are located at a long dis-
tance from between each other. Another well-know pre-
Covid limitation of network music performance was in-
duced by the fact that network delay prevented musicians
from rhythmically responding to each other [41].

As a response to the crisis, and under Hajdu’s initiative,
a remote choral concert was organised at the Hambourg
Horschule for Tenor 2021, in which each singer was pro-
vided which a low latency audio kit (Rasbperry Pi 4 +
microphone + Soundcard), thanks to the effort of Jacob
Sello configuring twenty Raspberry Pi-embedded JackTrip
clients [42], together with 2 iPads (one for zoom sessions,
and the other for DRAWSOCKET distributed notation).

Five pieces were rehearsed for the concert, all using DRAW-
SOCKET in various ways, together with low latency au-
dio. This presented the obvious advantage that the singers
could all rehearse together from home, and the composers
located in four different countries could also attend the re-
hearsals.

A DRAWSOCKET feature which proved most helpful here
was its ability to dynamically load different pieces of the
concert, so that the singers (clients) didn’t need to do any-
thing else than join their allocated url at the start of the
concert.

5.1 Anders Lind: The Max Maestro

The interface for this piece is originally a Max patch, and
was entirely re-written in DRAWSOCKET, so that the com-
poser could remote control the live-generated notation from
Sweden while the choir was rehearsing in Hamburg. 27

5.2 Justin Yang: Prolonged into the latent (PITL

As seen earlier in Table 2, Prolonged into the latent (PITL)
has its own environment, and DRAWSOCKET was there-
fore used here only to encapsulate Justin Yang’s website
within an iframe.
/ bas4 : {

/ key : ” h tml ” ,
/ v a l : {

/ new : ” i f r a m e ” ,
/ p a r e n t : ” forms ” ,
/ i d : ” i f r a m e e x ” ,
/ s t y l e : {

/ p o s i t i o n : ” a b s o l u t e ” ,
/ t o p : ”0 px ” ,
/ l e f t : ”0 px ” ,
/ w id th : ”100vw” ,
/ h e i g h t : ”100 vh ”

} ,
/ s r c :

” h t t p s : / / p i t l . j u s t i n y a n g . n e t / ? p a r t s =0”
}
}

DRAWSOCKET redirects here to the lowest voice of the
composition (bass 4, accessed via the DRAWSOCKET url
concatenated with ‘/bas4’) to the corresponding part of Justin
Yang’s website. 28

27 Original work by Anders Lind: https://youtu.be/4iePLi5uQzU.
Version ported to DRAWSOCKET by Jonathan Bell :
https://youtu.be/sdSyHIbK5FY

28 Available at: https://pitl.justinyang.net/?parts=0&controls=yes

5.3 Richard Hoadley: Unthinking Things

Unthinking Things was originally written in INScore. The
algorithmic work was composed by Hoadley using Super-
Collider sending control messages to INScore [43]. The
port to DRAWSOCKET for the concert consisted of a video
of the INScore-generated piece, served and synchronised
by DRAWSOCKET. 29

5.4 Jonathan Bell: Common Ground

Common Ground [28] is originally written in bach [17],
and most specifically in its most recent bell textual exten-
sion [44, 45]. The original performance involved singers
dancing in an immersive space [28], with scores distributed
and synchronised by SmartVox embarqued on a Raspberry
Pi. Like for Hoadley, the final performance consisted of
videos synchronised via DRAWSOCKET. 30

5.5 Palestrina: O crux Ave

The Palestrina work was the only one whose language is
based on a regular - albeit very slow - pulse, which raised
questions mentioned earlier [3] about the role of the con-
ductor when the pulse can be conveyed via animated nota-
tion means. The rehearsals allowed iterative attempts with
pulse-based animations 31 and contrasting approaches with
scrolling cursors realised with INScore, with which the
mapping between time and the pixel-accurate cursor po-
sition on the screen can be notated with great precision: in
the following example for instance, the cursor travels the
distance between x1 (208) and x2 (249) in one second (t2
- t1), then the distance between x2 (251) and x3 (305) in 1
second (t3 - t2). 32

x1 x2 y1 y2 t 1 t 2
([2 0 8 , 249[[9 3 , 3 9 4 [) ([0 : 0 : 0 , 0 : 1 : 0 0 [)

x2 x3 y2 y3 t 2 t 3
([2 5 1 , 305[[9 7 , 3 9 4 [) ([0 : 1 : 0 0 , 0 : 2 : 0 0 [)

The perspective envisaged for future attempts will consist
of capturing the conductors gesture with gesture follower
technology [46] to overcome the limitations caused by the
current lag of today’s video conferencing platforms (such
as zoom), which currently makes conducting impractical.

6. CONCLUSION

With the present survey, the author hopes to have shed light
on the emerging field of distributed notation in the browser.
With the DRAWSOCKET API and the synchronisation ca-
pabilities of INScore, if we think of the scaling capacities
of such technologies (the Hamburg St.Pauli Elbe Tunnel
performance [9] involved a 144 musicians 33 , Le temps
des nuages was premiere with 80 singers 34), or the un-
foreseable perfoming situations these may lead to when

29 The score is available at : https://youtu.be/gLWvjR8vPHw
30 A recording is available at : https://youtu.be/ZrLgbBw4xfU
31 A version of the piece animated via the GSAP-tween library in

DRAWSOCKET is available here: https://youtu.be/3SS9Cb0AtU0
32 For an explanation of the Segment definition syntax, see:

https://inscoredoc.grame.fr/refs/12-mapping/#segments-definitions
33 Score: https://quintetnet.hfmt-hamburg.de/tunnel webviewer/index.html

Performance: https://youtu.be/cdnA ZijYUI
34 Recording with the score: https://youtu.be/SyFdR2HiF00

Performance: https://youtu.be/7j2 D-nQAHY?t=6424

https://youtu.be/4iePLi5uQzU
https://youtu.be/sdSyHIbK5FY
https://pitl.justinyang.net/?parts=0&controls=yes
https://youtu.be/gLWvjR8vPHw
https://youtu.be/ZrLgbBw4xfU
https://youtu.be/3SS9Cb0AtU0
https://inscoredoc.grame.fr/refs/12-mapping/#segments-definitions
https://quintetnet.hfmt-hamburg.de/tunnel_webviewer/index.html
https://youtu.be/cdnA_ZijYUI
https://youtu.be/SyFdR2HiF00
https://youtu.be/7j2_D-nQAHY?t=6424

combined with increasingly accessible AR technologies,
we hope the cases discussed here will prompt more com-
posers to investigate this exciting field.

Acknowledgments

I am would like to thank Dominique Fober, for his gener-
ous time ans support, as well as the Hamburg team for the
Tenor 21 choral concert experience.

7. REFERENCES

[1] L. Vickery, “The limitations of representing sound and
notation on screen,” Organised Sound, vol. 19, no. 3,
pp. 215–227, 2014.

[2] C. Hope, “Electronic scores for music: The possibil-
ities of animated notation,” Computer Music Journal,
vol. 41, no. 3, pp. 21–35, 2017.

[3] A. Wyatt and C. Hope, “Conducting animated nota-
tion: Is it necessary?” in Proceedings of the Interna-
tional Conference on Technologies for Music Notation
and Representation – TENOR’20, Hamburg, Germany,
2020, pp. 169–174.

[4] D. Kim-Boyle, “3d notations and the immersive score,”
Leonardo Music Journal, vol. 29, pp. 39–41, 2019.

[5] J. Freeman, “Extreme sight-reading, mediated expres-
sion, and audience participation: Real-time music no-
tation in live performance,” Computer Music Journal,
vol. 32, pp. 25–41, 09 2008.

[6] A. Cont, “ANTESCOFO: Anticipatory Synchroniza-
tion and Control of Interactive Parameters in Computer
Music.” in International Computer Music Conference
(ICMC), Belfast, Ireland, Aug. 2008, pp. 33–40.

[7] D. Fober, Y. Orlarey, and S. Letz, “INScore - An Envi-
ronment for the Design of Live Music Scores,” in Linux
Audio Conference, Stanford, United States, 2012, pp.
47–54.

[8] R. Gottfried and G. Hajdu, “Drawsocket: A browser
based system for networked score display”,” in Pro-
ceedings of the International Conference on Tech-
nologies for Music Notation and Representation –
TENOR’19, Melbourne, Australia, 2019, pp. 15–25.

[9] G. Hajdu and R. Gottfried, “Networked music perfor-
mance in the old elbe tunnel,” in Proceedings of the In-
ternational Conference on Technologies for Music No-
tation and Representation – TENOR’19. Melbourne,
Australia: Monash University, 2019, pp. 55–60.

[10] G. Hajdu and N. Didkovsky, “Maxscore: Recent de-
velopments,” in Proceedings of the International Con-
ference on Technologies for Music Notation and Rep-
resentation – TENOR’18, Montreal, Canada, 2018, pp.
138–146.

[11] G. Hajdu, “Quintet.net: An environment for compos-
ing and performing music on the internet,” Leonardo,
vol. 38, no. 1, pp. 23–30, 2005.

[12] R. Gottfried and J. Bresson, “Symbolist: An open au-
thoring environment for user-defined symbolic nota-
tion,” in Proceedings of the International Conference
on Technologies for Music Notation and Representa-
tion – TENOR’18, Montreal, Canada, 2018, pp. 111–
118.

[13] R. Gottfried, “Svg to osc transcoding as a platform
for notational praxis and electronic performance,” in
Proceedings of the First International Conference on
Technologies for Music Notation and Representation –
TENOR’15, Paris, France, 2015, pp. 154–161.

[14] J. Bell and B. Matuszewski, “Smartvox. a web-based
distributed media player as notation tool for choral
practices,” in Proceedings of the International Confer-
ence on Technologies for Music Notation and Repre-
sentation – TENOR’17, A Coruña, Spain, 2017, pp.
99–104.

[15] A. Wyatt, L. Vickery, and S. James, “Unlocking the
decibel scoreplayer,” in Proceedings of the Interna-
tional Conference on Technologies for Music Notation
and Representation – TENOR’19, Melbourne, Aus-
tralia, 2019, pp. 61–68.

[16] M. Wright, “Open sound control: An enabling tech-
nology for musical networking,” Org. Sound, vol. 10,
no. 3, pp. 193–200, Dec. 2005.

[17] A. Agostini and D. Ghisi, “A max library for musical
notation and computer-aided composition,” in Com-
puter Music Journal, 2015.

[18] S. Zagorac and M. Zbyszynski, “Networked compro-
visation stratagies with zscore,” in Proceedings of the
International Conference on Technologies for Music
Notation and Representation – TENOR’20, Hamburg,
Germany, 2020, pp. 133–140.

[19] J. MacCallum, R. Gottfried, I. Rostovtsev, J. Bresson,
and A. Freed, “Dynamic Message-Oriented Middle-
ware with Open Sound Control and Odot,” in Interna-
tional Computer Music Conference, ICMA, Ed. Den-
ton, United States: University of North Texas, 2015.

[20] D. Fober, G. Gouilloux, Y. Orlarey, and S. Letz, “Dis-
tributing music scores to mobile platforms and to the
internet using inscore,” 2015.

[21] N. Schnell and S. Robaszkiewicz, “Soundworks
– A playground for artists and developers to
create collaborative mobile web performances,”
in ‘Proceedings of the Web Audio Conference
(WAC’15), Paris, France, 2015. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01580797

[22] V. Goudard, “John, the semi-conductor: A tool for
comprovisation,” in Proceedings of the International
Conference on Technologies for Music Notation and
Representation – TENOR’18, Montreal, Canada, 2018,
pp. 43–49.

https://hal.archives-ouvertes.fr/hal-01580797

[23] S. Bhagwati, “Notational perspective and comprovisa-
tion,” Sound & Score. Essays on Sound, Score and No-
tation, pp. 165–177, 2013.

[24] A. Pirchner, “Ergodic and emergent qualities of real-
time scores. anna and marie and gamified audiovi-
sual compositions,” in Proceedings of the Interna-
tional Conference on Technologies for Music Notation
and Representation – TENOR’20, Hamburg, Germany,
2020, pp. 189–197.

[25] Y. Orlarey, D. Fober, and S. Letz, “FAUST : an Ef-
ficient Functional Approach to DSP Programming,”
in New computational paradigms for computer music,
E. D. FRANCE, Ed., 2009, pp. 65–96.

[26] J.-P. Lambert, S. Robaszkiewicz, and N. Schnell, “Syn-
chronisation for Distributed Audio Rendering over
Heterogeneous Devices, in HTML5,” in 2nd Web Au-
dio Conference, ser. Proceedings of the 2nd Web Audio
Conference (WAC-2016), Atlanta, GA, United States,
Apr. 2016.

[27] J. Bell, “Networked Head-Mounted Displays for An-
imated Notation and Audio-Scores with SmartVox,”
NIME - New Interfaces for Musical Expression, Jun.
2019.

[28] J. Bell and A. Wyatt, “Common ground, music and
movement directed by a raspberry pi,” in Proceed-
ings of the International Conference on Technologies
for Music Notation and Representation – TENOR’20,
Hamburg, Germany, 2020, pp. 198–204.

[29] J. Bell and B. Carey, “Animated notation, score dis-
tribution and ar-vr environments for spectral mimetic
transfer in music composition,” in Proceedings of
the International Conference on Technologies for Mu-
sic Notation and Representation – TENOR’19, Mel-
bourne, Australia, 2019, pp. 7–14.

[30] G. Santini, “Action scores and gesture-based notation
in augmented reality,” in Proceedings of the Interna-
tional Conference on Technologies for Music Notation
and Representation – TENOR’20, Hamburg, Germany,
2020, pp. 84–90.

[31] D. Kim-Boyle and B. Carey, “Immersive scores on the
hololens,” in Proceedings of the International Confer-
ence on Technologies for Music Notation and Repre-
sentation – TENOR’19, Melbourne, Australia, 2019,
pp. 1–6.

[32] J. Bell, “Audio-scores, a resource for composition
and computer-aided performance,” Ph.D. dissertation,
Guildhall School of Music and Drama, 2016.

[33] S. Bhagwati, “Elaborate audio scores: Concepts, affor-
dances and tools,” in Proceedings of the International
Conference on Technologies for Music Notation and
Representation – TENOR’18, Montreal, Canada, 2018,
pp. 24–32.

[34] C. Sdraulig and C. Lortie, “Recent audio scores: Af-
fordances and limitations,” in Proceedings of the In-
ternational Conference on Technologies for Music No-
tation and Representation – TENOR’19, Melbourne,
Australia, 2019, pp. 38–45.

[35] D. Fober, “A web based environment embedding signal
processing in musical scores,” in Proceedings of the In-
ternational Conference on Technologies for Music No-
tation and Representation – TENOR’21. Hamburg,
Germany: Hamburg University for Music and Theater,
2021.

[36] D. Fober, Y. Orlarey, and S. Letz, “INScore Time
Model,” in International Computer Music Conference,
Shanghai, China, 2017, pp. 64–68.

[37] J.-L. Giavitto, J.-M. Echeveste, A. Cont, and P. Cuvil-
lier, “Time, Timelines and Temporal Scopes in the An-
tescofo DSL v1.0,” in International Computer Music
Conference (ICMC). ICMA, 2017.

[38] J.-L. Giavitto and J. Echeveste, “Real-Time Matching
of Antescofo Temporal Patterns,” in PPDP 2014 - 16th
International Symposium on Principles and Practice of
Declarative Programming. Canterbury, United King-
dom: ACM, Sep. 2014, pp. 93–104.

[39] A. Allombert, M. Desainte-Catherine, and G. Assayag,
“Iscore: A system for writing interaction,” in Pro-
ceedings of the 3rd International Conference on Dig-
ital Interactive Media in Entertainment and Arts, ser.
DIMEA ’08. New York, NY, USA: Association for
Computing Machinery, 2008, pp. 360–367.

[40] G. Hajdu, “Embodiment and disembodiment in net-
worked music performance,” in Body, Sound and Space
in Music and Beyond: Multimodal Explorations. Tay-
lor & Francis, 2017.

[41] C. Chafe, J.-P. Cáceres, and M. Gurevich, “Effect of
temporal separation on synchronization in rhythmic
performance,” Perception, vol. 39, no. 7, pp. 982–992,
2010.

[42] C. Chafe, “JACKTRIP ON RASPBERRY PI,” in LAC
- Linux Audio Conference, 2019.

[43] R. Hoadley, “Homenaje a cervantes,” in TENOR’17.
A Coruña, Spain: Universidade da Coruña, 2017, pp.
229–238.

[44] J.-L. Giavitto and A. Agostini, “Bell, a textual lan-
guage for the bach library,” in ICMC 2019 - Interna-
tional Computer Music Conference, New York, United
States, Jun. 2019.

[45] J. Bell, “Improvements in bach 0.8.1, a User’s Perspec-
tive,” in SMC - Sound and Music Computing, Turin,
France, 2020.

[46] F. Bevilacqua, F. Guédy, E. Fléty, N. Leroy, and
N. Schnell, “Wireless sensor interface and gesture-
follower for music pedagogy,” in International Confer-
ence on New Interfaces for Musical Expression, New
York, United States, 2007, pp. 1–1.

	 1. Introduction: musical notation in the digital age
	1.1 Animated Notation
	1.2 Web-Based cases

	 2. Overview of associated technologies
	2.1 Communication Protocols
	2.1.1 HTTP
	2.1.2 WebSocket
	2.1.3 TCP-UDP
	2.1.4 OSC
	2.1.5 odot

	2.2 JavaScript
	2.2.1 JSON
	2.2.2 Node.js
	2.2.3 Node for Max
	2.2.4 Frameworks
	2.2.5 WebAssembly

	 3. An overview of Web technologies for distributed notation
	3.1 Description
	3.1.1 INScore
	3.1.2 DRAWSOCKET
	3.1.3 SmartVox
	3.1.4 Prolonged Into the Latent (PITL)
	3.1.5 John
	3.1.6 Anna und Marie (A&M)

	3.2 Comparison
	3.2.1 node.js/WebSocket
	3.2.2 Sound and Common Music Notation (CMN)
	3.2.3 Synchronisation
	3.2.4 Graphics and Animation

	 4. Comparative study
	4.1 INSCORE and SmartVox
	4.1.1 Augmented Reality
	4.1.2 Sound

	4.2 DRAWSOCKET and SmartVox: cache memory and delay management
	4.2.1 Join the performance at any time
	4.2.2 Scheduler

	4.3 INSCORE - DRAWSOCKET, similarities
	4.4 INSCORE - DRAWSOCKET, a significant difference in animation design
	4.4.1 INScore Time Model
	4.4.2 Animation in DRAWSOCKET

	 5. Case Study: Tenor 21 choir concert
	5.1 Anders Lind: The Max Maestro
	5.2 Justin Yang: Prolonged into the latent (PITL
	5.3 Richard Hoadley: Unthinking Things
	5.4 Jonathan Bell: Common Ground
	5.5 Palestrina: O crux Ave

	 6. Conclusion
	 7. References

