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ABSTRACT 

The article proposes a perspective on the use of generative 

artificial models in a context of the VR project “Graphs in 

harmony learning”. The usage of LSTM, ConvLSTM and 

conditional GAN with convolutional 1D layers for seman-

tic music generation is discussed. The efficiency of the 

novel data encoding scheme, along with the design pat-

terns based on the system of graphs, are shown. 

1. INTRODUCTION  

1.1 Context 

The article presents a new system of representation, based 

on a graph theory [1]. The representation methodology has 

been proven efficient in a multi-step pedagogical experi-

ment in a context of hybrid learning. The experiment 

demonstrated a substantial increase of the quality of 

knowledge in a group of students, benefiting from the sys-

tem application in a learning process [2, 3]. The method 

has also been applied in building graphic interface of the 

award-winning mobile and VR applications [4, 5]. 

1.2 Motivation 

The global pandemic crisis had shown the need for re-

search of convenient forms of distance learning to com-

pensate the reduced interactions, detachment and isolation 

of individuals, which brings harmful consequences. As 

student surveys indicates, more than one in two students 

had thought of dropping the classes during the pandemic 

and 71% of surveyed confessed being worried about their 

mental health1. The same resource points out the lack of 

immersion for the videoconference format of courses, re-

sulting in great difficulties in following the course content, 

which led 70% of the surveyed students to express their 

pessimism about their academic success. Another study2, 

listing the reasons of dropping the university, mentions a 

lack of practice, especially for individuals who are not 

                                                           

 

 

equipped for theoretical courses of the university’s curric-

ulum. 

   With the application of teaching method based on the ef-

fective representation methodology and via the interaction 

with the tangible elements of virtual reality, it is expected 

that the degree of immersion will closely approach the 

level of practical face-to-face lessons. 

2. STATE OF THE ART 

2.1 AI in Education 

A meta-analysis studying the application of AI in teaching, 

which included 146 recent articles in the field [6], pro-

poses a categorization according to the target group, such 

as learner-oriented AI, teacher-oriented AI and system-ori-

ented AI. Following this taxonomy, the learner-oriented 

AI tools comprise software solutions to learn a subject, 

such as adaptive or personalized learning systems and in-

telligent tutoring systems; teacher-oriented AI tools are 

used to help the teacher in reducing a workload by auto-

mating tasks such as administration, assessment, feedback 

and plagiarism detection; system-oriented AI tools provide 

information to administrators and managers at the institu-

tional level to monitor the acceptance rates in faculties or 

the employability trends. 

The development of intelligent tutoring systems is 

mainly focused on visual recognition, aiming to provide a 

system feedback coherent with the implicit reactions of the 

learner [7, 8]. Another trend comprises creation of intelli-

gent campus ecosystems, with a strong reliance on chatbot 

solutions [9]. The above mentioned meta-analysis reveals 

a lack of educational theory to support a technological 

choice. Current research in the field is oriented towards 

analysis of data patterns to build AI models or to support 

administrative decisions using known statistical and ma-

chine learning methods. The authors point out that there is 

very little evidence for the advancement of pedagogical 

theories related to AI-based educational technology. 

The VR project specified in a present article makes a big 

difference compared to the state of the art by proposing the 

application of an innovative pedagogical strategy. This 

strategy is based on a new knowledge representation meth-

odology, it exploits the possibilities of AI for the forms of 
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activity inherent to the artistic practice (analysis of the 

structural properties of chords in harmonic sequences), and 

therefore respond to the needs of educational process. 

2.2 XR in Music 

Another recent meta-analysis [10] brings together research 

on virtual reality (VR), augmented reality (AR), aug-

mented virtuality (AV), mixed reality (MR) and extended 

reality (XR), applied to music. The meta-analysis covers 

260 publications appeared from 1990 to 2020 which pre-

sent musical research in XR, encompassing technical, ar-

tistic, perceptual and methodological fields and reveals an 

exponential growth of publications starting from 2015, 

which is explained by the increased accessibility of XR 

hardware and software tools. 

   The study proposes a definition of the term musical XR 

system by classifying the existing systems according to the 

ways the sound and music are used (diegetic mode of us-

age versus non-diegetic use), the cinematics of sound 

events (fixed audio playback versus sound events triggered 

in an interactive manner or procedurally generated), and 

sound spatialization (fixed stereo sound presentations ver-

sus dynamic spatial audio implementations based on user 

location tracking). Finally, the grouping of articles is made 

according to the main objective of the musical XR system 

(performance, education, composition, sound engineering, 

entertainment, perception study, development), end-user 

(performer, student, composer, member of the audience, 

studio engineer, developer), social experience (individual 

or multi-user experience) among others.  

   This grouping allows the assumption that the existing ed-

ucational applications of virtual reality mainly focus on 

improving the practice of performance, using interfaces of 

traditional instruments modelled in 3D (piano, guitar, 

drums), neither of applications presented a system of ab-

straction of musical knowledge. Most of applications focus 

on the beginner level and a very few are designed for the 

expert or intermediate level musicians; almost all systems 

were made for students and dedicated to self-training. 

   In view of the state of the art in the field, the VR project 

in a present article is not only in accordance with the best 

practices in the construction of a musical XR system (spa-

tialization of the sound source, triggering of the sound 

events in an interactive way, the unfolding of musical con-

tent in a diegetic way), it also fills the gap for a graphical 

interface independent from attachment to a specific musi-

cal instrument. It also proposes the systematization of mu-

sical knowledge in a non-verbal representation, compati-

ble with immersive worlds.  

2.3. Conditional music generation 

The approaches to music generation process falls into three 

groups: conditional, controllable and constraint genera-

tion. Conditional generation takes one element as input to 

generate another element as target [11, 12], while control-

lable generation uses the change in input features to ma-

nipulate different aspects of the output generation [13, 14]. 

The third group, containing constraint generation, makes 

use of the template-based approach to influence a shape of 

the output result [15]. The research in controllability 

mainly explores features disentanglement, proposing sys-

tematic studies [16] and datasets [17], designed to foster 

further experiments in the field. The existing resources, 

however, are mostly gathering monophonic music exam-

ples and therefore are not suitable for harmonic sequences 

generation. 

The research in conditional music generation presents a 

spectrum of generative architectures, such as LSTM, 

Transformer [18], GAN [19, 20], hybrid versions, such as 

LSTM-GAN [13] or GAN with an inception model [21]. 

The latter architecture exploits convolutional layers, fol-

lowed by the time distribution layer that captures sequen-

tial data, which enforces the convolutional layers consid-

ering the time relationship in a similar manner as RNN lay-

ers. As a comparison to this type of architecture, a hybrid 

ConvLSTM architecture processes the sequential data, 

where each element of the sequence passes through a con-

volutional layer followed by LSTM layer [22]. The previ-

ous experiment has shown that this type of architecture 

captures well two-dimensional sequential data [23] and 

will be exploited in the experiment on novel encoding 

scheme application, presented further. 

3. METHODOLOGY 

The methodology consists of the system of graphs and an  

augmented score representation of harmonic sequences. 

The system of graphs is organized in horizontal and verti-

cal triads, reflecting logical relations between chords, 

whereas the augmented score contains a meaningful color 

scheme for a visual distinction of the chord functions, 

along with color shades, revealing the chord structure. 

3.1 The system of graphs 

The system of graphs embraces functional correlations be-

tween chords, consisting of the Roman numerals, repre-

senting degrees of the scale, placed in a specific order [24]. 

The placement order is defined by variation potential 

within a multitude of diatonic progressions. The slots con-

taining the information about chords are mapped to a spe-

cific type of information. In consequence, the slots re-

served for the seventh chords cannot contain the infor-

mation about triads (see in Figure 1). This limit comes 

from the theory of graphs [1], defining a graph as a graph-

ical representation of frames, corresponding to a specific 

knowledge representation. 

 
Figure 1. Unfilled graph structure (on the left) along with 

the graph filled with the information about three passing 

progressions, between the seventh chord of the tonic and 

its first inversion (on the right). The tonic seventh chords 



 

 

are inside the tops of the graph and three triads are inside 

the edges of the graph. 

   The graphs are organized in horizontal triads (see Fig-

ure 2) and vertical triads (see Figure 3). 

 
Figure 2. Horizontal triad regroups the graphs containing 

tops sharing the same degree. In this example, a horizontal 

triad embraces all possible passing progressions between 

the tonic seventh chord and its inversions. 

 
Figure 3. A vertical triad groups the graphs, sharing the 

same information inside edges. 

A harmonic sequence is therefore represented as a path 

within the system, connecting the nearest instances of the 

chord in the system of graphs. 

3.2 The color mapping 

The second element of the visual representation methodol-

ogy within a framework of this project consists of an aug-

mented score, which explicitly identifies the structure of 

chords with their adherence to musical functions (tonic, 

dominant, subdominant). 

   The color gradient aims to visually distinguish the tones 

of a chord in relation to their importance in the structure of 

a chord (an example for the tonic seventh chord is shown 

in Figure 4). Such an explicit representation becomes par-

ticularly useful for an open position of chords – a range of 

open positions of the tonic triad and seventh chord with 

their inversions is shown in Figure 5.  

   Another visual contribution is based on a palette of col-

ors, gathering the degrees in groups of functions – tonic 

(I), dominant (V, III, and VII degrees) and subdominant 

(IV, II and IV degrees), as shown in Figure 6. 

 

 

 

 
Figure 4. Color shades, that show the importance of a tone 

inside a chord structure. 

 

 
Figure 5. The chord inversions in an open position might 

create difficulties for students in finding the fundamental 

tone of the chord. The explicit shading of tones helps to lift 

the complexity of the graphical representation, allowing to 

focus the attention on the chord phonism. 

 
Figure 6. The color palette for the function groups: tonic 

(T), subdominant (S, II, VI) and dominant (D, III, VII). 

The application of this representation methodology in a 

pedagogical process in a blended learning format was very 

successful [2, 3], which can be explained by the conform-

ity of the graph structure with the possibilities of the short 

memory (episodic buffer) functioning, able to retain four 

to seven elements at a time (depends on a person). Indeed, 

a graph in a constructed system contains five elements, 

where two elements are grouped together, because they 

represent the same function and contain the information 

about 4-notes chords (the top and the bottom vertices of 

the graph); the remaining three elements are grouped by 

their structure, as they represent triads, being in a relation 

of the interval of a third between them. 

4. VR APPLICATION 

The VR project “Graphs in harmony learning” is based on 

the original methodology of tonal harmony representation 

described previously. The methodology elements receive 

a tangible 3D embodiment in a context of VR, enabling 

multimodal interaction. The VR context aims to increase a 



 

 

degree of immersion and therefore facilitate understanding 

and practice of the learning material. 

The content of the application is divided into several VR 

rooms – the Entry (see Figure 7), explaining the purpose 

of the application, the Temple of Knowledge (Figure 8), 

which prepares the user to understand the content of the 

main activity, the Study Room (Figure 9), where the inter-

action with the graph system occurs. The Test Room and 

the Practice Room (Figures 10 and 11), propose the activ-

ities to test the acquired knowledge and put it in practice. 

Both latter rooms are based on AI models. 

 

 

  

 

  

 
  

 
   

 
  

The user experience begins in the Entry room, where the 

additional information about application can be seen using 

the About button; it also allows entering the Temple of 

Knowledge space using the Start button. 

   The Temple of Knowledge contains the explanations to 

provide the basics of music theory necessary for a better 

learning experience. This VR space contains 8 walls, 7 of 

which are occupied by a singular explanatory card. 

The Study Room presents an interactive system of graphs 

with two modes of content exploration: Horizontal Triad 

and Vertical Triad. Both modes allow the user to choose 

either between guided and free learning experiences.  

  

Figure  8.  Temple of .Knowledge.

Figur.  e  10.  Test  Room.

Figure  11..  Practice Room.

Figur.e  9.  Study Room.

Figure  7.  Entry.



 

 

During guided learning experience, the graph element 

for interaction is highlighted by an animation (shown in 

Figure 12). If the user chooses this graph element, it trig-

gers the augmented score appearance, the sequence audio 

playback and two animations: chords appearance on the 

staff and inside the system of graphs (both synchronized 

with the audio). In the guided learning experience, the in-

teraction elements of the graph are put in a defined order 

and promote the discovery of all harmonic sequences from 

the chosen graph triad. 

In case of a free learning experience, user chooses the 

interaction elements of the graph independently. The same 

mode allows to repeat a sequence as many times as needed. 

A free learning experience is recommended after complet-

ing guided learning experience. 

 

 
 

 

Horizontal Triad mode allows a horizontal graph explo-

ration, allowing the discovery of potential for variability in 

passing chords (the edges in the structure of the graph). 

User can choose to return to a main view in order to choose 

another horizontal triad or switch modes at any time during 

the learning experience. 

Vertical Triad mode gives the ability to explore the entire 

vertical triad, revealing the potential for harmonic varia-

bility for the seventh chords and their progressions (tops in 

the graph structure). The user still interacts with the graph 

edges to trigger the score appearance, but the choice of the 

edge must be made in a graph of interest inside the vertical 

triad. As with the horizontal triads, the user can choose to 

return to the main menu at any time. 

The spatialization of the sound is integrated to reinforce 

memorization of the sequences of chords, since each chord 

finds its distinct spatial placement in a graph structure. 

5. NOVEL DATA ENCODING 

The value of the graph representation consists not only in 

the systematization of knowledge representation, useful in 

a pedagogical context, but also for the encoding of seman-

tic music data. The main interest of such encoding lies in 

a possibility of training and evaluation methods applica-

tion, inherent to the visual domain. This way, harmonic se-

quences features learning may be done with the use of 2D 

convolutional LSTM layers, discussed below. Another ad-

vantage of such encoding is the possibility of considerable 

data augmentation with the application of a small variance 

term during the normalization process.  

   To obtain the feature maps out of the arrays of harmonic 

sequences, the following transformation steps must be per-

formed: 

1. Chords dictionary creation. 

2. Two-dimensional matrix creation using the graph 

system frame and replacing the chords with the 

values from previously created dictionary. 

3. Creation of 28x28 matrices of harmonic paths in 

a 2D space using harmonic sequences mapped to 

the chords dictionary in a progressive way: one 

sequence of 5 chords results into 5 matrices, grad-

ually filled in with the chord values. 

4. Normalization of the feature maps with a chang-

ing normalization term (in a range between 0.01 

and 0.1). 

Using this data conversion strategy, it was possible to ob-

tain 2160 data entries out of the initial handcrafted 216 har-

monic sequences. 

6. PREVIOUS MODELS 

The main restriction of this project consists in the obliga-

tion of generating diatonic harmonic sequences in a C key 

only, since the mapping of 3D objects is made exclusively 

for this tonality. Therefore, the usage of pretrained models 

on multi-tonal music examples with possible alterations 

was not an option. Hence the need for developing and 

training own AI models to support the activities in a Test 

Room and Practice Room. 

   For the Test Room a simple long short-term memory 

(LSTM) deep neural network architecture with one em-

bedding layer, two LSTM layers and two dense (linear) 

layers was build, using Keras framework. The model had 

36,196 trainable parameters. The activation function of the 

LSTM layers was hyperbolic tangents (default Keras set-

tings), the activation function of the first dense layer was 

ReLU (Rectified Linear Unit) and of the second dense 

layer – softmax. Adam optimizer with learning rate of 

0.001 was applied as well. The training was done with 500 

epochs with the batch size of 9 sequences. The autoregres-

sive nature of the model allowed predicting the 3rd chord 

of the sequence, given two previous chords as an input. 

The architecture of the model is given in Figure 13. 

 

 
Figure 13. LSTM architecture. 

   For the Practice Room, a conditional generative adver-

sarial (GAN) networks was developed using Pytorch deep 

learning framework. Conditional GAN model consisted of 

convolutional layers (transposed 1D convolution for the 

generator and 1D convolution for the discriminator) and 

was generating 4 chords given the first chord as an input. 

The number of input classes was equal to 7, representing 7 

Figure  12.  Highlighting edges to interact with in the

Horizontal mode.



 

 

degrees of the diatonic scale. The architecture of the model 

is presented in Figure 14. 

   The training data for both models were partially hand-

crafted, partially taken from a Kaggle dataset Classical 

Music. The harmony information extraction was done with 

the Music21 Python library application [25], and further 

tokenization and features extraction – using Pytorch 

framework tools. 

 

 

Figure 14. Conditional GAN architecture. 

 

Trained models were stored in a cloud using Flask frame-

work for performing inference. JSON protocol was used to 

exchange data between models and the VR application. 

7. EXPERIMENT WITH THE NOVEL DATA EN-

CODING SCHEME 

A new data encoding scheme have been tested in unsuper-

vised setting, for which a ConvLSTM model was devel-

oped. The model’s architecture comprised a doubled stack 

of convolutional 2D LSTM layers, followed by 3D batch 

normalization (third dimensionality was necessary to ac-

count for time steps information). The tangent activation 

function was used for gated mechanism inside a Con-

vLSTM cell. The sigmoid activation function was applied 

to the output of the final convolutional 2D layer, generat-

ing prediction on the input batch. The entire model archi-

tecture is shown in Figure 15. 

 

 

Figure 15. ConvLSTM model architecture. 

 

   Measurements of the 2D encoding scheme efficiency is 

therefore made by comparing the ConvLSTM model, 

trained on 2D data and the LSTM model, trained on the 

equivalent 1D data. For the sake of consistency, the previ-

ous LSTM model was rewritten in Pytorch framework.  

   The similar hyperparameters were applied to both mod-

els, such as mini-batch size (15 sequences per batch), op-

timizer (Adam), learning rate (1e-4), sequence length (5 

chords in a sequence), number of epochs (100 epochs). The 

loss function for LSTM and ConvLSTM layers were cross 

entropy and binary cross entropy respectively. 

   The validation strategy for the received result was k-

folds with the k value equal to 10, meaning that for each 

network architecture, 10 models were trained on different 

parts of the training and validation splits. 

    One-dimensional data consisted of 216 sequences of 5 

chords each, where 4 chords served as an input and the 5th 

chord was treated as a target. In two-dimensional data split, 

each chord of the sequence was converted into a 28x28 

matrix form, where the first 4 matrices represented the in-

put features and the last matrix represented a target. This 

way, four input chords conditioned the prediction of the 

final chord of the sequence. 

7.1 LSTM vs ConvLSTM 

The result of the comparison between two models (pre-

sented in Table 1) shows that although LSTM model had 

smaller loss values, comparing to the ConvLSTM model, 

the difference in the end of training between train and val-

idation loss for the LSTM model augments, compared to 

the beginning of training. Moreover, the loss of the LSTM 

model for the validation split becomes bigger in the end of 

training, which points to overfitting problem and a feeble 

generalization capacity. On the contrary, ConvLSTM 

model, having started with bigger loss values in the begin-

ning of training, ends up with times smaller loss values. 

The data used for training and validation were not aug-

mented at this stage. 

 

Model Train 

start 

Val 

start 

Train 

end 

Val 

end 

LSTM 0.26 0.29 0.10 0. 37 

ConvLSTM 10.10 53.60 0.37 0.58 
 

Table 1. Comparison of data dimensionality augmentation 

tested with LSTM and ConvLSTM models. 

7.2 Data augmentation 

The second stage of the experiment intended to measure 

the efficiency of data augmentation, made possible with 

the varying normalization term, using the novel encoding 

method. ConvLSTM model was therefore trained on da-

tasets with and without data augmentation (2160 vs 216 

data entries). The result of this stage of the experiment is 

shown in Table 2. 

 

Data type Train 

start 

Val 

start 

Train 

end 

Val 

end 

Non-augmented 10.10 53.60 0.37 0.58 

Augmented 0.06 1.56 0.01 0.38 
 

Table 2. Comparison of the data augmentation tested with 

ConvLSTM model. 

 

The application of data augmentation technique has shown 

much better results in all four columns of the table – the 

first feedforward hidden representation is considerably 

better for the model trained on augmented data, which 

ameliorates the validation result at the beginning of train-

ing. In the end of training, the loss for train and validation 

splits substantially diminishes, meaning that the model 



 

 

learned well the input data shape, especially compared to 

the loss for the model trained on non-augmented data. 

8. CONCLUSIONS 

The article presented the use of a graph representation ap-

plication in both ways: as knowledge representation 

method in a context VR application for ear training and as 

a novel data encoding technique applied to the generative 

models training. The novel encoding scheme was tested 

with ConvLSTM model, designed to process two-dimen-

sional sequential information, being compared to the 

LSTM model with the similar hyperparameters, trained on 

the equivalent one-dimensional data. The results of the ex-

periment have shown an important training result amelio-

ration, especially when the data augmentation technique 

was applied. Finally, a high relevance of the design pat-

terns used in a current VR project has been demonstrated 

via comparison with the recent development in the field. 

 

 

[1]   

    

 

  

[2]    

  

 

  

[3]  

 

 

   

[4]   

 

 

  

[5]    

 

  

[6]  

   

[7]  

   

[8]  

national Conference on Artificial Intelligence, In-

formation Processing and Cloud Computing, 

Sanya, China, 2019, pp. 1-5. 

[9] W. Villegas-Ch, A. Arias-Navarrete and X. Pala-

cios Pacheco, “Proposal of an Architecture for the 

Integration of a Chatbot with Artificial Intelligence 

in a Smart Campus for the Improvement of Learn-

ing,” Sustainability 2020, 12(4):1500, 

https://doi.org/10.3390/su12041500 

[10] L. Turchet, R. Hamilton and A. Camci, “Music in 

Extended Realities,” in IEEE Access, 9, 2021, 

pp. 15810-15832. 

[11] H. Liu and Y. Yang, “Lead sheet generation and ar-

rangement by conditional generative adversarial 

network,” in 17th IEEE International Conference 

on Machine Learning and Applications (ICMLA), 

2018, pp. 722-727. 

[12] Y. Yu and S. Canales, “Conditional LSTM-GAN 

for melody generation from lyrics,” in ACM Trans-

actions on Multimedia Computing, Communica-

tions, and Applications (TOMM), 17, 2021, pp. 1-

20. 

[13] Z. Wang, D. Wang, Y Zhang, Y. and G. Xia, 

“Learning interpretable representation for control-

lable polyphonic music generation,” in Proceedings 

of the 21st International Society for Music Infor-

mation Retrieval Conference (ISMIR 2020), Mont-

réal, 2020, pp. 662-669. 

[14] H. H. Tan and D. Herremans, “Music FaderNets: 

Controllable music generation based on high-level 

features via low-level feature modelling,” in Pro-

ceedings of the 21st International Society for Music 

Information Retrieval Conference (ISMIR 2020), 

Montréal, 2020, pp. 109-116. 

[15] S. Lattner, M. Grachten and G. Widmer, “Imposing 

higher-level structure in polyphonic music genera-

tion using convolutional restricted boltzmann ma-

chines and constraints,” in ArXiv, abs/1612.04742, 

2016. 

[16] A. Pati and A. Lerch, “Is disentanglement enough? 

On latent representations for controllable music 

generation,” in ArXiv, abs/2108.01450, 2021. 

[17] A. Pati, S. Gururani and A. Lerch, “dMelodies: a 

music dataset for disentanglement learning” in Pro-

ceedings of the 21st International Society for Music 

Information Retrieval Conference (ISMIR 2020), 

Montréal, 2020, pp. 125-133. 

[18] D. Makris, K.R. Agresand and D. Herremans, 

“Generating lead sheets with affect: a novel condi-

tional seq2seq framework,” in Proceedings of Inter-

national Joint Conference on Neural Networks 

(IJCNN), Shenzhen, 2021, pp. 1-8. 

[19] H. Liu and Y. Yang, “Lead sheet generation and ar-

rangement by conditional generative adversarial 

7. REFERENCES

M.  Minsky,  “A  framework  for  representing 

knowledge,”  in  P.  Winston  (Ed.),  The psychology of 

computer  vision,  New  York:  Winston,  1974,

pp.  211-277.

A.  Shvets  and  J.  Jemielnik,  “Visualization  Strate-

gies in the E‑learning Course on Music Harmony at 

University  –  Effects and Possibilities,”  in  Andrzej 

Michalski  (Ed.),  Music  Pedagogy.  Ideals.  Values.

Pragmatics,  Gdansk:  Athenae  Gedanenses,  2016,

pp.  218-229.

A.S  hvets,  “Contemporary  methods  of  functional 

harmony teaching in a high school context,” in  Pro-

ceeding  of  Electronic  Imaging  &  the  Visual  Arts 

(EVA Florence),  Florence,  2019,  pp.  142-150.

A.S  hvets,  “The  system  of  graphs  in  music  har-

mony: a user interface for mobile learning game de-

velopment,” in  Proceeding of  Electronic  Visualisa-

tions  and  the  Art  (EVA  London),  London,  2016,

pp.  193-194.

A.S  hvets  and S.  Darkazanli, “Graphs in harmony 

learning: AI assisted VR application,” in  Proceed-

ing  of  Electronic  Visualisations  and  the  Art  (EVA 

London,  London, 2020, pp.  104-105.

O.   Zawacki-Richter, V. I. Marin, M. Bond and F.

Gouverneur, “Systematic review of research on ar-

tificial  intelligence  applications  in  higher  educa-

tion–where  are  the  educators?”  in  International 

Journal of Educational Technology in Higher Edu-

cation, 16(1),  pp.  1-27.

A.  Lino,  A. Rocha and  A. Sizo, “Virtual teaching 

and  learning  environments:  automatic  evaluation 

with  artificial  neural  networks,”  Cluster  Compu-

ting,  22(3),  2019,  pp.  7217-7227.

B.  Zhang, H. Xia and H. O. Lim, “Development of 

an  A.I. based teaching assisting system,” in  Inter-



 

 

network,” in Proceedings of the 7th IEEE Interna-

tional Conference on Machine Learning and Appli-

cations (ICMLA), Florida, 2018, pp. 722-727. 

[20] A. Shvets and S. Darkazanli, “Conditional GAN for 

Diatonic Harmonic Sequences Generation in a VR 

Context” in Proceeding of EVA London 2021. Brit-

ish Computer Society (BCS): London, 5th–9th July 

2021, pp. 97-100. 

[21] S. Li and Y. Sung, “INCO-GAN: variable-length 

music generation method based on inception 

model-based conditional GAN,” in Mathemat-

ics 2021, 9(4):387, 

https://doi.org/10.3390/math9040387 

[22] S. H. I. Xingjian, Z. Chen, H. Wang, D. Y. Yeung, 

W. K. Wong, and W. C. Woo, “Convolutional 

LSTM network: A machine learning approach for 

precipitation nowcasting” in Advances in neural in-

formation processing systems, 2015, pp. 802-810. 

[23] A. Shvets, “Structural harmony method in the con-

text of deep learning on example of music by 

Valentyn Sylvestrov and Philipp Glass,” in Pro-

ceeding of EVA London 2020, London, 2019, 

pp. 318-320. 

[24] A. Shvets and M. Desainte-Catherine, “Schemogra-

phe: Application for a new representation technique 

and methodology of analysis in tonal harmony” in 

Proceedings of International Conference on Evolu-

tionary and Biologically Inspired Music and Art, 

Copenhagen, 2016, pp. 212-223. 

[25] M. Cuthbert and C. Ariza, “music21: A Toolkit for 

Computer-Aided Musicology and Symbolic Music 

Data,” in Proceedings of International Conference 

on Music Information Retrieval, Utrecht, 2010, 

pp. 637-642

 




