
MUSIC NOTATION USING REACTIVE SYNCHRONOUS

PROGRAMMING

 Bertrand Petit
 INRIA

Sophia-Antipolis, France
Bertrand.petit@inria.fr

ABSTRACT

This article presents a notation system for music based on

patterns (or clips) as they have been popularized for more

than twenty years with the Digital Audio Workstations on

the market like Ableton Live, Bitwig Studio or FL Studio.

This system named Skini uses the HipHop.js programming

language to describe music pieces. This language, belong-

ing to the family of synchronous reactive languages, was

initially designed for the orchestration of Web services.

Skini, by combining HipHop.js and queuing mechanisms,

was developed for interactive and generative music perfor-

mances. It has also proven to be an efficient tool for notat-

ing musical pieces outside of these interactive and genera-

tive contexts because of its ability to describe the structure

of a piece of music in a form close to its expression in eve-

ryday language. Moreover, Skini, while using certain con-

cepts specific to electronic music, can be used for the cre-

ation and performance of instrumental and orchestral mu-

sic.

1. INTRODUCTION

According to a common definition, music notation consists

of transcribing a musical work onto a medium to interpret,

preserve, protect, and disseminate it. The systems of nota-

tion are dependent on the media available to support this

notation. For example, Hurrian songs have been found on

clay tablets from around 1400 BC. The paper and the staff

system from the neumes of the Middle Ages was for a long

time the only support in the occidental societies until the

information sciences appeared and proposed other ways to

notate music. With the help of computers, it is not only a

matter of facilitating the manipulation of the staff system,

but also of introducing other ways of representing music.

Of the many ways to score music, we will focus here on a

system that uses a computer language from the family of

synchronous reactive languages [1]. These languages, im-

agined in the 80's, are not initially intended for music but

for critical systems (airplane, train, nuclear power plant...).

However, we will see that one of these languages,

HipHop.js [2], is well adapted for representing music in

the form of patterns or musical elements similar to what is

called clips in current Digital Audio Workstations (DAW).

The HipHop.js language is implemented in a platform

named Skini which was initially designed for collaborative

music in interaction with an audience, but which can also

be used to produce generative music or the musical nota-

tion of clip-based pieces.

2. RELATED WORK

There are several families of tools allowing the notation of

musical pieces using programming languages or computer

systems.

In the family of programming tools for sound creation,

Open Music from IRCAM [3] is an example of a solution

allowing to describe musical processes using graphical

programming that generates LISP code. Csound [4] is an-

other popular tool for producing music from a computer

language, this time from the C language.

Another family of tools is constituted by the Live Coding

solutions. These solutions deal with algorithmic music im-

provisation, which Open Music or Csound were not de-

signed for. Popular languages in this category are for ex-

ample ChucK [5], SuperCollider [6] or Fluxus.

Graphical languages like MAX/MSP and PureData [7]

are not intended for music notation per se but for the com-

bination of musical processes and signal processing tools.

However, many pieces are designed from these tools with-

out any other notation mode than the Patches written in

these languages.

Some Digital Audio Workstation (DAW) like Ableton

Live [8] or Bitwig Studio [9] are also de facto notation

tools. A piece of music is expressed as a matrix of clips

with a whole set of properties. Each of the clips can be ex-

pressed in the form of MIDI piano-roll, which is a notation

system commonly used by DAWs.

We will not discuss here the case of score editors such

as Finale, Sibelius, MuseScore or Dorico which are tools

for entering and formatting scores as they have been writ-

ten for several centuries. These tools, although computer-

ized, do not fundamentally call for programming skills on

the part of the composer.

Each of these families of tools constitutes a solution to

particular music production problems. Open Music is in-

tended for composers with a process approach to music

Copyright: © 2022 Bertrand Petit. This is an open-access article distrib-

uted under the terms of the Creative Commons Attribution 3.0 Unported

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original author and source are credited.

http://creativecommons.org/licenses/by/3.0/

creation. This tool is aimed at musicians with good algo-

rithmic skills. The Live Coding tools were originally de-

signed for performance and improvisation. Tools such as

MAX/MSP, PureData or Csound are intended for general

sound production, not specifically for an improvisation

context. DAWs like Ableton Live or Bitwig studio are ini-

tially designed for live performance while offering a rela-

tively simple way of structuring music compared to MAX-

MSP for example, whose learning curve is long.

Skini is somewhere between clip-based DAWs and com-

puter-based programming in the sense of Open Music or

Csound. Skini is not a Live Coding tool because it is not

designed for improvisation, even though it is a tool initially

designed for live and interactive performances. We only

discuss here the use of Skini in the well-defined context of

music notation and not in the context of generative music

described in the article [10] or for collaborative music de-

scribed in the article [11]. We will see that Skini is mainly

interested in a method of conception of complex musical

structures. “Structure design” is not the basic problem of

Computer Music solutions which will deal with other top-

ics such as signal processing, live production, score editing

or improvisation. We will see that, in this sense, Skini is a

complementary notation tool to most of those already

available.

3. SKINI NOTATION BASIC CONCEPTS

We will review the main concepts behind the music nota-

tion used by Skini. These are patterns, instruments, inter-

action, and scenarios.

3.1 Patterns

Musical patterns, or musical elements, are the raw material

of Skini. They are short musical phrases designed by the

composer and arranged in such a way as to constitute the

musical piece. They are close to clips in the vocabulary of

DAWs, except that clips cannot be graphic extracts from

scores, which is possible with Skini when the music is

played by musicians and not by a DAW.

As we can see in Figure 1, a pattern can take the form of

a sound file, a MIDI sequence, or a few bars of a score.

Skini does not impose any constraints on the design of the

patterns, nor on their duration. The forms that the com-

poser will give to the patterns will depend on the style of

music and the type of performance imagined. A composer

who wants to control synthesizers will naturally use MIDI

patterns. A composer writing for instrumentalists will

more naturally use score elements.

3.2 Instruments

Patterns are played by instruments. We will see that in his

notation system, Skini can request the execution of several

patterns by one instrument at a time. As we consider that

an instrument can only play one pattern at a time (as an

instrumentalist does), if several patterns are requested for

the same instrument at the same time, they will be placed

one after the other in a queue to be played one after the

other. The principle of queues for patterns was initially im-

plemented to guarantee a good coherence of the musical

pieces in interaction with the audience, and to allow the

use of Skini with instrumentalists. In the simpler context

of notation of a pattern-based musical piece without call-

ing for interaction, queues allow to simplify the implemen-

tation of musical sequences in parallel. For example, the

composer can decide to load a complete musical sequence

at an instant of the score without having to worry about

this sequence while the rest of the score is processing other

sequences on other instruments. Schematically, queues al-

low to implement musical sequences without worrying

about their duration.

3.3 Interaction

Skini natively considers the possibility of interacting with

music in the form of events produced by sensors, web in-

terfaces proposed to the audience, messages received by a

video game or random processes. We will not discuss in

detail the complex question of interaction here. But this is

an important aspect of music notation with Skini. Indeed,

few tools have a way to describe music and interactions

with events outside the music. Antescofo [12] and In-

Score[13] are examples of these tools. For more infor-

mation, we refer you to another article on interaction [11].

3.4 Scenario or score

As we have seen, Skini proposes a way to describe a mu-

sical piece based on the concepts of pattern, instrument,

and interaction. Skini is interested in the way the composer

will organize these concepts. It is a tool to define struc-

tures, orchestrations but in a computer science sense. The

term score would be well adapted for this description, but

it is most often associated with the notation of pitches in

time, which is not the purpose of Skini. The term orches-

tration in a musical context would be closer, but it does not

include the notion of pattern. We retain the rather vague

term of musical scenario associating patterns with Figure 1: Three ways to describe a pattern.

interaction, and queues by instruments. Skini scenarios are

written using the computer language: HipHop.js1.

4. PRINCIPLE OF SYNCHRONOUS REACTIVE

PROGRAMMING WITH HIPHOP.JS

Synchronous reactive programming languages are lan-

guages meant for programming reactive systems. Com-

puter systems are often classified into three categories.

Transformational systems that take inputs, process them,

provide their outputs, and terminate their execution. Inter-

active systems that continuously interact with their envi-

ronment, at their own speed. A typical example is a web

application. Reactive systems that continuously interact

with their environment, at a speed imposed by the environ-

ment. A typical example is the control system of a vehicle.

Reactive systems react to environmental stimuli.

HipHop.js belongs to this family of synchronous reactive

languages, and is very close to the Esterel language [14]

initially conceived in the 80s. As with Esterel, program-

ming with HipHop.js consists in approaching an algorithm

by thinking in terms of events and reactions. Events are

materialized by means of signals. A HipHop.js program,

once compiled, is like a black box to which one submits

signals linked to events, and which produces other signals

when it is solicited. This solicitation provokes what is

called an immediate ,and thus synchronous, reaction since

it does not introduce any delay (at least in a theoretical

way). This model is represented by the Figure 2. The sig-

nals A, X, W, Z are purely indicative. There is no limit or

constraint on the number of signals and their types.

The syntax of HipHop.js uses a set of about twenty

statements whose operation is quite intuitive. For example,

it is possible to wait for a signal (await statement) to

move to the next statement. It is possible to emit a signal

(emit statement). One of the important characteristics of

HipHop.js is to integrate natively the parallelism. To allow

two blocks of statements to run at the same time. Few lan-

guages natively integrate this important feature, which al-

lows to act on musical sequences by easily modifying their

juxtaposition for example. Skini offers the composer two

different ways of programming. For composers who are

familiar with computer tools and textual programming, it

is possible to program in the HipHop.js language which

also supports JavaScript. For composers less familiar with

textual programming, it is possible to use a graphic

1 Without reference to a particular musical genre. The authors of this

language have chosen this name as a pun towards a platform developed

by INRIA called Hop.js.

programming tool. This tool offers the same primitives as

HipHop.js in textual form but is less well adapted to the

integration of JavaScript code to realize, for example,

complex logical operations within the notation of the

piece.

5. SKINI ARCHITECTURE

Skini provides a notation system within a music produc-

tion environment. Figure 3 is a logical view of the Skini

platform used to implement HipHop.js scenario program-

ming in its music production environment. The architec-

ture is composed of 3 layers.

The central layer Control and decision layer is the one

that contains the HipHop.js program and the instrument

queues. These queues will receive pattern commands from

the HipHop.js program. It can also receive pattern com-

mands from a stochastic engine or an audience. This layer

is implemented by means of the multi-tier Web platform

Hop.js [15], developed by INRIA, or Node.js [16]. These

platforms use JavaScript. HipHop.js is thus a Domain Spe-

cific Language (DSL) supported by JavaScript.

The event layer deals with events external to the course

of the music piece. It can be a clock or various events pro-

duced by sensors, video games, etc. In a simple implemen-

tation dealing with notation only, this level can be reduced

to the use of a clock.

The Music Production layer is necessary to experiment

or simulate a musical result and especially when Skini

communicates with a DAW that implements a set of pat-

terns. For live performances, instead of using a DAW,

Skini can call upon musicians equipped with an interface

Figure 2: Reactive Synchronous principle.

Figure 3: Skini architecture.

It is then possible to export the results of the composition

to an editing software (Finale or Sibelius for example) to

produce a "classical" score (cf. Figure 5). Skini is therefore

not limited to the production of electronic music, or live

performances but can also be a tool for composing orches-

tral pieces.

6. EXAMPLES OF SCORE IMPLEMENTATIONS

Without worrying about the details of the implementation

of a complete score by means of HipHop.js programming

or the graphical programming tool allowing to abstract

from a part of the HipHop.js syntax, we will see some sim-

ple examples. For more details on HipHop.js programming

applied to music, we recommend the article “Interactive

Music and Synchronous Programming”[17].

6.1 Programming loops

Here is an example of programming a loop on a pattern in

HipHop.js.

every count (4, tick.now) {
 hop{ putPatternInQueue("Morricone");}
}

Using the graphical programming tool, the equivalent will

be:

The statement every will execute the body between

braces every time 4 ticks. The tick signal emitted by a

clock has been set according to the duration of the patterns.

Here the pattern Morricone has been described in a con-

figuration file with a duration of 4 ticks. The hop statement

is a facility of HipHop.js to pass JavaScript commands.

The graphical programming is perfectly equivalent.

Here is another example of loop programming involving

two patterns on the same instrument. Each pattern lasts 4

ticks.

loop{
 hop{putPatternInQueue("Morricone");}
 hop{putPatternInQueue("Rosenman");}
 await count (8, tick.now);
}

Using the graphical programming tool the equivalent will

be:

Instead of an every statement we use here a loop state-

ment, which loops indefinitely over the body between

braces. The two putPatternIn-Queue commands or "put

pattern" blocks are executed "at the same time". This

means that at each loop, 2 patterns are sent to the instru-

ment's queue to be played one after the other. The await

statement will stop the loop until 8 ticks have been re-

ceived. This is a way to avoid overloading the queue im-

mediately.

6.2 A more complex scenario

These two simple examples give an idea of how to pro-

gram with Skini, but they are not enough to demonstrate

the relevance of this programming compared to other so-

lutions such as those offered by a clip-based DAW. Let's

look at a slightly more complex case.

We want to loop two patterns Mancini and Silvestri, let's

name this loop loop1. At each occurrence of two loops1

we want to execute another sequence of patterns which

consists of playing the pattern Rota twice on one instru-

ment and a pattern Geoffroy on another instrument. At the

same time as these two loops are running, we want to play

another sequence a trumpet solo which consists of a rather

long sequence of trumpet patterns. We could express this

scenario graphically in a sequencer. Space does not allow

that can display patterns in the form of scores (PC or Tab-

lets).

 For a composition and simulation work, in the case of a

use of MIDI patterns with a DAW, the DAW will be able

to record the piece in MIDI format (cf. Figure 4) to verify

that Skini's notation corresponds to the expected musical

result.

Figure 4: A Skini score view in Ableton Live.

Figure 5: A Skini score view in Finale.

Figure 6: A loop with every.

Figure 7: A loop using the loop statement.

us to do so in this article, but it is easy enough to imagine

that this is a simple but tedious job. In a clip-based DAW,

one way to implement this scenario would be to create a

control track that sends MIDI commands to tracks contain-

ing the patterns (clips) of the instruments. Using a MIDI

virtual cable, the commands from the control track could

be sent back to the DAW to trigger the patterns. We could

create the loops using a follow action of each clip and cre-

ate a MIDI command to stop the track that would be driven

by the control track. To implement the scenario, we just

need to create control clips in the control track that will

issue the start and stop commands for the loops. Techni-

cally, this method works. However, it is not very easy to

read, and it is difficult to scale up as soon as the scenario

becomes more complex.

Here is how this scenario is expressed with Skini:

fork{
 every count (8, tick.now){
 hop{putPatternInQueue("Mancini");}
 hop{putPatternInQueue("Silvestri");}
 emit boucle1();
 }
}par{
 every count (2, boucle1.now){
 hop{putPatternInQueue("Rota");}
 hop{putPatternInQueue("Rota");}
 hop{putPatternInQueue("Geoffroy");}
 }
}par{
 run ${soloTrompette}(...);
}

Or graphically:

In HipHop.js programming, the fork and par statements

are used to parallel blocks of statements between braces.

In graphical programming the par block parallels the

every and run blocks. The run block calls a module that

contains the trumpet solo. The soloTrompette module

is written in HipHop.js as follows:

var soloTrompette = hiphop module () {

 fork{

 hop{ableton.putPatternInQueue("Altenburg");}

 hop{ableton.putPatternInQueue("André");}

 hop{ableton.putPatternInQueue("Hardenberger");}

 hop{ableton.putPatternInQueue("Thibaud");}

 hop{ableton.putPatternInQueue("Gambati");}

 hop{ableton.putPatternInQueue("Foveau");}

 hop{ableton.putPatternInQueue("Friedrich");}

 hop{ableton.putPatternInQueue("Sauter");}

 hop{ableton.putPatternInQueue("Arban");}

 }par{

 await count(44, tick.now);

 hop{ console.log("END OF TROMPET SOLO"); }

 }

}

with as graphic equivalent in the module Figure 9. In this

module, there are two branches in parallel. One loads the

queue of the trumpet instrument with a sequence of pat-

terns. The other branch counts down the total duration of

all the queued patterns. Here it gives 44 ticks. After 44

ticks a message is displayed on the console using a JavaS-

cript statement to inform us that the solo is finished.

The first every of the main scenario of Figure 8, in

which run is called, has the same structure as the previous

scenario example Figure 6. The difference is that a bou-

cle1 signal is sent every 8 ticks. The second every uses

the boucle1 signal from the first every to count down.

The trumpet solo is executed independently of the two

every. Although simple, this dependency between the

every statements is difficult or even impossible to imple-

ment with a clip-based DAW. This would require that a

clip of an instrument can issue a control command, which

is not standard with current DAWs. But beyond feasibility,

the major difference between Skini and a DAW is reada-

bility and maintainability. With Skini it is very easy to add

more loops. It is also easy to define complex logical com-

binations between signals on the conditions of the every

Figure 8: A more complex scenario.

Figure 9: The trumpet solo.

or other signal processing constructs such as await,

abort, if, suspend, and to structure the piece of music

in modules that can be combined and recombined at will.

Regarding the comparison between HipHop.js and gen-

eral languages (Java, JavaScript, C++...), see chapter 3 of

the article [17]. The conclusion of this comparison is close

to the one made with a DAW. Writing a script with a gen-

eral-purpose language quickly becomes very difficult to

implement and maintain when the project gets compli-

cated.

6.3 Other writing features

Beyond the description of complex scenarios, Skini in-

cludes primitives allowing the introduction of random phe-

nomena in the writing of a piece of music, and to use dif-

ferent OSC or MIDI controls for electronic music. The use

of HipHop.js in combination with JavaScript makes it easy

to extend the Skini primitives to complex control pro-

cesses. This is not useful for most composers, but it does

mean that it is simple to extend the vocabulary of the no-

tation system.

7. CONCLUSION AND FUTURE WORK

Skini was initially designed for the creation of musical per-

formances in interaction with an audience. The goal of our

research was to provide a set of tools for composing, exe-

cuting, and verifying the aesthetic coherence of interactive

music pieces. Examples of music designed using Skini are

available at: https://soundcloud.com/user-651713160.

The definition of scenarios that can handle complex

combinations of events led us to use a language designed

for automata programming. We chose HipHop.js because

this language based on the Synchronous Reactive Lan-

guage Esterel [18] seemed to us well adapted to our prob-

lem which deals on the one hand with complex automata

but also with interaction. Indeed, HipHop.js works on de-

velopment platforms for the Web using JavaScript. Nowa-

days, Web technologies are the most common for large-

scale interactions. Beyond this dimension of interaction

with an Audience, Skini with its ability to manage events,

has proved to be a solution to produce music from random

processes controlled by events from sensors or video

games for example. This association between random pro-

cess and scenario brought Skini into the world of genera-

tive music solutions and more particularly combinatorial

generative music. After these first use cases, the use of

Skini for score notation without random phenomena or in-

teraction has proved to be interesting. It is indeed comple-

mentary to clip-based approaches developed for more than

twenty years by manufacturers such as Ableton, Bitwig or

FL studio for example. Skini is not a toolbox competing

with Open Music or MAX/MSP because its vocation is to

express the structure of a musical work rather than its de-

tail. For Skini, the detail comes from the patterns for which

there is no recommendation or constraint imposed by our

system. The composer can create each pattern manually,

or use a tool like Open Music, or use an Artificial Intelli-

gence solution for example.

We think that the creation of music based on patterns in

the form of clips has the merit of being widely diffused and

that it offers a strong potential for development in combi-

nation with tools allowing the management of complex

structures as proposed by Skini. DAW editors such as

Ableton or Bitwig are integrating more and more function-

alities that go in the direction of scenario management in

the sense that we have detailed in this document. However,

they have not yet addressed the problem in the form of a

notation system as powerful as Skini. This is not a coinci-

dence because the problems raised by the notation of com-

plex scenarios are difficult to solve. Synchronous reactive

languages are the only ones to have provided a viable so-

lution through substantial research work, but although they

have been very successful in the industry, they have not

yet been widely used in the music world.

Skini can therefore address a population of DAW users

wishing to create musical pieces with complex structures

that cannot be done with the generalist tools.

8. REFERENCES

[1] P. A. Laplante and S. J. Ovaska, “Programming Lan-

guages for Real-Time Systems,” in Real-Time Sys-

tems Design and Analysis, 2011.

[2] G. Berry and M. Serrano, “HipHop.js: (A)Synchro-

nous reactive web programming,” in Proceedings of

the ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), 2020,

pp. 533–545.

[3] J. Bresson, “Reactive Visual Programs in OpenMu-

sic,” [Research Report] IRCAM / ANR-13-JS02-

0004-01 Effic., pp. 0–12, 2015.

[4] V. Lazzarini, S. Yi, J. Ffitch, J. Heintz, Ø.

Brandtsegg, and I. McCurdy, Csound: A sound and

music computing system. 2016.

[5] G. Wang, “The ChucK Audio Programming Lan-

guage “ A Strongly-timed and On-the-fly Environ /

mentality,” 2008.

[6] J. McCartney, “Rethinking the computer music lan-

guage: SuperCollider,” CMJ, 2002.

[7] M. Puckette, “Max at seventeen,” CMJ, 2002.

[8] Ableton, “Ableton Live 10 - Ableton,” Ableton, 2018.

[Online]. Available: https://www.able-

ton.com/fr/live/. [Accessed: 10-May-2020].

[9] S. Truss, “Bitwig Studio 3,” Electron. Music., vol. 35,

no. 11, 2019.

[10] B. Petit, “Generative Music Using Reactive Program-

ming,” Proc. ICMC 2021, pp. 320–324, 2021.

[11] B. Petit and M. Serrano, “Composing and Performing

Interactive Music using the HipHop . js language,” in

New Interfaces for Musical Expression 2019, 2019,

pp. 71–76.

https://soundcloud.com/user-651713160

[12] A. Cont, “Antescofo: Anticipatory synchronization

and control of interactive parameters in computer mu-

sic,” in International Computer Music Conference,

ICMC 2008, 2008.

[13] D. Fober, S. Letz, Y. Orlarey, and L. France, “Pro-

gramming Interactive Music Scores with INScore,”

SMC, vol. October 20, pp. 2–7, 2013.

[14] G. Berry, “The Foundations of Esterel,” in Proof,

Language, and Interaction, MIT Press., 2000.

[15] M. Serrano and V. Prunet, “A glimpse of hopjs,” in

ICFP 2016 - Proceedings of the 21st ACM SIGPLAN

International Conference on Functional Program-

ming, 2016.

[16] R. Prediger, R. Winzinger, R. Prediger, and R.

Winzinger, “Node.js,” in Node.js, Carl Hanser Verlag

GmbH & Co, 2015, pp. I–XV.

[17] B. Petit and M. Serrano, “Skini: Reactive program-

ming for interactive structured music,” Art, Science,

and Engineering of Programming, vol. 5, no. 1, 2020.

[18] G. Berry, The {Esterel} v5 Language Primer. Sophia-

Antipolis, France, 2000.

