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ABSTRACT 

This paper describes the development of The Twittering 
Machine (2021) for HoloLens 2 and prepared piano, which 
features a three-dimensional (3D) performance score hol-
ographically projected on the surface of the piano key-
board. The score presents a real-time visualization of Twit-
ter tweets scraped during the performance and generated 
through the application of various Natural Language Pro-
cessing (NLP) techniques. Various technical aspects of the 
work are discussed including the NLP processes, network 
architecture facilitating communication with the HoloLens 
2, and techniques through which the holographic score is 
accurately mapped to the surface of the piano keyboard. 
The paper describes the work’s aesthetic focus and details 
how mapping process from language to musical notation 
provides structural form.  

1. INTRODUCTION 

It is estimated that around 500 million tweets are posted to 
Twitter every day. From this extraordinary abundance of 
words much of which is fleetingly expressed and ephem-
eral in standing, Twitter has become not only a highly vis-
ible influence in political discourse [1] and protest [2], but 
also an invaluable source of data to help inform theorisa-
tion on a range of concepts such as trust [3], identity [4], 
and cultural appropriation [5]. Through its public Applica-
tion Programming Interface (API), data scientists have 
even been able to explore how Twitter can provide im-
portant insights on human movement and mobility [6, 7] 
with instrumental application in fields ranging from eco-
nomics to epidemiology.  

For the author, Twitter presents first and foremost, an ex-
traordinary map of differential relations which can be aes-
theticized in unique forms of musical expression. The 
Twittering Machine, for prepared piano and HoloLens 2 
henceforth TM, explores this concept through a small mi-
crocosm of the Twittersphere, charting a sonic map of dif-
ference between tweets ostensibly similar in topic but 

 
1 https://spacy.io 

often wildly divergent in expressed sentiment. The work 
features a 3D holographic score projected above the sur-
face of the piano keyboard with features that constantly 
transform as incoming tweets are analyzed during the per-
formance with various NLP techniques. Measure of differ-
ence or flux across tweets are determined and used to spa-
tially transform (compress, rotate, stretch) this carto-
graphic representation. 

2. LANGUAGE 

From the application of generative grammars [8] to facili-
tate understanding of the listening experience in the work 
of Lerdahl and Jackendoff [9] through to the exploration 
of Jakobson’s theory of aphasics [10] in the work of com-
poser Aaron Cassidy [11], linguistic insights and frame-
works have been a source of inspiration for music theory, 
cognition, and creative practice for decades. More re-
cently, with the development of powerful NLP libraries 
such as spaCy,1 and NLTK,2 which run in easy-to-use pro-
gramming environments such as Python, unlike the intim-
idating development environments of early computational 
linguistic models [12], composers have unprecedented ac-
cess to a wide range of powerful tools that can analyze a 
text’s formal and semantic properties and provide data that 
may be applied to musical organization.  

Exploring musically and aesthetically satisfying ways to 
create musical structure from NLP data was an important 
and particularly challenging stage in the development of 
TM. The poetic inspiration for the work, however, was not 
motivated by how these relationships might manifest. Ra-
ther, as previously noted, the work sought to focus on how 
qualities of difference and repetition propagate through the 
tweet-retweet paradigm that underpins much of the Twit-
tersphere [13].  

3. SCRAPING AND NLP 

3.1 Twitter Scraping 

The Twitter public API allows a plethora of data to be 
scraped from Twitter ranging from the textual content of a 
tweet and the number of likes or retweets that a tweet 
might have, through to tweets that have unique keywords 
or hashtags (#) embedded within their content. While the 
data types accessible through Twitter’s API have ostensi-
bly been guided by the needs of market and business ana-
lytics, privacy concerns have recently factored into these 

2 https://nltk.org 
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determinations particularly with the 2021 deprecation of 
the ability to obtain the precise GPS location of scraped 
tweets, much to the chagrin of data analysts and others who 
may have used this information to provide helpful insights 
on social demographics [14].  

In TM, tweets are scraped on a discrete keyword, e.g. 
“delta”, with the Python library Tweepy,3 every twenty 
seconds through the following generic API call –  

 
for tweet in tweepy.Cursor(api.search, q=data, count=6, 

lang=”en”, tweet_mode=”extended”).items(); 
 

where data corresponds to the stated keyword “delta”. Ad-
ditional conditionals are attached to the call to ensure only 
English language tweets are returned (using lang=”en”) 
and that the entire text rather than a truncated text is re-
turned (by using the command tweet_mode=”extended”).  

The subsequently returned text from each Tweepy call 
returns a string which is processed with the NLP Python 
libraries spaCy and TextBlob.4 

3.2 Natural Language Processing 

spaCy is a powerful Python library that returns a wealth of 
information on a text’s formal structure and to a lesser 
depth, its semantic content. More advanced applications 
include the use of transformers for producing textual sum-
maries, translations or developing chat bots. In TM, spaCy 
is applied at a relatively high-level to analyze a text’s for-
mal properties. 

The spaCy pipeline first tokenizes a tweet by tagging 
each word with a part-of-speech (POS) tag which classifies 
its structural function within a sentence, as demonstrated 
in the simple example shown in Figure 1.  

 
Figure 1. Sample POS tagging of a sentence. Text from 
spaCy documentation [15]. 
 

POS tagging is an important early stage of NLP more 
broadly as it facilitates dependency parsing, i.e. finding the 
relationships between the constituent words and phrases 
within a sentence. In spaCy, the first stage of dependency 
parsing, is to identify noun phrases, or noun chunks in the 
spaCy vernacular, within a sentence. Noun phrases are 
those chunks of a sentence which have a noun at the head. 
Curiously, in spaCy verb phrase identification is not part 
of the dependency parsing pipeline. Noun chunking of the 
sample sentence from Figure 1 returns the following – 

 
Figure 2. Noun chunks of the sentence “Autonomous cars 
shift insurance liability towards manufacturers.” Note that 
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verbs (‘shift’), adverbs, and adpositions (‘towards’) are not 
contained within the chunks. 

In TM no further use of spaCy occurs beyond noun 
chunking however, to conclude the preceding example, 
once noun chunking has been completed, spaCy can pro-
duce a parse tree which presents the formal relationships 
between each constituent word of the sentence, see Figure 
3. 

 

 
Figure 3. Graphic representation of the parse tree of “Au-
tonomous cars shift insurance liability towards manufac-
turers.” Example taken from spaCy documentation [15]. 

 
In TM, the very first tweet scraped upon commencement 

of a performance establishes a baseline against which all 
future tweets are measured for similarity. This measure-
ment is undertaken with the TextBlob NLP Python library 
rather than spaCy as the latter can only provide similarity 
measurements between individual words rather than com-
plete sentences and hence was deemed unsuitable. While 
TextBlob can also be used as a pipeline component within 
spaCy, in TM, it is used independently to measure the sim-
ilarity between tweets but also the sentiment of an individ-
ual tweet. 

In Twitter analytics, sentiment is expressed as a floating-
point value ranging from -1.0 (negative sentiment) to +1.0 
(positive sentiment) with tweets with sentiment values 
close to zero considered to be neutral. For example, a 
phrase such as “I love learning about the wonderful world 
of natural language processing” will return a more positive 
value for sentiment than “I hate studying natural language 
processing. It is very difficult.” Similarity is a slightly 
more nuanced concept. While the two phrases just pre-
sented return polarized values for sentiment, they have 
similar subject matter. This is reflected in TextBlobs with 
a measurement known as a similarity index, a floating-
point value ranging between 0.0 (highly dissimilar) and 1.0 
(identical). The similarity index of the two preceding sen-
tences is 0.83. In contrast, the similarity index of the first 
sentence of the pair with “All cows eat grass” is 0.12. 

As an example of how NLP is applied in TM, which will 
be followed through in the next section, consider Figure 4 
which presents two tweets returned on a scrape of keyword 
“delta.” 

4 https://www.textblob.readthedocs.io/en/dev/ 



 

 

 

 

 
 
Figure 4. Two tweets containing keyword “delta” scraped 
on November 2nd, 2021. 
 

A noun chunk analysis with spaCy of the first tweet of 
Figure 4 returns the following – 

 

 
Figure 5. The first five noun chunks from the first tweet 
of Figure 4. 
 
A sentiment analysis with TextBlob returns the value 
0.0625 suggesting a generally neutral tone with perhaps 
the phrase “Great to see…” skewing the result positively. 

The returned similarity index between the two tweets of 
Figure 4 is 0.697, implying a degree of similarity that is 
ostensibly more apparent than real. While the two tweets 
are similar by the mere sharing of the keyword “delta” the 
semantic and contextual understanding is markedly differ-
ent. Correcting for these nuances may be achieved by re-
fining the search terms to include additional keywords or 
other flags that might yield more topically relevant results. 
The use of an additional keyword such as “vaccine” on the 
above search, for example, would not have returned the 
second tweet of Figure 4 and upon comparison with Text-
Blob would most likely returned a higher similarity meas-
ure.  

4. VISUALIZATION AND MAPPING 
STRATEGIES 

In TM, Twitter scraping and NLP is performed live in the 
Visual Studio IDE, and all associated data sent via a User 
Datagram Protocol (UDP) socket to a prototype Max 
patch. This patch was specifically developed to facilitate 
compositional planning and design from NLP data and 
tweet texts. While the processing of NLP data in Max 

 
5 In initial conceptualization, the use of precise geolocations embedded 

within tweets was of interest as this created the opportunity to draw cor-
respondences between the geospatial propagation of tweets and retweets 

could have been performed directly within Python, the 
ease with which intuitive graphical user interfaces (GUIs) 
can be built in the Max environment, together with its 
built-in tools for matrix analysis and transformation, was a 
particularly attractive feature during TM’s development. 

In TM a tweet is visualized in the form of a set of colored 
nodes holographically projected above the surface of the 
piano keyboard via the HoloLens 2. A sample visualiza-
tion of one such tweet is shown in Figure 6. 

 

 
 
Figure 6. Visualization of a single tweet in The Twittering 
Machine from Unity3D’s scene view. Note that the text of 
the tweet is included in the visualization. While this is 
mostly for visual aesthetics, it also helps demarcate node 
distribution groupings. 
 

As can be seen from the above figure, there are only a 
small number of discrete graphic properties that constitute 
the visualization – node color, node size, node height, and 
node position with respect to pitch. From previous experi-
ence developing graphic scores, the constraints of our vis-
ual perception [16], and feedback from performers, the 
need to constrain the number of visual elements was an 
important factor for performability. In development of TM, 
then, there were two fundamental compositional questions 
to be asked, each of which was informed by the other, 
namely: 1) how might a tweet be visualized in the form of 
a performance score? and 2) how might that visualization 
be musically interpreted?  

With respect to the first question, any visualization first 
requires an a priori decision about the type of data to visu-
alize. In most cases this ultimately reduces to questions of 
utility or aesthetics. For TM, noun chunks, POS tags, tweet 
sentiment and similarity were found to yield the most use-
ful and consistently usable material to help provide musi-
cal structure. At the same time, these linguistic features 
were most aligned with the aesthetic focus on difference 
and repetition.5 

In TM, each word contained within a tweet text is repre-
sented by a node in the performance score. Node colors, 
with the exception of those nodes represented by the very 
first “baseline” tweet analyzed upon commencement of a 

and proportional notational systems however, the deprecation of precise 
geotags from the Twitter API, meant that this data could no longer be 
gathered. 



 

 

performance, are defined by noun chunks and POS tags. 
Each word within a noun chunk is assigned a uniform node 
color with colors in succeeding noun chunks cycling 
through colors red, green, blue, yellow, and orange, see 
Figure 7. 
 
 

 
 
Figure 7. Mapping of words within noun chunks to node 
colors where ‘R’ = red, ‘G’ = green, ‘B’ = blue, ‘Y’ = yel-
low, and ‘O’ = orange. Note that emoticons, such as that 
represented in the fifth line, are not assigned a node in the 
performance score. 
 

Any word not contained within a noun chunk (verbs, ad-
verbs, adpositions etc.) which will have been identified by 
the POS tagging process, is represented in the performance 
score with a white-colored node. These nodes serve a dif-
ferent musical function in TM and thus need to be repre-
sented in a distinct way. 

Musically, TM is built from harmonic structures (chords) 
and linear phrases. Each noun chunk is mapped to one of 
eight possible harmonic structures with each word within 
a chunk, or node in the performance score, assigned to a 
particular pitch within that structure, see Figure 8. Words 
that fall outside the noun chunks are mapped to a different 
set of pitches. The mapping and selection process is 
skewed by tweet sentiment and is managed within the pro-
totype Max software.   

 
 

 
 

Figure 8. Sample mapping of noun chunk to harmonic 
structure to node positioning. The selection of active 
pitches from the harmonic structure is determined within 
the prototype Max software. 

 
The harmonic structures of TM are bound within the in-

terval of a major tenth. This constrains the range of pitches 
to ensure that tweets can be visualized to contiguous re-
gions of the piano keyboard as shown in Figure 9. To fa-
cilitate visual recognition by the pianist, the tweet text 

from which NLP data is obtained is projected, with a left-
justified margin, at the lowest note of the range, see Figure 
6. Note that the first tweet visualized upon commencement 
of a performance, the initial baseline tweet against which 
all future tweets are compared, is anchored to the lowest 
region of the piano keyboard. As new NLP data is received 
via UDP, Max cycles through visualization mappings to 
adjacent keyboard regions. 

 
 

 
Figure 9. Pitch region mappings in The Twittering Ma-
chine. 

 
The size of nodes in the performance score and the height 

above the keyboard at which they are visualized through 
the HoloLens 2, is also managed within the Max software 
and is not affected by incoming NLP data. Node height is 
interpreted by the pianist as an indication of duration while 
node size denotes dynamic level. Each of the nodes refer-
enced by a word in a noun chunk is ascribed a uniform 
height and size. Nodes may be placed at a height of 50mm, 
100mm, or 150mm above the piano keyboard surface cor-
responding to temporal durations of 5 seconds, 10 seconds, 
and 15 seconds respectively. Thin white lines are used to 
connect the key to the centre of nodes which helps facili-
tate node-pitch identification particularly when node den-
sity increases. White nodes are always positioned just 
above the surface of the keyboard at a height of 20mm. In 
a similar way to height assignments, nodes may be in one 
of three sizes, small (5mm), medium (10mm), large 
(20mm) corresponding to dynamic levels pp, mp, and mf 
respectively. 

The first tweet analyzed upon commencement of a per-
formance, the initial baseline tweet against which all future 
tweets are measured for similarity, is mapped and remains 
anchored to the lowest region of the piano keyboard. Un-
like color mappings of all subsequent tweets, each word 
within this baseline tweet is mapped to a white colored 
node, again chosen from a predetermined set of pitches. As 
new tweet data is scraped and analyzed, the spatial distri-
bution of the nodes contained within this baseline tweet 
visualization is transformed as measures of its similarity 
with new tweets varies. Spatial transformation of the visu-
alization is performed with simple Max matrix rotation ob-
jects which displace node distributions within the octave. 
The two types of transformation are shown in Figure 10. 
The correlation of a spatial transform to a melodic permu-
tation has, of course, numerous precedents in composi-
tional practice most notably perhaps in the work of Xena-
kis [17] and Kagel [18] not to mention the ultimately spa-
tial transformations of twelve-tone rows. 

 



 

 

 
 
Figure 10. Matrix transformations – a) left displacement 
by one cell (upper), and b) stretching. 
 

As new tweet information is visualized and transfor-
mations of the initial “baseline” tweet are processed, the 
interpretive options presented by the performance score 
vary. During performance, the pianist cycles through per-
formance of each noun chunk harmonic unit in an order of 
their choosing. Linear phrases may be constructed from 
any visible white nodes or they may alternatively be per-
formed as grace note filigrees to the harmonic structures 
referenced by noun chunks. The mapping of Figure 11a, 
for example, may be interpreted as shown in Figures 11b. 
For simplicity, dynamics and durations are not precisely 
prescribed. 

 

 
 

Figure 11. Possible interpretation of the performance 
score of The Twittering Machine – a) the performance 
score omitting node size and height information, and b) a 
possible interpretation. 
 

5. TECHNICAL OVERVIEW 

Although TM runs as a standalone application developed 
in Unity3D, it is dependent on both Twitter data, and the 
prototyping mapping software. Developed in C#, it com-
prises code that parses data received via UDP which is then 
mapped to the parameters of various 3D game objects 
(spheres, lines, and text fields). The developed application 
is then compiled deployed to the HoloLens 2 via the Visual 
Studio IDE. 

 
6 https://developer.vuforia.com 
7 https://www.wikitude.com 

5.1 Holographic Anchoring 

The most significant technical challenge faced during de-
velopment of the TM application, was the accurate spatial 
placement of the holograms. The work was initially devel-
oped on the original HoloLens hardware, a now deprecated 
device superseded by the HoloLens 2. Consequently, the 
readiest solution to the challenge of hologram placement 
was with fiducial markers, see Figure 12, placed on the in-
side lid of the piano. While there are several commercially 
available SDKs specifically designed to facilitate image 
detection and hologram placement, notably those devel-
oped by Vuforia,6 and Wikitude,7 neither proved to be ef-
fective solutions for TM. Vuforia exhibited significant la-
tency between detection of an image and placement of a 
hologram and the reliability of image detection was incon-
sistent or at least not consistent enough for the purposes of 
live musical performance. The Wikitude SDK was even 
less suitable because it was unable to access the 
passthrough, built-in camera of the HoloLens. 

 
 

 
 
Figure 12. Sample markers used in hologram placements. 
These markers were placed at discrete locations inside the 
piano lid with hologram placement correlated accordingly, 
for example, displaced forward along the z-axis towards 
the pianist and slightly down along the y-axis towards the 
piano keyboard. 
 

The most robust, reliable, and efficient image detection 
with the original HoloLens hardware was achieved with 
the ARToolkit through a modification developed by Long 
Qian [19] based on the use of ArUco markers [20].  

On the HoloLens 2, many of the challenges experienced 
in accurate hologram anchoring had been resolved thanks 
to several new device affordances including built in QR-
code detection,8 and the extraordinarily powerful new ob-
ject anchoring features integrated within Microsoft Azure. 
While the original HoloLens had the ability to use spatial 
anchors to facilitate the sharing of holograms across mul-
tiple users in the HoloLens 2, these were somewhat cum-
bersome to use and did not maintain persistence. In con-
trast, the HoloLens 2 features object anchoring, which un-
like spatial anchors, can be aligned to objects such as a pi-
ano keyboard which will persist across instantiations. This 
capability mitigated the need to use fiducial markers phys-
ically attached to the piano, instead directly aligning holo-
grams with particular piano keys which proved sufficiently 
reliable for application in TM. 

8 https://docs.microsoft.com/en-us/windows/mixed-reality/develop/ad-
vanced-concepts/qr-code-tracking-overview 



 

 

5.2 UDP Control 

In TM, the data received by the HoloLens 2 is sent from 
Max via the UDP protocol [21]. This requires the data to 
be processed as symbols and sent via standard udpsend ob-
jects to the internet protocol (IP) address of the HoloLens 
2. For ease of development and testing, the four tweets vis-
ualized on the piano keyboard are assigned unique port 
numbers. As the data received by the HoloLens 2 via UDP 
consists of only score control data, issues of latency were 
not of concern. 

Figure 13 presents a schematic of The Twittering Ma-
chine’s entire communication protocol. 

 
Figure 13. Technical schematic of The Twittering Ma-
chine. 
 

6. FUTURE WORK 

The development of The Twittering Machine involved the 
resolution of more complex technical challenges than any 
of my previous work with either the HoloLens or genera-
tive scores more broadly. While much of this was brought 
on by technical constraints and limitations, much was also 
related to challenges of a more aesthetic nature, namely on 
how Twitter data might be correlated to engaging musical 
structure and expression. 

Further study into how the user experience (UX) of the 
pianist might impact score design considerations is also an 
area requiring considerable investigation. Factors such as 
head mounted display (HMD) comfort, color fidelity, and 
image stability [22], for example, are just some of the areas 
in which UX concerns play an important role in determin-
ing the effectiveness of a data visualization.    

Extended reality (XR) hardware and applications are 
evolving rapidly with consumer awareness and interest in 
the metaverse ensuring a significant degree of concomitant 
commercial development. It is hoped that with the release 
of more consumer-focused hardware,9 more researchers 
and creative practitioners will be able to leverage the af-
fordances of the technology for innovative creative expres-
sion. The author is particularly interested in exploring how 
networking affordances might enable new forms of collab-
orative experience for users in a shared 3D virtual space 

 
9 Consumer technology journals predict new mixed reality hardware 

from Apple, Facebook, and Magic Leap within the next 12-18 months. 

and how these experiences might be facilitated through 
new representational paradigms.  
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