
UNIVERSITE PARIS SORBONNE / IRCAM

PARIS



First International Conference on Technologies for Music Notation and Representation
TENOR 2015

28-30 May, 2015
Université Paris-Sorbonne / Ircam

Paris



Proceedings published by :
Institut de Recherche en Musicologie, IReMus
2, rue de Louvois 75002 Paris

ISBN : 978-2-9552905-0-7
EAN : 9782955290507

Editors :
Marc Battier
Jean Bresson
Pierre Couprie
Cécile Davy-Rigaux
Dominique Fober
Yann Geslin
Hugues Genevois
François Picard
Alice Tacaille

Credits :
Nicolas Taffin (Logo design)
Nicolas Viel (Layout design)

All rights reserved. No part of this publication may be reproduced in any form or by any means
without the permission of the publishers or the authors concerned.

All copyrights remain with the authors.





TENOR 2015

First International Conference on Technologies
for Music Notation and Representation

Music notation serves the needs of representation, writing and creation. New musical forms such
as electronic and/or interactive music, live coding, as well as the migration of musical instruments
to gestural and mobile platforms, hybridizations with dance, design and multimedia tend to extend
the notion of score in contemporary music, revisiting it through new forms of writing, and spreading
it over different media. Until recently, the support provided by computer music to the field of symbo-
lic notation remained fairly conventional. However, recent developments indicate that the tools for
musical notation are today ready for a move forward towards new forms of representation.

Musical notation, transcription, sonic visualization, and musical representation are often associa-
ted in the fields of musical analysis, ethnomusicology, and acoustics. The aim of this conference is
to explore these recent mutations of notation and representation in all these musical domains. The
first International Conference on Technologies for Music Notation and Representation is dedicated
to theoretical and applied research and development in Music Notation and Representation, with a
strong focus on computer tools and applications, as well as a tight connection to musical creation.

The scholarly conference, posters and demo are taking place at Paris-Sorbonne University and
Ircam.

Organizing committee
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Keynote

Does musical notation have a cultural centre?

In music encoding the expressions “common music notation” (CMN) and “common-practice per-
iod” are used freely as umbrella terms to cover European art music from 1700 to 1950. We use
these terms as if a uniform understanding could be assumed. Increasingly, though, CMN is invoked
to exclude music of three categories—early music, recent music, and non-Western music. If we
examine CMN more closely, especially from the perspective of digital manipulation of some kind,
we are inclined to keep chipping away are elements of some music within CMN to exclude particu-
lar or idiosyncratic repertories—Verdi operas, Tchaikovsky symphonies, the music of Béla Bartók
and Zoltán Kodály, Western non-classical music of particular kinds, music that fulfills pedagogical
needs, Braille Music Notation, and so forth. We also quickly discover that early music is not one
“thing” in terms of notation but a cornucopia of notational styles, many of them less fully specified
than the average score of today.

In the end, the same can be said of CMN: to the extent that written music is a compromise
between a world of imagined sound and an practical means of enabling others to interpret it, the
most seemingly conventional scores sometimes pose problems for which the encoder must choose
between convention and reason, or else invent a new graphical means of expression. This is what
has given rise in recent decades to frequent calls for new methods of notation, which in turn may
threaten to undermine the usually serviceable language of CMN. While enabling music to seek new
directions, we must be wary of invoking the “silo” practices of medieval scriptoria, in which music
was “notated” exclusively for the use of a few individuals well known to the scribe.

E. Selfridge-Field Eleanor Selfridge-Field, Consulting Professor Music, is a musicologist and digi-
tal humanities scholar at Stanford University, where she heads the Center for Computer Assisted
Research in the Humanities, an affiliate of the Packard Humanities Institute. She is the author of 16
books in digital musicology and 5 in historical musicology. Her teaching, most of it in collaboration
with Craig Sapp, focuses on music representation systems and music-information retrieval.

Eleanor Selfridge-Field
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ABSTRACT 

Lead sheets are music scores consisting of a melody and 

a chord grid, routinely used in many genres of popular 

music. With the increase of online and portable music 

applications, the need for easily embeddable, adaptable 

and extensible lead sheet editing tools is pressing. We 

introduce LeadsheetJS, a Javascript library for 

visualizing, editing and rendering lead sheets on multiple 

devices. LeadsheetJS provides lead sheet editing as well 

as support for extensions such as score augmentation and 

peer feedback. LeadsheetJS is a client-based component 

that can be embedded from arbitrary third-party websites. 

We describe the main design aspects of LeadsheetJS and 

some applications in online computer-aided composition 

tools. 

INTRODUCTION 

A lead sheet is a specific type of music score consisting 

of a monophonic melody with associated chord labels 

(see Figure 1). Lead sheets are routinely used in many 

styles of popular music such as songwriting, jazz, pop or 

bossa nova. 

With the rise of online music communities using 

performance or pedagogical applications, there is an 

increasing need for tools for manipulating music scores. 

In this context, music notation takes an important role, 

and in particular lead sheets, which are the main form of 

score for popular music. There is also a need for web-

based tools for visualizing, playing, and editing lead 

sheets collaboratively. Such tools should also work on 

various devices, following the trend in using web 

applications on mobiles and tablets. Finally, these tools 

should intercommunicate easily with other tools, e.g. by 

being embeddable in third-party websites. 

The most popular score editors, Finale and Sibelius, 

are designed as desktop applications. As such they cannot 

be used online, even though cloud features can be added, 

e.g. to share scores by exporting them to the web [9]. The 

open-source desktop-based editor MuseScore
1
 provides 

features for sharing scores but does not provide directly 

online editing. There are many online tools to edit and 

view scores, but they do not rely on web standards, and 

often require the installation of a plugin on the web-

browser. Some tools, such as NoteFlight
2
, Scorio

3
 or 

Flat.io
4

, do follow standards and produce machine-

readable scores, but they are not designed specifically for 

lead sheets. For instance, they do not support chord 

notations, an important feature of a lead sheet. 

Besides offering basic score editing services, online 

lead sheet tools should provide features for augmented 

editing, e.g. to be tailored to pedagogical or social 

contexts. The ability of adding heterogeneous graphic 

objects such as colored layers, text or images, is crucial to 

enable collaboration between users as a way for giving 

feedback on certain parts of the score.  INScore [4] 

supports various graphical objects, but is not easily 

embeddable in an online application and it is more 

focused on real-time rendering of interactive music scores 

[6] for new forms of composition and performance.  

This paper presents LeadsheetJS a Javascript library 

for storing, visualizing, playing, editing and making 

graphical annotations on lead sheets. In the following 

section we describe the main features of the library. Then 

we give some hints about its implementation. We finally 

describe tools built on top of this library.  

LEADSHEETJS 

LeadsheetJS is a Javascript library for lead sheets. It 

enables the edition and visualization of lead sheets under 

conventional formats, as well as rendering, playing and 

storing lead sheets in a database. Figure 2 shows how 

LeadsheetJS interfaces with the player, the menu for 

editing and the rendered leadsheet.   

LeadsheetJS provides tools for users to collaborate and 

give feedback to each other by highlighting certain parts 

                                                           

1 
http://musescore.org/ 

2 http://www.noteflight.com 
3 http://www.scorio.com/ 
4 https://flat.io/ 

Copyright: © 2015 Daniel Martin et al. This is an open-access article 

distributed under the terms of the Creative Commons 

Attribution License 3.0 Unported, which permits 

unrestricted use, distribution, and reproduction in any medium, provided 

the original author and source are credited. 

 
1



of the lead sheet and commenting or suggesting 

modifications. LeadsheetJS has been implemented in 

Javascript, the main programming language for web 

browsers. This makes LeadsheetJS web-friendly and 

easily embeddable in third-party sites, as well as 

adaptable to several devices. 

In the next sections we describe the main features of 

LeadsheetJS and we give a detailed explanation about the 

main design and implementation aspects. 

Figure 1. The lead sheet of Alone together by Dietz & Schwartz, as 

found in a typical Fake Book. 

Figure 2. Alone together by Dietz & Schwartz, rendered in a browser 

with LeadsheetJS 

1 Peer feedback on lead sheets 

 “The one true comment on a piece of music is another 

piece of music”, Stravinsky [17]. 

Music composition, as well as music learning, is a 

domain in which feedback on pieces being composed 

plays a major role. Feedback is traditionally provided by 

a teacher. Nowadays, on-line learning websites provide 

tools for peer-feedback in which learners can produce and 

review feedback made by peers.  

The possibility of giving feedback on the audio 

representation of a piece of music has been addressed in 

previous works, e.g. [19, 20]. However, by commenting 

on pure audio, i.e. on a rendered waveform, users are 

limited to commenting on given time spans, whereas by 

commenting on a lead sheet, users can refer directly to 

the musical elements making up lead sheets, such as 

notes, chord labels, chord transitions, bars or structural 

elements (see Figure 3). 

Figure 3. Examples of annotations on specific parts of a lead sheet. 

In LeadsheetJS, feedback can be given at three levels:  

a) Musical feedback: the basic level of feedback 

is musical. That is, a suggestion of a 

modification of a certain part of the lead 

sheet, such as changing certain notes, or 

certain chord labels,  

b) Text feedback: musical suggestions can be 

explained with an explanation in the form of 

text comment,  

c) Audio feedback: sometimes a musical idea is 

better expressed by being played in an 

instrument. Users can record a musical 

snippet, upload it and associate it to a specific 

metrical location in the lead sheet.  

2



2 Embeddability 

Arbitrary websites can render lead sheets by importing 

the LeadsheetJS library in the HTML source code. New 

lead sheets can be created or imported and rendered and 

edited from the site. As an example we show a website in 

the MusicCircle platform [19], displaying the lead sheet 

Blue Room by Rodgers & Hart (see Figure 4). 

First, the LeadsheetJS library is imported in the HTML 

page. Then, the lead sheet of Blue Room is imported from 

a database (LSDB, described later) in our JSON lead 

sheet format through the LSDB API, which allows 

external sites to retrieve lead sheets. Finally, the JSON 

text is converted to a LeadsheetJS object and displayed in 

the page (see Figure 5). 

Figure 4. A lead sheet view embedded in a third party site. 

Figure 5. Architecture for embedding LeadsheetJS. 

3 Multi-device 

Web applications are not accessed only from a desktop 

computer but also from tablets and mobile phones: 

responsive web design has become essential for designing 

web applications. To that aim, LeadsheetJS resizes 

automatically scores depending on the width of the 

screen. This way it can be visualized in devices with 

different screen sizes such as tablets or mobile phones 

(see Figure 6).  

 

 

 

Figure 6.  LeadsheetJS on a 1024x768 tablet.  

4 Audio wave visualization  

LeadsheetJS does not handle only symbolic information. 

Recordings of the performance of a lead sheet can also be 

associated to the lead sheet. LeadsheetJS provides 

visualization of the recording’s waveform synchronized 

with the lead sheet, so that on top of each measure, the 

waveform of the recording part corresponding to that 

measure is displayed (see Figure 7). This feature is useful 

for musicians who record themselves performing a given 

lead sheet. They can then listen to their performance and 

see at the same time the lead sheet and the audio 

representation. 

Figure 7.  LeadsheetJS visualizing Solar, by Miles Davis, and audio 

recording displaying 

5 Design 

LeadsheetJS is a complex library that provides many 

functionalities (editing, visualizing, playing, storing). 

From an architectural point of view, it needs to be 

maintainable, scalable and extensible. Furthermore, 

modularity is required as users may need to use only 

certain features of LeadsheetJS. For example, a music 
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blogger may want to visualize and play lead sheets in her 

blog without allowing edition or audio visualization. 

The design of LeadsheetJS is module-based. It is 

inspired by Zakas’ architecture [21] in which every 

module is an independent unit that does not need any 

other module to work. Zakas’ architecture is based on the 

MVC (Model-View-Controller) architecture. Every 

module has its own model, view and controller classes. 

Each module is composed of a set of classes. There is one 

file per class. In total LeadsheetJS contains about 150 

classes. 

LeadsheetJS is a client-based Javascript library, i.e. it 

runs in the browser. However, certain functionalities 

require communication with a server or a database, such 

as storing or retrieving lead sheets. Databases and servers 

are not part of LeadsheetJS, yet it provides modules to 

communicate with them. 

The architecture scheme is shown in Figure 8. The 

central module is Leadsheet Model. All modules depend 

on it since they need it in order to work. Modules Viewer, 

Player and Interactor provide visualization, playing and 

edition functionalities respectively. The Annotation 

module provides graphic annotation for peer feedback 

purposes. The Format exporter/importer modules is a 

converter to various formats so that the represented lead 

sheet can be sent to (or received from) other applications. 

The Ajax module facilitates the communication to a 

server. Therefore, it is used by the modules that depend 

on a server: the Data Base module, which is in charge of 

storing the lead sheet to a database in a given format, and 

the modules that are analysis tools which we describe in 

section 3. 

Figure 8. Module architecture of LeadsheetJS. 

Thanks to its modular nature, LeadsheetJS can be 

easily extended by adding modules that communicate 

with the existing ones.  

In Figure 9 we show an example of LeadsheetJS 

embedded within a complete system with a client/server 

database system where LeadsheetJS is the client part, and 

PHP is the language on the server side that manages user 

sessions and persistence (saving lead sheets into a 

MongoDB database). The Ajax module is in charge to 

send requests to the server. For example, in order to store 

a lead sheet in a database the Database module will send 

the data to the server as an HTTP request through the 

Ajax Module. 

The core module, Leadsheet Model, represents a lead 

sheet. A lead sheet consists of a melody that is in most 

cases monophonic, and a chord label grid representing the 

harmony. From a structural point of view, a lead sheet is 

a hierarchical structure composed by sections, which are 

composed of bars, which in turn are formed by a list of 

notes (a melody), and a list of chord labels. Each of these 

levels defines specific attributes: at the top level, the lead 

sheet has a composer, a title, a style as well as musical 

attributes such as global key and time signature. Section 

related information attributes are section name, number 

of bars, number of repetitions and number of endings. 

Bars may also have specific time or key signature 

changes, as well as structure labels like coda or segno. 

Finally, the lowest levels of the hierarchy are notes and 

chord labels. 

Figure 9. Example of a client-server database structure using 

LeadsheetJS. 

The example in Figure 1 shows a lead sheet as found 

in a typical Fake book, with its attributes such as title, 

“Alone Together”, composer “Howard Dietz and Arthur 

Schwarz”, style “Medium Ballad”. This lead sheet has 

two sections: the first one contains 14 bars and two 

endings; the second one has 12 bars.  

The Leadsheet Model module enables applications to 

store and retrieve information about a lead sheet such as 

its structure, a specific bar, a chord label, or a group of 

notes, as well as metadata associated to it such as its title, 

composer, style, time signature or key signature. Typical 

queries include get the notes of the first bar, get the 

number of sections, etc. The Leadsheet Model also 

enables creation of new lead sheets or copies. 

5.1 Viewer 

The Viewer renders lead sheets on the web browser 

through an HTML5 canvas API, which allows generating 
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graphics dynamically. The Viewer uses Vexflow
5
, a low 

level score rendering Javascript library. Vexflow 

addresses low level rendering of notes and staves, 

whereas LeadsheetJS specifies what to draw in each bar 

as well as other higher level tasks such as determining 

how many bars to display per line.  

5.2 Interactor 

The Interactor component provides the editing part by 

using the library JQuery
6

 which, among many other 

things, takes care of event handling. Keyboard and mouse 

events are caught by the Interactor to perform desired 

transformations on an edited lead sheet. We introduce 

three levels of edition: notes, chord labels and bars. Note 

edition works like in any traditional score editor. Chord 

label edition provides specific interaction schemes such 

as completion to suggest the most relevant chord types in 

a given context (see Figure 10). LeadsheetJS contains a 

comprehensive database of over 300 chord types, 

collected during the process of a lead sheet database 

compilation described in section 3.1.  

Figure 10. Chord label completion to speed up edition. 

5.3 Player 

LeadsheetJS provides a MIDI Player which uses the 

library MidiJS
7
 to play a lead sheet, i.e. both the melody 

and the chord labels. The chord labels are transformed 

into MIDI chords. 

The chord labels are represented by a pitch and a chord 

type. E.g.: in C# maj7, C# is the pitch and maj7 the chord 

type. The chord type database provides information about 

the note degrees for each chord type. For instance for 

maj7 the degrees are I, III, V and VII.   

In order to play chords, LeadsheetJS transforms chord 

labels into sets of MIDI notes by calculating the notes 

                                                           

5 http://www.vexflow.com 
6 http://jquery.com/ 
7 http://mudcu.be/midi-js/ 

degrees of the chord type relative to the root pitch. E.g.: 

for C# maj7, notes are C#-E#-G#-B#. The player plays 

them arbitrarily in the 4
th

 octave, so MIDI notes are 61-

65-68-72. Other more refined MIDI players can easily be 

defined by the user. 

5.4 Javascript Module Management 

As a client-based application, LeadsheetJS runs on the 

browser, so each Javascript file needs to be imported in 

the HTML source code through the script tag. This may 

be an issue as we need to include explicitly each file and 

there are around 150 classes, while not all classes are 

always needed. For example, an instance of LeadsheetJS 

could only show a lead sheet and play it: in that case 

there is no need for editing, so the Interactor module does 

not need to be loaded. To optimize loading time, and 

ensure only needed modules are loaded, LeadsheetJS uses 

RequireJS 
8
, a tool to manage dependencies in Javascript. 

In order to provide communication between modules 

in an uncoupled way we make an intensive use of the 

Mediator design pattern [12]. The Mediator pattern 

encapsulates the way different modules interact. It 

enables a module to subscribe to an action of another 

module which publishes it.  

For example, when the Leadsheet Model module 

changes the pitch of a note, it publishes that action; that 

is, it sends a message to a mediator telling that the note’s 

pitch has changed. The mediator checks which modules 

are interested in the action of note pitch changed; that is, 

which modules are subscribed, and informs them. This 

way, the Viewer module, which is subscribed to note 

pitch changed, knows it must redraw the score.  

The advantage of using this pattern is that Leadsheet 

Model and Viewer do not communicate directly, which 

brings to uncoupled code, thus, more scalable and 

maintainable. 

5.5 Javascript implementation 

Javascript is a prototype-based language rather than a 

class-based one like C++ or Java.  In order to define 

classes, there are mainly two approaches: to use Object 

literals or to use prototypes. By using object literals to 

define classes one can use private variables by using the 

Module Pattern [12]. The Module Pattern takes 

advantage of closures to simulate private variables, which 

are not natively supported in Javascript. On the other 

hand, using prototypes to define classes one cannot 

emulate private variables, but this approach has the 

advantage that it is less memory consuming, since all the 

methods of all instances of a class share the same 

memory. We have mainly used the Prototype approach as 

                                                           

8 http://requirejs.org/ 
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we are using multiple instances of many classes such as 

NoteModel or ChordModel.  

6 JSON lead sheet format 

LeadsheetJS provides a format to store lead sheet data in 

a database. The most common format for representing 

music scores is MusicXML [7]. LeadsheetJS does not use 

MusicXML for the following reasons: first, in 

MusicXML, chord labels’ information is associated to a 

note, so the start beat of the chord is the same as that of 

the associated note. This makes it difficult to represent 

chords whose start beat does not match with the start beat 

of a note. This might not be a problem for other kinds of 

scores, but in lead sheets chord labels are crucial. That is 

why in our lead sheet format each chord label has its start 

beat information. Second, MusicXML provides exact 

formatting: it saves both musical and visualization 

information; e.g. for each note it saves the stem direction 

and the exact position in which it will be shown. 

LeadsheetJS only needs the musical information to render 

the lead sheet. The visualization aspects (stem directions, 

position of each element…etc.) is decided by Vexflow. 

There are other human-readable music notation 

formats like ABC [3] and Lilypond [11]. Both are 

designed to let users create easily scores by writing text 

which is compiled by a software that produces a rendered 

score as an output. Therefore, they are not designed to be 

used in WYSIWYG
9
 editors. The Guido Music Notation 

format [5], designed to be rendered by the Guido Engine 

Library [2] is similar to them, but is not only a 

representation format; it also supports ‘functions’ as 

instructions for transforming the score (e.g. transposing a 

melody). In our case, readability is not a priority as we do 

have a WYSIWYG editor. Instead, we have designed a 

JSON (JavaScript Object Notation) based format [1], as 

JSON is a popular lightweight format which is widely 

used in web APIs. For example, the GUIDO API web-

service is based in JSON [18]. Further, a lead sheet has a 

hierarchical structure which can be very well represented 

by the JSON format (see Figure 11). The decision of 

using JSON has distanced us from using other formats 

like MEI [16], a notation encoding standard based on 

XML similar to MusicXML.  

However, LeadsheetJS is compatible with MusicXML 

as it provides a parser to transform MusicXML to our 

JSON lead sheet format, and it will eventually support 

other formats too (Lilypond, Guido and ABC).  

 

 

 

                                                           

9 What You See Is What You Get 

Figure 11. The lead sheet Alone together represented in JSON.  

OTHER APPLICATIONS 

This section describes applications using LeadsheetJS in 

various ways. 

1 Lead sheet Database (LSDB) 

The Lead sheet Database (LSDB) [15] is a 

comprehensive, on-line database of lead sheets for jazz 

and Brazilian music. Currently LSDB contains over 

10,000 songs from 76 different song books, and over 300 

different chord types. 

Songs are entered by professional musicians using 

LeadsheetJS. Average time for entering songs is about 3 

minutes, thanks to the availability of many short-cuts for 

fast editing. An LSDB API stores/retrieves lead sheets 

from the database, as described in section 2.2. This 

database is used for musicological analysis and music 

generation applications such as the tools described in 

section 3.2 

The LSDB database uses MongoDB
10

, a non-relational 

database (NoSql). NoSql databases are based on 

collections that contain JSON documents, which are 

structures of nested arrays and objects (objects are set of 

key-values). The biggest drawback of using a NoSql is 

that some important features of SQL databases such as 

joins or referential integrity cannot be performed at the 

database level, and have to be managed from the code of 

the server that produces the queries. This can be an issue 

in applications with complex databases, but in our case it 

is not, because the database structure is quite simple: 

there is a main collection of lead sheets, and then other 

related collections like sources and composers, so 

integrity is not as crucial as in other more complex 

systems. Joins are managed from the server language's 

code. Moreover, the JSON structure on NoSql databases 

is ideal to represent tree-based structures like lead sheets, 

whereas representing a tree in a SQL is quite more 

complex. 

 

                                                           

10 
http://mongodb.com/ 
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Figure 12. Part of LSDB content as shown in the web. 

2 Automatic Feedback on lead sheets 

Feedback can sometimes be provided automatically. 

LeadsheetJS provides various tools that produce 

automatic feedback to users who are trying to compose a 

song. This feedback can be either in the form of an 

analysis of the lead sheet, or in the form of generations 

and transformations of a lead sheet.  

For instance, a Chord Sequence Analyzer tries to find 

which style or styles a sequence of chords expresses. A 

style is defined here by a corpus of songs, corresponding 

to a given composer; e.g. the style of Miles Davis [8]. 

The Chord Sequence Analyzer identifies the longest 

subsequences that can be analyzed in the style of a given 

set of key composers. This analysis is performed by 

computing the similarity of the chord sequence with 

several different composers' models. These models are 

statistical models generated from the LSDB. 

Such a tool may be used to get information about how 

original or similar a lead sheet is, with regards to the 

LSDB database. Figure 13 shows such an analysis for the 

chord sequences Solar with a map showing a time-line of 

the song and each composer (Pepper Adams, Charlie 

Parker, Duke Ellington and Michel Legrand)  

Another example is the Harmonic Analysis tool that 

finds the local tonalities of a lead sheet given its chord 

label sequence [13].  Figure 14 shows two examples of 

analysis: Gm7 – C7 has been analyzed as F Major 

chords, whereas Fm7 – Bb7 are analyzed as Eb Major. 

These chords are part of Solar, by Miles Davis. 

Other automatic feedback tools have been defined, 

such as a Chord Substitution tool which, from a given 

chord or chord sequence, suggests alternatives based on 

chord substitution rules that are learnt from a specific 

corpus. 

The Harmonizer tool, given a monophonic melody, 

proposes a multi-voice harmonization in a given style. 

E.g.: one can harmonize the melody of Coltrane’s jazz 

standard Giant Steps in the style of Wagner or Bill Evans 

[14]. 

Figure 13. A chord sequence analyzer grafted on top of LeadsheetJS. 

Figure 14. Harmonic analysis displayed on parts of Solar, by Miles 

Davis. 

Figure 15. LeadsheetJS architecture and the data flow of chord 

sequence analyzer. 

Figure 15 shows the architecture of these tools and 

illustrates the process for the Chord Sequence analyzer 

tool: The user clicks on a button 'Analyze chord 

sequences'. LeadsheetJS catches the user action and 

requests the chord sequence analysis of Solar, sent in 

JSON format through the Ajax module. The request is 

sent to the server where the Leadsheet Web API, which is 

a server extension of LeadsheetJS, computes the chord 

sequence analysis. The response is sent to the client, 
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where LeadsheetJS presents it in the User Interface as a 

time-line map.  

3 Flow Composer 

In the context of the Flow Machines
11

 project about style 

imitation, an online composition tool called Flow 

Composer was designed, to help a composer generate a 

lead sheet using different “styles”. Again, styles are 

defined by corpus of songs taken from the Lead sheet 

Database. 

The main idea is that a composer can start to create a 

song and leave some empty measures in which there will 

be only silences. Then, he queries the system to fill those 

blanks in a given style. Those blanks can be on the 

melody, represented by silences, or on the chord grid, 

represented by No Chords (NC). The system will 

generate a melody or chord labels to fill them taking into 

account the style chosen by the user, and also constraints 

of continuity. Composers usually don’t want a whole new 

random song; they rather want the system to help them 

with certain parts of their composition.  The composer 

can accept or reject all or part of the system’s proposition. 

Flow Composer tools allow composers to have at any 

moment a full control on the lead sheet: there is a history 

feature in which every step is saved, so they can go back 

to a previous state. 

Flow Composer is built on top of LeadsheetJS and 

uses the same modular approach. LeadsheetJS is used in 

Flow Composer to listen, view and edit lead sheets. We 

show in Figure 16 how Flow Composer works. In the 

first image (on the top) a user is composing a bossa-nova. 

In the song there are two parts. The second part starts at 

measure 7 (with note F and chord F7) and is not shown in 

the figure. The second part is ok, but the composer does 

not know how to finish the first part so that it transitions 

well to the second part. So he leaves it empty with 

silences and no chords (NC), and queries Flow Composer 

to fill the empty part in the bossa-nova style. The second 

image (on the bottom) shows the result proposed by Flow 

Composer: it has filled the empty part by proposing a 

melody and a chord grid. Interaction may then proceed by 

accepting parts of the suggestions and/or querying other 

solutions. 
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http://www.flow-machines.com 

Figure 16. Flow Composer completion in blue. 

4 Experiment on feedback in composition 

PRAISE
12

 (Practice and Performance Analysis Inspiring 

Social Education) is a social network for music education 

with tools for giving and receiving feedback in online 

communities. In the context of PRAISE we have built a 

tool for feedback in composition in which composers can 

compose a lead sheet and share it with other composers 

who can then provide feedback. This tool is based on the 

annotation module of LeadsheetJS. 

In the PRAISE project, we designed an experiment to 

determine the impact of feedback in lead sheet 

composition [10]. We evaluate whether musical peer 

feedback, just like in the example explained in section 

2.1, may actually improve or not the musical quality of a 

composition. In a first phase, participants are asked to 

compose a short song (8 bars). In the second phase they 

are invited to suggest modifications of other participants’ 

compositions. Then participants are asked to reconsider 

their original song and try to improve it. The point is that 

a group of subjects will have received feedback whereas 

another group will have not. We then evaluate to which 

extent the quality of the improved composition of those 

subjects who received is better than that of those who did 

not. The quality evaluation is estimated from a listening 

panel. LeadsheetJS was used to implement this 

experiment, including modules for editing and playing for 

the composition phase and the Annotation module for the 

feedback phase. 

The composer of the lead sheet can later review 

suggestions and accept them or not. 

The feedback process is illustrated as follows. First, 

user Bruno composes a song and edits it with 

                                                           

12 http://www.iiia.csic.es/praise/ 
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LeadsheetJS. Later, user Silvia looks at it and plays it. 

She decides to make some suggestions on certain notes. 

As shown in Figure 17 once she has saved the suggestion, 

she can perform other actions, shown in the contextual 

menu : 

- Add Comment: add an explanation of her musical 

suggestion, 

- Upload sound: upload a sound recording related to 

the suggestion, 

- Modify: she can decide to modify the suggestion she 

just saved, 

- Remove: remove the suggestion. 

Figure 17. A user makes a suggestion on a specific part of a lead sheet. 

Later on, Bruno can review all suggestions by 

switching between the original elements and suggested 

ones and listen to them. Figure 18 shows a lead sheet 

with three suggestions. Bruno clicks on one of them to 

see the associated explanation. 

Figure 18. A user checks the suggestions received. 

Finally, if Bruno likes the suggestion he can accept it 

so that the suggestion is merged with the whole song by 

right-clicking on the suggestion (see Figure 19). 

CONCLUSION 

We have presented LeadsheetJS, a Javascript library 

for lead sheets. By design, LeadsheetJS is compatible 

with multiple devices and easily embeddable. 

LeadsheetJS also provides various tools for music 

composition such as automatic analysis and peer 

feedback. We have illustrated how LeadsheetJS is used in 

several online music applications. 

LeadsheetJS addresses the needs of online applications 

for composing, generating, sharing or teaching music on-

line. New features are currently investigated such as 

multiple voices management, lyrics, audio based player, 

as well as rendering lead sheets using style-based 

accompaniment generation systems. 

Figure 19. The user accepts a suggestion of modification. 
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ABSTRACT

The Bigram Notation is an alternative approach to musical
notation, based on the chromatic nature of Western music.
As observed historically with alternative notation systems,
their spread and consolidation is based on the existence
of complementary and supportive tools, as ideosyncratic
instruments and specific written material. Accordingly,
we present the binary keyboards and the Bigram Editor, a
graphical bigram score editor with automatic transcription
and reproduction capabilities.

1. INTRODUCTION

It is commonly accepted that the conventional music no-
tation system has its origin in the 11th century with the
tetragram from Guido d’Arezzo. Since then, it has been
evolving and adapting itself along with evolution of musi-
cal language [1], until conforming its modern version.

However, conventional music notation presents a number
of systematic problems [1]; for instance:

• Pitch distances are not equally distributed along the
vertical axis.

• Octave equivalence is not usually present in notation

• The use of accidentals might lead to a variety of
signs for representing the same sound (enharmony)

In addition, conventional notation takes as a reference the
C Major scale. Consequently, writing music far from the C
Major diatonic scale might lead to understandability reduc-
tion. Figure 1 shows an excerpt from Franz Liszt’s ”Hun-
garian Rhapsody No.2”, in F# Major (extracted from [2]).
F# Major is the farthest diatonic scale from C Major (they
only share two notes), and furthermore the passage has nu-
merous accidentals.

In order to reduce the aforementioned problems, a large

Copyright: c© 2015 Andres Perez-Lopez et al. This is an open-

access article distributed under the terms of the Creative Commons

Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

Figure 1. Score excerpt from Franz Liszt’s ”Hungarian Rhap-
sody 2”

number of alternative notation systems has been proposed.
Thomas Reed [3] gathers more than 500 different nota-
tions, being the earliest of them (by H. Richter) first doc-
umented in 1847. Reed also founded the Music Notation
Modernization Association (MNMA) in 1985, which was
the predecessor of the present The Music Notation Project
(MNP), founded in 2008. The MNP’s mission is ”To raise
awareness of the disadvantages of traditional music nota-
tion, to explore alternative music notation systems, and to
provide resources for the wider consideration and use of
these alternatives” [4].

The Music Notation Project has even presented a set of
design criteria for new notation developments [5], based on
the evaluation considerations of a notation comparison per-
formed by the MNMA. The seventeen criteria emphasize
the importance of concepts such as ease of writability and
readability, flexibility, pitch-distance and time-distance pro-
portionality, or octave periodicity.

However, none of those systems have been widely ac-
cepted. Parncutt proposes several explanations for that fact,
highlighting the lack of a big score collection as one of the
biggest potential handicaps [1, 6].

Therefore, we present a new music notation environment,
called the Bigram, which is currently under active devel-
opment. Despite its resemblance with other existing nota-
tion systems, as we will present in Section 2.2, the main
strength of our proposal lies on the fact that it tries to avoid
the aforementioned handicaps (lack of written material).
Accordingly, the Bigram environment is divided into three
main areas:

• Bigram Notation, a state-of-the-art notation system
which meets the MNP criteria
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• Binary Keyboards, layout-modified keyboards with
high resemblance to the Bigram Notation

• Bigram Editor, a graphical software score editor with
automatic transcription and reproduction capabilities.

Those three areas will be discussed in detail in the follow-
ing Sections 2, 3 and 4, respectively.

2. BIGRAM NOTATION

2.1 Notation vs. Tablature

Traditional keyboard layout and conventional notation sys-
tem share the inner structure of white keys - non-accidental
notes (and, of course, full considered note names); there-
fore, conventional notation might be considered a special
interpretation of keyboard tablature.

Parncutt [1] introduces the idea that, for beginners, tab-
lature notation might be the most appropriate, due to its
easiness. However, experimented interpreters might prefer
conventional notation, for its resemblance with our bidi-
mensional perception of pitch and time.

This fact gives us the opportunity to explore a new ap-
proach to musical notation. What if we could design a no-
tation that could resemble clearly the pitch-time graph, but
at the same time be an explicit representation of the fin-
ger positions in the keyboard? Such a system would be,
according to Parncutt, convenient for both beginner and
expert musicians, and would provide a faster learning pro-
cess.

In order to reach that goal, a convenient keyboard layout
should be designed. This keyboard will be discussed in
Section 3.

2.2 Bigram

As a consequence of the previous idea, we developed the
Bigram Notation. It takes its name from the fact that, in the
staff, each octave presents only two equidistant lines, sep-
arated a tritone. Consequently, we preserve the octave pe-
riodicity, and minimize the cognitive overhead of counting
lines to identify the note (both desired criteria from [5]).

Figures 2 and 3 show the A Major scale and the chromatic
scale, respectively, written in bigram notation.

Figure 4 shows the same excerpt from Figure 1 in bigram
notation.

2.2.1 Pitch representation

One of the most predominant characteristics of the bigram
notation is the pitch representation by black and white note-
heads. The A note was (arbitrarily) chosen to be repre-
sented over the first line, and to be black. When ascending
in the chromatic scale, each new note presents a different
color, alternating white and black noteheads (as in Figure

Figure 2. Bigram notation. The A Major scale

Figure 3. Bigram notation. The chromatic scale starting on A

3).
This approach causes the intervals to be color-consistent,
making very explicit the inner structure of melodies and
harmonies, and emphasizing intervalic reading [7]. In ad-
dition, it reduces the amount of required staff lines, facil-
itating note identification and minimizing cognitive over-
head.

Notice that, in Figure 2, the semitone structure of the
Major scale become self-evident. Furthermore, the Listz’s
excerpt (Figure 4) clearly reveals its structure: symmetric
parallel chromatic movements, maintaining the voice’s in-
tervalic relationships.

The bigram pitch structure itself can be seen therefore
as a combination of 6-6 black & white notehead systems
(such as Isomorph Notation by Tadeusz Wójcik or 6-6 Klavar
by Cornelis Pot), with systems with staff lines separated a
tritone (MUTO Notation by MUTO Foundation or Express
Stave by John Keller, 2005) [3].

2.2.2 Rhythm representation

Regarding the rhythmic notation, we opted for a represen-
tation that preserves the time-distance proportionality, as
suggested in the MNP criteria [5]. As in conventional no-
tation, time is divided into bars. Each bar has a number of
pulses, which have a number of divisions. Bars, pulses and
divisions are represented by vertical lines, whose width is
proportional to their position in the time hierarchy.

As an example, the scale in Figure 2 occupies one whole
bar, with four pulses and two pulse divisions. The notes
are placed in each one of the 8 bar divisions.
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Figure 4. Bigram notation example from Franz Liszt’s ”Hungar-
ian Rhapsody 2”

The notes are placed in the space that proportionally cor-
responds to a given pulse or division. When a irregular
subdivision of pulse or division occurs, a number within a
bracket or slur is used to indicate the transient subdivision.

Although notes are expected by default to last until next
note, silence signs are also available. For other articula-
tions, conventional signs are used.

2.2.3 Other Considerations

The bigram system fulfills each one of the seventeen de-
sign criteria for notation design established by the MNP.
We must highlight that, although its development is sub-
ject to continuous evaluation, the potential changes that
might occur will not change radically the basic ideas ex-
posed here.

Regarding further extensions of the concept, the authors
are investigating a compact and adequate way of represent-
ing harmony within the bigram context. Due to the interest
of the authors on jazz, the research is focused on the most
common 4-note chords and its variations.

3. MODIFIED INSTRUMENTS

3.1 Binary Keyboards

As already mentioned in Section 2.1, one of the strengths
of the bigram notation is that it relies on the existence of
keyboards with high resemblance to the written notation.
With such instruments, it would be even possible to play
a bigram notation score without knowing which notes are
being represented (even though this practice is not recom-
mended).

The authors are investigating on the prototype and fab-
rication of such keyboards, which are referred as binary
keyboards. Figures 5 and 6 show two current working pro-
totypes: a MIDI controller and a melodica, respectively.
We believe that, even if the binary keyboard layout differs
completely from standard layout, conventional piano play-
ing techniques might be applied to binary keyboards, since
both layouts share the two-rows key disposition.

The A notes are presented in the keyboards with a differ-
ent color. This fact mimics the bigram notation, in which

Figure 5. Binary MIDI keyboard prototype

Figure 6. Binary melodica prototype

the A notes are situated over the main staff line, and there-
fore used as a reference.

The authors are currently investigating the appropriate-
ness of introducing tactile feedback cues, such as using
different material or introducing marks. The tritone note
(D#), which occupies the central line in the staff, might
also present a distinction.

Those tactile feedback cues might be helpful both for vi-
sually impaired people, and for experienced players, which
might need to know their hands position without looking to
the keyboard (as experienced conventional piano players
usually do using the cues of black keys’ absence).

From the first insight into the binary keyboard layout, it
is possible to become aware of one of its main benefits.
Since it is isomorphic, there only exists two different posi-
tions for playing any passage - starting on a white key, or
starting on a black key. This fact highly contrasts with the
12 potentially different positions in conventional layouts.

3.2 Similar approaches

The presented binary keyboard layout is not a new con-
cept; first references to the idea appeared in 1859. In his
book [8], K. B. Schumann presented his binary keyboard
proposal, in a chapter called ”Das natürliche Sytem” (”The
natural system”). He also described there an alternative no-
tation system based on a chromatic approach. In the same
year, A. Gould and C. Marsh patented the binary keyboard
in the USA [9], with the name ”Keyboard for Pianos”.

Bart Willemse gathers in his website [10] some other his-
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toric binary keyboard proposals, which he calls ”Balanced
Keyboards”.

Another relevant approach can be found in 1882 in the
Janko keyboard [11], which featured several rows of iso-
morphic keys. Among others, it did not succeeded com-
mercially because of the lack of written material, due to
the reticence of publishers (motivated in turn by the musi-
cians’ reticence) [11, 12].

The Chromatone [13] is a modern, digital revision of the
Janko keyboard.

The Tri-Chromatic Keyboard Layout [14] is a layout de-
signed by R. Pertchik, and implemented in his vibraphone.
The layout is identical to the binary keyboard, excepting
for the colors. Three different alternate colors are present,
highlighting the minor third intervals (and, consequently,
the three diminished chords).

We must also mention the Dodeka approach [15]. As in
our research, Dodeka presents a notation system together
with a modified keyboard. The notation system follows a
regular pitch-space configuration, with 3 lines per octave.
The keyboard is a representation of the notation system,
with colour references each major third. However, all keys
are placed in a single row, which might complicate playa-
bility and standard keyboard techniques adoption.

3.3 Conventional instruments

Despite the close resemblance of bigram notation with bi-
nary keyboard, the notation is potentially suitable to all
kind of conventional instruments. Isomorphic instruments,
such as orchestral strings, might appear beforehand as the
most accessible instruments for bigram notation, due to
their intrinsic representation of pitch and intervals. How-
ever, any other instrument might be potentially capable of
performing bigram scores, if the relationship between no-
tation and instrument notes is known.

4. THE BIGRAM EDITOR

As already commented, one of the major problems that al-
ternative notation systems and keyboard layouts faced his-
torically for their widespread adoption was the lack of a
convenient score collection. For that reason, we decided
to implement a bigram notation sofware, which could both
serve as a score editor, and as a automatic transcriptor. We
named that tool the Bigram Editor.

4.1 Implementation

4.1.1 Existing software for alternative notation

The MNP provides references of music edition software
which supports alternate notations [16]. Two applications

are shown as potentially compatible with alternative nota-
tions: Finale and LilyPond.

Finale [17] is a well known score editor. The MNP ex-
plains the method created by John Keller to convert be-
tween notation systems [16], by using staff templates. There-
fore, it would be possible to create a bigram template, which
might have a very low developing cost, and use it for our
purpose.

However, in our opinion, Finale has some drawbacks.
The most important of them is that it is proprietary soft-
ware. We believe that a project such as the Bigram Edi-
tor, constantly evolving and with a high educational value,
should be freely available and customizable - in other words,
free software. Finale’s platform dependency is also a dis-
advantage. Furthermore, its price ($600, $350 for students)
makes it potentially prohibitive.

The other proposed alternative is LilyPond [18]. It is
an original, WYSIWYM approach to score edition. Lily-
pond is highly flexible, and thus it is possible to define the
score’s appearance, allowing the usage of alternative nota-
tions. In addition, it is a muliplatform, free software editor.

Nevertheless, the text-based approach to score edition of
Lilypond might represent a big usability problem for those
not used to code or WYSIWYM interfaces. The Bigram
Editor should encourage users to create music as soon as
possible, minimizing the time spent on learning how to use
the software.

4.1.2 Design considerations

Therefore, we opted for implementing our own custom Bi-
gram Editor. Despite the increase in work load, the deci-
sion gave us the opportunity to fully adapt the software to
our needs. The established design criteria were the follow-
ing:

• WYSIWYG paradigm metaphor for creation and edi-
tion of scores, in order to facilitate its usage

• MIDI import functionality for automatic transcrip-
tion of existing music

• Accordingly, MIDI export functionality for facilitat-
ing score exchange between different notations and
applications

• Score reproduction

• Multiplatform and open source

We decided to implement our system with SuperCollider
[19]. SuperCollider is an environment and programming
language for real time audio synthesis and algorithmic com-
position [20]. Among others, it provides inbuilt GUI man-
agement functionalities, and MIDI in/out and parsing fea-
tures. Furthermore, it is free software and platform-independent.
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Figure 7. Bigram Editor : arrangement view

Although still in beta version, the Bigram Editor is al-
ready available at its code repository [21].

4.2 Features

The main interaction window is called the Arrangement
View (see Figure 7) . It provides a general overview of the
score in a multi-track sequencer style. Users can access
from here to all available functionalities.

4.2.1 Tracks and regions

The musical material is organized into tracks or voices.
Through the menus, the user can create, duplicate or delete
tracks. For each track, following controls are provided:

• Track ID number

• Record/solo/mute controls

• MIDI instrument selector

• Panning and volume controls

Inside each track, users might place regions. A region is
the structural element containing the notes. Three different
tools are available for region managing:

Pointer Select a region and open the Edit View.

Pen Create a new region

Rubber Delete a region

Furthermore, it is possible to move, duplicate, merge and
ungroup regions, through the mouse actions and/or the menus.

The Edit View (Figure 8) provides access to edit the music
material. Users can insert, delete, duplicate or move notes
using the Input (I) and Edit (E) controls. A binary key-
board reference is shown at the left margin of the score,
along with the octave number.

Figure 8. Bigram Editor : edit view

4.2.2 Reproduction

The Arrangement Window provides play/stop and loop re-
production controls; these are managed by the reproduc-
tion bar and the loop bar (vertical red and blue lines in
Figure 7, respectively).

Sound is not synthesized by SuperCollider. Instead of
that, the score is translated to MIDI and streamed in real-
time to a MIDI synthesizer, which is platform-dependent.
Currently, the system is using FluidSynth [22] for Linux,
and default internal synthesizers for Windows and OSX.

4.2.3 File managing

The Bigram Editor provides file save and load functions.
The score state is translated into a simple and custom de-
scription file based in XML. These files are generated au-
tomatically in the temporary folder every time a change in
the score occurs; the undo/redo functions are built upon
this functionality.

Furthermore, it is possible to import multi-track MIDI
files from the menu in the Arrangement Window.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the basis of the Bigram Nota-
tion, and the holistic approach to our alternative notation
considering the notation theory itself, the modified key-
boards, and the score editor.

Several experiments might be run in order to assess the
usability of the Bigram Editor, in terms of Human-Computer
Interaction. However, its usefulness is provided by the fact
that it is currently the only available score editor for the
bigram notation.
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The authors have received good preliminary qualitative
impressions from individual users that already started study-
ing with the bigram system, using the software and the
binary keyboards. Those impressions were specially re-
markable in the case of people with few or very limited
previous musical background or keyboard skills. We must
remark that due to the current limited availability of binary
keyboards, these test experiences cannot still be carried in
a regular basis.

In the near future, an experimental case-study is planned,
in order to evaluate the learning curve and the acquisition
of musical skills in beginners, using the the bigram nota-
tion. That experiment would be a variant of the Parncutt’s
proposal [1], which has never been carried out. Such ex-
periment would consist of two control groups of musical
untrained subjects learning piano, one using conventional
keyboard and notation, and the other using bigram nota-
tion and binary keyboards. The subjects’ acquired musical
knowledge (in terms still to be defined) would be evaluated
over a broad enough period.

Regarding the Bigram Editor, a number of improvements
might be implemented. One of the most relevant features
would be the possibility of editing and exporting the score
in a graphical format. That feature might allow to ob-
tain high-quality scores in a printable version, for its usage
without the computer.

Another potential improvement might be the adoption of
the MusicXML markup language [23] for the description
files. MusicXML is used by most of the score editors and
Digital Audio Workstations; therefore, its adoption might
widen considerably the range of available compositions for
the bigram notation, and the score exchange possibilities.
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ABSTRACT 

Two quantization models for ‘expressive’ rendering of 

complex rhythmic patterns are discussed. A multi-

nesting quantizer captures expressivity by allowing 

fine-grained/high-quality resolution, thus covering the 

automatic transcription of a wide range of rhythmic 

configurations, yielding from simple to rather complex 

music notations. A look-up table quantizer is discussed 

as another model to attain expressivity and musical 

consistency; input is quantized by comparison of 

'rhythmic similarity' from a user-defined data-set or 

look-up 'dictionary'.  

Both quantizers are presented as computing assisting 

tools to facilitate the transcription of rhythmic structures 

into the symbolic domain (i.e. music notation). 

Keywords: Computer Assisted Composition, 

Rhythmic Quantization, One-Level Quantizer, Multi-

Level or Multi-Nesting Quantizer, Look-Up Table 

Quantizer, Accumulative or Sequential Quantizer. 

1. INTRODUCTION 

The process of quantizing numeric series representing 

onset/durations of rhythmic patterns, is a facility 

commonly employed in computer assisted composition 

environments to ease the rendering of input data into 

symbolic music representation (i.e. music notation). 

Robust algorithms for rhythmic quantization not only 

aim to produce an acceptable form of music notation, 

but to ‘interpret’ the input data in a categorical form 

while producing ‘intelligent’ and interesting musical 

results. An expressive quantizer model should take into 

consideration the former aspects, namely, it should 

allow for a logical representation to capture the way 

music material is structured while preserving a rather 

accurate and readable notational rendering of the input 

data, that ultimately, depicts the composer’s notational 

intentions. Neither of these two features are easily 

achieved through the use of computing models when it 

comes to the problem of rhythmic quantization. There 

have been however, interesting quantizing models to 

categorize input data either taken from performance 

situations or generated through algorithmic processes. 

The Connectionist [1], the Bayesian [2] and the ‘Kant-

Quantizer’ [3], are some of those effective quantizing 

models that logically "filter-out" and provide 

"structuring" of the input data to ease the rendering 

process of an automated music notation. Even though 

the logical data parsings of some of those 

aforementioned quantizers allow for effective music 

transcriptions, their notated results are generally 

circumscribed to rhythmic notations of a fairly 

conventional fashion. For instance, the connectionist 

quantizer is a model that operates through a cell-

network system where an initial onset/duration set 

interacts with activation cells to gradually converge to 

an equilibrium state. The equilibrium state seeks for 

simple-ratios between adjacent durations of the initial 

values from the onset/duration sequence; if no simple 

tuplet-ratios are found, the activation mechanism 

adjusts the original sequence until its values are 

rounded to evenly complete a subdivided beat. Within 

this mechanism, an irregular tuplet (if found) must 

follow an equivalent rhythmic figure until the full 

subdivided beat is completed, voiding the case of 

sequentially having, for instance, one irregular tuplet 

after another irregular tuplet of a different species, 

which is the core principle of a multi-nested rhythmic 

notation.  

Most professional "general-purpose" quantizers, such 

as the "omquantify" (Open Music), the "gquantify" 

(PatchWork & PWGL) and the "ksquant" (PWGL) 

among others, treat their input data as linear arrays of 

numbers where durations follow to the next ones 

without determining any relational scheme between 

them. This principle, instead of being a disadvantage, 

permits to generalize and apply the quantization process 

to the most varied sets of data, from arbitrarily defined 

inputs to different algorithmic-generated numeric 

values. As a previous step for final notation output, the 

user of these quantizers can calibrate some quantization 

parameters, thus facilitating a more personal notational 

result; however, the limitations of "general-purpose" 

Copyright: © 2015 Mauricio Rodriguezl. This is an open-access 
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quantizers lacking the supervising of "logical/intel-

ligent" algorithms or user input inspection, are evident 

when, for instance, trying to quantize a simple rhythmic 

pattern of a ritardando figure, whose notational result 

would be most likely quantized with lots of tied 

irregular tuplets, without this resulting quantization 

necessarily showing the simple gesture-figure of a 

deceleration.  

A general-purpose multi-nesting quantizer would not 

necessarily overcome the limitations shared by previous 

"non-logical" quantizers, however, it is claimed that a 

refined level of musical expressivity is achieved when 

the problem of quantization is generalized to capture 

and render complex rhythmic structures such as those 

present in multi-nested (fine-grained) rhythmic patterns. 

2. XA-LAN MULTI-LEVEL QUANTIZER 

Xa-Lan is a LISP-based software to generate expressive 

music scores based on graphic transformations that 

control the different symbolic/notational elements of a 

music score [4]. Xa-Lan relies on three modules (or 

engines) to produce output. The third of these modules 

is a multi-level or multi-nesting quantizer that allows to 

transcribe the onsets and durations of rhythmic patterns 

into accurate, complex, and expressive rhythmic 

notations.  

The multi-nesting quantizer is a recursive adaptation 

of a simple one-level quantizer [5]. The algorithm of the 

one-level quantizer compares equal subdivisions of a 

given temporal segment to the original onset-duration 

sequence, searching for minimal-error differences. 

Since larger number of subdivisions reduce error-

difference values, the minimal-error curve is compared 

to an ideal fitting curve whose maximum difference is 

chosen as the earliest optimal quantization (Figure 1). 

The multi-level quantizer in Xa-Lan recursively 

applies the former quantizing process to different 

portions of a temporal segment, from the measure level 

to the beat and the beat subdivision levels, therefore, 

yielding nested rhythmic figures when necessary. The 

Xa-Lan multi-nesting quantizer is unique in its 

functionality. No other quantizer available in common 

computer-assisted composition environments, such as 

PatchWork, OpenMusic, Symbolic Composer, or 

PWGL (to name some), can render automated nested 

rhythmic figures to allow a rather refined quantizing 

resolution. The Xa-Lan quantizer can also be aligned to 

any user-defined metrics-grid that works as a “structural 

container” of the quantization. The maximum 

subdivision for irregular tuplets at any nesting level, can 

also be arbitrarily set by the user, allowing for different 

notational resolutions of the same input. 

 

Figure 1. One-Level Quantizer. 

To dynamically interact with the facilities of the 

multi-level quantizer, Xa-Lan uses the “Expressive 

Notation Package” (ENP) from the visual language of 

PWGL [6] for final display (Figure 2). 

  Figure 2. Multi-Level Quantizer interface on ENP. 

To observe some of the possible results that can be 

obtained by this mutli-nesting quantizer, consider the 

following duration sequence: 0.16 0.3 0.25 

0.040000007 0.58000005 0.37 0.45000005 0.29999995 

0.17499995. This array of numbers will be quantized 

using the following arbitrary metric container: 1/4, 3/8, 

and 1/32. The maximum number of subdivisions per 

nesting level is also arbitrarily set to 12 (Figure 3): 
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Figure 3. Multi-Level Quantization I. 

In the following figure, the resolution subdivision is 

downsampled by half (to 6) of the previous quantization 

(Figure 4) : 

Figure 4. Multi-Level Quantization II. 

Lastly, the same array of durations are quantized 

with a different metric container (6/32, 1/4, and 7/32) 

and the maximum number of subdivisions per nesting 

level is 12  again (Figure 5) : 

Figure 5. Multi-Level Quantization III. 

3. LOOK-UP TABLE QUANTIZER 

Another quantization model that attempts to capture 

complex rhythmic structures and render them into a 

meaningful and expressive musical context, is through 

the use of a look-up table quantizer. In a look-up 

quantizer, a ‘dictionary’ with predefined rhythmic-

patterns uses each of its entries as place-holders where 

input onset/durations sequences are sieved-on, choosing 

the place-holders or “rhythmic grids” with minimal 

error-difference as the best quantized approximations. 

The real advantage of a look-up table quantizer is that 

the user can define a unique and precise dictionary of 

rhythmic configurations from where quantization takes 

place, ensuring an idiomatic behavior that easily 

conforms to a compositional system of temporal 

organization.  

The internal workings of the look-up quantizer are 

similar to the ones of the multi-level quantizer, except 

that the searching space to compare and get the optimal 

error- difference is manually introduced by the user, 

instead of being algorithmically generated. Once the 

user includes a new "rhythmic word" in the dictionary, 

by using a symbolic "rhythmic-tree" representation, the 

first task for the look-up algorithm is to convert any 

"word" into its equivalent timing equivalent 

(e.g. (1 (1 1 (2 (1 1 1))) is equivalent to 0.25, 0.25, 

0.5/3, 0.5/3 and 0.5/3 seconds, assuming a quarter-note 

is equal to one second). From there, the comparison of 

the original time-input sequence with the time-

converted "words" is straight. The next step is to do the 

proper rhythmic configuration groupings of the "word" 

that is chosen as optimal quantization. If for instance, 

the original time input is 0.25, 0.58 and 0.17 seconds, 

the place-holder word of (1 (1 1 (2 (1 1 1))) would be 

output as (1 (1 1 (2 (2.0 1))), being this result the best 

quantization among the given words of that dictionary. 

The idea of a user-predefined rhythmic dictionary 

might appear burdensome at first, but this quantizing 

model is essentially as effective as any other general 

purpose quantizer, with the invaluable advantage of 

rendering rhythmic results that fully conform to a 

precise selection of rhythmic configurations that are 

previously input by its users, and therefore, the 

expressivity of the resulting transcriptions completely 

accommodate to the idiomatic and aesthetic needs of 

composers.  

Table 1. User-defined ‘rhythmic-grid’ dictionary 

When working with the look-up table quantizer, it is 

important to keep in mind that varied and fine-grained 

quantizations can only take place if there is a 

comprehensively large data-set of place-holder 

rhythmic words in the dictionary, otherwise one or 

several input values in some cases could not be 

quantized, in which case, the output of the algorithm 

will indicate the number of non-quantized events. An 

interesting compositional strategy to use this quantizer 
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can be forcing the quantization process to a limited set 

of dictionary-words, and by gradually changing, or 

rather expanding the searching space where 

quantization takes place, different resolutions of the 

quantization would show the kind of transcriptions that 

fit more naturally to the original input data. To facilitate 

this compositional methodology, there is an additional 

routine in this quantizer to compare and sort the 

deviation-error similarity (in an ascending to 

descending order) of one chosen word in relation to all 

the other words of the dictionary. Additionally, the 

similarity comparison among words can be truncated to 

show only the ones that present the same "rhythmic 

profile" from a reference word being compared; for 

example, the rhythmic tree (1 (3 1 2)) could be output 

as similar to (1 (4 1 3)) since both share the same 

"rhythmic profile", meaning that the first duration of the 

group is larger than the second, and the second being 

shorter than the third. The following figures show the 

similarity rankings from the rhythmic tree (1 (2 1 1 4)), 

which is indeed a grouped version of the simple 

rhythmic tree (1 (1 1 1 1 1 1 1 1)); first, similarity is 

presented regardless rhythmic profile (Figure 6), and 

then truncated to show words with equivalent profiles 

(Figure 7). The results of these comparisons are based 

on the following searching-space dictionary: 

Figure 6. Rhythmic similarity 

Figure 7. Rhythmic similarity with equal ‘profile’. 

 

Further implementations 

In order to make more flexible and expressive the 

quantized results of the look-up table quantizer, a 

changing metrics-grid that would serve as a variable 

structural container, could enhance the quantization 

results as it happens with the metric flexibility already 

implemented on the multi-nesting quantizer. Another 

interesting feature to implement could be the automatic 

or algorithmic generation of additional dictionary-

words or “rhythmic grids”, based on the analysis of 

rhythmic similarities equivalent to those manually 

defined. Lastly, an additional feature to consider in any 

real expressive quantizer, is the possibility to render 

exceptional notation cases, as it happens when 

“incomplete” subdivisions of the beat are sequentially 

linked or concatenated, without necessarily rounding 

with the reminders of the previous tuplet subdivisions. 

The results of such an "accumulative" or "sequential 

quantizer" would reduce the compromising filtering of 

the input data that occurs during the output of a 

general-purpose quantizer. 

4. CONCLUSIONS 

Automatizing the rendering of an expressive rhythmic 

notation is a task that demands, on the one hand, a 

logical structuring or shaping of the input data to 
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provide the resulting notation with musically consistent 

results, and on the other hand, quantization results 

should conform to the aesthetic and notational 

idiosyncrasy of a given user. Two general-purpose 

quantizing models have been presented to aim for 

notational expressivity from different perspectives. A 

multi-level or multi-nesting quantizer achieves 

'expression' by fine-grained / high-quality resolution 

output, while preserving an uncompromising general-

purpose applicability (i.e. no pre/post filter processes 

are applied to input data). A look-up table quantizer 

guarantees expressivity through a user-defined data-set 

that works as a closed searching-space from where 

quantization takes place.  These two quantizers aim to 

be used as computing tools to facilitate and assist the 

composition and writing or notational rendering of 

music works. 
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ABSTRACT

We present Tony, a software tool for the interactive an-
notation of melodies from monophonic audio recordings,
and evaluate its usability and the accuracy of its note ex-
traction method. The scientific study of acoustic perfor-
mances of melodies, whether sung or played, requires the
accurate transcription of notes and pitches. To achieve
the desired transcription accuracy for a particular applica-
tion, researchers manually correct results obtained by au-
tomatic methods. Tony is an interactive tool directly aimed
at making this correction task efficient. It provides (a)
state-of-the art algorithms for pitch and note estimation,
(b) visual and auditory feedback for easy error-spotting,
(c) an intelligent graphical user interface through which
the user can rapidly correct estimation errors, (d) extensive
export functions enabling further processing in other ap-
plications. We show that Tony’s built in automatic note
transcription method compares favourably with existing
tools. We report how long it takes to annotate record-
ings on a set of 96 solo vocal recordings and study the
effect of piece, the number of edits made and the anno-
tator’s increasing mastery of the software. Tony is Open
Source software, with source code and compiled bina-
ries for Windows, Mac OS X and Linux available from
https://code.soundsoftware.ac.uk/projects/tony/.

1. INTRODUCTION

Our goal is to make the scientific annotation of melodic
content, and especially the estimation of note pitches in
singing, more efficient. A number of well-known digi-
tal signal processing methods have been successfully ap-
plied to measuring singing pitch precisely and unambigu-
ously, e.g. [1,2]. While their accuracy is sufficient for
many applications, arriving at a satisfactory annotation of-
ten requires significant manual adjustment on the part of
the researcher. This need for adjustment is even more pro-

Copyright: c© 2015 Matthias Mauch et al. This is an open-

access article distributed under the terms of the Creative Commons

Attribution 3.0 Unported License, which permits unre-
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nounced when the aim is to transcribe discrete notes. Per-
forming such adjustments take much time and effort, espe-
cially in the absence of a user-friendly interface.

The main contributions of this paper are (1) the presen-
tation of the Tony user interface aimed at streamlining the
melody annotation process, (2) the new note transcription
algorithm it uses (implemented in the pYIN Vamp plugin),
and (3) an evaluation of Tony’s utility in terms of note tran-
scription accuracy and the effort required for note annota-
tion in a real-world use case. Features and design described
in this paper reflect Tony version 1.0 except where noted.

2. BACKGROUND

Music informatics researchers, music psychologists and
anyone interested in the analysis of pitch and intonation
routinely use software programs to annotate and transcribe
melodies in audio recordings. The two main objects of in-
terest are the pitch track, which traces the fundamental fre-
quency (F0) contours of pitched sounds in smooth, contin-
uous lines, and the note track, a sequence of discrete note
events that roughly correspond to notes in a musical score.
In order to find out which tools are used we conducted an
online survey that was sent out through several channels
including the ISMIR Community, Auditory and music-dsp
mailing lists. 1

We obtained 31 responses with a strong bias towards re-
searchers in music informatics (see Table 2). Most of the
participants were from academic institutions (27; 87%),
of which students were the greatest contingent (11; 35%).
Four participants were from industry (13%). Experience
with pitch and note representations was nearly evenly dis-
tributed (58% and 52%, respectively, including those who
had experience with both kinds of annotation).

We asked the participants which tools they are aware of.
Responses included a large variety of tools, which we sep-
arated into user-interface-based software and signal pro-
cessing software without user interfaces (see Box 1). 2

Our first observation is that despite the wide range of
tools, there are some that were mentioned many more
times than others: in the case of user interfaces these are

1 The survey questions are given in Appendix A.
2 We are furthermore aware of tools for pitch track annotation [1] and

pitch track and note annotation [2] that are not publicly available.
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software URL

Tony https://code.soundsoftware.

ac.uk/projects/tony

pYIN https://code.soundsoftware.

ac.uk/projects/pyin

Pitch Estimator https://code.soundsoftware.

ac.uk/projects/chp

Sonic Visualiser
Libraries

https://code.soundsoftware.

ac.uk/projects/sv

Table 1. Software availability.

Field of work Position

Music Inf./MIR 17 (55%) Student 11 (35%)
Musicology 4 (13%) Faculty Member 10 (32%)
Bioacoustics 3 (10%) Post-doc 6 (19%)
Speech Processing 2 (5%) Industry 4 (13%)

Experience

Pitch track 18∗ (58%)
Note track 16∗ (52%)
Both 7 (23%)
None 3 (10%)

∗) includes 7 who had experience with both pitch and note tracks.

Table 2. Participants of the survey. Top four responses for
participant makeup.

The tools with graphical user interfaces mentioned by
survey participants were: Sonic Visualiser (12 partic-
ipants), Praat (11), Custom-built (3), Melodyne (3),
Raven (and Canary) (3), Tony (3), WaveSurfer (3),
Cubase (2), and the following mentioned once: Au-
dioSculpt, Adobe Audition, Audacity, Logic, Sound
Analysis Pro, Tartini and Transcribe!.
The DSP algorithms mentioned by survey participants
were: YIN (5 participants), Custom-built (3), Aubio
(2), and all following ones mentioned once: AMPACT,
AMT, DESAM Toolbox, MELODIA, MIR Toolbox,
Tartini, TuneR, SampleSumo, silbido, STRAIGHT and
SWIPE.

Box 1. Survey Results.

Sonic Visualiser [3] 3 and Praat [4] 4 , and in the case of
DSP tools it is YIN [5]. None of the tools with user in-
terfaces are specifically aimed at note and pitch transcrip-
tion in music; some were originally aimed at the analy-
sis of speech, e.g. Praat, others are generic music anno-
tation tools, e.g. Sonic Visualiser and AudioSculpt [6]. In
either case, the process of extracting note frequencies re-
mains laborious and can take many times the duration of
the recording. As a consequence, many researchers use
a chain of multiple tools in custom setups in which some
parts are automatic (e.g. using AMPACT alignment [7]), as
we have previously done ourselves [8]. Commercial tools
such as Melodyne, 5 Songs2See 6 and Sing&See 7 serve
similar but incompatible purposes. Melodyne in particular
offers a very sleek interface, but frequency estimation pro-
cedures are not public (proprietary code), notes cannot be
sonified, and clear-text export of note and pitch track data
is not provided.

In summary, the survey further corroborated the impres-
sion gained during our own experiments on note intona-
tion: a tool for efficient annotation of melodies is not avail-
able, and the apparent interest in the scientific study of
melody provides ample demand to create just such a tool.
We therefore set out to create Tony, a tool that focusses
on melodic annotation (as opposed to general audio anno-
tation or polyphonic note annotation). The Tony tool is
aimed at providing the following components: (a) state-of-
the art algorithms for pitch and note estimation with high
frequency resolution, (b) graphical user interface with vi-
sual and auditory feedback for easy error-spotting, (c) in-
telligent interactive interface for rapid correction of estima-
tion errors, (d) extensive export functions enabling further
processing in other applications. Lastly, the tool should be
freely available to anyone in the research community, as it
already is (see Table 1). This paper demonstrates that the
remaining requirements have also been met.

Any modern tool for melody annotation from audio re-
quires signal processing tools for pitch (or fundamental
frequency, F0) estimation and note transcription. We are
concerned here with estimation from monophonic audio,
not with the estimation of the predominant melody from
a polyphonic mixture (e.g. [9, 10]). Several solutions to
the problem of F0 estimation have been proposed, includ-
ing mechanical contraptions dating back as far as the early
20th century [11]. Recently, the area of speech process-
ing has generated several methods that have considerably
advanced the state of the art [4, 5, 12, 13]. Among these,
the YIN fundamental frequency estimator [5] has gained
popularity beyond the speech processing community, es-
pecially in the analysis of singing [14,15] (also, see survey
above). Babacan et al. [16] provide an overview of the per-
formance of F0 trackers on singing, in which YIN is shown
to be state of the art, and particularly effective at fine pitch
recognition. More recently, our own pYIN pitch track es-
timator has been shown to be robust against several kinds

3 http://www.sonicvisualiser.org/
4 http://www.fon.hum.uva.nl/praat/
5 http://www.celemony.com/
6 http://www.songs2see.com/
7 http://www.singandsee.com/
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of degradations [17] and to be one of the most accurate
pitch transcribers, especially for query-by-singing applica-
tions [18] (alongside the MELODIA pitch tracker [10]).

The transcription of melodic notes has received far less
attention than pitch tracking—perhaps because polyphonic
note transcription [19, 20] was deemed the more exciting
research problem—but several noteworthy methods exist
[2, 21, 22]. We have implemented our own note transcrip-
tion method intended for use in Tony, of which a previous
version has been available as part of the pYIN Vamp plu-
gin [17]. This is the first time pYIN note transcription has
been presented and evaluated in a scientific paper.

3. METHOD

Tony implements several melody estimation methods:
fully automatic pitch estimation and note tracking based
on pYIN [17], and custom methods for interactive re-
estimation. Tony resamples any input file to a rate of
44.1 kHz (if necessary), and the signal processing meth-
ods work on overlapping frames of 2048 samples (≈46 ms)
with a hop size of 256 samples (≈6 ms).

3.1 Pitch Estimation

We use the existing probabilistic YIN (pYIN) method [17]
to extract a pitch track from monophonic audio recordings.
The pYIN method is based on the YIN algorithm [5]. Con-
ventional YIN has a single threshold parameter and pro-
duces a single pitch estimate. The first stage of pYIN cal-
culates multiple pitch candidates with associated probabil-
ities based on a distribution over many threshold parame-
ter settings. In a second stage, these probabilities are used
as observations in a hidden Markov model, which is then
Viterbi-decoded to produce an improved pitch track. This
pitch track is used in Tony, and is also the basis for the note
detection algorithm described below.

3.2 Note Transcription

The note transcription method takes as an input the pYIN
pitch track and outputs discrete notes on a continuous pitch
scale, based on Viterbi-decoding of a second, independent
hidden Markov model (HMM). Unlike other similar mod-
els, ours does not quantise the pitches to semitones, but
instead allows a more fine-grained analysis. The HMM
models pitches from MIDI pitch 35 (B1, ≈61 Hz) to MIDI
pitch 85 (C]6, ≈ 1109 Hz) at 3 steps per semitone, result-
ing in n = 207 distinct pitches. Following Ryynänen [21]
we represent each pitch by three states representing attack,
stable part and silence, respectively. The likelihood of a
non-silent state emitting a pitch track frame with pitch q is
modelled as a Gaussian distribution centered at the note’s
pitch p with a standard deviation of σ semitones, i.e.

P (np|q) = v ·
(
1

z
[φp,σ(q)]

τ

)
(1)

where np is a state modelling the MIDI pitch p, z is
a normalising constant and the parameter 0 < τ < 1
controls how much the pitch estimate is trusted; we set

τ = 0.1. The probability of unvoiced states is set to
P (unvoiced|q) = (1 − v)/n, i.e. they sum to their com-
bined likelihood of (1 − v) and v = 0.5 is the prior like-
lihood of a frame being voiced. The standard deviation σ
varies depending on the state: attack states have a larger
standard deviation (σ = 5 semitones) than stable parts
(σ = 0.9). This models that the beginnings of notes and
note transitions tend to vary more in pitch than the main,
stable parts of notes.

The transition model imposes continuity and reasonable
pitch transitions. Figure 1a shows a single note model,
with connections to other notes. Within a note we use a
3-state left-to-right HMM consisting of Attack, Stable and
Silent states. These states are characterised by high self-
transition probability (0.9, 0.99 and 0.9999 for the three
note states, respectively), to ensure continuity. Within a
note, the only possibility other than self-transition is to
progress to the next state. The last note state the Silent
state, allows transitions to many different Attack states of
other notes. Like the musicological model in Ryynänen
and Klapuri’s approach [21] we provide likelihoods for
note transitions. Unlike their approach, we do not deal
with notes quantised to the integer MIDI scale, and so we
decided to go for a simpler heuristic that would only take
into account three factors: (1) a note’s pitch has to be either
the same as the preceding note or at least 2/3 semitones dif-
ferent; (2) small pitch changes are more likely than larger
ones; (3) the maximum pitch difference between two con-
secutive notes is 13 semitones. A part of the transition
distribution to notes with nearby pitches is illustrated in
Figure 1b.

3.3 Note Post-processing

We employ two post-processing steps. The first,
amplitude-based onset segmentation helps separate con-
secutive notes (syllables) of similar pitches as follows. We
calculate the root mean square (RMS, i.e. average) ampli-
tude denoted by ai in every frame i. In order to estimate
the amplitude rise around a particular frame i we calculate
the ratio of the RMS values between the frames either side

r =
ai+1

ai−1
(2)

Given a sensitivity parameter s, any rise with 1/r < s is
considered part of an onset, 8 and the frame i − 2 is set
to unvoiced, thus creating a gap within any existing note.
If no note is present, nothing changes, i.e. no additional
notes are introduced in this onset detection step. The sec-
ond post-processing step, minimum duration pruning, sim-
ply discards notes shorter than a threshold, usually chosen
around 100 ms.

3.4 Semi-automatic Pitch Track Re-estimation

In addition to fully manual editing of notes (Section 3.4.2),
the user can also change the pitch track. However, since
human beings do not directly perceive pitch tracks, Tony
offers pitch track candidates which users can choose from.

8 The inverse 1/r is used in order for s to correspond to sensitivity.
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(a) Excerpt of the pYIN note transition network.
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Figure 1. Transition model in pYIN note transcription module.
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Figure 2. Graphical User Interface with key elements highlighted.
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Two methods are available: multiple alternative pYIN
pitch tracks on a user-selected time interval, and a single
pitch track on a user-selected time-pitch rectangle.

3.4.1 Multiple pYIN pitch tracks

In order to extract multiple pitch tracks, the pYIN method
is modified such that its second stage runs multiple times
with different frequency ranges emphasised. The intended
use of this is to correct pitches over short time intervals. As
in the default version, the first pYIN stage extracts multiple
pitch candidates mi (given in floating point MIDI pitches)
for every frame, with associated probabilities pi. Depend-
ing on the frequency range, these candidate probabilties
are now weighted by a Gaussian distribution centered at
cj = 48 + 3 × j, j = 1, . . . , 13, for the jth frequency
range, i.e. the new candidate pitch probabilities are

pij = pi × φcj ,σr
(mi), (3)

where φ(·) is the Gaussian probability density function and
σr = 8 is the pitch standard deviation, indicating the fre-
quency width of the range. With these modified pitch prob-
abilities, the Viterbi decoding is carried out as usual, lead-
ing to a total of 13 pitch tracks.

Finally, duplicate pitch tracks among those from the 13
ranges are eliminated. Two pitch tracks are classified as
duplicates if at least 80% of their pitches coincide. Among
each duplicate pair, the pitch track with the shorter time
coverage is eliminated.

3.4.2 Pitch track in time-pitch rectangle

In some cases, the desired pitch track is not among those
offered by the method described in Section 3.4.1. In such
cases we use a YIN-independent method of finding pitches
based on a simple harmonic product spectrum [23]. When
using this method, the user provides the pitch and time
range (a rectangle), and for every frame the method re-
turns the pitch with the maximum harmonic product spec-
tral value (or no pitch, if the maximum occurs at the upper
or lower boundary of the pitch range). This way even sub-
tle pitches can be annotated provided that they are local
maxima of the harmonic product spectrum.

4. USER INTERFACE

Figure 2 is a screenshot of the Tony user interface. The
basic interface components as well as the underlying audio
engine and other core components are well tested as they
come from the mature code base of Sonic Visualiser (see
also Table 1). Tony differs from the other tools in that it
is designed for musical note sequences, not general pitch
events, and intentionally restricted to the annotation of sin-
gle melodies. This specialisation has informed many of our
design choices. Below we highlight several key aspects of
the Tony interface.

4.1 Graphical Interface

While graphical interface components from Sonic Visu-
aliser have been re-used, the focus on a single task has al-
lowed us to combine all relevant visualisation components

into a single pane: pitch track, note track, spectrogram and
the waveform. Visibilty of all can be toggled. The focus on
single melodies meant that we could design a special note
layer with non-overlapping notes. This averts possible an-
notation errors from overlapping pitches.

As soon as the user opens an audio file, melodic rep-
resentations of pitch track and notes are calculated using
the methods described in Sections 3.1 and 3.2. This con-
trasts with general tools like Praat, Sonic Visualiser or Au-
dioSculpt, which offer a range of processing options the
user has to select from. This is avoided in Tony, since the
analysis objective is known in advance. However, the user
has some control over the analysis parameters via the menu
and can re-run the analysis with the parameters changed.

Editing pitch tracks and notes is organised separately.
Note edits concern only the placement and duration of
notes in time, and their pitch is calculated on the fly as
the median of the underlying pitch track. Any corrections
in the pitch dimension are carried out via the pitch track.

In order to select pitches or notes the user selects a time
interval, either via the Selection Strip or via keyboard com-
mands. Both pitch track and note track can then be ma-
nipulated based on the selection. The most simple pitch
track actions are: choose higher/lower pitch (by octave) in
the selected area; remove pitches in the selected area. For
more sophisticated pitch correction, the user can request
alternative pitch tracks in a selected time interval (see Sec-
tion 3.4.1), or the single most likely pitch track in a time-
pitch rectangle (see Section 3.4.2). Note actions are: Split,
Merge, Delete, Create (including “form note from selec-
tion”), and Move (boundary). The note pitch is always the
median of the pitch track estimates it covers and is updated
in real-time.

4.2 Sound Interface

Tony provides auditory feedback by playing back the ex-
tracted pitch track as well as the note track alongside the
original audio. Like the visual pitch track and note repre-
sentations, playback (including that of the original record-
ing) can be toggled using dedicated buttons in a toolbar
(see Figure 2), giving users the choice to listen to any com-
bination of representations they wish.

Sonification of the notes is realised as a wave table play-
back of an electric piano sound. The sound was espe-
cially synthesised for its neutral timbre and uniform evolu-
tion. Unlike other programs, synthesis in Tony is not con-
strained to integer MIDI notes, and can sonify subtle pitch
differences as often occur in real-world performances. The
pitch track is synthesised on the fly, using a sinusoidal ad-
ditive synthesis of the first three harmonic partials.

5. EVALUATION

To assess the utility of Tony as a note transcription sys-
tem, we conducted two experiments. First, we compared
the underlying note transcription method to existing meth-
ods, using a publicly available dataset [24]. Second, in a
real-world task an expert annotated notes for an intonation
study using the Tony software, and we measured the time
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Group.1 Overall. Acc. Raw. Pitch. Acc. Vo. False Alarm Vo. Recall F COnPOff F COnP F COn
1 melotranscript 0.80 0.87 0.37 0.97 0.45 0.57 0.63
2 ryynanen 0.72 0.76 0.37 0.94 0.30 0.47 0.64
3 smstools 0.80 0.88 0.41 0.99 0.39 0.55 0.66
4 pYIN s=0.0, prn=0.00 0.83 0.91 0.37 0.98 0.38 0.56 0.61
5 pYIN s=0.0, prn=0.07 0.84 0.91 0.34 0.98 0.40 0.59 0.64
6 pYIN s=0.0, prn=0.10 0.84 0.91 0.33 0.97 0.41 0.60 0.64
7 pYIN s=0.0, prn=0.15 0.84 0.90 0.32 0.96 0.41 0.60 0.63
8 pYIN s=0.6, prn=0.00 0.84 0.91 0.35 0.98 0.38 0.56 0.61
9 pYIN s=0.6, prn=0.07 0.84 0.91 0.32 0.97 0.43 0.62 0.67

10 pYIN s=0.6, prn=0.10 0.85 0.91 0.31 0.97 0.44 0.62 0.67
11 pYIN s=0.6, prn=0.15 0.85 0.90 0.29 0.95 0.44 0.62 0.65
12 pYIN s=0.7, prn=0.00 0.83 0.90 0.33 0.97 0.39 0.54 0.61
13 pYIN s=0.7, prn=0.07 0.85 0.91 0.30 0.97 0.46 0.63 0.69
14 pYIN s=0.7, prn=0.10 0.85 0.90 0.29 0.96 0.47 0.64 0.69
15 pYIN s=0.7, prn=0.15 0.85 0.89 0.27 0.94 0.47 0.64 0.67
16 pYIN s=0.8, prn=0.00 0.84 0.89 0.28 0.96 0.39 0.52 0.61
17 pYIN s=0.8, prn=0.07 0.85 0.89 0.25 0.95 0.48 0.66 0.73
18 pYIN s=0.8, prn=0.10 0.85 0.89 0.24 0.94 0.49 0.68 0.73
19 pYIN s=0.8, prn=0.15 0.85 0.87 0.22 0.91 0.50 0.67 0.71

Table 3. Results for fully-automatic melody note transcription.

taken and the number of notes manipulated. The experi-
mental results are given below.

5.1 Accuracy of Automatic Transcription

We used a test set of 38 pieces of solo vocal music (11
adult females, 13 adult males and 14 children) as col-
lected and annotated in a previous study [24]. All files
are sampled at 44.1 kHz. We also obtained note transcrip-
tion results extracted by three other methods: Melotran-
script [22], Gómez and Bonada [2], Ryynänen [21]. We
ran 16 different versions of Tony’s note transcription algo-
rithm, a grid search of 4 parameter settings for each of the
two post-processing methods. Minimum duration pruning
was parametrised to 0 ms (no pruning), 70 ms, 100 ms and
150 ms. The amplitude-based onset segmentation parame-
ter was varied as s = 0, 0.6, 0.7 and 0.8.

For frame-wise evaluation we used metrics from the eval-
uation of pitch tracks [25] as implemented in mir eval
[26], but applied them to notes by assigning to every frame
the pitch of the note it is covered by. The results are listed
in Table 3. The pYIN note transcriptions reach very high
overall accuracy rates (0.83–0.85) throughout. The high-
est score of the other methods tested is 0.80. 9 Among the
pYIN versions tested, the best outcome was achieved by
combining pruning of at least 100 ms and an onset sensi-
tivity parameter of at least s = 0.6. The efficacy of the
system results from high raw pitch accuracy (correct when
there is a pitch), and low rate of voicing false alarm. There
is, however, a tradeoff between the two: better raw pitch
accuracy is achieved with low values of s, and lower false
alarm rates with higher values of s. The algorithm sm-
stools achieves perfect voicing recall at the price of having
the highest voicing false alarm rate.

The results for note-based evaluation expose more sub-
tle differences. The metric “COnPOff” [24], which
takes into account correct note onset time (±5 ms), pitch
(±0.5 semitones) and offset (± 20% of ground truth note
duration), is the most demanding metric; “COnP” (cor-
rect onset and pitch) and “COn” (correct onset) are re-
laxed metrics. Here, we report F measures only. We ob-

9 Note that Ryynanen’s method outputs only integer MIDI notes, so
for the fine-grained analysis required here it may be at a disadvantage.

serve that—without post-processing—the pYIN note tran-
scription achieves values slightly worse than the best-
performing algorithm (melotranscript). Considering the
post-processed versions of pYIN, minimum duration prun-
ing alone does not lead to substantial improvements. How-
ever, a combination of onset detection and minimum du-
ration pruning leads to COnPOff F values of up to 0.50,
compared to 0.38 for the baseline pYIN and 0.45 for the
best other algorithm (melotranscript). This carries through
to the more relaxed evaluation measures, where F values
of the post-processed versions with at least 0.10 seconds
pruning are always higher than the baseline pYIN algo-
rithm and the other algorithms tested. Figure 3 shows all
100 ms-pruned pYIN results against other algorithms.

5.2 Effort of Manual Note Correction

In order to examine the usability of Tony we measured
how editing affects the time taken to annotate tunes. We
used recordings of amateur singing created for a different
project, and one of us (JD) annotated them such that each
final note annotation corresponded exactly to one ground
truth note in the musical score matching her perception of
the notes the singer was actually performing. The dataset
consists of 96 recordings, with 32 singers performing three
tunes from the musical The Sound of Music. The annota-
tion was performed with an earlier version of Tony (0.6).

Tony offers five basic editing operations: Create, Delete,
Split, Join, and Move (either left or right note boundary).
We estimated the number of edits required, considering
only timing adjustments (i.e. ignoring any changes to the
pitch of a note). 10 The estimate is a custom edit distance
implementation. First, we jointly represent the actual state
of the note track (after automatic extraction) and the de-
sired state of the note track as a string of tokens. Secondly,
we define transformation rules that correspond to the five
possible edit operations. The estimate of the number of
edits performed by the user is then an automated calcula-
tion of a series of reductions to the source string in order to
arrive at the target. In particular, if pYIN happened to per-
form a completely correct segmentation “out of the box”,

10 At the time of the experiment we were not able to record the actual
actions taken.
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Figure 3. Results of existing algorithms and pYIN note transcription with minimum duration pruning at 0.1 s, showing,
from left to right, raw pitch accuracy, overall accuracy, voicing false alarm, COnPOff F measure and COnP F measure.
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Figure 4. Edit operations.

the edit count would be zero.
Figure 4a illustrates the distributions of edit counts in a

box plot with added indicators of the mean. First of all, we
notice that very few notes had to be Created (mean of 0.17
per recording) or Moved (0.28), and that Join (8.64) and
Delete (8.82) are by far the most frequent edit operations,
followed by Splits (4.73). As expected, the total number of
edits correlates with the time taken to annotate the record-
ings (see Figure 4b).

Which other factors influence the annotation time taken?
We use multivariate linear regression on the number of
Creates, Deletes, Splits, Joins, Moves and familiarity with
the Tony software (covariates), predicting the annotation
time (response). As expected, the results in Table 4 show
that any type of editing increases annotation time, and that
familiarity reduces annotation time. The baseline annota-
tion time is 437 seconds, more than 7 minutes. (The mean
duration of the pieces is 179 seconds, just under 3 min-
utes.) The result on Familiarity suggests that every day
spent working with Tony reduces the time needed for an-
notation by 2.3 seconds. 11 The time taken for every Cre-
ate action is 145 seconds, a huge amount of time, which
can only be explained by the fact that this operation was
very rare and only used on tracks that were very difficult
anyway. Similar reasoning applies to the (boundary) Move
operations, though the p value suggests that the estimate
cannot be made with much confidence. The distinction

11 This is clearly only true within a finite study, since the reduction
cannot continue forever. Annotations happened on 14 different days.

Est. (seconds) Std. Error p value

(Intercept) 437.20 51.87 <0.01
Creates 145.08 42.77 <0.01
Deletes 3.51 1.82 0.06

Splits 5.58 2.95 0.06
Joins 3.18 2.35 0.18
Move 45.51 39.61 0.25

Familiarity -2.31 0.82 0.01

Table 4. Effects on annotation time taken.

between the remaining three edit operations is more help-
ful: each Delete and Join accounts for 3.5 seconds time
added, but splits take much longer: 5.7 seconds. This is
likely to result from the fact that the user has to position
the play head or mouse pointer precisely at the split po-
sition, whereas joins and deletes require far less precise
mouse actions. As Table 4 shows, most of the effects are at
least moderately significant (p < 0.1), with the exception
of number of Joins. The variance explained is R2 = 25%.

6. DISCUSSION

The results of the second experiment may well have impact
on the design of future automatic melody transcription sys-
tems. They confirm the intuition that some edit actions take
substantially more time for a human annotator to execute.
For example, the fact that Merges are much cheaper than
Splits suggests that high onset recall is more important than
high onset precision.

We would also like to mention that we are aware that the
accuracy of automatic transcription heavily depends on the
material. The tools we evaluated (including existing al-
gorithms) were well-suited for the database of singing we
used; in other annotation experiments [27] it has become
obvious that some instruments are more difficult to pitch-
track. Furthermore, it is useful to bear in mind that the
dataset we used is predominantly voiced, so the voicing
false alarm outcomes may change on different data.

As evident from our survey (Box 1), early versions of
Tony have already been used by the community. This in-
cludes our own use to create the MedleyDB resource [27],
and some as yet unpublished internal singing intonation
and violin vibrato experiments.
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7. CONCLUSIONS

In this paper we have presented our new melody annota-
tion software Tony, and its evaluation with respect to two
aspects: firstly, an evaluation of the built-in note transcrip-
tion system, and secondly a study on how manual edits and
familiarity with the software influence annotation time.

The note transcription results suggest that the pYIN note
transcription method employed in Tony is state-of-the-art,
in terms of frame-wise accuracy and note-based evalua-
tion. The study of manual edits shows the relative effort
involved in different actions, revealing that Splits and Cre-
ates are particularly expensive edits. This suggests that for
the task of note annotation, transcription systems should
focus on voicing recall and note onset/offset accuracy.

In summary, we have presented a state-of-the-art note
annotation system that provides researchers interested in
melody with an efficient way of annotating their record-
ings. We hope that in the long run, this will create a surge
in research and hence understanding of melody and into-
nation, especially in singing.
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A. SURVEY QUESTIONS

• Have you ever used software to annotate pitch in au-
dio recordings? (multiple choice)

• What software tools/solutions for pitch annotation
exist? List tools that you are aware of. (free text)

• What characteristics of the tools would need to be
improved to better suit your use case? (free text)

• Comments (free text)
• Your field of work (multiple choice)
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ABSTRACT 

Alternative notation approaches become more and more 

popular. Animated notation is one of them. It is popular 

mainly because it seems easy to apply. On the other hand, 

practice shows that classically trained musicians, 

composers and musicologists tend to reject or 

misunderstand this kind of music notation. Furthermore 

some musical performances based on animated notation 

should face the question whether a regular notation would 

not have been more efficient. As a researcher, performer 

and composer working with animated notation, I 

experienced that there is still a lack of knowledge and 

some misconceptions when it comes to animated 

notation, its advantages and its disadvantages and 

foremost its practical application. A brief look into the 

development of animated notation, actual fields of 

application, an attempt of a typology, an examination of 

the visual communication process and a closer look at 

two different animated score examples will shed a little 

light into the darkness and support utilizing this tool in 

contemporary music practice. 

INTRODUCTION 

After a peak in the musical avant-garde of the 1950s and 

1960s, approaches of alternative music notation face a 

renaissance recently. Although there was some interest 

before, especially from visual artists, Theresa Sauer’s 

book Notations 21 from 2009 as a direct successor of 

John Cage’s Notations from 1969 seems to have been 

somehow the starting signal. Of course the same 

problems regarding alternative notation arise now as they 

did in the mid of the twentieth century. Questions 

regarding the applicability, the accurateness and whether 

it is music notation at all, came up. In the recent years 

various papers and professional literature appeared. The 

December 2014 issue of Organised Sound, this very 

conference and of course contemporary music practice 

reveals a still growing interest in the field. New 

technologies continuously find their way into music 

performance and music notation and all its manifestations 

like gesture notation, screen scores, various forms of 

extended notation or live generated scores. One kind of 

notation that is used more frequently in the recent years, 

but at the same time remains a kind of mystery is 

animated notation. Animated notation serves in this text 

as an umbrella term for various approaches, where 

abstract graphics (avoiding images, symbols or 

pictograms with an inherent meaning) are put into motion 

for music notational purposes and manifest as fixed 

media. Hence, any kind of interaction or live generated 

and live manipulated scores are excluded. In practice 

animated scores are often shown simultaneously to 

performers and audience. As a score, it communicates the 

music and supports the understanding of the structure of 

the piece. However, to show it to the audience is neither 

obligatory nor important for the understanding of 

animated scores in general. The most common form of 

music notation in the Western world is regular staff 

notation. In this paper staff notation serves as a kind of 

reference, to support the understanding of animated 

notation. 

A BRIEF LOOK INTO HISTORY 

As many of our contemporary music practices, animated 

notation is rooted in ideas and works of the musical 

avant-garde between 1950 and 1970 [5]. In that time 

many famous composers were exploring alternative 

music notation. Publications of that time reveal that those 

approaches were quite diverse. John Cage in the USA and 

Erhard Karkoschka in Europe published widely 

recognized books in the late 1960s that collected various 

works of that time [3, 9]. In these compilations one can 

find for instance notations that were merely musical 

scores. Musical graphics, a term coined later by Roman 

Haubenstock-Ramati [5], were considered to work rather 

as a trigger for improvisation than to be a proper musical 

score. Earle Browns' piece December 1952 [8] is the first 

musical graphic, although it appears in some writings 

mistakenly as a graphic notation. Composers like John 

Cage, Morton Feldman, Mauricio Kagel, Karlheinz 

Stockhausen or Roman Haubenstock-Ramati [18, 19], to 

name but a few, were mainly driven by the limitations of 
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staff notation to communicate their musical ideas [9]. 

Some composers even experimented with video scores 

[5]. The diversity of appearances and the desire to 

overcome restrictions is common for avant-garde graphic 

notation and animated notation today. 

Figure 1. Musical Graphic, December 1952 by Earle Brown [21]. 

From the 1970s onwards, composers seem to lose 

interest in the graphic notation. According to Julia H. 

Schröder visual artists developed ideas further as “their 

interest in the individual handwriting manifesting itself in 

musical graphics is greater than that of composers, who 

were concerned with the establishment of a new, 

normative graphic canon“ [5]. Schröders analysis reveals 

two important distinctions regarding graphic and 

animated notation. First, avant-garde composers wanted 

to develop a generally applicable kind of graphic 

notation, implying a certain framework and rules to be 

able to work with it like with staff notation. As this did 

not work out, they lost interest. Second, avant-garde 

composers' self-conception and position within music 

history regarding the development of a new notation was 

entirely different from the situation of animated notation 

today. In “Darmstädter Beiträge zur neuen Musik – 

Notation” [19] composers like Brown, Kagel and 

Haubenstock Ramati wrote about their practices using 

graphic notation. For them it was clear and self-evident 

that the composition of new music required a new music 

notation. Furthermore this new notation could only come 

to life by somehow overcoming regular staff 

notation [19]. Today, animated notation can be 

considered a tool. It extends possibilities of notating 

contemporary music without neglecting other techniques 

or abandoning staff notation. Thereby animated notation 

or people using it respectively, are not aiming to establish 

a rigid framework and generally applicable rules. 

Since the 1970s very different connections of sound or 

music and visuals came to life. Visual music, VJing and 

especially music video shaped our everyday culture like 

film, art, advertisements and of course music itself [10]. 

Technological progress, manifesting for instance in 

ubiquitous computer power, had a major impact on music 

production, performance and consumption [4]. Regular 

staff notation on the other side underwent only minor 

changes in the last 50 years, while its core system, 

meaning how music is principally notated, remained the 

same. Surely influences of the developments of the avant-

garde can be traced in today’s notation practice. Very 

often staff notation is extended by individual signs and 

symbols to indicate sounds or techniques that are 

otherwise not communicable. In 2013 Christian Dimpker 

published his book Extended Notation that develops a 

consistent notation system for extended instrumental 

playing techniques and electro acoustic music, based on 

the common practice [6]. Generally staff notation remains 

surely satisfyingly expressive. However, compared to the 

influence of the computer on music itself, music notation 

(apart from notation software like Sibelius or Finale) 

seems to be almost unaltered by technological progress. 

Only in the recent years, with concepts of 

interdisciplinarity, inter-media and hybrid arts, a growing 

interest in alternative notation utilizing computational 

power can be found. Practice shows there are multiple 

areas of application that feature new ways of music 

making and composition. Animated notation is just one 

amongst many. Yet, the utilization of screens and 

animation techniques for notational purposes is in its 

early stages. Even a commonly used term for this kind of 

notations can hardly be found. Australian composer and 

researcher Lindsey Vickery generally calls them screen 

scores [20] while Severin Behnen talks in his PhD thesis 

about motion graphic scores with its subdivisions 

animated, interactive and plastic score [1]. An online 

collection of several works by composer Pall Ivan 

Palsson [24] or the website animatednotation.com 

by Ryan Ross Smith [26] display a wide range of 

different scores and approaches. Thereby animated scores 

use various techniques and styles and are created with 

various software. In animated notation, graphical 

attributes are not strictly mapped with specific sounds or 

actions. There are no symbols or a syntax. Although 

animated scores often share common features, for 

instance a ‘play-head’ that indicates the actual position 

within a scrolling score [20], none of these features are 

obligatory or generally valid. Basically each score looks 

different. On one hand this seems to be a deficiency. On 

the other hand this freedom is the bases for individual 

artistic and musical expression and the possibility to 

create new music [9, 19], just like in the 1960s.                          
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SPECIAL FEATURES 

1 Two Areas of Application 

Let’s take a look at two areas of actual application to 

show two major features of animated notation. The area 

where animated notation can demonstrate its intuitive 

applicability the best is education. Dabbledoo Music for 

instance is a project by Shane Mc Kenna and Kilian 

Redmond from Ireland [22]. They call it “a new 

multimedia experience for young musicians… It aims to 

encourage creative music making and group performance 

in a new and exciting way.” [22] Various types of 

animated notation, varying from simple to complex ones, 

are used to encourage and educate children to improvise 

and compose within a structured framework. Thereby 

especially timing and interaction can be practiced without 

the necessity of learning a complicated notational system. 

Another interesting example is the artistic research 

project Voices of Umeå at Umeå University Sweden by 

Anders Lind. He utilizes The Max Maestro, a standalone 

application programmed in Max/MSP that features an 

animated notation which can be controlled in real-time 

[23]. A choir of musically untrained people is conducted 

via The Max Maestro to produce vowels and other 

sounds. The length of each vowel, dynamics and structure 

over time are indicated. It basically allows participants to 

perform prima vista. Thereby performers become a part 

of the real-time compositional process [23]. Again the 

intuitiveness and simplicity of the animated score, in 

relation to the high quality of the musical performance, is 

remarkable. 

 

Figure 2. Screenshot of Dabbledoo Music website (beta version) [22]. 

A second area of application are musical genres or 

works that utilize alternative instruments, a mix of 

various instruments (like in live electronic music with 

acoustic and computer instrument) or are composed for 

indeterminate instrumentation. As there is no common 

practice, the notation of alternative instruments or objects 

can be accomplished on a very individual bases by the 

composer. For instance abstract computer sounds cannot 

be adequately represented in regular staff notation. By 

using abstract graphics, which can be mapped to musical 

parameters in a customized manner, animated notation 

can create a common ground, a kind of musical 

communication platform for all instruments involved [7]. 

Furthermore music like live electronic music is often 

improvised. Apart from offering a score that is able to 

generally structure and define musical improvisation, 

animated notation manifests usually in a video (file) and 

is therefore time-based media [2]. This allows especially 

to structure events accurately over time, and the score is 

as long as the piece. Hence, frequently used techniques 

like score following, stop watches or other means of 

triggering musical events and synchronizing acoustic and 

computer instruments, with their known drawbacks 

become obsolete. 

2 Tackling a Typology 

After examining the development of contemporary 

scores, composer and researcher Lindsay Vickery 

suggested four different types of what he calls screen 

scores. Namely scrolling score, permutation, 

transformative and generative scores [20]. Vickery’s 

terminology was introduced in an historical context. 

Furthermore his subdivisions describe mainly the visual 

appearance of animated scores, like scrolling score, as the 

score actually scrolls. Additionally, in practice many 

scores mix techniques. They might not be described 

accurately by one of the four different types. Therefore 

this rather strict distinction is not truly useful for a 

categorization of animated scores. Still the used 

terminology proves very useful when discussing the 

appearance of animated notation in general. As 

mentioned earlier, the generative type is neglected in this 

paper.  

A frequently used type of animated score is the 

scrolling score [20] (e.g. see figure 4). These kind of 

scores have several advantages. They support western 

reading habits as they scroll usually from left to right. 

These scores often work with a play zone or another 

indication that signals the performer which part to play. 

Many use a so called play-head, which is usually a line 

that graphics have to cross to indicate when to play them 

(see fig. 4). However, the most important feature of a 

scrolling score is the possibility to read ahead. Performers 

are of course used to this from staff notation. A lack of 

this feature might therefore cause considerable problems 

for musicians to utilize an animated notation [7]. 

Scrolling scores often utilize preliminary knowledge of 

the performers, for instance that a relative pitch height is 

indicated on the vertical axes.  

Second, there are permutation or coherent scores, like 

for instance some Ryan Ross Smith’s research studies 

[26]. These scores usually focus on the sequence of sound 

events and are therefore actional. Those scores appear as 
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circular shapes, like clocks, grids or other networks of 

(sometimes multilayered) objects, that change 

sequentially (permutation) over time and indicate 

precisely when and sometimes even how long to play. 

Often also the number of players is clearly indicated. 

Depending on the graphic design of the score, it is 

possible for the performer to read ahead (see fig. 2). 

Generally, these scores convey structure of events over 

time and not specific sounds. This allows them to be very 

precise regarding the sequence of events. If the sequences 

are not too fast, these scores could be even played prima 

vista by experienced musicians. Of course there are also 

other permutation scores where performers have clear 

instructions not only when to play, but also what to play. 

Then these scores can be regarded as the most accurate 

type of animated notations, where the least 

interpretational effort and least amount of improvisation 

for the performer is required. 

Finally, there are transformative or morphing scores. 

They are usually highly associative in character. Graphics 

move on the screen or change their overall appearance 

from one distinct graphical object to another (e.g. 

morphing). Movements in any direction along X, Y and Z 

axes are possible. This does not allow performers to look 

ahead. Therefore these scores require profound 

involvement by the performer. Without further 

instructions or guidelines by the composer, these scores 

are musical graphics in motion in the sense of December 

1952. Nevertheless it is possible to connect visual and 

musical attributes. For instance the overall appearance, 

the design of graphics, color, shape and of course the 

speed of the score can be mapped by the composer to 

convey specific sonic attributes. 

When analyzing contemporary animated notations, 

various mixed types of the above mentioned appearances 

can be found. Furthermore, as there are no generally valid 

and commonly accepted rules for the design and use of 

animated scores, a strict categorization using Vickery’s 

terms is difficult. Therefore I propose a three dimensional 

coordinate system, where scores can be positioned in a 

more flexible manner. For instance a scrolling score can 

be a rather associative score that works instructive and is 

actional. Or anything in between. Hence, this typology 

does not say anything about the visual appearance or the 

usability of the score.  

 

Figure 3. 3D-coordinate system to categorize animated scores. Example 

scores “SYN-Phon” and “Study No.31” 

x-axes (red) : associative - instructive. This distinction 

refers to the appearance and possible interpretation of an 

animated score. A purely associative score can be 

regarded as a sheer trigger for improvisation, similar to a 

musical graphic. This means musical or acoustic 

parameters are not clearly mapped to graphical ones by 

the composer. What color, size or motion of a graphic 

indicate, is not defined. Rather the overall look and 

appearance of the score should influence the 

improvisation of the performer. An instructive score on 

the other hand indicates what to do and often precisely, 

when to do it. The score communicates instructions. The 

clock-like score on the Dabbledoo website (fig. 2) is a 

rather instructive score. The clock hand indicates when to 

play, and the color indicates the instrument group (red or 

blue) or a pause (white).  

y-axes (blue) : level of improvisation. The position on 

the y-axes indicates overall how much improvisation is 

needed to perform the score. It is very likely that 

associative score requires a lot of improvisation by the 

performer. Nevertheless there are associative scores, 

where very few musical parameters are clearly mapped 

with graphical parameters. For instance performers 

simply play, when graphics are moving. On the other 

hand an instructive score can be very precise with certain 

parameters while other parameters need to be improvised. 

z-axes (green) : tonal - actional. If not specified by the 

composer, the distinction between tonal and actional can 

be sometimes difficult. Tonal and actional refers to 

whether a graphic concerns sound or the means of 

execution. In other words, tonal graphics describe what to 

play, while actional graphics indicate when to play or 

what to do. Again the example of the clock in figure 2. 

This score is rather actional. The color refers to the 
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instrument group involved. For the music itself, shapes, 

colors and motion have no meaning. What to play is not 

indicated. The example SYN-Phon in figure 4 is tonal and 

actional. The red play-head indicates when and how long 

to play, while at the same time, for instance the white 

curvy line at the right side of the picture also indicates a 

kind of slow vibrato. 

VISUAL COMMUNICATION PROCESS 

The visual communication process describes how 

graphical elements (e.g. staff and notes on paper or 

motion graphics on the screen) are understood by the 

receiver (e.g. a violin player). Understanding the visual 

communication process of animated notation is crucial 

for understanding animated notation itself. Many 

problems derive of misconceptions and wrong 

expectations about how information, like playing 

instructions, are communicated in animated notation. An 

example : as mentioned in paragraph 2, avant-garde 

composers lost interest in graphic notation as they could 

not establish a new normative graphic canon. This loss in 

interest had several reasons that can’t be discussed in 

detail here. However, one important point was exactly 

this misconception of the visual communication process. 

Avant-garde composers regarded graphic notation as the 

successor of regular staff notation [5]. Therefore they 

assumed that it would work the same way. However there 

is a disparity in the communication process of western 

staff notation and animated notation. Animated notation 

consists of abstract graphics or objects in motion. Usually 

it is a video or in other words moving pictures. According 

to visual communication theory, the logic of an image (or 

a video) is different from the logic of a text. It is not 

bound to a certain framework or rules. Therefore we 

cannot read and understand a picture in the same way as 

we would read and understand a text [13]. Pictures cannot 

be read. They can only be analyzed and interpreted. The 

more unspecific, unclear or abstract the image, the more 

sketchy and difficult the interpretation. In this context, 

there is no right or wrong interpretation as long as it is 

coherent and comprehensive. Surely scores in staff 

notation need also a certain level of interpretation. Still 

staff notation can be read. Similar to a text using words, 

one has to learn signs, modes and rules of staff notation 

first, to be able to read and execute them. Therefore the 

visual communication process of animated notation and 

the visual communication process of staff notation work 

entirely different. In consequence, avant-garde composers 

were disappointed of the potential of graphic notation 

regarding the "storage" of a musical idea, because a score 

could be interpreted in so many different ways. Their 

desire to establish a new normative canon had to remain 

unfulfilled. 

German communication theorist Heinz Kroehl, 

discusses sign systems and visual communication in 

connection to semiotics and the theories of Charles 

Sanders Peirce [14]. According to Kroehl there are three 

major communication systems : Art, everyday life and 

science [11]. The everyday life system refers to real 

objects that surround us. It is not applicable when 

discussing music notation. Things have a name and we 

can assume that we are understood by others if we use the 

right name for the right object. When I say “bread”, 

everybody, capable of English language, will know what 

I mean. In the scientific system, signs refer to definitions 

and rules. Staff notation consists of a system of specific 

rules, syntax and modes that need to be learned and 

understood to be able to apply them for musical 

performance. In other words, there is a (pre-)defined 

connection between sign and sonic result. This 

connection was shaped through the centuries, from 

neumes in the early middle-ages to western staff notation, 

that we know and use today. Someone able to read staff 

notation knows exactly which key to press on a piano 

keyboard when reading a specific note in a score e.g. a 

C4. Another musician reading the very same score will 

therefore press exactly the very same key on the piano 

keyboard when reading C4. To interpret this C4 as a 

completely different pitch and therefore pressing any key 

apart the C4 would be regarded as wrong. Therefore the 

transfer of knowledge, the visual communication process 

in staff notation can be called scientific according to 

Kroehls distinction [11]. Animated notation works 

entirely different. The interpretation of one graphic could 

sound different every time it is performed. Opposite to 

staff notation, animated notation operates in the artistic 

system [11]. The artistic system conveys possibilities. It 

is not possible that two people, in our case musicians, 

interpret or understand a graphic in exactly the same way 

and thus play identically. An animated notation is an 

invitation for composers and performers to start their own 

so called mapping process. They need to connect or map 

visual attributes with sonic attributes. In staff notation the 

mapping by composer and performer are basically 

congruent. In animated notation the mapping process is 

done individually, first by the composer and then by the 

performer.  

It is important to understand the peculiarities of 

animated notation in the visual communication process to 

be able to comprehend its advantages and disadvantages 

as a tool for composition. Animated scores are intuitively 

applicable. Any musical parameter, like pitch, dynamics 

or even timbre and any other playing instruction can be 

conveyed. Animated notations can be simple and utilized 

by children and musically untrained people. On the other 

hand, animated scores can be quite sophisticated and 

require experienced and skilled musicians. The 
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advantages of animated notations are at the same time the 

reasons for its drawbacks. This type of notation cannot 

store music in the way staff notation does. It is not 

possible to communicate distinct pitches, harmonics or 

rhythm in a way that they can be repeated in a similar 

manner in each performance. Still animated notation is 

music notation. It does not lead to a random performance 

or purely free improvisation. The composer defines the 

limits. Animated notation is simply a different approach 

to music composition and interpretation. 

1 Design, Mapping and Guidelines 

The design of the score is of course a crucial part that 

requires some knowledge in graphic design and motion 

graphics in order to be able to compose and not „to be 

composed“ by a software. In other words, it is possible 

that a lack of experience and limitations of a certain 

software have a significant impact on the design process 

of a score. This influence should be strictly avoided. 

However, the major difficulty in animated notation is the 

connection or mapping of visual and musical parameters 

[7]. Most musicians are used to western staff notation. 

For them it is clear how notes should be interpreted. But 

how does a red square sound compared to a green 

triangle? As described before, there cannot be a clear 

answer to that as animated notation communicates 

artistically. As mentioned already, animated notation 

needs to be interpreted and this interpretation might vary. 

This leads us to the mapping process. Clef, key, lines, 

bars and notes indicate precisely what (e.g. pitch) to play. 

In staff notation the major mapping process has been 

done already as it relies on a set of specific universally 

accepted rules. In graphic and animated notation meaning 

needs to be created individually by interpreting graphics. 

The mapping processes, describes the creation of 

meaning by connecting graphics and graphical attributes 

with sounds and sonic attributes. This process is divided 

in two separate steps. First step is the mapping done by 

the composer (c-mapping). The composer tries to create a 

score, which allows comprehensible connections between 

graphics and sounds or graphics and actions. 

Comprehensibility is the key. It is advisable to build up 

on previous knowledge and commonly accepted 

relationships. For instance western color coding, the 

Cartesian coordinate system with pitch on the y-axes and 

time on the x-axes, connecting the size of graphics with 

musical dynamics or utilizing the inherent motion of 

graphics on the screen for displaying a phrase or motive. 

Second step is the more delicate mapping done by the 

performer (p-mapping). Now, the performer interprets the 

score and tries to find connections between the visuals 

and playing music. P-mapping might vary significantly 

from c-mapping. However, the more precise, distinct and 

comprehendible the c-mapping, the more definite the 

score and the less interpretation work (and improvisation) 

by performers is required. The p-mapping can be also 

supported using additional guidelines. In those guidelines 

the composer talks about the work itself, clarifies how to 

read the score, explains the meaning of certain graphics 

or offers other means to facilitate the interpretation and 

mapping process for the performer. For instance one 

major distinction that can be made by composers and that 

contemporary notation struggles with for quite some time 

(however in a slightly different context [17]) is the 

distinction of graphics in either tonal or actional types. 

Tonal means the graphics convey sound characteristics. 

They refer directly to the sound and its acoustic 

parameters. Actional concerns the means of playing or 

execution. Actional graphics do not convey what to play 

or how it should sound but what to do or foremost when 

to play. Another possibility is to map instruments to a 

certain color. Like the design of the score, the use of 

additional guidelines or other explanations is of course 

completely up to the composer. 

2 Two Examples 

 

Figure 4. Screenshot of a scrolling score SYN-Phon by Candaş Şişman 

featuring a red playhead [25] 

SYN-Phon by Candaş Şişman [25] (see fig.4). On 

Şişman’s website you will find a video of the score with a 

recording of a performance. There one can hear one 

possible interpretation of the score. SYN-Phon is a 

scrolling score, featuring a red play-head. The 

instrumentation is trumpet, cello and electronics/objects. 

Şişman himself calls it a graphical notation. White 

graphics on a black background scroll from right to left 

indicating when to play and what to play. These graphics 

are tonal and actional graphics at the same time. The X-

axes is clearly indicating time, while Y-axes is indicating 

a relative pitch. There is no clear indication within the 

graphics that refers to a specific instrument. Therefore it 

is up to the performers to decide who plays certain 

graphics or parts of the score. The image in figure 4 

shows the very beginning of the piece. The big white ball 

that just passed the play-head, was interpreted as a 
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presumably electronic, gong-like sound while the smaller 

dots that follow are short strokes by the cello that become 

a continues tone changing pitch according to the curves 

of the line. Later the score displays several different types 

of objects at the same time. They are interpreted by 

different instruments. When watching the video on 

Şişman’s website one can state that the score generally 

works very accurately regarding the structure of events 

over time. The mapping of visuals and music also works 

out well. Most graphics find a comprehensive acoustic 

equivalent. What can be a little distracting sometimes is 

the inconsistency of the mapping. For example, some 

uniquely defined graphics (dots connected with thin lines) 

are played by the trumpet and the live electronics. The 

cello repeats similar playing techniques and sounds 

although the graphics look quite versatile. Furthermore 

performers do not interpret graphics consistently. The 

snake like line on the very right in figure 4 is played by 

the cello as a tone, slowly rising and falling in pitch. 

Visually, the interval modulates around a kind of center 

frequency and should be larger in the beginning of the 

snake. While at the end the interval should be smaller. In 

the performance, the cellist plays the interval modulating 

around a rising center frequency, which does not 

correspond properly to the visuals. It could be discussed 

whether this is a misinterpretation of the score by the 

performer, or whether it is unprohibited by the composer 

to interpret the score more freely, though. 

Study No. 31 for 7 triangles and electronics by Ryan 

Ross Smith [26]. This piece belongs to the 

permutation/coherent type and comes with few 

explanatory guidelines by the composer. There are seven 

imaginary circles with cursors that indicate which part to 

play. One cursor/circle for each triangle player. Each 

circle features four attack/mute event nodes connected by 

an arc. The graphics are actional as they indicate when to 

hit a triangle and how long it should ring. The nodes and 

the arcs change over time. A standalone Max/MSP patch 

is triggered by the score. It records the triangle sounds, 

manipulates them and plays them back automatically. 

Hence, there is no need to indicate the live electronics in 

the score. The animated notation hardly requires any 

interpretational work by the performers. The way the 

score is designed indicates directly that the piece is about 

structure or patterns respectively. The patterns change 

over time while the overall form of the piece remains the 

same. The score is very intuitive. With very few 

explanations even musicians with limited skills are able 

to perform the work in a satisfactory way. Since the score 

is instructive, the graphics are actional and not much 

improvisation is demanded, the score constitutes a kind 

of minimal music approach that unfolds vividly how 

simple and precise animated notation can work. 

 

Figure 5. Screenshot of a performance documentation video featuring 

the score of Study No.31 by Ryan Ross Smith [26] 

CONCLUSIONS 

Animated notation is an alternative approach to 

contemporary music composition and performance. Its 

intuitive applicability and the possibility to notate any 

kind of sound source or non-musical instruments are the 

major advantages of this kind of music notation. 

However, the visual communication process, meaning the 

transfer of a musical idea in general and of playing 

instructions in particular, is significantly different from 

regular staff notation. Animated scores cannot be read, 

they can only be interpreted. And this interpretation 

might vary significantly. Composers have to understand 

these differences to be able to utilize the advantages of 

animated notation. The future development of hardware 

and software will surely influence the evolution of 

animated notation and the possibilities to interconnect it 

to other techniques. As a creative tool, it has by no means 

reached its limit, yet. There is still a lot to research and to 

explore in the field of animated notation. 

REFERENCES 

[1] S. H. Behnen. „The Construction of Motion 

Graphics Scores and Seven Motion Graphics 

Scores“ doctoral dissertation, University of 

California, 2008.X. Someone and Y. Someone, The 

Title of the Book. Springer-Verlag, 2004. 

[2] M. Betancourt, The History of Motion Graphics - 

From Avant-Garde to Industry in the United States. 

Rockville : Wildside Press, 2013 

[3] J. Cage, Notations. New York : Something Else 

Press, 1969. 

[4] N. Collins, The Cambridge Companion to Electronic 

Music. Cambridge MA : University Press, 2007. 

[5] D. Daniels, S. Naumann, See this Sound - 

Audiovisuology Compendium. Cologne : Walther 

Koenig, 2009. 

[6] C. Dimpker, Extended Notation - The depiction of 

the unconventional. Zürich : LIT Verlag, 2013. 

38



[7] C. Fischer, “Motion Graphic Notation - a tool to 

improve live electronic music practice”. Emille 

Vol.11 - Journal of the Korean Electro-Acoustic 

Music Society. 2013. 

[8] C. Gresser, “Earle Brown’s Creative Ambiguity and 

Ideas of Co-Creatorship” in Selected Works. 

Contemporary Music Review 26 (3), 2007, pp.  377-

394. 

[9] E. Karkoschka, Das Schriftbild der neuen Musik. 

Celle: Hermann Moeck Verlag, 1966. 

[10] H. Keazor, T. Wübbena, Rewind Play Fastforward - 

The Past, Present and Future of the Music Video. 

Bielefeld: transcript Verlag, 2010 

[11] H. Kroehl, Communication design 2000 - A 

Handbook for All Who Are Concerned with 

Communication, Advertising and Design. Basel: 

Opinio Verlag AG, 1987. 

[12] A. Logothetis, Klangbild und Bildklang. Vienna: 

Lafite, 1999. 

[13] M. Müller, Grundlagen der visuellen 

Kommunikation. UVK, 2003. 

[14] C. S. Peirce, Phänomen und Logik der Zeichen. 

Frankfurt an Main: Suhrkamp Verlag, 1983. 

[15] T. Sauer, Notations 21. London: Mark Batty, 2009. 

[16] R. M. Schafer, The Composer in the Classroom. 

Scarborough: Berandol Music Limited, 1965. 

[17] C. Seeger, “Prescriptive and Descriptive Music-

Writing.” In The Music Quarterly Vol.44. Oxford: 

University Press, 1958. 

[18] K. Stockhausen, Nr.3 Elektronische Studien - Studie 

II. London: Universal Edition, 1956. 

[19] E. Thomas, Darmstädter Beiträge zur neuen Musik - 

Notation. Mainz: B. Schott, 1965. 

[20] L. Vickery, “The Evolution of Notational 

Innovations from Mobile Score to Screen Score”. In 

Organized Sound 17(2). Cambridge MA: University 

Press, 2012. 

Online Resources 

[21] Artlicker Blog. December 1952. Retreived from 

https://artlicker.wordpress.com/tag

/earle-brown/ on January 8, 2015.  

[22] Dabbledoo Music. Activities – The Clock. Retreived 

from 

http://beta.dabbledoomusic.com/cloc

k/level1-section2.html on January 8, 

2015. 

[23] Umeå University. Voices of Umeå Project. 

Retrieved from 

http://www.estet.umu.se/konstnarlig

forskning/ on January 8, 2015. 

[24] Palsson, Pall Ivan. Animated Notation. Retrieved 

from 

http://animatednotation.blogspot.co

m/ on January 8, 2015. 

[25] Şişman, Candaş. SYN-Phon. Retrieved from 

http://www.csismn.com/SYN-Phon on 

January 8, 2015. 

[26] Smith, Ryan Ross. Complete Studies. Retrieved from 

http://ryanrosssmith.com/ on January 8, 

2015. 

 

39



AN ATOMIC APPROACH TO ANIMATED MUSIC 

NOTATION 

 

 Ryan Ross Smith 

 

 

Rensselaer Polytechnic Institute 
ryanrosssmith@gmail.com 

ABSTRACT 

Since the turn of the century, and in particular the last 15 

years,
1

 the discourse surrounding dynamic scoring 

techniques and practices has increased dramatically, 

while leading to an increasingly disparate terminological 

melee. With an awareness of what implications may exist 

in the premature analysis and theorization of an emerging 

field of practice, the author argues that in order to further 

develop the discourse surrounding dynamic scoring 

techniques and practices, it may be useful to take a 

reductionist approach toward defining the various low-

level elements of dynamic scoring, in the case of this 

paper those elements that feature prominently in 

Animated Music Notation [AMN]. By targeting a set of 

low-level elements, and isolating the actualized indicators 

of contact and intersection as the primary functional 

components of AMN, the author will propose a working 

definition of AMN supported by examples drawn 

primarily from the author’s work,
2
 and the descriptive 

language generally employed during the author’s 

compositional, rehearsal and performance experiences. 

To this end, this definition is not intended to entirely 

satisfy the broad range of dynamic scoring techniques 

that implement AMN, but to highlight prevalent 

methodologies, point toward the extension of existing 

taxonomies, and distinguish AMN as a notational 

methodology contained by the more general entity of the 

                                                           
1 Due in large part to Contemporary Music Review, Vol. 29, No. 1, 

Organized Sound, Vol. 19, Special Issue 03, Leonardo Music Journal, 

Vol. 21, and animatednotation.blogspot.com. It is also 

important to note that dynamic scoring practices can be traced back well 

into the 20th century, but given the scope of this paper cannot be covered 

in detail. 
2  

The author here acknowledges the potential downside of an 

analysis that focuses largely on the author’s work, but contends that the 

concepts put forth are, while contextually-limited, available for 

expansion and generalization. 

dynamic score, a methodology meant to clarify two basic 

compositional parameters: what to do and when to do it. 

INTRODUCTION 

In Preface: Virtual Scores and Real-Time Playing, Arthur 

Clay and Jason Freeman define real-time notation as “any 

notation, either traditional or graphic, which is created or 

transformed during an actual musical performance,” and 

qualify this term by noting that within this particular 

issue of “Contemporary Music Review” alone “dynamic 

music notation, live scoring, virtual scoring, and reactive 

notation” are used by authors in describing their work, 

and are more or less particular to their specific 

approaches [1]. For the sake of this paper, I will use the 

term dynamic score to describe real-time scores with a 

collection of symbols that feature visual dynamism 

beyond performer interaction, this dynamism actualized 

as perceptible movement. At the risk of being overly 

pedantic, by ‘beyond performer interaction’ I mean to 

distinguish the difference between a score that 

generatively displays or activates notation in real-time as 

the result of some process autonomous from the 

performers, as opposed to the physical gesture of turning 

pages on a music stand, for instance, or the automated or 

hands-free turning of digital pages. 

  I also mean to distinguish between scores rendered 

for performance a priori by the performer through some 

process provided by the composer. John Cage’s 

Variations II, for instance, requires the performer to 

create a unique version of the score before performance, 

and while this process is dynamic, in that the work 

Variations II is a set of constrained possibilities with no 

fixed state, its actualization as the score is ultimately 

fixed. Similarly, scores that are performer-determinant in 

real-time at the formal level (or, beyond conventional 

notions of interpretation) must still be considered from 

the score object itself as a fixed entity. Earle Brown’s 

December 1952 and Karlheinz Stockhausen’s 

Klavierstucke XI (as graphically and conventionally 

notated examples respectively) are often cited in this 

regard. The score is a fixed entity, its dynamism or 

Copyright: © 2015 Ryan Ross Smith. This is an open-access article 

dis- tributed under the terms of the Creative Commons 

Attribution License 3.0 Unported, which permits 

unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 
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mobility largely conceptual, not perceptibly actualized 

[2]. 

 Within these constraints, certain dynamic scoring 

practices present problematic actualization models. The 

scroll scores of Andy Ingamells feature long strips of 

paper, populated by small, multicolored circles that 

represent sonic events. In performance, the unrolled scroll 

is physically pulled, or scrolled, past the ensemble by two 

assistants. While the element of human interaction is 

clearly present, the assistants are not performers per se, 

but simply provide the mechanics necessary toward 

Ingamells’ dynamic requirements autonomous of the 

performers, the theatricality of it all notwithstanding. 

  Similarly, works that involve real-time human-

computer interaction to influence the score, including 

Harris Wulfson’s LiveScore, in which the audience, 

through their interaction “becomes a part of the 

performance,” but “never exactly cross over into the 

‘proper’ domain inhabited by the ensemble performers” 

[3], or Nick Didkovsky’s Zero Waste, in which the 

pianist in tandem with the score application creates “the 

composition through the act of performance” clearly 

displays actualized notational dynamism in real-time [4]. 

The performers do not lead in the conventional sense, but 

are led through the score by an actualized dynamic 

process, interactive or otherwise. Returning to 

Stockhausen, Klavierstucke XI (or any conventional score 

for that matter) may be considered dynamic in terms of 

its mobility [2], but the cursor, represented here by the 

performer’s eye, is virtual, not actual, or actualized. 

Simply put, agency lies primarily with the performer to 

activate or dynamize the conventional score, whereas the 

dynamic score has agency over the performer; movement 

is perceptible, not of the eye, but to the eye. While further 

discussion of the various distinctions between methods of 

real-time scoring practices may be warranted, it is beyond 

the scope of this paper. However, within the dynamic 

score exist the potential for a variety of dynamic 

representations. AMN will be considered as a form of 

real-time notation in which the actualization of contact 

and intersection, which provide perceptible indications as 

to the specific temporal location of sonic events, are its 

primary distinguishing feature. 

BASIC ELEMENTS OF ANIMATED MUSIC 

NOTATION 

“A graphical method is successful only if the decoding is 

effective. No matter how clever and how technologically 

impressive the encoding, it fails if the decoding process 

fails." – Cleveland and McGill [5] 

Introduction 

Several high-level analyses and aesthetic reflections 

regarding the ontology of dynamic scores have provided 

foundational terminologies with which to describe the 

global functionalities of dynamic scoring techniques, 

including of course those represented by the wide variety 

of notational practices
3

. Lindsay Vickery has most 

recently extended existing score distinctions to include 

the Rhizomatic, 3D, and Animated scores respectively, 

distinctions based in part on their high-level functionality 

and visual design. What is of primary interest in 

Vickery’s current project is the investigation into the 

perceptible qualities of the dynamic score, including an 

in-depth account of sight-reading studies, contingent on 

the “natural constraints based on the limitations of human 

visual processing,” and the impact these constraints may 

have on communicative clarity, symbolic and functional 

design [6]. Similarly, David Kim-Boyle has recently 

investigated issues regarding the impact notational design 

may have on the relationship between score functionality 

and audience perception. [7]. These observations begin to 

enhance the distinction between not only high-level 

dynamic scoring approaches, and low-level 

functionalities that lead to their actualization, but suggest 

that analytics regarding the functional and perceptible 

effectiveness can be assessed at the symbolic and micro-

functional level. To this end, an in-depth, low-level 

account of AMN specifically is largely absent, its 

admittedly pedantic particulars assumed, rendering the 

term AMN itself unfortunately colloquial.
4
 I believe that 

to suggest particular delineations and definitions will lead 

toward a more rich discourse regarding AMN 

specifically, and distinguish AMN as a distinct 

methodology within the broad category of dynamic 

scoring, while also, through a deliberate focus on the 

author’s own creative practice, suggest that these 

distinctions may be limited to particular compositional 

practices. To this end, a reductionist, atomic approach 

will be used to unpack and define the low-level elements 

of AMN. This reductionist analysis will not focus on 

musical content or concept, but target the nuts and bolts, 

so to speak, including prevalent symbologies and their 

respective dynamisms, symbol design and interaction, 

and an examination of actualized indication, including 

contact and intersection. As a global mapping of AMN 

practices is beyond the scope of this paper, those 

                                                           
3 

Scholarly contributions can be largely attributed to the work of Cat 

Hope, Lindsay Vickery, David Kim-Boyle, Jason Freeman, Pedro 

Rebelo and Gerhard E. Winkler, among many others, while their artistic 

contributions, and those within the field of dynamic scoring in general 

[Páll Ivan Pálsson’s animatednotation.blogspot.com and the authors 

animatednotation.com provide numerous examples] continue to make 

significant contributions. 
4  

It has been my admittedly contrary intention with 

animatednotation.com, following the model of 

animatednotation.blogspot.com, to be inclusive regarding 

the diversity of dynamic scoring practices, regardless of those low-level 

symbolic and functional requirements I will put forth here. 
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notational approaches that most clearly represent a clearly 

defined symbology, perceptible functionality, and 

actualized indication will be prioritized. 

  The symbolic elements of AMN, with which dynamic 

functionalities are actualized, can often be reduced to four 

increasingly complex entities: geometric primitives 

[primitives], semantically and visually integrated 

primitives [compound primitives], structures, and 

aggregates. 

Primitives 

A primitive is an irreducible static or dynamic symbol.
5
 A 

primitive is irreducible when no aspect of its design can 

be removed without limiting its intended communicative 

potential. Channeling Goodman to some degree, Vickery 

writes “One important factor contributing to the efficacy 

of notation is semantic soundness – the degree to which 

the graphical representation makes inherent sense to the 

reader, rather than necessitates learning and 

memorization of new symbols.” [6]. To this end, a 

primitive, which may be of any shape or size, is often cast 

as small geometric primitives [circles, squares, 

rectangles, lines (straight and curved)], favoring 

extensible clarity over  verbose ambiguity. [7] As 

Gerhard E. Winkler notes, “the different parts of the score 

to be reduced to a number of elements, which can be 

learned and ‘trained’ in advance, and which can be seized 

with ‘one glance’ immediately during a performance.” [8] 

  A stationary, or static primitive is referred to as a 

node, while a stationary or static line is referred to as an 

attack line or play head. A non-line dynamic primitive is 

referred to as a cursor or attack cursor, while a dynamic 

line is often referred to as a dynamic attack line or a 

swiping play head (see Figure 1) [9]. Screen boundaries, 

the physical (or projected) limitations of the score may or 

may not be treated symbolically, but are necessarily 

static.
6
 Representative images [frogs, spaceships, etc.] are 

less common, and often serve higher-level purposes, as a 

visual representation of a particular action to be 

performed or instrument to be activated, as opposed to 

the more robust, contextually-variable symbol.
7
 

                                                           
5  

The focus here is on those symbols abstracted from, or 

distinct from conventional symbologies, but this should not presuppose 

their exclusion in practice. 
6  

This refers to the physical limitations of the score, not 

boundaries that may result from letterboxing, for instance, which may 

be treated dynamically. 
7  

In The Limitations of Representing Sound and Notation on 

Screen, Lindsay Vickery develops this through a continuum ranging 

from the spectrogram [detailed image] to the text score [distilled 

image]. References to frogs and spaceships is in regards to the 

particularly interesting experiments in notational design by the 

S.L.A.T.U.R. collective in Reykjavík, Iceland. 

Figure 1. y = f(x) (2012) by Þráinn Hjálmarsson [detail] Example of 

sonic events represented as static circular nodes, their temporality 

denoted by the crossing of the dynamic attack lines/swiping play heads. 

Two or more primitives can be seamlessly combined 

in such a way that a secondary primitive enhances or 

embellishes the primary, creating a compound primitive. 

For instance, a vertical line intersecting a circular 

primitive in order to clarify the moment of intersection 

with a static attack line. 

  The visual qualities of a primitive, including size and 

color, can also be modified to denote changes to the sonic 

qualities of the corresponding sonic event, insofar as it 

can still be ‘decoded’ by the performer [5]. Changes of 

this type are, from the visual perspective, necessarily 

linked to the ontology of the irreducible primitive, and so 

would not be considered compound (see Figure 2). 

  Cases where information regarding the qualities of a 

particular sonic event as prescribed by a primitive appear 

in conjunction with the primitive, but not visually 

embedded within it, can still be considered a compound 

primitive, so long as it clearly references a single instance 

of a primitive (see Figure 3), as opposed to a modifier, 

which applies to two or more primitives, and is thus not 

integrated. 

Regions describe a subset of both static nodes and 

dynamic attack cursors, and are represented by a large 

primitive, often functionally integrated by intersecting a 

line (see Figure 5), or its intersection by a line (see Figure 

6). Regions generally represent an event that is sustained, 

and/or modified over time. In K. Michael Fox’s Accretion 

(2014), the ADSR curve is cast as a notational region, 

representing relative dynamics in its relation to the static 

attack line and vertical boundaries (see Figure 4). 
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Figure 2. Study no. 10 (2012) by Ryan Ross Smith [detail] Dynamics 

are embedded within each primitive, represented by relative size. 

Figure 3. Spam (2009) by Luciano Azzigotti [detail] Dynamic markings 

follow the same speed and trajectory as the symbol they are applied to. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Accretion by K. Michael Fox (2014). 

Figure 5. Cruel and Usual (2011) by Cat Hope. 

Figure 6. Spooky Circle (2012) by Jesper Pedersen. 

43



Structures 

A structure refers to two or more primitives in some 

interrelated relationship. This may be represented by an 

object, for example a line connecting two circular 

primitives (see Figure 7 [left]), or created through some 

dynamic relationship between symbols (see Figure 7 

[right]). A structure may contain one or more primitives 

that are not functionally symbolic, but clarify 

functionality and “semantic soundness.” [6] Many of the 

author’s radial scores incorporate a rotating line that 

connects a rotating attack cursor to a central static node. 

This line has negligible value regarding its notational 

functionality, but clarifies moments of contact and 

intersection (see Figure 8). At the lowest level, a single 

structure may contain the elements necessary to produce 

an actualized indication of contact or intersection, an 

AMN capable of determining the temporal location and 

quality of a sonic event. To this end, an instantiation of 

AMN will contain at least one structure, which will in 

turn contain two or more primitives, at least one of which 

will exhibit dynamic qualities (see Figure 7 [right]). 

Figure 7. [left] Two circular primitives in a static relationship with one 

another form a structure. [right] Two circular primitives in a dynamic 

relationship with one another form a structure. 

Figure 8. Study 40.1 [Pulseighteen] (2014) by Ryan Ross Smith [detail] 

Each of the 18 outer nodes is activated by the intersection by the three 

attack cursors. The functional structure includes the rotating attack 

cursors and nodes. The line connecting the attack cursor to the center is 

a non-essential aspect of the structure, but may improve legibility and 

clarify functionality.  

Aggregates 

An aggregate is the collection of primitives, structures, 

and their respective dynamisms that corresponds to a 

single player. Aggregates may be visually displaced or 

integrated, and may be functionally autonomous (see 

Figure 9) or dependent regarding its relation to other 

aggregates (see Figure 10). Aggregates range in 

complexity from a single, simple structure (see Figure 9) 

to a set of integrated structures, each comprised of several 

primitives (see Figure 11 & 12).  

Figure 9. Study no. 8 [15 Percussionists] (2012) by Ryan Ross Smith 

[detail]. Visually displaced, functionally autonomous. 

Figure 10. Study 40.1 [Pulseighteen] (2014) by Ryan Ross Smith. 

Visually displaced, functionally dependent. 
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It is important to note that autonomous aggregates that 

appear to be visually integrated with other aggregates 

does not necessarily imply any functional integration, 

dependence or influence (see Figure 9). 

Figure 11. Study no. 31 (2013) by Ryan Ross Smith. Each aggregate 

(including one of the seven concentric circles, four dynamic ‘barbells,’ 

and single rotating attack cursor) is functionally autonomous, but 

visually integrated, in that each aggregate seems to encapsulate smaller 

aggregates. 

Figure 12. Study no. 40.3 [pulseven] (2014) by Ryan Ross Smith 

[detail] Each numbered aggregate (numbers corresponding to players) is 

dependent on the central aggregate for particular functionalities 

throughout the piece. The central aggregate is a collective aggregate, in 

that it is accessible by more than one player. 

Furthermore, the distinction between autonomous and 

dependent aggregates is necessarily independent from 

any global functionality imposed by the score generator, 

as all elements of the score are necessarily dependent on 

the score generator for their actualization. 

Traversal Duration 

Traversal duration refers to the time it takes for an attack 

cursor to move from its starting point to the point of 

contact or intersection. Traversal offset refers to the 

distance a cursor, or line, travels over the course of the 

traversal duration (see Figure 13). Cursor traversal must 

be perceptible, or trackable, in order that the performer 

can clearly gauge the arrival of an incoming cursor and 

prepare for the moment of attack, and traversal duration 

and cursor offset must be considered in conjunction 

toward this end. Lindsay Vickery considers these issues 

in depth, suggesting that “at scroll rates greater than 3 cm 

per second the reader struggles to capture 

information” [6]. A concatenation of nodes or cursors 

may extend the potential ranges of both the traversal 

duration and cursor offset, due in part to the regularity or 

feel that concatenation may evoke (see Figure 8). 

Furthermore, these particular limitations of legibility can 

be exploited to create, as Winkler notes “’stress’ or even 

‘frustration’” for the players, a music and theatrical 

disruption [8], and explore the extremities of such real-

time practices [10]. 

Figure 13. Accretion (2014) by K. Michael Fox [detail] In this example, 

traversal duration impacts not only onset, but the performer’s current 

‘location’ within a sustained or continuously-modified event, 

represented here as a region. 

ACTUALIZED INDICATION 

Contact 

“...the true nature of things may be said to lie not in things 

themselves, but in the relationships which we construct, and 

then perceive, between them.” – Terence Hawkes [11] 
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Actualized indication refers to a particular 

methodology by which the temporal location of a sonic 

event can visually represented with a high degree of 

specificity. While the history of notation provides myriad 

ways to locate a sonic event, this section will deal with 

only those that best distinguish those functionalities 

necessary to AMN: contact and intersection. 

  Contact is the “union or junction of surfaces” [12], 

and ‘surfaces’ will here refer to the boundaries of any 

object, visually defined by its own delineated boundaries 

[13]. In Features and Objects in Visual Processing, Anne 

Treisman writes “…boundaries are salient between 

elements that differ in simple properties such as color, 

brightness, and line orientation but not between elements 

that differ in how their properties are combined or 

arranged” [14]. In other words, in order for two objects, 

or symbols as it were, to appear to come into contact with 

one another, their respective visual representation must 

be well defined, differentiated, and at least one must 

demonstrate dynamic qualities. 

  The physical gestures of performers and conductors 

alike most clearly represent the concept of contact as a 

meaningful, perceptible action. The conductor’s baton 

‘bouncing’ off a virtual or imaginary boundary elicits a 

predetermined response based on score location and 

intensity; The violinist’s quick breath and head snap cues 

an upcoming unison entrance; the guitar player jumps off 

the drum kit at the correct time in order to make contact 

with the floor at the following downbeat. These physical 

gestures of contact, their necessary ‘setup,’ as (un)subtle 

as they may be, within virtual and physical constraints, 

more or less clearly convey a bundle of performance 

instructions in reference to, but beyond any conventional 

notion of notation; in other words, the speed at which the 

violinist snaps her head back, and the amplitude of ‘sniff 

volume’ may determine not only the moment of attack, 

but relative dynamic, tempo, and other less quantifiable 

parameters (smooth or jagged, heroic or melancholic, 

etc.); A set of dynamic qualities represented by 

perceptible movement. 

  The moment of contact as a notational indicator is not 

new, nor dependent on digital media,
8
 but does suggest a 

method whereby these interactions can be actualized with 

a high degree of temporal specificity, even in a generative 

context, and effectively transfer temporal agency from 

the performer to the score. 

  Contact in the context of AMN is represented by the 

collision of two symbols, actualized as surface juncture. 

Contact can occur between objects of any shape or size, 

                                                           
8
 From Max Fleischer to Karaoke, player piano rolls to Guitar Hero, 

contact and intersection have been the basis for a variety of media 

applications of real-time notational approaches throughout the 20th 

century. 

with at least one exhibiting dynamic qualities. The 

moment at which contact occurs signifies that some sonic 

event is to be performed by the player. 

  One of the most common methods of contact includes 

a [dynamic] attack cursor making surface contact with a 

[static] node or play head. In these cases, contact occurs 

at the moment the cursor’s boundary collides with the 

node or play head’s boundary, followed by the cursor 

reversing its previous trajectory, appearing to bounce of 

the node, moving away in some other trajectory or simply 

disappearing. The cursor will not penetrate the node’s 

boundary, and often follows a consistent trajectory (see 

Figure 14). 

Figure 14. Contact: Dynamic attack cursor and static play head. 

Intersection 

Intersection, as an actualized indicator, consists of a 

[dynamic] attack cursor intersecting a [static] node or 

play head. This functionality requires the cursor to 

penetrate the node or play head, the cursor often 

continuing on in the same direction following intersection 

(see Figure 15). Intersection is often utilized for sustained 

or continuously modified events, and is regularly 

represented by a region. For continuously modified 

events, the alignment of the centroid is not applicable, but 

the position of the attack point (line or node) within the 

region. In Cat Hope’s Cruel and Usual (2011), sustained 

tones are represented by regions in the form of straight 

and curved lines, their position in relation to the fixed 

attack line determining the relative degree to which the 

current pitch is detuned (see Figure 5). 

  Related to this functionality is the aforementioned 

dynamic attack line, or swiping play head, in which the 

nodes are rendered static, the moment of attack 

determined by the attack line intersecting the node, 

although the general functionality is similar (see Figure 

16) [5]. 
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Figure 15. Intersection: Dynamic attack cursor and static play head. 

Figure 16. Intersection: Dynamic attack line, or swiping play head, and 

static node. Similar to the previous example, an event occurs at the 

moment the line aligns with the node’s center. 

Certain design schemes and functionalities may render 

these distinctions negligible. For instance, a node and 

cursor of relatively small size may make the exact 

moment of contact or intersection difficult to perceive, 

which often occurs with a concatenation of nodes or 

cursors [6]. 

  A less common but similarly effective actualized 

indication includes the convergence by a dynamic cursor 

on an encapsulated static node. This describes the 

relationship between a dynamic cursor of similar shape to 

a static node sharing the same center, beginning larger, 

and diminishing in size until it makes contact with the 

node. Contact occurs when the inner boundary of the 

cursor reaches the outer boundary of the node (see 

Figures 17, 18 & 19). 

Figure 17. Convergence: Dynamic attack cursor and static node. 

 

 

 

 

 

Figure 18. Study no.16 [NavavaN] (2013) by Ryan Ross Smith. Red 

rectangles [attack cursor] converge on the black rectangles [static node] 

to denote the moment of attack. 

Figure 19. Study no.16 [NavavaN] (2013) by Ryan Ross Smith [detail]. 

CONCLUSION 

AMN is a form of dynamic notation that utilizes 

actualized contact and intersection between two or more 

symbols to denote the temporal location of sonic events. 

The purpose of this paper has been to propose a 

distinction between the low level elements [primitives, 

structures, aggregates, and actualized indication] that 

distinguish AMN as a particular notational methodology, 

and the dynamic score as a container which AMN and 

other approaches are realized, largely framed its 

utilization by the author to obtain temporal specificity. 

The continued expansion of this reductive analysis may 

lead to not only further this distinction, but to suggest a 

terminological and functional foundation from which one 

can clearly and consistently explain “how the system 

works” [8], and present possibilities for tactical 

subversion. 
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ABSTRACT

This paper describes research, investigations, creative ex-
periments and performances undertaken by the author in
collaboration with practitioners in different creative and
performance domains. The research focuses on the trans-
lation of expression between these domains and its imple-
mentation using technology. This paper focuses primar-
ily on the role of notation in this process. The domains
involved include music (audio and notation), movement
(dance) and text (poetry). The data arising from perform-
ers’ movements are collected and investigated; consider-
ation is given to the use of image and graphics enabling
elementary algorithmically generated dance notation.

These implementations are taken to be a part of the cre-
ative process. This research is about creating and investi-
gating stimulating experiences where connections between
one domain and the other are perceivable and where this
connection itself provides an aesthetic experience. They
are not intended to be fixed and permanent (although may
remain so for the duration of a composition). The research
is about creating dynamic environments, not musical in-
struments or general purpose tools.

1. THREE STREAMS

1.1 Algorithmic generation of material

The practice-led research described here is the result of the
concatenation over time of a number of research strands,
the first of which is the algorithmic generation of material.
My primary interests involve music notation but through
collaborative work these have widened to include text-based
material - mainly poetry - as well as the consideration of
image and graphics-based work involving notations such
as dance (e.g. labanotation) and the more graphical com-
ponents of music notation.

Copyright: c©2015 Richard Hoadley . This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution

Licence 3.0 Unported, which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided the original author and

source are credited.

It is important to note that this work does not currently
attempt to use artificial intelligence, only relatively simple
algorithms and physical data to generate music in ways that
one might compare to traditional composition techniques.

1.2 Physical computing

The use of physical computing - physical performance in
computing environments - forms a second research strand.
It is necessary for the implementation of embodied expres-
sion and translation between expressive domains as well as
other factors such as synchronisation in live performance
and within groups. It plays an essential role in domains
such as music and dance where physical effort is of signif-
icance.

1.3 Live notation

A third strand and the main focus of this paper is notation
(in this case music and text) and in particular with regard to
live environments. In part due to the growth of popularity
of middleware such as Open Sound Control (OSC) which
facilitate bespoke communications between hard and soft-
ware environments, and also because of technological and
in particular network-based innovations, there are increas-
ing technologies allowing live control over a variety of
notations. One of the most visible examples of these is
Google Docs, but software such as INSCORE [1] provides
a variety of specialised notational and graphic tools, de-
signed to be solely controllable using OSC (and therefore
over networks). Related software includes MaxScore [2],
the Bach Project [3] and Quintet.net [4]. While these pack-
ages each has their own advantages, they do not share IN-
SCORE ’s focus on control over and flexibility in graphical
presentation which is particularly important in the author’s
implementation of notation synthesis for live performance.

By concentrating on the presentation and interpretation of
notation, INSCORE encourages freer, more intuitive meth-
ods of composition using small, ‘local’ algorithms that to-
gether generate material such as that shown in Figure 1 -
material generated in response to dancers’ physical move-
ments. These phrases are not generally pre-composed (al-
though they could be - this is a choice made driven by aes-
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Figure 1. Dynamic notation from Semaphore, scene 1

thetic and practical considerations: the musicians are quite
happy to encounter the music in this way). INSCORE also
allows considerable control over the presentation of nota-
tion, an important feature for those composers who, like
the author, find the appearance of notation reflects its ex-
pressivity (while being mindful of notation devotee Cor-
nelius Cardew’s warning that ‘a musical notation that looks
beautiful is not a beautiful notation, because it is not a
function of a notation to look beautiful’ [5]).

1.3.1 Live text

Unsurprisingly, ‘liveness’ has different consequences in dif-
ferent domains. For those working in the domain of text the
ability of Google Docs to update material synchronously
for all users is literally a demonstration of the editing of
material as ‘performance’. Inevitably some creative artists
have used this platform as a way of interrogating particular
methods of creating, viewing and performing with text [6];
others have used features of Skype and Twitter in similar
ways [7].

Book publishing tends to emphasise the finished product
- the messy processes of writing and editing are obscured
by the impeccable published item. There have been a num-
ber of projects making use of electronic and networked re-
sources, including novel-writing as performance [8] and as
real-time performance [9], writing as performance art [10],
writing as a contest against time [11] and against other au-
thors on-line in the Penguin Books competition ’We Tell
Stories’ [12].

Of course text can also be created and manipulated gen-
eratively rather than collaboratively. This is less preva-
lent in text-based media (although ‘off-line’ methods such
as Oulipo [13] are well known and understood). One of
the first practical references to the possibility of the algo-
rithmic generation of meaningful text was by Alan Tur-
ing [14]. In this famous test Turing replaces the question
“can machines think” with “are there imaginable digital
computers which would do well in the imitation game?”
(The imitation game is one possible implementation of the
Turing test.) While the test is for intelligence, in effect a

major factor in communication is the requirement for the
proper parsing of grammar through algorithms.

This apparently simple idea has been highly influential
as well as controversial. In 2014 the press reported ‘the
first computer ever to pass the Turing Test’ [15] - a claim
quickly disputed [16]. Eugene Goostman [17] joins a long
list of attempts at the algorithmic generation of meaning,
stretching back through chatterbots such as ELIZA [18].

More recently there has been interest in the generation of
robotic or virtual algorithmic creatures, for instance exam-
ples of real-time animation Larry the Zombie [19], or Milo
from Kinect [20].

Through these examples and others it is clear that live ac-
tion requires a particular aesthetic - books, films, art and
music are all based on planning or improvisation. Live
action/live art tends to be based on forms of guided impro-
visation or semi-improvisation with forms that were not
previously available, so allowing hybrid creative structures
involving group and real-time coordination through gener-
ative notations.

1.3.2 Live notation in music

Music, drama and dance are temporal art forms having sig-
nificant improvisatory and/or interpretive components.

Over the last fifty years particular emphasis, even rever-
ence [21], has been placed on the ‘urtext’ - most obviously
in ‘classical’ musics where the score is, or has become, a
fundamental element. This contrasts with many popular
musics and jazz where the skilful variation or personal-
isation of an existing ‘standard’ is frequently considered
central (witness Bob Dylan’s own increasingly inventive
variations in his performances of Like a Rolling Stone). In
classical musics performers have been vilified for veering
too far away from the original instruction or a ‘classic’ in-
terpretation [22]. In forms where scores are less definitive -
pop, jazz and other oral, aural and more improvised forms,
‘liveness’ is not in the form of notation, but in musical sig-
nals passing between musicians. (It may be significant that
so-called tribute bands - replicas of older pop acts - now
exist for whom authenticity is now a main criteria.) All of
these factors make the live generation of music notation a
particularly hybrid form. Classically-trained instrumental-
ists are readily able to create dynamic and exciting perfor-
mances from carefully constructed live notation - they are
used to creating performance in deplorably short spaces
of time from fearsome scores, after all. In this case, the
live notation should not be too difficult and proper thought
must be given to its format and presentation (how to judge
when to ’turn a page’ - whatever that means digitally - for
instance). The author’s experience is that under these con-
ditions musicians find performing from live scores exciting
and exhilarating [23].
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In the technical operation of algorithmically structuring
notation it is of prime importance to achieve a satisfac-
tory balance between the maintenance of musical style and
the creation of notation straightforward and clear enough
to enable the musician to give an expressive performance
even when almost sight-reading. For this reason the author
has made the choice to stick primarily to common practice
notation. In addition, the notation has been kept as simple
as possible bearing in mind the modernist style of the mu-
sic. These choices have been made in order to facilitate the
skills of classically-trained performers who have, through
years of experience, a particular relationship with notation
and they are able to transform it into dynamic, expressive
performance.

Nonetheless, the live generative use of music notation has
been generally less visible. While software for music no-
tation has been developing for many years (Notator and
Finale in 1988, Sibelius publicly released in 1993), there
has been little apparent interest in methods of using nota-
tion both generatively and in live environments. More re-
cently, Lilypond (e.g. [24]) has been used extensively as a
platform for non-real-time generation of notation and sys-
tems such as PGWL [25] and Slippery Chicken [26] have
added very sophisticated notation facilities to computer-
aided-composition software. As mentioned in section 1.3
there are now a number of options available to composers
working in live music notation ( [2–4, 27]), although the
emphasis of both remains on computer-aided composition.

Prominent ‘historical’ examples of live notation in music
include Baird [24], Wulfson [28] and Kim-Boyle [29]. The
use of notation in these cases mainly consists the manipu-
lation of image files or the generation of large quantities of
material - for instance through the algorithmic coding of
Lilypond files [30]. However there are some more signifi-
cant uses of live generated scores [31,32]. Volume 29:1 of
Contemporary Music Review (2010) is given over entirely
to a review of live notation.

Unsurprisingly in a comparatively new field there are sig-
nificant issues yet to be dealt with in the practical imple-
mentation of live notation. These include bridging the tech-
nical and aesthetic divide between notation and signals [31],
general complications with synchronisation and timing, prac-
tical difficulties such as when to ‘page turn’, how to achieve
the correct balance between reading and improvisation as
well as inherent issues such as sight-reading and how difficult-
to-play notation can become before it requires practice. As
Lukas Foss commented on, ”the precise notation which re-
sults in imprecise performance” and that ”to learn to play
the disorderly in orderly fashion is to multiply rehearsal
time by one hundred” [33].

1.3.3 Live notation in dance and graphics

Prominent extant forms of dance/movement notation in-
clude Labanotation, or Kinetographie Laban by Rudolf
von Laban [34], Benesh Movement Notation (graphical rep-
resentation of human bodily movements), Eshkol-Wachman
Movement Notation (graphical representation of bodily move-
ments of other species in addition to humans, and indeed
any kind of movement (e.g. aircraft aerobatics)) as well as
others. These forms are primarily graphical reflecting their
main focus on movement rather than textual or symbolic
meaning.

While some forms of music notation have had a long and
varied history, dance notation has not been so prominent.
One of the reasons for this lies in the different functions
that exist for dance notation. It is usually considered as a
way of storing and passing on existing dances rather than
as a way of expressing oneself, making the adoption or
even exploration of dance or movement notation more dif-
ficult. It is rarely used in the communication of new dance
work, and in spite of Albrecht Knust’s suggestion that in
Labanotation “the symbols must speak directly to the eyes
of the reader so that he can perform the movements with-
out, or at least without too much, reflection” [35], there are
questions as to how easily and quickly it can be read and
digested. Text and music notations are generally so well
understood by performers that this is not a problem (al-
though it usually requires some time to ‘digest’ them (see
section 5)). Some musics have tests for sight-reading abil-
ity, implying that financial considerations are very likely to
reduce the capacity for detailed rehearsal!

A further difference is that dance notation is generally
considered such a specialised field that professional nota-
tors need to be employed, limiting its take-up in live work.

Finally, a problem specifically associated with the live
use of this notation is how it can be communicated to the
dancers. Most commonly this is via a data projector, but
this limits the dancer’s movements significantly.

Recent developments linking live notation and dance have
included a variety of instances of ‘hacking choreography’
and ‘live coding’ involving dance and other forms of em-
bodied expression. While predominantly extensions of the
physical computing methods mentioned above, the use of
live coding as a form of notation has been imaginatively
investigated by Alex McLean and Kate Sicchio in [36–38]
and demonstrated in 2013 [39].

While there are some practical problems with these sys-
tems - mainly around communicating the notation to the
dancer, McLean’s version of Texture, demonstrated in [39]
is both visually striking and expressive. It does however,
become increasingly complex as the dance progresses, mak-
ing interpretation a particularly vital part of the interaction.
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While the present condition of dance notation can appear
to be quite frustrating, particularly in its lack of standardis-
ation, the field is open for further developments in notation
systems.

2. CROSS-DOMAIN EXPRESSION

These three research streams together allow for the practice-
led investigation of cross-domain expression. Cross-domain
ways of thinking are so natural to us that it is difficult
to imagine expression without them. Performed music is
itself a cross-domain activity utilising both physical and
mental dexterity. (Arguably the use of mixed metaphors
(such as my own use of the phrase ‘mental dexterity’ in the
previous sentence) is another example, as are metaphors
and analogies themselves.)

Writing about music often requires the use of metaphors
and particularly when we are seeking to analyse or describe
less embodied musical forms, such as acousmatic music,
we are even more reliant on other domains such as lan-
guage and image [40].

Most expressive domains themselves comprise of a num-
ber of linked sub-domains. A lot of music, for instance,
can be described as expression through pattern enabled by
physical effort. This research leans heavily on these inter-
dependencies, seeking to maximise expression and inter-
action through the exploitation of musicians’ learned per-
formance skills articulated through common practice nota-
tions.

3. SEMAPHORE

Semaphore is a collaborative music-dance-text piece com-
posed using research which seeks to translate between ex-
pressive domains using technology. An expressive domain
is a form of artistic expression such as music, dance or
text. Uniquely, information is taken from one domain and
translated into another in real-time so allowing simultane-
ous performance. The music, environment and program-
ming is by the author, choreography is by Jane Turner and
text is by the novelist and poet Phil Terry. The music is
performed live from code in the SuperCollider audio pro-
gramming environment [41, 42], a combination of prepre-
pared functions and structures and including some methods
related to live coding.

3.1 A cross-domain sequence explained

Semaphore is composed of patterns of interactive cross-
domain scenes and sequences. The following is an exam-
ple of a single synchronous sequence:

A dancer’s physical movement triggers and modulates
the computer generation of a text phrase, which is dis-
played and performed. This performance is recorded and

the recording is analysed spectrally. The results of the anal-
ysis then trigger and modulate a musical phrase presented
as music notation which is then played by an instrumen-
talist. A dancer responds to the performed phrase with a
physical gesture.

This set of actions might take place over a period from
a few milliseconds to one or two seconds, or over an even
more extended period of time. We find that the only sig-
nificant latency occurs as performers consciously respond
to newly displayed notations.

Alongside its creative potential, this research enables peo-
ple working in one domain to generate material in another.
These people might be expert performers in another do-
main or members of the public with no particular expertise.

There are many examples of movement-based interfaces
for music, but this work is unique in its facilitation of trans-
lations from one domain into the notation of another: mu-
sic, text, dance or graphics. The use of notation allows us
to preserve performance interpretation that many audience
members find so fundamental in live art.

Of course, the creative problem of how to create mean-
ingful expression from these technical procedures remains
as crucial as ever.

4. TECHNICAL PROCEDURES

In the following sections ways in which the parts of the
sequence described above were implemented technically
outlined in more detail.

4.1 A dancer’s physical gesture...

The ubiquitous Microsoft Kinect (Xbox 360 version) is
used to capture a dancer’s physical movements. The soft-
ware used for programming the audio environment, Super-
Collider, is also used to perform some rudimentary move-
ment detection. Gesture recognition is not central to this
research and the software does not seek to make precise
distinctions between different gestures but it is used to de-
tect the speed and range of the movements of certain body
parts. Effective though the Kinect is, the Loie Fuller Ap-
parition dress which is used in part of the performance (see
Figure 2) proved too concealing skeletally for the Kinect.
For the next rehearsal, we used a bespoke ultrasound sen-
sor device, the Gaggle [43] to gauge proximity and move-
ment.

4.2 ...triggers and modulates the computer generation
of a text phrase...

Figure 3 shows a screenshot from Semaphore showing the
results of a variety of text-based manipulations of the orig-
inal text displayed in INSCORE using its ability to parse
HTML text and formatting. The original text was prepared
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Figure 2. Loie Fuller Apparition costume. Photo c© Chris
Frazer-Smith 2014.

in collaboration with the team by the writer and poet Phil
Terry especially for this performance. One of the key ques-
tions was how to achieve an expressive balance between
sound and meaning in the text. Terry is well-versed in
Oulipo techniques [13] and was aware of many possible
technical textual procedures and their results - we wanted
something focused and related to the Semaphore concept.
Eventually, we decided on material that fell in between
sound and semantics, and which also enabled some algo-
rithmic manipulation. (Apparently by chance - or euphony
- the word ’semantic’ appears in the poem, linked sonically
to ’semaphore’.)

Semaphore or some are for just as elsewhere
some are against

Some fear to offer or seem to fear
Afar a fir so that through the undergrowth and

across the map
A flare or a car

Soars to see the same semantic dance
Oars soar with ease or seem to soar
The same flares through the firs
Seem to spore

Ears arms too as a sheer harm
Verse as shame same sheep
Sham spheres or spare harems reap hope
Marsh shears or fennel ash

When we discovered that the original poem was too short,
Terry expanded it, using a pantoum structure derived from
the Malay pantum verse form which repeats lines in a pat-
tern, effectively doubling the original length:

A B C D
B E D F
E G F H
G I/A/C H J/A/C

Figure 3. Semaphore, scene 3

This produces verses with a gentle, somewhat zen-like
quality, emphasising the rather surreal nature of the origi-
nal verse:

Some fear to offer or seem to fear
Soars to see the same semantic dance
A flare or a car
Oars soar with ease or seem to soar

Soars to see the same semantic dance
The same flares through the firs
Oars soar with ease or seem to soar
Seem to spore

Ears arms too as a sheer harm
The same flares through the firs
Seem to spore
Verse as shame same sheep

While the final part of Semaphore revolves around a pre-
written poem (see section 4.3), an introductory, more ab-
stract section (figure 3) originally involved direct interac-
tion between dancers and text. As an example we arranged
a passage where if the movements of one of the dancers
was faster/higher than a given threshold, a trigger is sent to
an algorithm which then chooses one from a group of se-
lected words from the poems (such as flashing, shear, roar,
billows, swelling, etc.).

Although the metaphors chosen here seem rather trite or
simplistic, the scenario proved expressive, successful and
full of potential.

4.3 ...the recording is analysed...

For the last part of Semaphore, we recorded Terry read-
ing the poem. As we needed to mix between dry and wet
audio streams we used a recording, although the use of a
live voice (at least in part) reading live generated text is a
important goal.

The software analyses the frequency and amplitude com-
ponents of the vocal. The base frequency generates a series
of sustained chords accompanying the voice gently in the
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Figure 4. Conversion process from data to audio and notation
formats

background. If the frequency pushes over a certain thresh-
old, a small melisma is triggered. Similarly, if an ampli-
tude threshold is broken, a sharper, more dissonant chord
is generated.

4.4 ...a musical phrase presented as notation...

At specific times during this episode - after about every
thirty seconds or so - a snapshot is taken of the voice’s fre-
quency. This frequency is used in the generation of the
notation of sustained notes for the clarinet and ‘cello (see
screenshot in Figure 5). These are arranged to create an
effect in imitation of the sound of the bell of a navigational
ocean buoy. In all these cases INSCORE is used to present
the notation. INSCORE is controlled through OSC mes-
sages, allowing a tight integration between the language
used for algorithmic control (in this case SCLang, but it
could be any other OSC compatible environment) and pro-
cesses synthesising the notations (see Figure 4).

4.5 ...performed by an instrumentalist and
interpreted by dancers

As these notes are performed instrumentally, they are in-
terpreted by the dancers as a port of the overall choreog-
raphy. In turn, these movements may contribute further to
the process of text and music notation generation. In fu-
ture, we plan to use this ‘audio feedback’ to modulate the
generation of dance notation (section 1.3.3).

5. LATENCY

The subject of latency frequently arises during discussions
concerning performance using these technologies. Latency
is defined as the time taken from the moment one event
happens - in this case, the movement of a dancer - to the
moment that the effect of that event is perceived - in this
case, the generation of the notation and its subsequent per-
formance [44]. The origin of the problem of latency in

Figure 5. Semaphore, scene 4

digital systems lies in the field of audio production and re-
production - it is the (inevitable) result of digital systems
where data must be read from memory to be converted
into sound. The larger quantity of data that can be read,
the more efficient and to that extent the faster the system,
but the higher the potential latency. Designers of digital
audio instruments must find a balance between these two
incompatible goals. There are, of course, examples of non-
digital or mechanical latency, the time that an organ pipe
(especially very large lower pitched ones) take to activate
following the mechanical pressing of the key in common
with many other larger acoustic instruments (double bas-
soon, baritone saxophone, etc.) for instance.

5.1 Causes of Latency in Semaphore

When using the Kinect, apart from the unit itself, once data
is transferred to SuperCollider there are a number of ad-
ditional factors that can cause latency. Most algorithmic
processes dealing with symbolic musical structures (such
as notation and musical pitch) will involve rather minimal
processing and so will not usually cause any delay. How-
ever, the production of the notation itself can have a signif-
icant effect.

Mirroring the description of digital latency above, syn-
chronisation with physical events requires a ’sampling’ of
those events in order to process them. Any system then has
to balance the accuracy of this sampling against other sys-
tem requirements. When including physical movements,
especially those created through skilled dancers, we usu-
ally wish to identify general gestures rather than small move-
ments - the upward rapid sweep of an arm, for instance. In
order to achieve this we need to average the incoming data
so smoothing out any sudden extraneous movements. (Of
course, in some circumstances this is not wanted, in which
cases the sampling windows must be kept small.)

These movements must then be mapped to musical ges-
tures in one way or another. The author has chosen to de-
velop these mappings [45–47] as an integral part of the
creative process. They may be very straightforward one-to-
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one mappings [45, 46] - for instance an upwardly moving
arm might produce an upwardly proceeding arpeggio or
scale - or it may be used as a form of gesture - a fast move-
ment may produce a fast moving string of notes (see notes
2-5 in Figure 1 above). Equally the mapping may include
some aspects of real-world behaviours and gestures [48].

In some cases it is not possible to conclude a musical
phrase without synchronous information, again meaning
that some form of latency is inevitable.

Finally, the involvement of humans and human percep-
tion and notation is itself probably the greatest cause of
latency. Rehearsals with live notation suggest that ideally
performers need a second or so from the moment that the
new notation is displayed to properly digest and respond to
it.

5.2 Effects of Latency

Stimulating creative results seem to arise from these de-
velopmental, even compositional choices, sometimes em-
phasising a direct, easily perceivable relationship between
movement and result, sometimes confounding expectations
with a melismatic flurry as if from nowhere.

One of the difficulties some have with high levels of la-
tency is that there is perceived to be a lack of control, even
a lack of feeling of cause and effect. This implies that our
main aim should be the creation of musical instruments in
the best traditions of the New Interfaces for Musical Ex-
pression conference [49]. However, the design of musical
instruments is not the main focus in this research. One aim
in Semaphore is to investigate whether expert expressive
movement can find a mapped reflection in another domain,
in this case music or text. Latency might be a feature of the
systems, but is not an issue for the team. If precisely timed
responses are required, solutions are easily available, such
as strict pre-planning of rhythm, movement and display or
even the simple playback of recordings.

6. AUDIENCE RESPONSE

6.1 Universities’ Week

Universities’ Week 1 provided a particularly successful oc-
casion for about 60 members of the public of all ages to
interact with our system voluntarily. Although interactions
produced somewhat modernist music without clear melody
or rhythm and although it is likely that only a relatively few
of the participants understood music notation it was clear
that most enjoyed the experience immensely. Children in
particular seemed able to relax and expressed themselves

1 Universities’ Week 2014 provided research groups within UK univer-
sities to showcase their research to the public. We were invited to demon-
strate the work behind Semaphore during the event held at the Natural
History Museum in London in June 2014.

Figure 6. Universities’ week interactions

Paper Size (mm) Area (mm2)
A4 210 x 297 62370
15” Screen 332 x 204 67728
foolscap 216 343 74088
‘common’ size 241 x 318 76638
B4 250 x 353 88250
music part 260 x 365 94900

Table 1. Paper and screen sizes compared

enthusiastically and with none of the self-consciousness so
typical of their parents. A video recording of these interac-
tions is available - please contact the author for access (see
Figure 6 for an example screenshot).

6.2 Rehearsal and acquaintance with the system

Feedback on all aspects of the composition and the nota-
tion system was gathered from the participants throughout
the rehearsal process. This included two early rehearsals
during which the author worked with one student dancer to
properly ascertain basic functionality such as sensor ranges
and sensitivities. While the Kinect can be quite sensitive to
some movements it is also the case that its basic design is
to recognise simple bodily movements usually associated
with sports and gaming rather than the sometimes delicate
and gentle movements used in contemporary dance. These
factors were also linked to allowances made for latency
and reliability (see section 5). In Semaphore there are rel-
atively few requirements for absolute and precise temporal
coordination, although we are optimistic that more precise
synchronisation can be achieved as the systems develop.

Performers were encouraged to provide informal feed-
back throughout the rehearsal process and, as has happened
in the past, it was soon apparent that the main problems
emerged not from the generated music but rather how it
was displayed.

A quick comparison of paper sizes and areas (table 1)
shows that the screen area of a 15” MacBook Pro is quite
small - resolution is rather irrelevant as quite a large size

55



of notation is needed. Traditional music paper sizes are far
from standardised, but tend to be quite significantly larger.
The laptop’s screen also only allows for the viewing of one
‘page’ at a time and this small screen is in landscape mode
rather than portrait. All these factors mean that it is a very
different experience reading from a laptop’s screen rather
than from pieces of paper.

Another problem relating to screen size and presentation
is when ‘page turns’ should occur and in this new envi-
ronment exactly what a page turn is. In paper parts page
turns, particularly those parts where frequent or near con-
stant playing is demanded, are planned carefully, maximis-
ing the time available to turn the page at the most conve-
nient moment. This also means that when a musician turns
the page they can consciously ‘discard’ previous informa-
tion. Semaphore attempts a variety of experimental solu-
tions, none of which are optimal as yet.

At the moment it is clear that the use of live notation
requires compromise in how it is implemented and used.
For some composers these compromises may simply be
too radical to consider at present.

Jonathan Eacott [50] suggests that there is a requirement
in live notation for ‘a metronome or cursor to keep musi-
cians in sync’ and that there ‘must be a way of continu-
ally scrolling the music so that musicians can look ahead’
- these features would certainly be very useful. However,
they are not essential, depending on the nature of the ma-
terial presented. If the music appears note by note as it is
being created this has the advantage that it can give a fairly
clear indication of the ‘tempo’ at which it should be played,
and any further synchronisation can be achieved between
instrumentalists as usual: paper parts do have cursors or
metronomes.

Apart from these issues, all involved with Semaphore and
earlier pieces such as Calder’s Violin have been very posi-
tive about their experience with. Although some have dis-
played confusion and anxiety on first acquaintance, after
some rehearsal and after realising that they are not required
or expected to play every note with perfect accuracy, they
relax and even enjoy the experience [23].

7. CONCLUSIONS

All who have been involved in Semaphore have been grat-
ified by the response received from audiences and work-
shop visitors. The audience were offered the chance of
completing a general questionnaire; fourteen were com-
pleted. These were uniformly positive; a number also con-
tained free text comments. Below are included a selection
of these, included not in a spirit of self-congratulation, but
in order to demonstrate the connection felt between audi-
ence, the dancers’ physical movements and the resulting

music, both audio and notation:

• “I really enjoyed the performance... it was interest-
ing to watch the dancers ’create’ the music.”

• “I came because of a fondness for dance but ... there
is so much to take in here that it was useful to have to
have two performances of the piece... Another cou-
ple of renditions would have permitted me to take
in fully the choreography, the score, the text and the
interaction of all the elements.”

• “Thanks, it was beautiful”

• “Very interesting, would attend another similar event”

• “Really engaging and interesting... [the] performance
was captivating”

• “It was great, and I wish more events had a dis-
cussion and then second performance format, that
worked well”

• “Brilliant!”

Those who took part during the Universities’ week also
clearly demonstrated that people find generating music in
this way very enjoyable and rewarding. There would also
appear to be a deep link between the domains of physical
movement and music. Semaphore shows that it is also pos-
sible to create and manipulate translations between music,
movement and text and that both performers and audience
find this expressive and stimulating. We very much hope
to continue to develop these systems to enable expression
and experimentation between domains. There are many
possibilities that we have not even yet begun to explore.
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ABSTRACT 

In 2009, the Decibel new music ensemble based in Perth, 

Western Australia was formed with an associated 

manifesto that stated “Decibel seek to dissolve any 

division between sound art, installation and music by 

focusing on the combination of acoustic and electronic 

instruments” [1]. The journey provided by this focus led 

to a range of investigations into different score types, 

resulting in a re-writing of the groups statement to 

“pioneering electronic score formats, incorporating 

mobile score formats and networked coordination 

performance environments” [2]. This paper outlines the 

development of Decibel’s work with the ‘screen score’, 

including the different stages of the ‘Decibel 

ScorePlayer’, an application (App) for reading graphic 

notation on the iPad. The paper proposes that the Decibel 

ScorePlayer App provides a new, more accurate and 

reliable way to coordinate performances of music where 

harmony and pulse are not the primary elements 

described by notation. It features a discussion of selected 

compositions facilitated by the application, with a focus 

on the significance of the application to the author’s own 

compositional practices. The different stages in the 

development, from prototype score player to the 

establishment of a commercialized ‘Decibel 

ScorePlayer’, are outlined in the context of practice led 

investigations. 

INTRODUCTION 

The Decibel new music ensemble is made up of six 

renowned exponents of new music in Perth, Western 

Australia. Three of these performers are also composers, 

and one of the performers has a mathematical computer 

programming background. The other two performers are 

supportive of workshopping processes and a variety of 

approaches to new music, including working with 

electronics and improvisation. Decibel have sought to 

support Australian, and specifically, Western Australia 

new music practice, and have commissioned over eighty 

Australian works since their inception. A large proportion 

of these works are from composers within the group, but 

many are from significant Australian composers, 

electronic artists and songwriters. There is also an 

international aspect in their repertoire, with the group 

having presented monograph concerts of works by US 

composers Alvin Lucier and John Cage, as well as works 

by the late Italian composer Giacinto Scelsi and French 

musique concrete artist Lionel Marchetti. All the Decibel 

commissions feature acoustic and electronic components, 

and the group perform these works without a standard 

public amplification set up or live engineer. All 

electronics are generated from the stage, and a collection 

of powered monitor type speakers are used to present the 

electronic components throughout, which may vary from 

electronic playback to interactive and spatialised 

electronics. The rationale for this approach is to enable 

electronics to behave more like acoustic instruments, by 

using directional monitor speakers on the stage, giving a 

focus to the source of sound, and the way the sound is 

controlled and manipulated created by an operator [3]. 

This approach has lent itself to music scores that use 

graphic and extended notations, and included parts where 

electronics are scored quite specifically, and often, read 

on a computer.  Decibel ensemble member Lindsay 

Vickery calls these ‘screen scores’ - music presented on 

and read from a computer screen. He classifies these 

scores into four types:  real-time, scrolling, mobile and 

traditional [4]. Decibel engages all of these types of score 

in their repertoire, with a focus on real-time and scrolling 

scores - but also developing new categories. 

In 2009, the composers within the group, Cat Hope, 
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Lindsay Vickery and Stuart James, worked together to 

develop a solution that would enable the presentation of 

screen scores for Decibel to perform. The entire ensemble 

has been involved in a process of creation and 

interpretation of musical works in where new ideas and 

techniques are conceptualised, tested, evaluated, revised 

and disseminated in performances, recordings and 

archiving [5]. Through this process, the group developed 

a system for reading scrolling scores that was prototyped 

in MaxMSP. With the assistance of programmer (and 

Decibel viola player) Aaron Wyatt, these systems 

evolved into an iOS App, the Decibel ScorePlayer for the 

Apple iPad. It is now available on the iTunes Store 

internationally.  

Decibel are of course not the first to engage with 

screen scores - previous work by Dannenberg [6], Clay 

and Freeman [7], Kim-Boyle [8] and others have 

examined the possibilities for real time score generation 

on computers, and a variety of propriety score generators 

for traditional notation are available, two examples being 

INscore [9] and MaxScore [10]. However the use of 

graphic notation - newly composed and extant - in screen 

scores has been limited, and often tied to traditional 

notation. The digital format offers a range of possibilities 

to develop graphic notation practice - through the 

incorporation of aspects such as colour, real time 

generation, video and interactivity. Decibel’s score player 

investigations have focused primarily on this area of 

development, and in providing a ‘reading mechanism’ for 

performance, rather than a score generation tool. 

THE DEVELOPMENT OF A SCROLLING SCORE 

PLAYER 

The iTunes store describes the Decibel ScorePlayer as 

software that “allows for network-synchronised scrolling 

of proportional colour music scores on multiple iPads. 

This is designed to facilitate the reading of scores 

featuring predominantly graphic notation in rehearsal and 

performance” [11]. It works best for music that needs to 

be coordinated in a “timed” way, with proportional pitch 

structures. It is particularly useful for music that is 

pulseless, or requires pulse to be removed from the 

reading mechanism. The Decibel ScorePlayer is very 

good at presenting scores that in the past would have 

required a clock to coordinate multiple performers.  

The Decibel ScorePlayer began as a bespoke solution 

to the problem of reading certain graphic scores, 

specifically those by author Cat Hope, who is a composer 

and ensemble director of Decibel. In 2008, before 

Decibel had began, Hope’s Kingdom Come (2008) for 

laptop duet featured A graphic notation read from left to 

right. The image was put in motion in a movie program, 

and the performers read the score at the point just before 

it passed off the screen. This was not particularly accurate 

but provided an approximation of coordination that 

facilitated the performance. The score had been created 

on a computer, and did not exist in any real “physical” 

dimension.  In preparation for the first Decibel concert in 

September 2009, Hope presented a score consisting of a 

computer print out of ten landscape A4 pages stuck 

together, a kind of coloured line graphic score for five 

instruments - one of which was a turntable - again with 

the problem of how to read the music in a coordinated 

manner. 

Figure 1. Cat Hope’s score In The Cut (2009).  

This piece was In The Cut (2009) for violin, cello, bass 

clarinet, bass guitar and turntable with sub woofer and is 

shown in Figure 1. The piece does not treat harmony or 

meter in any ‘traditional’ way, adopting graphic notation 

as a way to better reflect a proportional approach to 

music composition [12]. 

A solution to the problem of reading In the Cut was 

provided through the creation of a MaxMSP patch, where 

the digitally created score file (a JPEG or PNG) was read 

by passing under a vertical line over a pre prescribed 

period of time, in the case of In The Cut, seven and a half 

minutes, as shown in Figure 2. A control panel was built 

to adjust specifications for each performance, and was 

shown on the same screen as the score. 

Figure 2. Lindsay Vickery’s control panel for the score player built in 

Max MSP. 

60



 

This vertical line came to be known as the playhead, 

referencing the tape head on tape players. Musicians 

would play their part as it passed by the playhead, 

providing an accurate way of coordinating the performers 

together by reading the same part in the score at the same 

time. The playhead was placed slightly in from the left 

side of the score image, so that the performers could see 

the material approaching the playhead in advance, but 

also so a small amount of material already performed, 

which would often assist in referencing the upcoming 

material. The coloured parts provided easy identification 

for the different performers, and the piece itself was 

proportional in its representation of pitch across all the 

instruments. The score presents each instruments part as a 

long, slowly descending line, representing a very smooth 

sound quality that uses glissandi to move between 

different pitches. Simply, the score looks very much as it 

sounds, and this is supported by a number of audio 

spectrograms made of different performances, such as the 

example provided in Figure 3.  

 

Figure 3. Spectrogram of a performance of Cat Hope’s score In The Cut 

(2009) [13]. 

Vickery built the MaxMSP patch in consultation with 

Hope and ensemble. It usually required the performers to 

have access to a full version of MaxMSP to run the 

program, though it was later made workable on Max 

Runtime. A number of works were written for this 

software player prototype, some for other ensembles, and 

some without electronics. One example is Hope’s 

Kuklinski’s Dream (2010) for instrumental trio, carving 

knives and electronics. Like In The Cut, the work is 

characterised by a lack of pulse, proportional pitch 

relationships, colour representations for different 

instruments and unusual instruments (in particular, 

carving knives bowed and amplified). A notated 

electronic part was also featured, required programming 

by the ensemble’s electronics operator prior to 

performance. Another work by Hope, Wolf at Harp 

(2011) for four drum kits, used blocks of notation to 

describe fields of activity on certain parts of percussion 

kits, in this case the bass drum, cymbals and toms. The 

scrolling nature of these scores effectively communicate 

the composer’s intention a kind of pulseless music 

characterized by long sustained sounds. They also allow 

careful ensemble interactions enabling an accurate 

reading of the proportional nature of the score. 

READING AND NETWORKING 

The first Decibel scrolling scores were projected onto a 

screen in the performance space, to facilitate musicians 

reading the score in performance. Whilst providing a 

straightforward solution to coordinating a performance, 

the performers mostly had their backs to the audience, 

hardly a desirable performance presentation format. The 

score was also a very predominant feature in the space. 

Many audience members would comment on the nature 

of the score and follow it intently during the performance. 

Whilst this brought a new audience to our concerts 

seeking to ‘understand’ the practice of new music, it had 

become more of a focus than the music itself. To 

overcome this, Decibel member Stuart James added 

networking capacity, so that multiple laptop computers 

could be connected and coordinated over cabled Ethernet. 

This meant that each performer had their own score 

player coordinated with the others in the ensemble. The 

patch was further developed by Vickery to fast-forward 

to different parts of a score, and to slow the speed of the 

piece for rehearsal purposes. 

These developments made the software more workable 

in rehearsal situations, and some fifteen works were 

composed for this version of the player. The ensemble 

also began adapting a range of other composer’s scores to 

be read by the ensemble using the patch, including Earl 

Brown’s December 1952 for open instrumentation and 

Giacinto Scelsi’s Aitsi (1974) for piano and electronics 

among others. Works from Percy Grainger’s Free Music 

project, namely his Free Music No. 1 (1936) for four 

Theremins and Free Music No. 2 (1937) for six 

Theremins were put into the player. The pages of 

Grainger’s hand drawn score were joined together and 

scanned into a single file, the different parts traced over 

in different colours and a playhead designed to include 

the list of pitches represented by the undulating lines that 

are a feature of this composition, as shown in Figure 4 

[14].  
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Figure 4. Percy Grainger Free Music No. 1 (1931) adapted for the iPad 

Decibel ScorePlayer. This image shows the playhead replaced by a 

chromatic meter, and the scrub function along the bottom of the image, 

with the time elapsed on the right. 

Other screen scores were being developed within the 

ensemble that included variations on the theme of 

scrolling presentation. Vickery’s Ghosts of Departed 

Quantities (2011) for bass flute, bass clarinet, cello, 

keyboard and live electronics, for example, features 

music notation that subtly appears and disappears to the 

reader as it passes a playhead. Figure 5 shows the 

presentation of two instrumental parts, bass flute and bass 

clarinet. The musical information passes from left tor 

right across the playhead. 

Figure 5. Lindsay Vickery’s Ghosts of Departed Quantities (screen 

shot) excerpt. 

In Ghosts of Departed Quantities, each performer has 

unique score activity, unlike Hope’s scores, which 

required a tightly coordinated presentation of fixed 

materials. Vickery’s screen scores presented materials 

that would arrive in a different order and quantity each 

time the piece was performed. Scores such as In the Cut 

provide performers with the possibility of choosing 

different starting notes for each performance, but require 

them to maintain the same pitch relationships each time.  

The score player patch continued to be adjusted and 

developed to incorporate a range of new behaviors, 

including changes in the direction of the score. Hope’s 

Liminum (2010) features a score that musical material 

goes backwards and forwards, and the play head jumps to 

different parts in the score at certain points. Again, each 

player’s score is independent in this process, whilst being 

coordinated to start and finish together. In Juanita 

Neilsen (2012) these ‘jumps’ are coordinated to occur in 

random places, but coordinated with all players. These 

scores have been categorized as ‘Variable Scrolling 

Scores’. In a collaborative work between Hope and 

Vickery, Talking Board (2011), circles traverse a larger 

than the screen image, serving as the guide for musicians 

to read said image, as shown in Figure 6. The 

movements of the circles provide information to an 

electronics operator for generative, interactive and 

spatialised electronic parts. Talking Board was a radical 

departure from the scrolling score format used on the 

score player up until that point, completely breaking 

away from the linear, left to right presentation and 

reading of the score. The circles have a series of different 

behaviors, including swarming, following, getting larger 

and smaller, appearing and disappearing [15]. It also 

required the transmission of data generated by 

movements on the score to another sound generating 

computer, signaling the need for the score player to send 

more than score data, leading to investigations around the 

incorporation of Open Sound Control (OSC). 
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Figure 6. Cat Hope and Lindsay Vickery, The Talking Board (2011), 

screen shot of score excerpt. Here, two circles are visible - one at the top 

of the score, the other to the left - each half off the screen. 

EXTENDING THE PARADIGM 

The score player project involved a number of other 

developments for reading scores other than graphic 

notations that are worth mentioning here. Automated 

page turning and synchronised click tracks were adopted 

and used in performances of pieces such as Thomas 

Meadowcroft’s Pretty Lightweight (2001) and Lindsay 

Vickery’s Night Fragments (2011). Mauricio Kagel‘s 

Prima Vista (1967), is a piece designed to feature slides 

shuffled and presented in a slide projector at random 

order. This ‘score play’ technique too was automated in a 

MaxMSP patch.  

Decibel also performed other MaxMSP generated 

screen scores written specifically for the ensemble. Sam 

Dunscombe’s West Park (2010) provided a range of 

changing score slides that would connect with the live 

electronic processing. In David Kim Boyle’s Point 

Studies No. 1 (2011), a beautiful spiraling colour video 

score produces sine tones as a result of the generative 

activity in the patch producing the score [8]. Between 

2010 and 2012, a number of pieces were written for the 

scrolling score player by a range of composers, often 

characterised by the inclusion of non traditional 

instruments, that would otherwise be difficult to notate 

using conventional notations. 

From laptops to tablets 

Despite moving to wireless networking in 2011, the 

laptop presented a number of limitations for presentation 

of the scores. Most performers laptops were used for 

other purposes than score reading - leading to issues with 

different operating systems, networking protocols and 

personal settings. Despite the development of a network 

utility developed in MaxMSP to monitor network 

activity, the collection of IP address and constant 

monitoring of who was on and off the network provided 

ongoing problems. A European tour in late 2011 featuring 

Decibel repertoire in the prototype score player provided 

a turning point in the development of the score player. It 

was decided to move the score player project to portable 

tablet computers. Funding was secured in early 2012 to 

purchase five iPads and to develop the score player on the 

iOS platform. 

Decibel members Aaron Wyatt, Malcolm Riddoch and 

Stuart James set about developing what was to be called 

the Decibel ScorePlayer for iPad in early 2012, and the 

first release was issued on the Apple App store later that 

year. This release come with packaged with two scores 

each by Hope and Vickery, and provided a link to a free 

desktop application, the Decibel Score Creator, 

developed by Wyatt to enable users to create their own 

scores in the format required for uploading to the player, 

a .dsz file. The Decibel Score Creator is where important 

elements of the piece are assembled and stored into the 

file, and the interface is shown in Figure 7. In addition to 

naming the piece by title and composer, the length of the 

piece, the position of the play head, extra (separated out) 

parts and any instruction notes for performance can be 

added. Any instructions would appear in a drop down 

menu on the ScorePlayer when the piece is selected from 

a menu listing all the compositions in the player.  These 

elements all constitute the .dsz file 
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Figure 7. The Score Creator interface built by Aaron Wyatt and 

designed by Decibel composers in conjunction with him. 

The iPad Decibel ScorePlayer provided a number of 

benefits over the laptop version. A much easier 

networking facility, native to iOS meant each iPad user 

could join any network agreed on by the ensemble, and 

users could see who else was on the network at any time 

using a network tab [16]. Once .dsz files are created, 

users can add scores to the Player by uploading them in 

the sharing facility of  iTunes, as seen in Figure 8. 

 

Figure 8. Screenshot the sharing facility in iTunes, showing the Decibel 

score player (red for testing version, black for current commercially 

available version) and the place to add scores. 

Whilst the lengths of each piece were set in the Score 

Creator, they could be altered for rehearsal purposes, and 

would reset to the original speed if the score was re-

opened. A scrub button along the bottom of the screen 

provided easy access to any part of the score, and an 

information tab provided a drop down note for any 

instructions required for each individual score, as in 

Figure 9. 

A User Guide is provided on the App to explain how it 

works, how to set up network, and how to create your 

own scores for the App. This includes a contact email for 

any enquiries or bug fix suggestions to be made, and 

point the user to a web site where instructional videos are 

provided [17]. On the iPad ScorePlayer, you can choose 

to see the score as a whole, or as individual parts. This 

function was first used on Hope’s piece Juanita Nielsen 

for two violas, two cellos, piano, electric guitar and 

electronics, at the premiere performance of the Decibel 

ScorePlayer in September 2012 at the Perth Institute of 

Contemporary Arts. It became evident in rehearsals of 

Juanita Nielsen that the complex nature of the diagrams 

in the piece required magnification to be read accurately, 

and so the idea of providing separate parts was born. 

These can be added in the score creator in addition to a 

master score. The parts are coordinated with each other, 

even when you use the finger drag up and down on the 

screen to change between different parts.  

 

Figure 9. The  ‘User Guide’ pop up, as seen over the list of works in the 

player (screen shot). 
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Figure 10. Hope’s Juanita Nielsen. The top image shows the full score 

in the player. The lower image shows one part - in the same point of the 

piece, visible. The playhead is in the middle of the screen as the score 

goes in different directions. I red light in the top right flashes twice as a 

warning that the direction is about to change.  

Figure 10 shows one of the parts at the same part in 

and next to the master score on the Decibel score player. 

Early testing versions of the Decibel ScorePlayer were 

deployed using a program entitled Test Flight [18], which 

enabled Decibel to test new developments to the App. 

The composers for the ScorePlayer could make a 

standard scrolling score and parts in the Score Creator 

and test these in the player themselves. Whilst all the 

scrolling scores for the prototype player were adapted for 

the iPad player, new types of scores continued to be 

created for the Player, with the group using a ‘developer’ 

version of the App as new works, and updates to the 

player, could be tested before updates to the App on the 

iTunes store would be made. 

Some scores were designed to read up and down, 

rather than left to right. This is useful when an instrument 

or group of instruments needs to be referred to spatially 

in the score. The shift can be done by simply locking the 

rotation on the iPad and turning it to a portrait, instead of 

landscape, view, so the score flows upwards, rather than 

from left to right. The Hope’s piece Broken Approach 

(2014) for solo percussionist is read across a horizontal 

playhead, reflecting the spatial arrangement of the 

different percussion instruments in the performers set up, 

and is seen in Figure 11. Likewise,  Hope’s piano works 

Chunk (2010) and Fourth Estate (2014) use the playhead 

to reflect the horizontal presentation of the piano 

keyboard to the performer, the latter providing a shuffling 

mechanism that presents the composition differently each 

time, with eight different score images joining seamlessly 

in a different order each time the piece is opened on the 

ScorePlayer, using a ‘tiling’ approach for the different 

images.  These scores have been named ‘vertical scrolling 

scores’. 

 

Figure 11. Broken Approach (screen shot).  Note the presentation of the 

kit on the horizontal access, which is how it should be read.  

Score Materials 

The scores that can profit from being read in the Decibel 

ScorePlayer on the iPad are quite diverse. These include 

pieces that feature some elements of traditional notation, 

such as James Rushford’s Espalier (2012) (also featured 

at the premiere concert of the ScorePlayer), featuring a 

stave and pitched note heads throughout, as shown in 

Figure 12. 
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Figure 12. James Rushford’s Espalier in the Decibel ScorePlayer 

(screen shot). Note the times on the top of the score - rendered 

superfluous by the ScorePlayer. 

Figure 13. Lindsay Vickery's Silent Revolution (screenshot) showing 

pictorial elements that are not read literally as part of the score. 

An interesting development has been the use of 

pictorial imagery in the scores. Vickery’s Silent 

Revolution (2013) includes images that are not ‘read’ by 

the musicians as such, but still provide useful information 

to the interpretation of the notations, as shown in Figure 

13. These scores have come to be known as ‘poctorial’. 

Hope’s ‘Miss Fortune X’ (2012) uses the photocopy 

‘noise’ from an old copy of a model aircraft plan as 

notation for radio static, as shown in Figure 14.  

A variety of techniques have been engaged to generate 

the actual scores images - from Computer Assisted 

Design (CAD) software in Joe Stawarz’s Cells (2012), 

coloured pencils in Mace Francis’s When Traffic Rises 

(2012) and shades of graphite in Lyndon Blue’s Decabell 

(2012). Chris Cobilis’s Forever Alone Together Or 

(2012) features freehand text and interspersed with hand 

drawn colour shapes and written pitch suggestions, as 

shown in Figure 15.  

Figure 14. Hope’s Miss Fortune X score excerpt, (screen shot) showing 

the first issue Decibel ScorePlayer’s welcome screen for the piece. This 

information was later replaced with an information dropdown tab. Note 

the copy ‘noise’ on the right hand side of the image. 

Figure 15. Chris Cobilis Forever Alone Together Or score excerpt 

(screen shot). Showing chords, notes and textural information. 

Cobilis is an experimental electronics/singer 

songwriter who does not read or write traditional 

notation, and who created a work by recording it on a 

home recorder then ‘drawing it’ out over time.  His work 

provides an excellent example of the wide variety of 

approaches to the design of scores that are featured in the 

Decibel Score Player, and potential it offers musicians 

who do not read or write conventional music notation. 

ONGOING DEVELOPMENTS 

The ScorePlayer paradigm has served as a springboard 

for other works. Decibel celebrated the centenary year of 

John Cage’s birth by creating a score player for their 

‘Complete John Cage Variations Project’ in 2012. This 

began as a laptop prototype, but was soon adapted to the 

iPad as a stand alone App. The score player involved the 

development of score generators for Variations I, II, III, 
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IV, V and VI and packaging them with the remaining two 

Variations into the John Cage Variations App, in 

consultation with Cage’s publishers, Peters Edition, and 

the John Cage Foundation in New York. Scheduled for 

release in conjunction with the groups recordings of the 

eight Variations on US label MODE in 2015, the App 

takes aspects of the Decibel ScorePlayer and applies them 

to the Variations, creating graphic scores by following 

and automating Cage’s detailed processes. The result is 

very accurate and easy to read notations for each of the 

Variations, an example of which can be found in Figure 

16. This example shows the graphic representation 

selected by Decibel of the data generated according to 

Cage’s specifications around the placement of dots, lines 

and other shapes.
1
 It also shows the similarity of the 

presentation on the iPad to the Decibel Score Player. 

Figure 16. John Cage Variation 1 score excerpt (screen shot) showing 

the graphic representation that scrolls in the Decibel ‘The Complete 

John Cage Variations’ ScorePlayer.  

Australian sound poet Amanda Stewart’s Vice Versa 

(2001) is a one-page text for live performances. Decibel 

adapted the work as a variable scrolling score by 

typesetting the text in the score player, facilitating 

reading from different directions, at different times. A 

range of differently coloured parts are provided, and 

occasionally text would appear scrubbed over, leaving the 

instruments to play the resulting shapes. Figure 17 shows 

the original score in the player, beside and a screen shot 

of how scrubbed over version. Experiments such as this 

one highlight the number of ways the simple reading 

                                                           

1 
A more detailed discussion of the implentatoin and the other Cage 

Variations can be found in a paper in the 2013 Malaysian Music Journal 

[19] and papers by Lindsay Vickery [20] and Cat Hope  [21]. 

device of the playhead can be used to create readable 

scores for different kinds of composition. 

Figure 17. Amanda Stewart’s Viceversa (excerpt screen shot). The top 

image shows the score part (a different colour for each performer. The 

lower image shows the ‘scrubbed out’ text for instruments to play. The 

image goes left to right, and right to left in the player. 

There are ongoing updates and bug fixes to the Decibel 

ScorePlayer, but the most recent developments have 

included the ability to create score files that embed a full 

quality audio track into the .dsz format, opening the 

possibilities for a huge range of works for instrument and 

tape that could be adapted for the Decibel ScorePlayer. 

Vickery created a score player for his 2009 performance 

of Denis Smalley’s piece Clarinet Threads (1985) for 

clarinet and tape that enabled the score to be read 

accurately alongside playback [22]. Hope’s Signal 

Directorate (2014) for bass instrument/s and prerecorded 

sounds, prototyped in MaxMSP by Vickery, is the first 

piece to use the iPad ScorePlayer to deliver the score 

synchronized with audio playback from within the iPad, 

and contained within the .dsz file. The Score Creator will 
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be updated to enable the most recent facilities enabled by 

the player. The next release will feature OSC 

compatibility and extra options for the Talking Board 

circle reading paradigm, allowing users to insert their 

own image and select the number of circles required for a 

performance, as shown in Figure 18. OSC will enable the 

data required to drive the electronics in this piece to be 

sent to another computer running the audio manipulation 

software. 

Figure 18. The ‘circle selector’ for The Talking Board, available when 

pressing the options tab. 

In 2012, the first survey of Australian graphic music 

notation was curated by Cat Hope in two Australian 

cities, and featured a number of the scores for the 

scrolling score player presented as movies on a screen in 

a gallery [23]. These movie representations of scrolling 

scores are a fixed alternative for the reading of the scores, 

when a single projection is desirable. Synchronised with a 

live performance, they can also provide useful 

illustrations to how the works may be performed. 

However, in for larger ensembles or more complex parts, 

it is sometimes difficult to see the required level of detail 

and no variation of speed is easily possible.  

CONCLUSIONS 

Without any marketing support other than a few 

Facebook posts to the DecibelNewMusic page, and 

showcasing though tours, the Decibel ScorePlayer has 

sold 140 copies to date at AUD$2.99, not including the 

free copies the Decibel composers can access for the 

performances of their works. A visit to Malaysia by 

Decibel performing the ‘John Cage Variations Project’ 

using the bespoke application brought into sharp focus 

the need to make an Android version of the application, 

as Android appears to dominate the tablet computer 

market in large areas of Asia. However, funding for this 

development is yet to be found.  

The potential for the Decibel ScorePlayer is 

substantial.  There has been a recent resurgence of 

interest in graphic notation with some detailed 

examinations of practice [24] [25] [26] and an awareness 

of animated notations disseminated by online services 

such as YouTube and Vimeo. Yet it is quire remarkable 

how few of these developments engage with the full 

potential of digital representation. Further negotiations 

with publishers could result in a number of approaches 

for digital publication of extant works, and currently any 

composer can put their work in the ScorePlayer and 

publish it. 

Research into the impact of reading different kinds of 

screen scores has recently commenced.  Using eye-

tracking equipment, Vickery has been comparing 

traditional paper notations and the different kinds of score 

formats developed in Decibel [27], leading to detailed 

examinations of the way readers process colour and 

movement in music notation. 

The Decibel ScorePlayer embraces the possibilities of 

colour and graphic notations in digital score reproduction, 

as well as the interactive possibilities inherent in digital 

score creation and composition. Whilst currently a 

relatively simple device, the possibilities for its 

development are considerable. It does not claim to solve 

problems for all types of graphic notation, but makes 

certain types more efficient to read. Screen scores are in 

their infancy, and the way we understand colour and 

shape as musical information, as well as our ability to 

process moving information on computer screens requires 

further investigation [28]. The Decibel ScorePlayer 

represents the potential of group projects where 

composers, musicians, programmers and music curators 

can work together to extend the possibilities of available 

technologies. 
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ABSTRACT 

Ethnomusicologists often face problem in precisely 

describing characteristic of a sound recorded in the 

fieldwork. Written explanation normally use metaphoric 

words to represent the timbral characteristics of a sound 

produced by ethnic musical instruments. But to what 

extent will the reader understand and perceive the sound 

based on the writer’s explanation ?  This study will 

explore the possibilities of using timbral visualization in 

the recognize of Malaysian traditional musical instru-

ments. We introduce an instrument recognition process 

in solo recordings of a set of Malay traditional instru-

ments (gedombak), which yields a high recognition rate. 

A large sound profile is used in order to encompass the 

different sound characteristic of each instrument and 

evaluate the generalization abilities of the recognition 

process. 

INTRODUCTION 

Ethnomusicology is a field of music which dealing with 

any musical activities and perspectives related to the 

specific music in a certain ethnic group. One of the 

perspectives of the study in this field is the organology 

of traditional instruments, and an evaluation of the 

sound produced by the instrument. Researchers who 

study in this field will normally describe in details about 

the sound and music performed with any particular 

instrument in a community.   

Qualitative data gathered or recorded during the 

fieldwork is often  be presented in scholarly printed 

publications in descriptive way. Researchers will try to 

describe the characteristic of a sound and try to make 

the reader to understand the sound without listens to the 

recording materials. Often the readers misunderstood 

the sound and perceive it differently from what the 

researcher mean. In short, the sound which is described 

in writing maybe perceived differently from the actual 

sound that the readers listen to. This project is a part of 

a larger research project (Spectromorphological nota-

tion: Notating the UnNotatable) exploring the creation 

of possible models of timbral notation. Using spectro-

grams allowing specific quantitative information of the 

timbre of traditional Malaysian instruments, relating 

them to the instruments organology has not been under-

taken.   

PROBLEM STATEMENT 

For the past few decades, many ethnomusicologists had 

been trying to precisely describe the sound of any musi-

cal activities in many different ways. Some of them 

describe the sound of music in narrative way while 

some of them giving some meaning and using metaphor 

or other type of sound representation to describe the 

characteristic of a sound.  Being as an ethnomusicolo-

gist, I also face difficulty in describing a sound of music 

from my fieldworks.   The sound that I describe based 

on my understanding maybe perceived differently by 

other people. How could I overcome this situation ? 

Spectrogram have been used to objectively describe the 

organology of instruments of other culture but not in 

Malaysia.  

In the field of ethnomusicology, we, the researchers 

are normally describing a sound base on what we per-

ceive or using a local terminology to describe a particu-

lar sound.  Most of the indigenous musical instruments 

are not constructed to any standard pic. Generally, al-

most all the ethnic musical instruments have different 

timbre and pitches.  For example, in the Kompang 

(frame drum) ensemble of the Malay people, the sound 

of the kompang depends on the tautness and thickness 

of a skinhead as well as the size of the instrument. 

However, the kompang is also need to be tuned to the 

“Bunyi yang diterima” (acceptable sound) before it 

being played.  A kompang ensemble normally consists 

of 15 to 25 players who performed on the similar in-

strument in interlocking rhythmic patterns to celebrate 

joyful occasions in the Malay community. 
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All the kompangs used in an ensemble is tuned to a 

certain pitch as closest possible from one to another.  

Even though there is no standard tuning set for the 

kompang, but an experienced kompang player is able to 

tell the “acceptable sound” of a kompang.  The “ac-

ceptable sound” of a kompang to the players is de-

scribed as (kuat) loud, (gemersik) penetrating, (tajam) 

sharp and (tegang) taut. How can one precisely under-

stand and perceive the sound of a kompang as loud, 

penetrating, sharp and taut ? Can one precisely describe 

the sharpness sound of the kompang ? As the sound of 

any indigenous musical instruments are mostly not 

standardize in nature, there is a need to find ways on 

how to identify and recognize the “acceptable sound” of 

any particular musical instruments especially for the 

beginners and who are not expert in that field.  

Moreover, contemporary Western arts and tradition-

al music notation is usually linked to an analysis and the 

semiotic representation of the musical elements of mel-

ody and harmony (vertical and horizontal pitches) using 

common music notation. Precise pitch indications are 

“rounded out” into the twelve semitones of this system, 

unable to accommodate more the precise subtleties of 

sound that are inherent in all music tradition. Further, 

Musical parameters such as articulation (attack, decay, 

sustain and release) and dynamics (volume or intensity) 

are loosely indicated through the use of staccato or 

phrase markings for articulations or dynamic marks 

(forte, piano, crescendo, diminuendo, ect.).   

Representation of other significant musical elements 

such as tone and colour (timbre) are largely limited to 

instrumental naming or specific performance directions 

(sul ponticello – play near the bridge for string instru-

ments). The lack, along with the difficulties of defini-

tion and understanding of timbre are increasingly rec-

ognized within both new music and traditional music 

fields.  

AIMS OF RESEARCH 

This project will explore the creation of a model for the 

timbral and performance notation of acoustic music that 

notates more content details of the various elements of 

sound. Of significance for ethnomusicologists who 

working in this field, will be the use of spectrographic 

notation leading to the creation of an authentic and 

precise transcription library and catalogue inclusive of 

all musical elements.  Such a catalogue will lead to a 

greater understanding of the individual and unique 

spectral and tuning characteristics of traditional Malay 

musical instruments. This method will be applied to 

instruments such as kompang, gedombak, gendang, 

serunai, and rebab.  Knowledge and experience of creat-

ing spectrograms of the Malay traditional instruments 

will then be applied into forefront of music making 

using these possible model and system. 

RESEARCH QUESTIONS 

In exploring the possibilities of using the spectrographic 

features in ethnomusicological study, there are many 

related questions can be addressed.  

i. How can an ethnomusicologist describe 

the sound of a musical instrument ? 

ii. What are the elements that ethnomusicol-

ogists require from a notation system and 

how can these be represented ? 

iii. What kind of notational/transcription sys-

tem can possibly describe precisely the 

musical sound of traditional instrument ? 

iv. What organological elements are common 

or exclusive to each instrument and how 

can they best be identified and analyzed ? 

v. Can spectrographic analysis and software 

be used to provide a method for defining 

and identifying unique qualities of Malay 

traditional Instruments ? 

vi. Can this information be used to describe 

and notate the specific individuality of 

sounds materials and performance meth-

ods in ways that expand the range and mu-

sical vocabulary of the ethnomusicolo-

gist ? 

vii. What parameters of analysis can be de-

fined to provide useful and universally 

understood symbols using spectrographic 

software ? 

viii. How can this notational system help 

scholars, musicians, instrument makers 

and others in identifying a prefer timbre 

for any particular Malay traditional in-

strument ? 

ix. What other knowledge can be drawn from 

this ? 

METHODOLOGY 

In conducting this study, various methods will be uti-

lized in getting the useful data and information to an-

swer the research question. Generally, methods will be 

grounded in practice. While exploring all the possibili-

ties of using spectrographic as a tool to describe the 

characteristic of a sound, researchers will analyze and 

think through practice.  This method is also always 

referred as practice-led research. Three phases will 

cumulatively document, analyze, apply and reflect on 

project activities and outcomes. Critical reflection is a 
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key criterion of the research, supported by textual ana-

lysis. 

Research activities include identifying the sound 

characteristic of a few selected Malay traditional musi-

cal instruments such as gedombak (goblet drum), gen-

dang (cylindrical drum), kompang (frame drum), serun-

ai (double-reed oboe type instrument), and rebab 

(spike-fiddle). Each of them will be performed by the 

expert players for the recording purpose. A few soft-

ware packages will be utilized to visualize the sound 

characteristic of each instrument.   From the spectro-

grams, the researchers will then think on how it can be 

applied in ethnomusicological works. 

THE RESULT 

Many samples of Malay traditional instrument sound 

have been recorded in the form of wave file. The in-

struments include the gedombak, gendang, serunai, 

geduk and gong have been performed by the expert 

players both solo and ensemble for the recording pur-

pose. Three software packages – Eanalyse, Sonic Visu-

aliser and Praat- have been utilized to visualize the 

recorded clips. 

 

 

 

 

 

 

 

 

 

 

 

 

A series of recording done on the instrument demon-

strated that the underlying phonetic representation of an 

unknown utterance can be recovered almost entirely 

from a visual examination of the spectrogram. The most 

common format is a graph with two geometric dimen-

sions: the horizontal axis represents time; as we move 

right along the x-axis we shift forward in time, travers-

ing one spectrum after another, the vertical axis is fre-

quency and the colors represent the most important 

acoustic peaks for a given time frame, with red repre-

senting the highest energies, then in decreasing order of 

importance, orange, yellow, green, cyan, blue, and 

magenta, with gray areas having even less energy and 

white areas below a threshold decibel level. 

Figure 1 shows the spectrogram of a gedombak beat-

en in a series of single tapping in the middle of the 

skinhead. What can we learn from this spectrogram ? 

After receiving clarification from the expert player, 

the 4
th

 beat of the sound is the most preferred sound by 

the expert player. One can analyze from the colours and 

density of the spectrogram to tell the characteristic of 

the preferred sound. 

Different filters have been applied to the one record-

ing of the gedombak. The results show different fea-

tures of the sound performed on the same instrument.  

Below are the example of different spectrograms show 

different features and characteristic of a sound per-

formed on Malay traditional instrument.      

Figure 1. Spectrogram of a gedombak 

Figure 2. Spectrogram of a Gedombak with waveform. 

Figure 3. Spectrogram of a smaller size of Gedombak. 

 

Digital record-

ing 

Sound clipping 

Feature extrac-

tion 

Spectrogram 
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Figure 4. Zoom in Spectrogram of a Gedombak  

Figure 5. Spectrogram of a Wayang Kulit ensemble 

DISCUSSION AND SUGGESTION 

The spectrograms of gedombak (goblet drum) in 

Wayang Kulit ensemble (Shadow puppet play) above 

are an initial attempt to explore the potential of a spec-

trogram as a performative notation. The gedombak is 

indicated as the large regularly spaced columns of Fig-

ure 4. In Figure 5, the horizontal lines represent the 

melodic lines of the serunai. The pitch variations and 

arabesque ornamentation so characteristic of the in-

strument is also visible. This begins to plan to use spec-

trograms of individual instruments to identify preferred 

timbral quality of instruments for use in specific musi-

cal/dramatic contexts–why a Wayang Kulit ‘master’ 

selects one instrument over another in a given perfor-

mance ?  

Just what is timbral notation - gestural, purely tonal, 

semiotic etc. ?  This opens the potential for different 

forms and styles. In the ethnomusicological context - 

instrumental profiling of timbre, linked to the organolo-

gy of the instrument is both applicable in Malaysia and 

opens ideas that appear to inform ideas and practices in 

the other sub-projects of the overall research project. 

CONCLUSION 

In this paper, we dealt with recognition of sound sam-

ples and presented several methods to improve recogni-

tion results. Tones are extracted from a database of 

Malaysian traditional musical instruments (gedombak, 

gendang, serunai, etc.). We use two different parameters 

in the analysis. From the experiments, we could observe 

evident results for spectrogram and autocorrelation. 

Maximum and minimum values of amplitude for auto-

correlation for all musical instruments have different 

ranges. Spectrogram of gedombak is much larger than 

those of gendang and serunai. Result shows that the 

estimation of spectrogram and autocorrelation reflects 

more effectively the difference in musical instrument. 
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ABSTRACT

In this paper, I describe the state of development for an
automatic music notation generator and tablet-based graph-
ical user interface. The programs currently available for the
automatic generation of music notation are focused on the
compositional and theoretical aspects of the music-making
process. denm (dynamic environmental notation for mu-
sic) is being designed to provide tools for the rehearsal
and performance of contemporary music. All of the strate-
gies underlying these tools are utilized by performers today.
These strategies traditionally involve the re-notation of as-
pects of a musical score by hand, the process of which can
be detrimentally time-consuming. Much of what perform-
ers re-notate into their parts is composed of information
latent in the musical model—the musical model which is
already being represented graphically as the musical score.
denm will provide this latent information instantaneously
to performers with a real-time music notation generator.

1. BACKGROUND

Commercial music typesetting software, such as Finale and
Sibelius, are the most common tools for creating musical
scores, which require a musician to manually enter musi-
cal information via graphical user interfaces. There are
cases, for example when compositions are algorithmically
generated, where the process of manually entering musical
information in this manner is inefficient. As such, programs
have been designed to create musical scores where the in-
put from the user is text-based, generated by algorithmic
processes, or extracted from spectral analyses.

Most Automatic Notation Generators (ANGs) [1] create a
static image, either to be read by musicians from paper, or
from a screen displaying it in a Portable Document Format

Copyright: ©2015 James Bean . This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0

Unported License, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original author and source are

credited.

(PDF) representation. LilyPond [2] and GUIDO [3] and
convert textual descriptions of music into musical scores.
Abjad [4] and FOMUS [5] generate musical score informa-
tion that can be graphically rendered by LilyPond. Open-
Music [6], Bach [7], PWGL [8] / ENP [9], and JMSL /
JSCORE [10] are software tools for composers that gen-
erate music notation as part of the compositional process.
Belle, Bonne, Sage [11] is a vector graphics library for
music notation that enables the drawing of advanced no-
tational concepts not offered by traditional music typeset-
ters. Music21 [12] is a music analysis program that creates
score information to be graphically rendered in LilyPond.
Spectmore [1] maps spectral analysis information onto a
musical score. A few newer ANGs, such as INScore [13]
and LiveScore [14], generate animated musical notation for
screen representation.

Thus far, ANGs generate static scores that are useful to
composers and theorists, and animated scores that are useful
for those performing in real-time (described as the imma-
nent screen score paradigm by Hope and Vickory [15]).
No ANGs specifically target the rehearsal processes of
contemporary music performers (a process described as
interpretive by Hope and Vickory).

I have found that the most critical period for the success
of my own works is the rehearsal processes with perform-
ers. Performers spend a considerable amount of time in
individual rehearsal and group rehearsal settings, and have
developed extensive strategies to comprehend, embody, and
execute the propositions of composers (see: [16], [17], [18],
[19]). Many of the cues that performers notate into their
parts are composed of information latent in the musical
model—the musical model which is already being repre-
sented graphically as the musical score.

denm is software written for iOS devices in the Swift lan-
guage using the Core Frameworks that enables performers
to reap the benefits of these rehearsal strategies without the
high cost normally associated with preparing them. Both
the musical model and graphical rendering engine are built
from scratch to best utilize the touch interfaces of tablet
computers. The initial development of denm began in the
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Javascript language to control the graphical output of Adobe
Illustrator. This first phase of development served as re-
search into the systematic organization of musical scores
and the programmatic drawing of musical symbols. The vi-
sion of this project necessitates animated graphical content,
which ultimately required the rewriting of all source code.
There are certain features that were prioritized in the initial
phase of development 1 that will ultimately be rewritten in
an animated context.

2. GRAPHICAL USER INTERFACE

More and more performers are reading music from tablet
computers. Software applications like ForScore display a
PDF representation of a musical score, allowing a performer
to turn pages with a Bluetooth footpedal, as well as to
annotate scores with handwritten or typed cues. Performers
are able to store many scores on a single device, simplifying
the logistics of performing many pieces. Because the PDF
contains no reference between graphical musical symbols
and their musical functions, the degree to which a player
is able to interact with this medium in a musical context is
limited.

Many of the cues that performers handwrite in their parts
are simplified versions of other players’ parts [20]. These
types of cues are being reentered by the performer, even
though this information is already retrievable from the data
that is being graphically represented by the score. The
primary objective of denm is to expose the structures un-
derlying the music to performers with little cost of access.

2.1 Graphic Design Priorities

The graphic design style of denm is minimalist, with as
few graphical ornaments as possible. Rather, variations in
color, opacity, line-thickness, and other graphical attributes
are used to differentiate an object from its environment. In
some cases, the variations in graphical attributes serve to
differentiate an object’s current state from its other potential
states. Basic musical symbols, such as clefs and accidentals,
have been redesigned to implement this universal design
philosophy.

Many of the design choices of standard music notation
generators are made with printing in mind. The choices
made in denm are optimized for display on a screen. The
use of thin lines and color is problematic for printers to
represent, though these techniques are quite successful with
high quality displays.

Figure 1. Design of clefs: treble, bass, alto, tenor.

2.1.1 Clef Design

Traditional clefs take up a considerable amount of horizon-
tal space. The width of traditional clefs is problematic for
the spacing of music, particularly when the preservation of
proportionate music spacing is a high priority. The minimal-
ist clefs in Fig. 1 take up very little horizontal space. Clefs
are colored specifically to enable a differentiation of the clef
from the surrounding context and subtle breaks are made
in the the staff lines to accentuate the clefs’ presence. Staff
lines are gray, rather than black, enabling the creation of a
foreground / background relationship between musical in-
formation carrying objects (notes, accidentals, articulations,
etc.) and their parent graph.

2.1.2 Accidental Design

Figure 2. Design of accidentals.

Accidentals, as can be seen in Fig. 2, are drawn program-
matically, as opposed to being instances of glyphs from a
font. The advantage to uniquely drawing each accidental is
that small vertical adjustments can be made to individual
components of the object (e.g. body, column(s), arrow) in
order to avoid collisions in a more dynamic fashion than
is usually implemented in other music notation software 2 .
Burnson’s work with collision detection of musical sym-
bols [22] serves as an example for the similar work to be
approached in continued development.

2.1.3 Rhythm Design

In cases of embedded tuplets, beams are colored by the
events’ depth in the metrical hierarchy. Ligatures, as seen
in Fig. 3, connect tuplet brackets to their events to clarify
jumps in depth.

1 Automatically generated woodwind fingering diagram, string tabla-
ture to staff pitch notation conversion, and automatically generated cues.

2 The initial development of denm in Adobe Illustrator-targeted
Javascript prioritized this dynamic accidental collision avoidance. Ex-
tending the traditional process of avoiding of accidental collisions by
stacking accidentals in multiple vertical columns [21], individual adjust-
ments are made to the graphics of the accidentals themselves. Many
accidental collisions that traditionally warrant horizontal movement of the
objects can be avoided with a single or several small adjustments to indi-
vidual components of each accidental. Avoiding unnecessary horizontal
movement of accidentals makes retaining proportionate music spacing
more feasible. More rigorous study of the effects of readability of slightly
adjusted accidental graphics is to be undertaken throughout the near-term
development of denm.
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Figure 3. Design of beams and tuplet bracket ligatures

Small graphics, as seen in Fig. 4, indicate the subdivision
value that clarify the values of a tuplet. The style of the
straight beamlets in the tuplet bracket subdivision graphics
mirror the straight beams of rhythms, without the visual
noise of traditional flags. Further, the line-thicknesses of
beams in the graphics are inversely proportional to their
subdivision value, aiding in their visual differentiation. Left
edges of tuplet brackets are straight, while right edges of
tuplet brackets are angled.

Figure 4. Design of tuplet bracket label graphics

2.2 User Interaction Design Priorities

Many cues that performers notate into their scores are use-
ful at certain points of the learning and rehearsal process,
but become less useful at different points in the process.
The user interaction design style of denm enables perform-
ers to determine what musical information is displayed at
any point. Performers touch the screen score directly to
show or hide certain objects. More advanced user interface
strategies will be developed as the underlying analytical
procedures (some of them seen in Sec. 3) are implemented.

Figure 5. Screenshot of Metronome Graphic revelation.

For example, when a user decides to show a stratum of
Metronome Graphics (described further in Sec. 2.3.2), as
can be seen in Fig. 5, the entire page recalculates its dimen-
sions, to ensure that the Metronome Graphics take up only
the space that they need to. When the user decides to hide
that stratum of Metronome Graphics, the layout is recalcu-
lated once again, the Metronome Graphics are hidden, and
the space they were occupying disappears.

The layout of denm is organized as a hierarchy of em-
bedded boxes that recalculate their heights based on what
the user elects to show or hide within them. Fig. 6 shows
these vertically accumulating boxes. Each box defines its
own padding, keeping layout separation consistent for each
object.

PAGE

SYSTEM

SYSTEM

Figure 6. Layout Organization.

2.3 Rhythm Features

2.3.1 Metrical Grid

Figure 7. Screenshot of a Metrical Grid.

A performer can tap the time signature of any measure
to reveal a grid showing the beats of that measure. This
provides a quick reference for the relationship of complex
rhythmic events to a global tactus. Quickly drawing lines at
the point of each beat in a measure is often the first thing a
performer does when receiving a new piece of rhythmically
complex music [16], [20].

2.3.2 Metronome Graphics

When a user taps any point in a rhythm, graphics are dis-
played indicating the best way to subdivide a rhythm (re-
duced to sequences of duple- and triple-beats). Duple-beats
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Figure 8. Screenshot of another Metrical Grid.

are represented as rectangles and triple-beats are repre-
sented as triangles. Each subdivision-level (e.g. 8th, 16th,
32nd, etc.) has its own graphic, which is a uniquely styled
version of the duple- and triple-beat primitives, making
the subdivision-level of the metronome understandable at a
glance. The process of generating these subdivision refer-
ences can be seen in Sec. 3.1

Figure 9. Screenshot of Metronome Graphics.

2.3.3 Metronome Visual Playback

Performers often create click-tracks for learning, rehearsing,
and performing rhythmically complex music. Currently, the
Metronome Graphic objects can be played-back when a
performer taps on the time signature for a measure. The
Metronome Graphics “click” by flashing a different color
in time. An animated bar progresses from left to right at the
speed prescribed by the current tempo of the music. This
process has yet to be implemented with other objects in the
system, though this will continue to be developed.

As development continues further, a performer will be
able to extract any portion of the musical part and rehearse
it with the visual click-track of the Metronome Graphics at
any tempo. Ultimately, an audio element will be integrated
into this metronome process, with sonic attributes mirror-
ing those of the visual Metronome Graphics, to represent
subdivision-level and placement in the Metrical Analysis
hierarchy (as described in Sec. 3.1).

2.4 Other Players’ Parts

Performers often notate aspects of the parts of the other
players in an ensemble context. Because this information
already exists in the musical model, it can be graphically

Figure 10. Screenshot of metronome playback.

represented immediately. This feature is currently imple-
mented at a proof-of-concept level. Fig. 11 shows the pro-
cess of verifying the automatic layout recalculation needed
when inserting new musical material. In this case, hard-
coded musical material is inserted into the layout when a
measure number is tapped by a user.

Figure 11. Screenshot of cue revelation.

3. MUSIC ANALYSIS ALGORITHMS

In order to provide performers with rehearsal tools in real-
time, robust analysis tools must be developed.

3.1 Metrical Analysis

denm analyzes rhythms of any complexity. The result of
this analysis is an optimal manner in which to subdivide the
rhythm. Information like syncopation and agogic placement
of events can be ascertained from this process. This process
can be seen in Alg. 1.

Rhythm in denm is modeled hierarchically. The base ob-
ject in this model is the DurationNode. Any DurationNode
that contains children nodes (e.g. traditional single-depth
rhythm, or any container in an embedded tuplet) can be an-
alyzed rhythmically. The result of this analysis of a single
container node is a MetricalAnalysisNode (a DurationNode
itself with leaves strictly containing only duple- or triple-
beat durations). MetricalAnalysisNodes are the model used
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by the Metronome Graphics, the graphical representation
of which is described in Sec. 2.3.2.

Algorithm 1 Metrical Analysis

1: durNodes←DurationNode.children
2: parent←Root MetricalAnalysisNode
3: function ANALYZE(durNodes, parent)
4: s← durNodes.sum()

5: if s = 1 then
6: child←MANode(beats: 2)
7: . subdivision level ∗ = 2

8: . add child to parent

9: else if s <= 3 then
10: child←MANode(beats: s)
11: . add child to parent

12: else if 4 <= s <= 7 then
13: p← prototypeWithLeastSyncopation

14: for pp in p do
15: child←MANode(beats: pp)
16: . add child to parent

17: end for
18: else if 8 <= s <= 9 then
19: p← prototypeWithLeastSyncopation

20: if p contains values > 3 then
21: for pp in p do
22: part← durNodes partitioned at pp
23: newParent←MANode(beats: cc)
24: analyze(part, newParent)
25: end for
26: end if
27: else
28: . create array of all combinations
29: . of values 4 <= v <= 7 with sum of s
30: c← combinationWithLeastSyncopation

31: for cc in c do
32: part← durNodes partitioned at cc
33: newParent←MANode(beats: cc)
34: analyze(part, newParent)
35: end for
36: end if
37: end function

A MetricalAnalysisPrototype is a sequence of two or three
elements, each of which having a duple- or triple-beat dura-
tion. Values between and including 4 and 7 have a dedicated
list of prototypes 3 , each of which can be compared against

3 List of prototype sequences by relative durational sum:
4 : (2, 2)
5 : (3, 2), (2, 3)
6 : (2, 2, 2), (3, 3)
7 : (2, 2, 3), (3, 2, 2), (2, 3, 2)
8 : (4, 4), (3, 3, 2), (2, 3, 3), (3, 2, 3) ∗
9 : (3, 3, 3), (4, 5), (5, 4) ∗
∗ Rhythms with relative durational sums of 8 and 9 are compared against

any rhythm with a relative durational sum of the same value,
the process of which can be seen in Alg. 2.

Algorithm 2 Syncopation

1: d← durationNodes.cumulative()

2: . e.g. [4, 5, 7]← [4, 1, 2].cumulative()

3: p← prototype.cumulative()

4: . e.g. [2, 4, 7]← [2, 2, 3].cumulative()

5: syncopation← 0

6: function GETSYNCOPATION(d, p)
7: if d[0] = p[0] then
8: . Rhythm beat falls on prototype beat
9: . No syncopation penalty added

10: . Adjust d and s accordingly
11: getSyncopation(d, s)

12: else if d[0] < p[0] then
13: . Rhythm beat falls before prototype beat
14: . Check if next duration falls on prototype beat
15: if delayedMatch then
16: . No syncopation penalty added
17: else
18: syncopation← syncopation+ penalty

19: end if
20: . Adjust d and s accordingly
21: getSyncopation(d, s)

22: else
23: . Rhythm beat falls after prototype beat
24: . Check if next prototype value falls on duration
25: if delayedMatch then
26: . No syncopation penalty added
27: else
28: syncopation← syncopation+ penalty

29: end if
30: . Adjust d and s accordingly
31: getSyncopation(d, s)

32: end if
33: end function

Cuthbert and Ariza [12] apply their Metrical Analysis pro-
cess to beaming in the score representation of rhythms. This
strategy will be the model for continued development in
denm, extending to cases of arbitrarily-deep nested-tuplet
rhythms.

all of these combinations shown here. If the combination with least
syncopation contains only values of 2 or 3, a MetricalAnalysisPrototype is
generated with children containing Durations of duple- and triple-values.
In the case that the combination with least syncopation contains values > 3,
internal MetricalAnalysisNodes are created with the Durations of these
values. The original DurationNode array is partitioned at points determined
by the combination. The MetricalAnalysis process is then applied for each
partition, and MetricalAnalysisNode leaves with duple- and triple-value
Durations are added to each of these internal MetricalAnalysisNodes.
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3.2 Pitch Spelling

Effective pitch spelling is critical in the process of generat-
ing staff notation for music that is algorithmically composed
or extracted from spectral analyses. Algorithms for pitch
spelling within tonal musical contexts have been compared
by Meredith [23] and Kilian [24]. The musical contexts
that denm is most immediately supporting are rarely tonal.
More often these musical contexts are microtonal. The
preferences in the current tonally-based pitch spelling algo-
rithms, however, are defined by establishing tonal center.

The benefits of tonal-center-based pitch spelling are lost
in atonal musical contexts. Rather, primitive intervallic re-
lationships are preserved objectively, rather than being sub-
jected to the requirements of a tonal center. When spelling
pitches in microtonal contexts, other pragmatics arise that
influence the decision-making process.

The short-term goal of the pitch spelling process in denm
is to spell microtonal polyphonic music up to the resolu-
tion of an 1/8-tone (48 equal divisions of the octave). In
time, this process may be extended to accommodate other
tuning systems. The development of this microtonal pitch
spelling procedure is in process. Currently, dyads of any
combination of resolutions (1/2-tone, 1/4-tone, 1/8-tone)
are spelled correctly, though more rigorous testing is un-
derway to verify this. Further development of this pitch
spelling algorithm into homophonic and polyphonic micro-
tonal contexts will incorporate aspects of Cambouropoulos’
shifting overlapping windowing technique [25].

4. INPUT FORMATS

At this point in development, there is a working prototype
input text format. All figures in this paper have been cre-
ated with this input text format. A long-term priority for
development is to build conversion from common music
interchange formats, such as musicXML [26], into the na-
tive denm text input format. This conversion will enable
composers to generate and input music in the style that best
serves them, while they benefit from a performer-facing
interactive graphical user interface.

#
9,16 FL
    2 --
        4 p 74.5 d pp a -
        2 p 79.75
        1 p 83 d p a >
        2 p 69.25 a .
        4 p 85.5 a >
    2 p 84 d o a -
    3 --
        3 --
            1 p 84.5 a .
            2 p 88 d p a .
            1 p 67 a >
            2 p 82.25 a .
            1 p 85 a >
        2 p 61 d o a -

create a new measure
create a new rhythmic group
relative duration of event

create an embedded tuplet 
simply by indenting the next 

events.

Embedding can occur to any 
depth.

 

Figure 12. Demonstration of text input syntax.

5. FUTURE WORK

The current development of denm is focused on building
robust musical operations within the musical model. The
extension of the microtonal pitch spelling procedure into
homophonic and polyphonic contexts is in development
now. Once the pitch spelling procedure is completed and
tested, the accidental collision avoidance procedure will
be of primary focus. In the longer-term, development will
center around the extension of the musical model into multi-
voiced and multi-part musical contexts. When these steps
are completed, this more fully-featured musical model will
be hooked into the graphical realm. User interface strategies
will be developed in accordance with the advancement in
the musical model and graphical capabilities.
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ABSTRACT

The theory of interactive scores addresses the writing and
execution of temporal constraints between musical objects,
with the ability to describe the use of interactivity in the
scores. In this paper, a notation for the use of conditional
branching in interactive scores will be introduced. It is
based on a high level formalism for the authoring of in-
teractive scores developed during the course of the OS-
SIA research project. This formalism is meant to be at the
same time easily manipulated by composers, and translat-
able to multiple formal methods used in interactive scores
like Petri nets and timed automaton. An application pro-
gramming interface that allows the interactive scores to be
embedded in other software and the authoring software, I-
SCORE, will be presented.

1. INTRODUCTION

This article will focus on a novel approach to represent and
execute conditional branching in interactive scores. Inter-
active scores, as presented in [1], allow a composer to write
musical scores in a hierarchical fashion and introduce in-
teractivity by setting interaction points. This enables dif-
ferent executions of the same score to be performed, while
maintaining a global consistency by the use of constraints
on either the values of the controlled parameters, or the
time when they must occur. This is notably achieved in
the current version of the I-SCORE 1 software, presented
in [2].

Previously, interactive scores did not offer the possibil-
ity to make elaborate choices in case of multiple distinct

1 http://i-score.org/
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events occurring at the same time; the work presented here
removes this limitation. Here, we will initially present
the use cases for conditional branching, as well as sev-
eral existing works of art which involve conditions. Then,
we will introduce new graphical and formal semantics, re-
searched during the course of the OSSIA project. Their
goal is to allow composers to easily make use of condi-
tional branching during the authoring of interactive scores.
We will show the compliance with previous research on
the same field, which allows for strong verification capa-
bilities. We will conclude by presenting the software im-
plementation of these formalisms in the upcoming version
0.3 of I-SCORE, which will be able to edit and play such
scenarios in a collaborative way.

2. A CASE FOR CONDITIONAL INTERACTIVE
SCORES

Even before the advent of computing, there was already a
need to write scores containing informations of transport :
in western sheet music, manifestations of this are the D.
S. Al Coda, D. S. Al Fine, Da Capo, and repetition sign.
There is however no choice left at the interpretation.

A case with more freedom for the performer is the fer-
mata, which allows for the duration of a musical note to be
chosen during the interpretation of the musical piece : the
score moves from purely static to interactive, since there
can be multiple interpretations of the lengths written in the
sheet.

There is also the different case of improvisational parts
where each musician has the freedom of his own choice
during a few bars – or even a whole piece. In our case, the
choices might involve multiple people at the same time (for
instance multiple dancers each with his position mapped
and used as a parameter), and lead to completely different
results.
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2.1 Conditional works of art

Some of the most interesting cases happen in more recent
times, with the advent of composers trying to push the
boundaries of the composition techniques. John Cage’s
Two (1987), is a suite of phrases augmented with flexible
timing : “Each part has ten time brackets, nine which are
flexible with respect to beginning and ending, and one, the
eight, which is fixed. No sound is to be repeated within a
bracket.”. The brackets are of the form : 2′00′′ ↔ 2′45′′

and are indicated at the top of each sequence.
Branching scores can be found in Boulez’s Third sonata

for Piano (1955–57) or in Boucourechliev’s Archipels (1967-
70) where the interpreter is left to decide which paths to
follow at several points of bifurcation along the score. This
principle is pushed even further in the polyvalent forms
found in Stockhausen’s Klavierstücke XI (1957) where dif-
ferent parts can be linked to each other to create a unique
combination at each interpretation. Some of these compo-
sitions have already been implemented in computers, how-
ever it was generally done in a case-by-case basis, for in-
stance using specific Max/MSP patches that are only suit-
able for a single composition. The use of patches to record
and preserve complex interactive musical pieces is described
in [3].

The scripting of interactive pieces can also be extended
towards full audio-visual experiences, in the case of artistic
installations, exhibitions and experimental video games.
Multiple case studies of interactive installations involving
conditional constraints (Concert Prolongé, Mariona, The
Priest, Le promeneur écoutant) were conducted in the OS-
SIA project. Concert Prolongé (i.e. extended concert) of-
fers an individual listening experience, controllable on a
touchscreen where the user can choose between different
"virtual rooms" and listen to a different musical piece in
each room, while continuously moving his virtual listen-
ing point – thus making him aware of the (generally unno-
ticed) importance of the room acoustics in the listening ex-
perience. Mariona [4, section 7.5.3] is an interactive ped-
agogic installation relying on automatic choices made by
the computer, in response to the users behaviours. This in-
stallation relies on a hierarchical scenarization, in order to
coordinate its several competing subroutines. The Priest
is an interactive system where a mapping occurs between
the position of a person in a room, and the gaze of a vir-
tual priest. Le promeneur écoutant 2 (i.e. the wandering
listener) is a stand-alone interactive sound installation de-
signed as a video game with different levels of exploration,
mainly by auditory means.

In closing, interactive applications for exhibitions offer
various situations in which conditional constraints are re-

2 http://goo.gl/et4yPd

quired, from touchscreen applications to full-fledged in-
teractive installations. Several projects have been studied
in the scope of OSSIA, in order to make the creation of
new complex interactive applications more efficient by us-
ing the tools that are developed in this research project.

2.2 Existing notations for conditional and interactive
scores

We chose to compare the existing notations in a scale that
goes from purely textual like most programming environ-
ments, to purely graphic like traditional sheet music. Sim-
ilarily, there are multiple ways to define interactivity and,
consequently, multiple definitions of what is an interactive
score.

The programmatic environments generally take a preex-
isting programming language, like LISP, and extend it with
constructs useful for the description of music. This is the
case with for instance Abjad [5], based on Python and
Lilypond, a famous music typesetting software based on
a TEX-like syntax. There are also programming languages
more axed towards interpretation and execution of a given
score, which can take the form of the program itself. This
is the case with Csound and CommonMusic [6]. In gen-
eral, programming languages of this kind offer a tremen-
dous amount of flexibility in term of flow-control. How-
ever, they require additional knowledge for the composer
to write scores with it.

The purely graphic environments allow compositions of
scores without the need to type commands, and are much
closer to traditional scores. For instance, multiple Max/MSP
externals, Bach for Max/MSP [7], note~ 3 , rs.delos 4 and
MaxScore [8] allow to write notes in a piano roll, timeline,
or sheet music from within Max. But they are geared to-
wards traditional, linear music-making, even if one could
build a non-linear interactive song by combining multiple
instances, or sending messages to the externals from the
outside.

Finally, there is a whole class of paradigms that sit be-
tween the two, with the well-known "patcher"-like lan-
guages: PureData, Max/MSP, OpenMusic [9], PWGL [10].
These software work in term of data-flow : the patch rep-
resents an invariant computation which processes control
and/or audio data. In each case, it is possible to work
purely graphically, and flow control is generally imple-
mented as a block that acts on this data ([expr] in Pd/-
Max or [conditional] and [omif] in OpenMusic,
for instance). These software all allow to use a textual
programming language to extend the capabilites or express
some ideas more easily.

3 http://www.noteformax.net
4 http://arts.lu/roby/index.php/site/maxmsp/rs_

delos
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Figure 1. Fragments B2, C1, C3 of Klavierstücke XI, Karlheinz Stock-
hausen. 5

2.3 Goals

The examples presented in section 2.1 allow us to devise
the specification for the kind of conditional capabilities
that we want to allow composers to express in our notation
system. Most examples studied here operate at a macro-
scopic level : the choices of the performer generally con-
cerns sections, but at the phrase level, these are often tradi-
tional scores, as can be seen from an excerpt from Klavier-
stücke XI in fig. 1. However, the case of a single note which
would last longer depending on a given condition can also
happen.

The main problem is that there is generally no specific
symbol to indicate the conditional execution; instead, the
explanation is part of the description of the musical piece.
Hence, we have to devise a graphical notation simple enough
and yet able to convey easily these different levels of con-
ditions.

These conditions operate on a span of time, which can
range from instantaneous, like in the Stockhausen piece,
where the performer has to choose his next phrase at the
end of the one he is currently playing, to indeterminate, in
the case of a perpetual artistic installation waiting for the
next visitor. A single symbol might then not be enough
to convey in a readable fashion the whole meaning, and
multiple symbols would be necessary to explain the artic-
ulation of the time in the musical piece.

Finally, an important requirement is to be able to study
formal properties on the written score. The presence of
conditional expressions means that there is some kind of
flow control in the song. Like in a traditional computer
software, we want to be able to verify that some proper-
ties will remain true for the score : for instance, again in
the case of Klavierstücke XI, we would like to be able to
specify : at a given time, there cannot be two overlapping
fragments, and be informed if there might be a possible ex-

5 c©Copyright 1957 by Universal Edition (London) Ltd., London/UE
12654. Retrieved from [11]

ecution of the score that would lead to this case. This has
practical implications especially when working with hard-
ware, which can have hard requirements on the input data.
This means that the notation will have to be grounded with
solid formal semantics.

2.4 Formal semantics

The current work is based on previous work at the LaBRI
by Jaime Arias, Mauricio Toro and Antoine Allombert,
that attempt both to formalize the composition semantics
and to provide ways for real-time performance of interac-
tive scores. Our work is threefold: finding formal seman-
tics adapted to complex conditional constraints; studying
their execution; devising a consistent and simple graphical
representation, in order to make the creation of interactive
conditional scores as intuitive as possible.

The four following interactive scores formalisms were re-
searched, in order to give a solid foundation, and enforce
strong provability properties:

2.4.1 Petri nets

One of the most prominent ideas in the research, on which
the current implementation of I-SCORE is based, is the use
of Petri nets in order to model interactive scores, by focus-
ing on agogic variations.

The followed methodology was to define basic nets for
each Allen relationship [12], and then to apply a transfor-
mation algorithm, described in [13, section 9.2].

When a score is played, it is compiled by I-SCORE 0.2
(shown in fig. 2) into a Hierarchical Time Stream Petri Net
(HTSPN) which is in turn executed using its well-known
semantics.

Figure 2. i-score 0.2. The model is based on a succession of boxes (con-
taining curves and other boxes), and relationships between these boxes. A
box can have trigger points at the beginning and the end; this introduces
an unnecessary graphical coupling between the data and the conditions.

Coloured Petri nets were also used to model complex data
processing in interactive scores [14], in order to allow the
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description and execution of sound processes to occur di-
rectly in the score.

2.4.2 Temporal Concurrent Constraint Programming

Since the interactive scores can be expressed in terms of
constraints (A is after B), one of the recurrent ideas for
their formalisation was to use Non-deterministic Tempo-
ral Concurrent Constraint Programming (NTCC), since it
allows constraint solving. This approach was studied by
Antoine Allombert [15] and Mauricio Toro [4, 16].

However, there are multiple problems, notably the impos-
sibility to compute easily the duration of a rigid constraint,
and the exponential growth of the computation time of con-
straint solving, which led to some latency in the implemen-
tation, making real-time operations impossible.

2.4.3 Reactive programming

Due to the static nature of models involving Petri nets and
temporal constraints, a domain-specific language, REAC-
TIVEIS [17], was conceived in order to give dynamic prop-
erties to interactive scores. An operational semantic is de-
fined using the synchronous paradigm, to allow both static
and dynamic analysis of the interactive scores. This also
allows composers to easily describe parts of their score that
cannot be efficiently represented in a visual manner.

2.4.4 Timed Automata

The current focus of the research is put upon the investi-
gation of models for the formal semantics of conditional
constraints in interactive scores.

This has been achieved using the extendend timed au-
tomata of UPPAAL. Timed Automata allow to describe
both logical and temporal properties of interactive scores.
Moreover, the shared variables provided by UPPAAL al-
lows to model the conditionals. They are also used for
hardware synthesis, in order to target Field-Programmable
Gate Arrays (FPGAs) [18]. Real-time execution semantics
is implemented with this method.

The problem of the implementation of loops is however
still unresolved : it makes static analysis on the score harder,
since we hurt the reachability problem.

3. THE OSSIA PARADIGM

3.1 Presentation

OSSIA (Open Scenario System for Interactive Applica-
tions) is a research project, presented in [19] and funded by
the french agency for research (ANR). Its goal is to devise
methods and tools to write and execute interactive scenar-
ios. The two main objectives are to provide a formalisation
for interactive scenarisation and seamless interoperability
with the existing software and hardware. This paper will

focus on the interactive scoring part, the interoperability
being provided by the Jamoma Modular framework [20],
which allows the use of multiple protocols, such as OSC
or MIDI.

When comparing with the previous approaches for in-
teractive scores (Acousmoscribe, Virage, i-score 0.2), the
OSSIA project tries to follow a “users first” philosophy :
the research work is shared and discussed with artists, de-
velopers, and scenographers from the musical and theater
fields, and their use case serve as a basis for the focus of
the research. They are in turn asked to try the software and
discuss about the implementation.

For instance, in the previous studies of interactive scores,
a mapping had to be done between the theoretical founda-
tion (Petri nets, temporal constraints. . . ) and the domain
objects with which the composer had to interact. This has
led to mismatches between the representation and the exe-
cution [17] of the score. The most prominent problem was
the inability to express cleanly multiple synchronized con-
ditions, and to route the time flow according to these condi-
tions. The formalism also did not allow for boxes directly
following each other in a continuous manner, and always
required the existence of a relationship between them. In-
stead, in the OSSIA project, we tried to conceive high-level
concepts that would allow a composer to easily write an
interactive score, build a software over these concepts, and
then implement them on the basis of the formalisms pre-
sented in part. 2.4.

The main concepts of interactive scores can be grouped in
two categories: temporal elements and contents. The tem-
poral elements (scenarios, instantaneous events, temporal
constraints, conditional branching and hierarchy) allow to
create the temporal and logical structure of the scenario,
and the contents (states and processes) allow to give actual
control over several kind of processes.

3.2 Temporal elements

In order to allow the composer to write interactive con-
ditional scores, it is necessary to provide temporal con-
straints, to allow at least a partial ordering between the
different parts of the score. This is done using four base
elements : Node, Event, Constraint and Scenario. A Node
(Time Node) represents a single point in time. An Event
describes an instantaneous action. A Constraint describes
the span of time between two given Events. Finally, the
Scenario structures the other elements and checks that the
temporal constraints are valid and meaningful.

3.2.1 Scenario

A Scenario is defined as an union of directed acyclic graphs.
The vertices are Events and the edges are Constraints. The
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(a) A Node with two Events, one with a trigger, and one
without

(b) A rigid constraint between two events. Minimum and
maximum duration of the constraint are equal ; the date of
the end event is fixed with regards to the date of the start
event.

(c) A constraint with a non-null minimum and a different,
non-infinite maximum

(d) A constraint with a non-null minimum and an infinite
maximum

(e) A constraint with a null minimum and an infinite maxi-
mum. Instead of making the representation heavier by hav-
ing the dashes of the constraint continue indefinitely, we
chose to remove the rake to symbolize infinity.

Figure 3. The OSSIA Graphical Formalism

direction is the flow of time. It allows to organize the other
base elements in time.

Scenarios follow these basic rules:

• A Scenario begins with a Node

• There can be multiple Events explicitly synchronized
by a single Node

• A Constraint is always started by an Event and fin-
ished by another, distinct Event

Events and Constraints are chained sequentially. Multiple
Constraints can span from a single Event and finish on a
single Event, as shown in fig. 7. The operational semantics
of these cases will be described later. This allows different
processes to start and/or stop in a synchronized manner.

3.2.2 Events and Nodes

An Event allows to describe precisely a part of what will
happen in a specific, instantaneous point in the execution
of the score. It is the basic element, to which are further
attached Constraints.

Events can be explicitly synchronized using Nodes. This
means that when an Event is triggered, all the other Events

A B

C(/x = 1) D

E(/x 6= 1) F

Figure 4. Implementation of temporal branching. A,B,C,D,E, F are
Events. B,C,E are on the same Node. C contains the condition /x = 1
and E contains !(/x = 1) in order to have an if - then - else mechanism.
C and E are evaluated when the constraint between A and B has ended.

on the same Node are also evaluated and instantaneously
triggered (or discarded if their Condition is not met, see
section 3.3.1).

3.2.3 Constraints

A Constraint represents a span of time. Due to the interac-
tive nature of the proposed paradigm, the span can change
at execution time, like a fermata. When the author wants to
allow a Constraint to have a variable duration, he renders it
flexible. This means that the end of the Constraint depends
on the Condition of its final Event.

A Constraint can be activated or deactivated: if it is de-
activated, it will not count for the determination of the ex-
ecution span of its end event.

The graphical representation of a Constraint can change
according to its minimum and maximum duration. The
minimum m’s range is [0; +∞], and the maximum M ’s
range is [m; +∞]\{0}. In the user interface (introduced in
section 4), the duration is directly linked to the horizontal
size and is visible on a ruler.

3.2.4 Graphical formalism

The graphical formalism for these elements is presented in
fig. 3.

The Node is a vertical line. An Event is a dot on a Node.
If there is a trigger on the Event, a small arrow indicates it.
The colour of the arrow can change at run-time to indicate
the current state of the trigger.

The Constraint is an horizontal line that represents a span
of time, like a timeline. If the constraint is flexible, the
flexible part is indicated by dashes and a rake. When there
is no maximum to the constraint, there is no rake.

3.3 Operational semantics

3.3.1 Conditions

Each Event carries a condition of execution, and a maxi-
mum range of time for its evaluation. The effective range
of time for execution is computed by constraint-solving al-
gorithms. For the Event to enter its execution range, all the
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A B

C(/x = 1) D

E(/x 6= 1) F

G(/y = 1) H

I(/y 6= 1) J

K(/z = 1) L

M(/z 6= 1) N

Figure 5. Nested if - then - else using flexible constraints

Constraints that finish on this Event must be between their
minimal and maximal duration.

An Event is executed as soon as its condition evaluates to
True in its execution range. As a result, the Constraints that
follow this Event are started, and the messages that might
be stored in the Event are sent. Otherwise, the Event is
discarded and all the following Constraints are deactivated.

There is usually a default condition which is “all the con-
straints that explicitly finish on the event have ended”. This
default condition can be replaced or extended. For in-
stance, there can be checks on the arrival of a specific net-
work message, or checks on a remote or local address’s
value with a specific expression, with the following syn-
tax:

• For parameters that can have a value, there can be
comparisons between the values. For instance:

/some/parameter > 35 &&
( /other/parameter != "a string"
|| /last/parameter == true)

• Value-less parameters (akin to bangs in PureData)
can also be used as triggers for the evaluation of ex-
pressions. In this mode, logical operators have a dif-
ferent meaning. For instance:
/some/bang && !/another/bang

will trigger if :

– /some/bang is received, and

– /another/bang is not received within the
synchronization interval.

• This is not to be confused with the comparison with
boolean values :

/a/val == true &&
/another/val == false

which will trigger when the parameters will both be
set (not necessarily at the same time) to the required
values.

Higher-level operations, like a mouse click on a GUI can
then be translated in conditions on Events, in order to bring
rich interaction capabilities to the software dedicated to the
execution of the scores.

3.3.2 Conditional branching

Branching occurs when, at a single point in the score, two
different executions can happen, which leads the scenario
to distinct states. For example, the classic if - then - else
construct can be implemented by having two Events with
opposite conditions, as shown in fig. 4. It is also possible
to have other cases : for instance, there could be a set of
conditions that would lead to either both constraint, or no
constraint executed. It is also possible to have multiple
constraints with the same condition. Figure 5 presents a
method to instantaneously nest conditions, using a flexible
constraint with a minimal duration of zero. These patterns
can be used as is. However, the authoring software should
provide graphical ways to simplify these common cases,
for instance by not showing the duplicated conditions. This
is not yet done in the current development version of i-
score, which allows its users to author scores using the raw
formalism presented here.

Convergence occurs when we want to synchronize parts
of a scenario that branched previously. The constraint solver
ensures that the durations are coherent during the author-
ing of the score. The execution date of the Node for which
a convergence happens will necessarily be after the mini-
mum of each converging Constraint.

3.3.3 Execution of a Node

In this part, we will first present a high-level algorithm that
explains the general order of execution of a Node. Then,
we will study a particular Node and see how the algorithm
translates into a Petri net that can be executed for this par-
ticular Node.

As we said before in section 3.2.2, Events are attached to
a Node. They are ordered and will be evaluated one after
another according to the algorithm given in fig. 6.

The software guarantees that at a high level, if the com-
poser sets an order, the messages will be sent in this order.
The only delay will be the one induced by the ordering of
instructions in the CPU.

However, it is necessary to be aware that the protocols
used underneath, like UDP which is commonly used in
OSC protocol implementations, might not always have such
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Require: We enter the evaluation range for a Node n

if all(n.eventList(), Event::emptyCondition) then
repeat

wait()
until n.DefaultDate
for Event e in n.eventList() do

e.run()
end for

else
repeat

if any(n.eventList(), Event::isReady) then
nodeWasRun← true
for Event e in TimeNode.eventList() do

if validate(e.condition()) then
e.run()

else
e.disable()

end if
end for

end if
until nodeWasRun

end if

Figure 6. Execution algorithm for a Node

strong guarantees. For this reason, and also because it is
not possible to expect network messages to arrive exactly
at the same time, the author can specify a synchronization
time on a Node: it can wait for a brief time after the trig-
gering of another Event in the same Node, in order to let
some time for messages to be received and change the re-
sult of conditional choices. However we don’t have yet a
way to represent this graphically; the idea of a bolder time
node was proposed. The synchronization time can also ex-
press the will to synchronize events at a lower rate, like
two people clapping hands at the same time for example.

Another possibility for the ordering would be to run the
Event whose condition did trigger the time node first, and
then run the others. This should be a choice left at the
discretion of the score writer.

Figure 7 presents the different branching and converging
cases that may occur, all mixed in a single Node.

3.4 Contents

An Event may contain a State, which contains messages,
and can itself hierarchically contain other States. At a con-
ceptual level, for the composer, a State generally represents
a change of state in a remote or local device, i.e. a discon-
tinuity.

A Constraint also acts as a container: during its execu-
tion, several Processes can be executed in parallel.

The two main Processes are:

A B

C

D

E F

G H

I

Figure 7. A complete example of Node in the OSSIA graphical formal-
ism. Two constraints converge on the Event B, and three constraints
branch from the Node that synchronizes B,F,G. The durations are al-
ready processed by the constraint solver.

CondB

CondF

ABmin

CBmin

Passive

BDmin

Tsync

EFmin GHmin

GImin

Figure 8. Petri net for the Node of fig. 7.
The previous Constraints’s minimum duration have to elapse in ABmin,
CBmin, EFmin. When a Condition is validated, a token is put in the
respective place (CondB or CondF); this triggers the evaluation of the
whole Node, unless it was already triggered. The central transition Tsync

introduces a small synchronization delay to allow other conditions to val-
idate if necessary. When an Event’s condition is not validated, a passive
token is instead sent to the following Constraints, which will not trigger
the execution of any process or state, and will simply allow the scenario
to keep going after a failed condition. This is achieved by the Passive
transition.

• The Curve, which allows to send interpolated data in
any protocol available to the software.

• The Scenario, which allows hierarchy to happen seam-
lessly: a constraint can contain a scenario, which can
in turn contain other Constraints.

There can be two possible executions for processes: they
can do something on each tick of a scheduler; or they can
send start and stop signals and behave however they want
in-between.

Processes can share data with the Events at the beginning
and the end of the parent Constraint, by putting them in
specific States.

The API provides ways for somebody to implement his
own processes and use them afterwards in scores.
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Figure 9. An example of score in i-score 0.3. Not all the graphical fea-
tures presented here are already implemented.

3.5 Usage as an API

One of the goals of this high-level paradigm is to allow at
the same time, a simple mapping with graphical elements,
clear semantics of execution, and simple translations with
the proven semantics that were studied before, like Petri
nets and Timed Automata. In this way, a composer could
describe his score which could then be translated into a va-
riety of formats that allow for static and dynamic analysis.

This is achieved by writing a C++ API, that allows for
multiple implementations and the use generic programming.
It is accessible in https://github.com/OSSIA/API.
It consitutes a kind of domain-specific language, with the
elements that were talked about earlier.

3.6 Implementation in terms of Petri nets

In order to maintain cohesiveness with the previous works
on the field, we chose to represent the temporal logic of
our formalism in terms of Petri nets. The span of time
of the constraints is represented as a transition, and states
are emitted when a token enters a state-containing place.
These places are not represented here because there can be
multiple cases according to the requirements of the writer
of the score: it would for instance be possible to send the
last state either after the default duration of the constraint,
or as soon or late as the condition is validated. It is also
possible to add places and transitions in order to have a
specific behaviour occurs when the maximum duration of
a constraint elapses without triggering.

Figure 8 represents the translation of the Node shown in
fig. 7 into Petri nets. We refer to Constraints by the name
of their start and end Events.

4. I-SCORE: TEMPORAL AND LOGICAL USER
INTERFACES

The API talked about in section 3.5 is being used as the
basis of different projects tied to the interactive scores. The

dependency graph is shown in fig. 10.
The different sub-projects are:

• I-SCORE, a graphical editor and player for the inter-
active scores. It solves the problem of the display,
edition and interaction with simultaneous elements
of the interactive scores. Its current development
version (0.3) is available at (https://github.
com/OSSIA/i-score).

• J.SCORE and I-SCORE-CMD: two players for the scores
produced in i-score. The first is an external for Max,
the second is a standalone command-line executable.
Their current version is available in the repository
of the Jamoma project (https://github.com/
Jamoma/Jamoma).

I-SCORE also exposes its own dynamic device in order
to provide some kind of external control at run-time. For
example, the conditions could be changed prior to their
evaluation, in order to set them in advance at true or false
according to events that might have occurred previously
during the execution of the score.

The current version (0.2) of I-SCORE, shown in fig. 2,
relies on the idea that relations are used to separate boxes.
At the time of writing, the upcoming version (0.3, shown in
fig. 9) is able to create constraints, events, and nodes using
the graphical formalism that was presented in this article,
and can play and export these scores so that they can be
played on the other software of the suite. It also allows
a primitive form of collaborative edition of scores on a lo-
cal network, and the authoring and execution of distributed
scores is currently being studied. Distributed scores would
allow for instance to have a part of a score run on a com-
puter, and another part run on another computer.

OSSIA API

JamomaScore

API toolkit

i-score 0.2

i-score 0.3
i-score-cmd j.score

Translations
formats

Figure 10. Diagram of the different components of the OSSIA project

5. CONCLUSION

We presented in this article a new interactive score seman-
tic that allows the conception and execution of conditional
scores. This semantic is thought of as a mapping into well-
known formal models, such as Petri nets, Timed Automata,
and Reactive languages: it is meant to be easily under-
standable and usable for the composer.
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However, in order to achieve more expressive power, we
still need to find a way to implement loops. Two approaches
are currently being studied: one using a Loop process, and
another using a concept of goto; once one is chosen, we
will try to find a relevant graphical element to present it.

Furthermore, there could be some interest in the speci-
fication and implementation of variables, which could al-
leviate the need for an adjacent software like Max/MSP to
perform complex logical computations. This would maybe
pave the way towards a time-oriented Turing complete pro-
gramming language, with a simple graphical representa-
tion which would allow composers to write complex scores
in an understandable way. Another track is the imple-
mentation of an audio engine, for instance by embedding
FaUST 6 , in order to be able to produce sound directly
from i-score. The relevant parameters would then be ex-
posed and controlled within i-score.

The next step for the graphical formalism is to make us-
ability studies in order to find the most convincing interac-
tions in the authoring software for the composers.
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ABSTRACT 

This paper aims at describing an approach meant to build 

a sign adapted to acousmatic music and based on reduced 

listening. The sign, to be efficient, must obey to a certain 

number of requisits: precision, ergonomics, relevance... It 

must be both easy to use and able to create relations 

between sounds. A simple description of their qualities is 

not enough: it must be able to create or analyse sound 

compositions and structures, such as instrumental scores. 

To fulfill this purpose, it must be able to give each sound 

a value, in a saussurian meaning of the word. I will try to 

show the genealogy of my sign, how I took elements of 

reflexion from musical knowledge, linguistics, semiotics 

and aesthetics. From there I deduced the concept of 

minimal unit of sound applied to electroacoustic music 

and I created a sign combining symbols to describe its 

features. I'll show how I have reorganized sound 

parameters described by Schaeffer and how this sign 

works. At last, I will show the possibilities of writing 

scores sound by sound and I'll show two kinds of 

analysis: the analysis of a pure acousmatic work from a 

formal point of view and the analysis of a work for tape 

and instruments both from a formal and a symbolic point 

of view. 

INTRODUCTION 

In the middle of the twentieth century, the concept of 

reduced listening by Pierre Schaeffer and his description 

of sound based on perception parameters was a real 

revolution. But if this description, which is to be found in 

the TARSOM, was really new and interesting, it could 

not be used for composition or analysis because of its 

complexity and because there was no system to create 

relations between sounds. The classification he done in 

the TARTYP did not really describe sounds: it only 

established a typology. Lasse Thoresen proposed a 

“spectromorphological analysis of sound objects” by “the 

introduction of graphic symbols as opposed to letters or 

verbal designations to represent the analysis”. In other 

terms, he created a notation corresponding to Schaeffer 

sound objects. After Schaeffer, Denis Smalley built a new 

approach of the sound based on sound perception that he 

called spectromorphology that mainly aimed at 

describing a relation between sounds and archetype of 

gestures, and at being a help to composition. Manuella 

Blackburn translated these concepts in graphic symbols.. 

Yet in all these approaches, in my opinion, the matter 

parameters of sound were not precise enough. It was thus 

necessary, looking at the TARSOM, both to simplify 

some sound parameters and to complexify others. This is 

what I did to build my sign. In this paper, I'll call sign 

what represents all the features of a sound, and symbol 

what represents only one feature. As a sign is the result of 

the combination of several symbols, I'll also call sign 

each virtual result of all the results of these combinations 

and system of sign both the possibility of these 

combinations and the fact that each sign can make sense 

with another. Once the sign elaborated, I separated matter 

parameters from shape parameters to write scores. I call it 

score and not sound representation, for example, because 

it is possible to create sounds corresponding to the signs, 

like the software Acousmoscribe did (on Mac OS 10.6), 

in the same way than instrumental scores. This sign aims 

at writing acousmatic scores as tools both for 

composition and musical analysis, from a 

phenomenological point of view. 

ORIGINS OF THE SIGN 

Theoretical origins 

TARSOM 

Historically, electroacoustic music is linked to P. 

Schaeffer's work and his phenomenological approach of 

the sound. It is based on the concept of reduced listening, 

and the description of the sound that is in the TARSOM. 

The TARSOM describes seven criterions of musical 

perception (mass, dynamic, harmonic timbre, melodic 

profile, mass profile, grain and gait) and nine criterions of 

qualification/evaluation distributed in 6 categories (types, 

classes, kind, pitch, intensity and duration). These 

criterions describe the sound as perceived from a 
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phenomenological point of view. The TARSOM works 

with the TARTYP which aims at fixing acceptable sound 

objects. These sound objects are considered from their 

beginning to their end. 

Linguistics 

My sign is based on the concept of minimal unit, or 

discreet unit, that comes from linguistics (Benveniste, 

Jakobson). It refers to the smaller sonic element that 

cannot be divided. For instance, a word can be divided 

into syllables, a syllable can be divided into phonemes, 

but a phoneme cannot be divided: it is a minimal unit. 

This minimal unit is the result of the association of 

different distinctive features. As linguistics and music are 

dealing with sounds, I applied this method to 

electroacoustic music. This way I obtained smaller units 

than TARTYP units that can be combined to decribe 

bigger units like phonemes can be combined to create 

syllables and syllables can be combined to create words. I 

called electroacoustic sound minimal unit phase and 

bigger units entity or group. The distinctive features of a 

phase are the sound features that are described in the 

TARSOM, and that I reorganised. 

Another idea I took from linguistics to build my sign is 

to use a small amount of elements to create a great 

number of combinations. One can write several thousands 

words with only twenty six letters. This way, it prevents 

from having to memorize a great number of elements and 

it is easy to use them. 

Ch. S. Peirce Sign Theory 

Peirce defined a sign as a triadic relationship between the 

object, the representamen and an its interpretant. Only 

considering the relation between the representamen and 

the object, he established three kinds of relation: icon, 

index or symbol. I wanted my sign to be easy to read: on 

the one hand, I used iconic representation every time I 

could because it is very easy to understand it: for 

example, concerning dynamic profile, pitch increasing or 

decreasing and gait. On the other hand, in its symbolic 

part that needs an interpretant and that is more complex 

for this reason, I used the same symbols applied to 

different parameters of the sound to represent the same 

indications: dot means little, dash an dot middle and dash 

big, a broken line means random. This way I reduced the 

number of symbols one has to remind. 

Nelson Goodman's Theory 

In his book Languages of art, Nelson Goodman was 

comparing notation and art work. According to him, the 

characteristics of notation are semantic and syntactic non 

ambiguity. In other words, each sign must not be 

confused with another, and its interpretant must be clear. 

Other conditions are syntactical and semantic disjuncture. 

It means that a sign or a meaning must not have 

something in common with another. To aim these goals, it 

is necessary to avoid analogic representation. This is the 

reason why, for example, a small gait is represented by 

one curve and not by a small curve, a meddle gait by two 

curves and not by a meddle curve, and a big gait by three 

curves and not by a big curve. 

Temporal Semiotics Units 

The morphological description of Temporal Semiotics 

Units often describes a certain number of “phases”. That 

means that a big sonic unit can be constituted by several 

small units and that each small unit has a value, like it has 

in linguistics. These phases can be a process concerning 

one sound parameter, or concerning several sound 

parameters at the same time. In fact, the idea of musical 

minimal unit was born from a research that was aiming at 

transforming these analytic tools in compositional tools
1
. 

Music Theory Notation 

Of course, the music theory notation offers an excellent 

example of music notation: it is clear and as simple as it 

can be. It also uses minimal units and tries to indicate the 

most important features to realise sounds or analyse 

score. In a certain way, it is an open system because it 

allows to add any sort of indication. The simplification of 

the sound reduced to pitch and rhythmic parameters do 

not prevent any other precision. The keys and key 

signatures allow to avoid the repetition of what does not 

change, and they are very ergonomic. 

Simplification Of TARSOM's criterions 

Criterions of Musical Perception 

In order to create a sign quite simple to read, I reduced 

the seven criterions to four profiles: concerning criterions 

of form, I established the dynamic profile and the 

rhythmic profile. Concerning criterions of matter, I 

established the melodic profile and the harmonic profile. 

One finds here the four traditional dimensions of sound. 

The term of profile refers to three kinds of processes: 

augmentation, diminution, or stability which is a 

particular kind of process but not the only one. Why and 

how has the modification of Schaeffer criterions been 

done? In TARSOM or TARTYP, Schaeffer is describing 

sound objects constituted by several phases. Yet, I was 

interested only in one phase sound objects, but I took into 

account all of the possible variations. Schaeffer had 

already described melodic profile and mass profile. He 

put them in the category of criterions of sound variations. 

The TARSOM establishes seven categories: three 

                                                           
1 Di Santo, Jean-Louis, “Composer avec les UST”, Vers une sémiotique 

générale du temps dans les arts, Actes du colloque "Les Unités 

Sémiotiques Temporelles (UST), nouvel outil d'analyse musicale : 
théories et applications", Sampzon, Delatour, 2008 
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categories regarding the sound itself (mass, dynamic, 

harmonic timbre), two categories regarding variations 

(melodic profile and mass profile) and two categories 

regarding maintenance (grain and gait). If one looks at 

the column two of the TARSOM, one can read on the 

“timbre harmonique” line: “lié aux masses” (linked to 

masses), and comparing the masse line to the timbre 

harmonique line, one can almost see the same 

classifications. Thus I merged these two criterions into 

harmonic profile in order to simplify them. In the same 

way, always considering the column two, the 

“dynamique” and “profil de masse” lines are very similar 

and I merged them into “dynamic profile”. However 

Schaeffer was mostly describing two phase profiles: 

following the concept of minimal unit which is based on 

a unity of process, I only considered one phase processes.  

Here too, still taking into account one phase processes 

and adding the stability that was missing, I kept the 

“profil mélodique” line. I also transformed the column 8 

(impact) into “rhythmic profile”, with the caracteristics of 

slow, moderate and fast that are in the TARSOM, and I 

added the processes of accelerando, of rallentando and 

irregular. The rhythmic profile refers both to the internal 

speed of a sound and to iterative processes of the same 

sound. This way, the four traditional musical criterions 

were redefined. At last, I respectively linked maintenace 

criterions (grain and gait) to dynamic profile and melodic 

profile. However some criterions can be linked to some 

others: the rhythmic profile, that describes speed 

variations, can be as well applied to iteration or gait. The 

gait also often refers to melodic profile that contains the 

idea of pitch, thus also the caliber, which is the difference 

between the lower and the higher frequency of the sound. 

Grain is a particular variation that is applied to the 

dynamic of sound. This way, some criterions that 

disappear from the seven Schaeffer criterions reappear 

applied to the four profiles.
2
 

Criterions of Qualification/ Evaluation 

As shown above, some of them are integrated to the four 

profiles. The categories of species are integrated as 

quantities: small, middle, big or random. The concept of 

random or irregular is very useful when some processes 

are changing quickly in different ways: for example to 

describe the sound of creaking wood which is sometimes 

fast and sometimes slow. 

Number Of Phases Of The Sound 

In the TARSOM or The TARTYP, sounds can have 

several phases. For the reasons I explained above my sign 

describes sounds phase by phase. Phase refers to any kind 

of sound, whatever its duration is, featuring the same 

                                                           
2 http://www.ems-network.org/IMG/EMS06-

JLDSanto.pdf, p. 4-5 

process (this process commands the same modification or 

non-modification of the sound and can be applied to 

intensity, pitch, timbre or rhythm). Phase is the name I 

gave to the minimal electroacoustic sound unit. This way, 

one obtains 4 profiles that will be described later. Profile 

is here the name of distinctive feature. 

Complexification Of Mass/Harmonic Timbre 

I merged the schaefferian Mass and Harmonic Timbre 

into the term of harmonic profile (in my sign, the species 

of mass are mainly linked to melodic profile). The 

harmonic profile concerns the very matter of sound, 

which does not depend on pitch, dynamic or other 

criterions about form. Schaeffer determined seven 

categories of sound considering this parameter (son pur, 

son tonique, groupe tonique, son cannelé, groupe nodal, 

nœud and bruit blanc). “Son pur” is sine curve, and “bruit 

blanc” is white noise. They will not be taken into account 

here, since they do not vary (except sine curve which 

pitch can vary depending on its height, which is not our 

purpose here). Thus five categories of sound remain. 

Their description, being very large, is very imprecise, 

even if the number of categories is increased by the 

distinction between “simple” sounds and groups. 

According to Schaeffer, these five categories can be rich 

or poor. In  EMS 11, in New York, I suggested to increase 

these categories
3
. I determined three categories of 

homogeneous sounds, that can be rich or poor, and three 

categories of hybrid sound that can be rich or poor too. 

Combining these categories in groups or sons cannelés 

(distonic sounds using Thoresen translation), and adding 

stable or filtered colours (bright, dark, hollow...), one can 

have 40 000 descriptions of harmonic profile 

Figure 1 : Homogeneous sounds. The dash on each side of the symbol 

always means rich. It will be the same, of course, concerning hybrid 

sounds. 

 

 

 

 

 

 

 

                                                           
3 http://www.ems-
network.org/IMG/pdf_EMS11_di_santo.pdf 
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Hybrid sounds will be represented as below: 

Figure 2 : Hybrid sounds. A hybrid sound is a sound that haves features 

from two homogeneous categories. For example a fly sound has features 

of tonic sound and features of noise. Thus it is represented by a line 

(tonic sound) made of dots (noise). 

The twelve simple signs described above will be used 

to build all the other signs, and particularly what one will 

call “group” and “son cannelé”. One will call “group” 

sounds of the same category combined between them. A 

group made of homogeneous sounds will be called 

homogeneous group and a group made of one or two 

hybrid sounds will be called hybrid group. The sign that 

represents a group is made of two symbols. The lower 

one represents the sound one hears the most (called 

fundamental), and the higher one represents the sound 

one hears the less or as much as the other (called 

harmonic). 

Figure 3 : Homogeneous groups. Hybrid groups will be represented 

either by a symbol of homogeneous sound and a symbol of hybrid 

sound, either by two hybrid sounds symbols. 
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Figure 4 : Categories of dystonic sounds. 

If the sounds of the group belong to two different 

categories, one will call it son cannelé (for example a bell 

sound is made by a first audible tonic sound and a thin 

inharmonic halo. Now, tonic sound and inharmonic sound 

belong to two different categories, so a bell produces a 

son cannelé. This sound will be represented by a tonic 

symbol under an inharmonic symbol). In order to have 

clearer signs, one will limit the number of symbols to two 

by group and three for son cannelé. To build all the 

possibilities of son cannelé, one will use the table from 

Figure 4. 

There are also symbols to describe the “colour” of the 

sound, if it is more or less dark or bright. The symbol is a 

dot put on symbols of harmonic profile, except for noise 

that can't have a colour because of its very rich spectrum. 

Figure 5 : Seven different “colours” of sound put on the symbol of tonic 

sound (the same thing can be done for inharmonic sounds). From left to 

rignt: equilibrated sound, strong low frequencies, weak high 

frequencies, strong medium frequencies, weak low frequencies, weak 

medium frequencies and strong high frequencies. These colours can be 

filtered and can change but I don't reproduce the symbols here. 

PRESENTATION OF THE SIGN 

The all sign is built assembling symbols to describe 

minimal untit of sound. Of course, different minimal 

units can be assembled to create a higher level of unit, 

like in linguistics. These symbols represent the different 

profiles of the sound. The concept of profile is very 

useful to create a link between the continuity of reality 

and the categories without which it is impossible to think. 

Basically, the sign represent four profiles. These profiles 

correspond to distinctive features in linguistics
4
. 

Dynamic Profile 

It concerns the features of intensity variations of sound 

(crescendo, decrescendo or stable). It is represented by a 

quadrangular or a triangle. The bottom of this figure 

indicates speed variations of sound and the top indicates 

grain. The sign offers five possibilities of dynamic 

profile: 

 

 

 

 

Figure 6 : Dynamic profiles. From left to right: soft, support, flat, 

straight attack, straight truncated attack. 

                                                           
4 http://www.ems-

network.org/ems09/papers/disanto.pdf 
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If the dynamic profile irregularly varies, a broken line 

is added at the top of one of these figures. 

 

 

 

Figure 7 : A flat dynamic profile varying irregularly. 

Rhythmic Profile 

It concerns the internal speed variation of sound or its 

speed iteration (acceleration, deceleration or rhythm, 

allure or grain’s stability). It is notated by dots, dashes 

and dots or dashes at the bottom of the rhythmic profile, 

as explained above. If the rhythmic profile irregularly 

varies, a broken line is added at the bottom of the figure. 

A vertical dash at the beginning or the end of the figure 

means rallentando or accelerando. 

Melodic Profile 

It concerns tessitura (pitch becoming higher, lower or 

stable). It is represented by five dots on the left or rignt 

side of the figure that represents dynamic profile. The 

lower one indicates very low tessitura, the one above, low 

tessitura and so on until very high tessitura. A line is 

attached to these dots to represent the tessitura of the 

sound. This line can be straight and horizontal if the 

tessitura is always the same, or can also come up or down 

if the pitch increases or decreases. This line is curved if 

the sound has gait. At last, this line indicates the caliber 

of the sound: a line made with dots if the caliber is thin, 

dash and dot if it is meddle, and a dash if it is large. The 

same symbols can be applied to a curve. If the melodic 

profile irregularly and quickly varies, a broken line is 

added at the end of this symbol. 

Harmonic Profile 

The term harmonic profile replaces the terms of Mass and 

Harmonic Timbre in the TARSOM. It concerns harmonic 

timbre: richer, poorer or stable. The harmonic profile is 

represented by symbols inside the geometrical figure: a 

line for a tonic sound, a curve for inharmonic sounds and 

a dot for noise. The sound can be homogeneous or hybrid 

if it has the features of two different sorts of sound (see 

above). Each category, homogeneous or hybrid, can be 

rich or poor. 

Tonic and inharmonic sounds can have a colour (see 

above, EMS11, New York). The sign allows to represent 

seven stable colours and fourty two filtered colours. 

The combination of two symbols belonging the same 

category represent a group (tonic, inharmonic or noise) 

that can be homogeneous or hybrid. The combination of 

two symbols belonging to different categories represent 

dystonic sounds. 

Number of combinations 

A complete sign is made assembling symbols on the 

different sides of the dynamic profile or putting them 

inside. 

 

 

 

 

 

 

Figure 8 : An example of complete sign. The triangle shows the 

dynamic profile and means straight attack. The line at the top of this 

figure shows that there is no grain. At the left one can see the melodic 

profile in a medium tessitura. This full line shows a large caliber ; this 

line is curve, that means that there is a gait. This gait is small because 

there is only one curve. At the bottom of the figure, dots indicate that 

the speed of this gait is fast (rhythmic profile). The broken line in the 

rhythmic profile means that this rhythm is irregular. At last, the two 

lines inside the figure represent the harmonic profile: they mean tonic 

group. 

A sign, to be efficient, must be precise. This precision 

depends on the number of possibilities it offers. The 

Acousmoscribe's sign offers five symbols for dynamic 

profile, three symbols for grain and three symbols for 

rhythmic profile. Dynamic or rhythmic profiles can be 

regular or irregular, thus the number of possibilities is 

doubled. 

There are five possibilities of stable melodic profile, 

ten possibilities describing increasing pitches (from very 

low to low, from very low to medium, from very low to 

high, from very low to very high, from low to high and so 

on...), and ten possibilities describing decreasing pitches. 

Of course, all these possibilities can offer irregular 

processes. The symbol supporting melodic profile also 

represents caliber. There are three possibilities of caliber 

and, for each of it, the possibility of being irregular. If the 

sound has a gait, the line representing melodic profile is 

replaced by one, two or three curves, depending on the 

amplitude of the gait. 

At last there are three basic symbols for harmonic 

profiles becoming six merging different features, and 

becoming twelve adding a symbol meaning “rich”. As 

already said above, adding the different colours and the 

possibilities of groups and dystonic sounds, there are 

40.000possibilities of harmonic profile. 

The different combinations of all these different 

symbols allow approximately five billions possibilities to 

build a sign always easy to read. 

FROM SIGN TO SCORE 

The Acousmoscribe 

The first step was the Acousmoscribe, an experimental 

software created in 2009 that works on Mac OS 10.6: it 
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allows the creation of a sign assembling different 

symbols that one can choose to represent different 

profiles and parameters. The windows have two parts: the 

left part represents tracks on which one can put the signs. 

The right part is a palette where one can create the sign 

assembling the symbols of the different profiles. One can 

assemble the symbols to create a sign and then put it in 

the tracks. This software was able to generate some 

sounds corresponding to the sign.
5
 

Score of Incidences/résonances 

The following step was the analysis of Incidences, 

résonances by Bernard Parmegiani. A poietic analysis of 

this piece has already been made by Ph. Mion, J. J. 

Nattiez and J. C. Thomas, and I wanted to compare this 

kind of analysis with the transcription I did using my 

sign. I called it score because one can create an 

interpretation of this work following the indications of 

the signs, because each sign can generate a sound with 

the same features, even if it is not exactly the same. In 

this score each sound has its own track. Matter 

parameters that don't change are used as keys, on two 

columns at the beginning of each page of the score 

(harmonic and melodic keys), and shape parameters are 

written on the tracks. I choosed to put sounds in order of 

appearance, from the bottom to the top. The analysis of 

the harmonic key generated the concepts of soundality 

and soundulation, which are the equivalent of tonality and 

modulation, in instrumental scores, applied to the very 

matter of the sound. This analysis is a purely formal 

analysis and the use of the sign allows to unterstand some 

processes of composition that are impossible to 

understand otherwise, specially the relationship between 

the different harmonic profiles of this work. The concepts 

of soundality and soundulation were born from this kind 

of analysis. What is a soundality? What I call soundality 

is a sonic configuration where a majority of sounds, or 

the main sounds, belongs to the same category of sound, 

referring to the paper I presented at the EMS 11 

conference (see fig.. 1 and 2 above). Of course, a 

soundulation is a change of soundality.
6
 

 

 

 

 

 

 

 

 

 

                                                           
5 Ibid. 
6 http://www.ems-

network.org/spip.php?article377 

Figure 9 : Beginning of Incidences/résonances by B. Parmegiani. 

Matter parameters are put on the two columns on the left: first column 

describes harmonic profile and second column describes melodic 

profile. Shape parameters, dynamic profile and rhythmic profile are put 

on tracks corresponding to each sound. 

Score of Six japanese gardens 

The analysis of  Six japanese gardens, first movement, by 

Kaija Saariaho, realised for her nomination doctor 

honoris causa of the university of Bordeaux Michel de 

Montaigne, enables the analysis of the relationships 

between instruments and tape with the signs. Tape and 

instruments are considered from a phenomenological 

point of view, using reduced listening, and can be 

compared: what is different and what is the same, and the 

relations between the different sounds. But not only: this 

work is obviously a symbolic work and is speaking about 

time. The analysis of this work with my sign allows to 

study the semiosis, the way the plane of contents works 

with the plane of expression. At last, this score also 

shows the descriptive goal of this work. Its complete title 

is Tenju-an Garden of  Nanzen-ji Temple. Looking both at 

a photograph of this temple and at the score, it is possible 

to see some isomorphisms. 

CONCLUSION 

The sign I have elaborated for ten years is based on the 

reduced listening and describes the sounds from a 

phenomenological point of view. It is an open system, 

and it is possible to add any sort of annotation. Not only 

does this sign system aim at describing sounds, but it also 

aims at creating structures where each sound can have a 

value, in a saussurian meaning of this term, i.e. where 

sound parameters create a relation between each sound to 

make sense. It is now precise enough to write scores but, 

of course, still can and must be ameliorated. 
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ABSTRACT 

The present paper is a shortened version of the one pre-

sented at the ICMC/SMC2014 [1] where it was demon-

strated that SSMN (Spatialization Symbolic Music Nota-

tion) research seeks to establish a paradigm wherein OSC 

(Open Sound Control) [2] and a Rendering Engine allow 

a musical score to be heard in divers Surround formats. 

The research team consists of composers, spatializa-

tion experts, IT specialists and a graphic designer. After 

having established a taxonomy identifying and classify-

ing spatiality of sound with associated parameters, open 

source software is being developed and tested by practi-

tioners in the field. Composers, utilizing dedicated graph-

ic symbols integrated into a score editor, have full control 

over spatialization characteristics. They can audition the 

results and communicate their intentions to performers 

(i.e. conductors, musicians, dancers, actors) as well as to 

all participants in the chain from rehearsal to perfor-

mance. 

SSMN capitalizes on time-based phenomena: choreog-

raphers can combine and synchronize sound and body 

movement; installation artists can program interactively 

visuals with audio manipulation; film and video can be 

enhanced with 3D sound effects and spatialized scores. 

SSMN focuses not only on musical composition, other 

performing and media arts or even game interaction de-

sign, but is useful in academic contexts such as profes-

sional training in conservatories and in musicological 

research addressing the perennity of spatialization in 

early electroacoustic music. 

1. INTRODUCTION 

Research on spatialization in music dates 

from practices in early civilizations through today's con-

temporary output. SSMN investigations concentrate on 

composers' means of expressing placement and/or motion 

in space (e.g. Stockhausen, Boulez, Brant), and of more 

recent methods of graphic representation proposed in 

various research centers (i.e. Ircam’s OpenMusic [3] & 

Antescofo [4], MIM’s UST [5], Grame’s ‘inScore’ [6]). 

During the past decade certain composers using WFS [7] 

and Ambisonics [8] pointed to the need of musical nota-

tion wherein graphic symbols and CWMN (Common 

Western Music Notation) could coexist on a time line 

along with audio rendering. 

2. DEFINING A SPATIAL TAXONOMY 

The SSMN Spatial Taxonomy is an open-ended system-

atic representation of all musical relevant features of 

sound spatiality. It is organized as follows: basic units of 

the SSMN Spatial Taxonomy are called descriptors, i.e. 

room descriptors and descriptors of sound sources. De-

scriptors can be simple or compound and are assumed to 

be perceptually relevant. Simple descriptors denote all 

single primary features relevant to sound spatiality and 

can be represented as symbols. Compound descriptors are 

arrays of simple descriptors used to represent more com-

plex spatial configurations and processes. Structural op-

erations and behavioral interactions can be used to trans-

form elements previously defined using descriptors or to 

generate new elements. Descriptors are progressively 

being implemented in the project when proven to be of 

general user interest. Although the taxonomy is classify-

ing and describing sound in a three-dimensional space, 

some objects and symbols are, for practical reasons rep-

resented in two dimensions.  As this taxonomy contains a 

very systematic vocabulary it proves to be useful for 

other research projects related to 3D Audio currently 

under development at the ICST. To assure the validity of 

Copyright: © 2015 Emile Ellberger et al. This is an open-access article 

distributed under the terms of the Creative Commons Attribu-

tion License 3.0 Unported, which permits unrestricted use, 

distribution, and reproduction in any medium, provided the original 

author and source are credited. 
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concepts within this taxonomy, the SSMN team has un-

dertaken the task of testing perception of sound spatiality 

elements both in 2D and 3D mode, with key questions 

being what can be perceived or not, and under which 

conditions. 

3. CREATING GRAPHIC SYMBOLS 

In accordance with the SSMN Spatial Taxonomy re-

quirements, a basic set of symbols was researched and 

designed with the primary criteria requiring clarity, legi-

bility and rapid recognition. Equally, the choice between 

symbolic or descriptive designs becomes particularly 

relevant. Thus, the SSMN Symbol Set synthesizes both 

approaches. Depending on the requirements of a musical 

composition, spatialization information can be very com-

plex; configurations consisting of simultaneous trajec-

tories with varied types and durations require transmitting 

elaborate I/O data that must be readily understood and 

communicated to all in the chain from creator to per-

former to sound engineer. Communication between the 

target users is simplified with SSMN: the symbols could 

be common to various types of outputs (score, cue sheet, 

sound design, video editors) and the associated rendering 

parameters can be freely edited in available and future 

tools. They can also be used in remastering situations, 

preparation of audio tracks for video games, 3D cinema, 

surround radio broadcasting, theater productions, chore-

ography and installations. 

The symbol set  

The SSMN Symbol set and subsets are organized so as to 

be easily inserted in a GUI (Figure 1). In order to facili-

tate the use of the SSMN symbols and their introduction 

into the musical score five categories of symbols related 

to the following aspects are defined: 

 Physical performance space characteristics 

(geometrical form, size, reverberance, in-

side/outside) 

 Initial physical placements of performers, mi-

crophones, loud speakers and objects 

 Localization and quality of sound sources 

(acoustic and projected audio
1
) 

 Trajectories and/or displacement of sound 

sources, microphones, loud speakers, and ob-

jects whether individually, in groups or more 

complex configurations (sound clouds, 

planes, surfaces) 

 Inter-application communication possibilities 

and protocols (OSC, MIDI) as well as inte-

                                                 
1
 Acoustic audio refers to the natural sound of instruments whereas 

projected audio refers to sounds coming from loudspeakers. 

gration with external programming environ-

ments. 

Figure 1. Extract of SSMN symbols set. 

4. IMPLEMENTATION OF MUSESCORE_SSMN 

The notation editor MuseScore was chosen due to its 

Open Source characteristics and its OSC communication 

possibilities, i.e. on/off/play/pause/next/. The SSMN 

implementation now allows all parameters and values of 

the symbols to be transmitted to target software within 

the tool set and equally receive data for control. Symbols 

are organized into palettes and menus according to 

SSMN categories, classes and functions. Once placed in 

the score, an Inspector window displays user-defined 

rendering parameters and flags specific to each type of 

symbol. A 2D/3D radar view displays the activity of the 

spatial movements from a selected note to another, or 

over a section of the score. Clicking on a symbol in the 

score allows seeing the entire trajectory in the radar. 

Several templates have been designed to facilitate format-

ting various score-types. The user commonly places 

SSMN symbols on any instrumental staff; nonetheless, a 

dedicated SSMN Staff can be utilized to transmit spatiali-

zation data as well as OSC messages, independently of 

notation, to any software with OSC functionality (Fi-

gure 2).  

Figure 2. MuseScoreSSMN example:  

symbol → score → parameters → radar 
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5. INTER-APPLICATION COMMUNICATION 

The use of OSC (Open Sound Control) possibilities al-

lows messages to be directed to various target software 

modules. Typically, spatialization data from 

MuseScoreSSMN flows to an audio renderer-engine 

capable of spatializing in various output formats, e.g. 

Ambisonic B-Format, WFS, multi-channel encoded audio 

files. OSC messages and RAW data are also routed to 

DAW (Digital WorkStation) or to programming envi-

ronments (e.g. SuperCollider, C-Sound, MaxMSP.) At 

this time exporting possibilities include Mu-

sicXML and SVG. 

6. DEVELOPING THE RENDERING ENGINE 

Compatible with the Open Source Initiative for standard-

ized Max/MSP Module, the SSMN Rendering Engine has 

been engineered to allow real-time spatialized audio 

rendering and visual feedback for all SSMN activity. 

Functionalities include OSC routing over UDP ports, and 

user control of encoding and decoding in various formats; 

the user determines speaker configuration, designs the 

distance characteristics and is able to select effects such 

as reverb, air absorption, and Doppler. All audio activity 

can be saved and reopened in common audio file formats. 

Real time visual feedback allows the user to monitor 

single or multiple trajectories and sound placements in 

2D/3D. An AUAmbi plug-in allows communication with 

audio software that have AU implementation. In order to 

facilitate overall OSC control, a set of descriptions were 

created that would allow multiple cross-application 

communication, also adaptable to other protocol context 

such as SpatDIF and MusicXMuse-SoreML (Figure 3). 

Figure 3. SSMN Rendering Engine main screen. 

7. TWO CASE STUDIES 

Urwerk by Vincent Gillioz 

A first SSMN case study consisted of a film score, which 

revealed the combining of instrumental notation with 3D 

spatialization effects to be integrated into 3D cinema. 

Here a score for 9 instruments and electronics was origi-

nally notated in a popular score editor. Initially the com-

poser created his personal symbols and spatialization 

annotations, but was limited to hearing the results in a 

stereo version. He now exported his score in MusicXML 

format (notation only), and imported it into Muse-

ScoreSSMN utilizing the SSMN spatialization symbols. 

Then, the composition with accompanying audio files 

was rendered in B-Format onto an Ambisonic speaker 

system. Having been able to audition the impact of the 

sound motion, he could consequently edit and modify 

various parameters of SSMN symbols to his taste and 

allow for more coherent musical effects. Interestingly, 

Gillioz had little experience in spatialization at first and 

began by creating erratic sound movements – skips and 

wide jumps at 8thnote-120BPM rate. His esthetics 

obliged him to modify the displacement rate (speed and 

distance). Having mastered the process, he modified the 

score as necessary and gave us precious feedback.
2
 

CHoreo by Melissa Ellberger, choreographer 

CHoreo was a simple case study demonstrating ad-

vantages in using SSMN within a rehearsal context.  A 

choreographer trained performers wearing portable loud-

speakers to move along trajectories in a hall. Sound files 

projected from the portable loudspeakers accompanied 

the body movements. In play mode, MuseScoreSSMN 

triggered sound files transmitted to the SSMN Rendering 

Engine, all the while sending streams of OSC data con-

trolling the 3D spatialization process. The performers 

could execute their roles by following the printed 

MuseScoreSSMN; the learning process prior to an actual 

public presentation was greatly facilitated (Figure 4).   

Figure 4. CHoreo trajectory score. 

 

 

                                                 
2 Urwerk score/renderer/qtmovie (binaural version) can be accessed at 
http://blog.zhdk.ch/ssmn/movies/ 
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8. CONCLUSION 

At this stage of the “work-in-progress” of SSMN, its 

basic workflow is optimized for the user case in which 

notation for instrumental music (often incorporating live 

electronics) is introduced into a music editor and spatial-

ized audio rendering is a requirement. Other user cases 

include the additional use of audio files managed within 

DAW software. SSMN equally targets state of the art 

venues, namely 3D cinema (with a great need for encap-

sulating height information into surround systems), 5.1 

radio and web-based broadcasting (video, music and 

radio theater productions), choreography notation, artistic 

multi-media and interactive installations, surround CD, 

DVD and Blu-Ray market, as well as game design.    

An SSMN user group provides inestimable feedback. 

Questions that are continuously taken into account con-

cern the type of strategies adopted, their usefulness, the 

choice of symbols, the clarity and speed of recognition, 

the flexibility offered by the tool set and overall user 

friendliness. Performers and audio engineers note that 

they find useful features that allow them to consult both a 

printed version of the score containing the SSMN sym-

bols as well as its electronic version allowing rendering 

the symbols in an active timeline.  

The potential of the prototype was also tested with 

several choreographers and their composers at Tanzhaus 

Zurich. Results of the SSMN project have been incorpo-

rated into the composition curriculum at the Zurich Uni-

versity of the Arts and have been presented at the Haute 

École de Musique of Geneva. The actual experience with 

the composers, interpreters and composition students has 

shown that they have experienced increased awareness of 

spatialization possibilities within their own creation pro-

cess and developed an augmented spatial listening acuity. 

A future SSMN goal addresses developing awareness of 

spatialization through pedagogical interactive software 

for all school ages as well as for pre-professional music 

education. There also appears to be a need within musico-

logical research for archiving and assuring the perennity 

of electroacoustic music, transcribed with symbols for 

study purposes. It is also expected that the SSMN project 

will contribute to generating a sustainable impact on 

creative processes involving three-dimensional spatializa-

tion.  

Further aspects are also being investigated such as the 

integration within the MusicXML protocol and SpatDIF 

compatibility (Peters, Lossius and Schacher 2013). The 

SSMN tools set and documentation are available to the 

scientific and artistic communities via a website that has 

been setup to document project results, distribute the 

software, and receive user input.
3
 The SSMN workflow is 

shown below (Figure 5). 

 

Figure 5. Basic MuseScoreSSMN I/O workflow. 
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ABSTRACT

In 2014, the author set out to expand the notational poten-
tial of their generative music systems to be performed by
the Rensselaer Orchestra in Troy, NY. The experiments re-
sulted in the use of several networked Raspberry Pi devices
delivering a realtime, generative Animated Music Notation
to subsections of the live orchestra during performance.
This paper outlines the structure of the piece, Accretion;
the technical details of its implementation; and the pos-
sibilities presented by using the Raspberry Pi to deliver
scored materials to performers. Ultimately, the paper seeks
to make a case for adopting the Raspberry Pi as a power-
ful device and method of distribution/performance of Ani-
mated Music Notation.

1. INTRODUCTION

This paper describes the author’s composition for orches-
tra, Accretion, and the technological developments that en-
abled the creation and performance from an Animated Mu-
sic Notation (AMN). Accretion is structured around tech-
niques and structural schemata derived from granular syn-
thesis. The term accretion refers to the formation of a thing
by means of some attraction, perhaps gravitational as in the
case of the formation of celestial bodies like planets, stars,
and nebulae. This process works as a sufficient metaphor
for the kinds of interactions, including granular synthesis,
that the author has previously implemented in electronic
and electroacoustic compositions. With granular synthe-
sis, sounds that are near imperceptibly short can be over-
lapped in very high densities to produce particular sonic
textures to emerge. The piece Accretion is a translation
of these electronic idioms into the context of the acoustic
orchestra.

The realtime generative systems comprising my previous

Copyright: c©2013 K. Michael Fox et al. This is an open-access

article distributed under the terms of the Creative Commons

Attribution 3.0 Unported License, which permits unre-
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work have diverse inspirations, origins, and implementa-
tions. However, Accretion explicitly seeks to incorporate a
previously unused feature: rendering the internal interac-
tions of the generative system into scored material that is
performed in realtime by an ensemble. The opportunity to
write for an orchestra posed that significant challenge in re-
altime notation. In order to translate these techniques from
the realm of microsounds to the timescales and context of
the orchestra, a custom AMN was designed. I set about to
design a system that used the kinds of compositional meth-
ods I enjoy in the digital realm and rendered them legible
(and with the utmost specificity) to the orchestra.

Gerhard Winkler, describing his own work towards re-
altime generative notation for ensembles, has emphasized
the benefit of removing as much of the simulation hard-
ware from the stage as possible [1]. However, it was clear
that using a single screen was neither ideal nor practical.
The projected image, for an ensemble the size of an or-
chestra, would have have to be impractically large to leg-
ibly display all necessary player parts. Additionally, the
projection would either have to be positioned behind the
audience, or the orchestra would have to face away from
the audience. The solution I developed divided the score
into four different screens; networked and synchronized
these screens with a master simulation; and, positioned
these screens in such a way that was unobtrusive to the
audience while remaining legible to players up to 10 me-
ters away. With these challenges in mind, I consulted other
works using networked devices, screens or processes, in-
cluding those described by Winkler [1], Jason Freeman’s
LOLC [2], and Decibel Ensemble’s “Score Player” [3].
The Raspberry Pi (RPi) was affordable and flexible enough
as a platform to realize these goals, and I adopted the de-
vice as a way to enable the compositional goals I had es-
tablished. The rest of this paper describes the process of
moving from compositional intent to functional Animated
Music Notation design, its technological implementation,
and future trajectories for the system.
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2. ACCRETION

My compositional intentions with Accretion required each
section of the orchestra to act independently of the others,
facilitating the coordination of instrumental articulations
into clouds where each event had a seemingly arbitrary
timing. The components and structure of the piece, being
derived from granular synthesis, relied on events happen-
ing in absolute time, as opposed to subdivisions of metrical
time based on tempo. Coordination of these events, then,
form clouds or clusters that are partially identified by their
densities. However, since the instruments playing these
sound grain-like notes are resonating bodies activated by
humans, there are three additional components introduced:
pitch, playing technique and articulations, and dynamics.
Together, these components formed the main design con-
siderations of the simulation system, programmed in C++
with openFrameworks.

2.1 Time & Pitch

The generative software system created “events” of two
types: singular or durational. The singular events were
realized as the shortest possible articulation of a note the
instrument. Durational events, on the other hand, could be
long sustained notes or collections of staccato notes occur-
ring in a strictly defined time duration. Both event types
consisted of a single pitch assigned at the time of gener-
ation. These pitch assignments are determined by an ac-
tive “global” pitch class, constraining all instrumental parts
to a pre-defined harmonic space, specifically the octatonic
(WH) scale and the whole-tone scale.

Durational notes had an additional property when com-
prised of collections of short notes. These staccato notes
were to be articulated as fast as possible at the prescribed
dynamic. The resulting effect is a slightly asynchronous
timing for the events resulting from the mechanical nature
of the action and the limitations of the human body. This
led to subtle emergent variation on the overlapping pat-
terns of coexistent events, which was further amplified by
the use of different playing techniques.

2.2 Technique

For each player part, divided by instrument sections, the
events were assigned articulation techniques idiomatic to
the instruments. Because the orchestra was comprised of
student players, I limited the techniques to those that they
would feel comfortable and confident performing (i.e., not
extended). A string instrument could perform events as
one of: arco, pizzicato, col legno tratto, col legno battuto,
staccato, or tremolo; while winds would more uniformly
play events legato.

These techniques would be assigned to each event as that
event was generated and could apply to different event types
in different ways. For example, col legno battuto for a sin-
gular event would be realized as a single strike of the bow,
while the durational event using col legno battuto would be
realized as multiple strikes of the bow over the course of
the specified time duration and articulated as fast as possi-
ble.

2.3 Dynamics

In the case of singular events, a single discrete dynamic is
generated (as there is only one short note played). Dura-
tional events, however, are assigned continuous dynamics
that vary over the time duration of its articulation. Whether
the durational event is a sustained note or a collection of
short notes, these are contained within a the continuous
dynamic envelope that makes each moment of that event
vary in volume, intensity, and timbral quality.

Dynamic envelopes for these durational events were based
on the Attack, Decay, Sustain, and Release (ADSR) en-
velopes of electronic sound synthesis. However, abstracted
from the synthesis function, each phase of the envelope can
increase or decrease an Attack phase of an envelope need
not start at zero and can decrease before encountering the
beginning of the Decay phase. The one exception to this
freedom is the Release phase, which will always approach
zero at the end of its duration.

These envelopes are applied to the durational events to
vary the dynamics at any given moment between dal niente
(when possible on the instrument) and fff (available, but
seldom reached). Since dynamic envelope is given to each
durational event, each section of the orchestra is completely
decoupled from the others with respect to crescendi or de-
screscendi. This allows the ebbing and flowing of different
timbres over and under each other in graceful coordination
(or, in reality, lack thereof).

2.4 Notational Framework

David Kim-Boyle has noted that “computer-generated scores,
particularly those that employ real-time animation, create
a heightened sense of anticipation amongst performers, es-
pecially given that performance directive can change from
moment to moment” [4]. Similarly, Pedro Rebelo notes
that there is a delicate balance in animated notations be-
tween representing gestures too literally and too abstractly
[5]. Given these two considerations and the goals of the
piece, I believed that it was important to render the nota-
tion in a form that was reasonably approachable by any of
the performers. Like the use of idiomatic over extended
techniques, I wanted to present the notation for my piece
which functionally achieved the specific timings and re-
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Figure 1. Reduction of concert score.

sults that I desired while taking the form of notation that
the student players would feel confident reading and per-
forming from. This led to an extension of conventional
notation with meaningfully animated gesture-figures. As
seen in Fig. 1, on the left side of the score, notes for each
instrument’s next or current event were displayed on staves
with accidentals. To the right, the articulation for each in-
strument’s gestures would slide from right to left down a
pipeline.

Using the “playhead” style indicator described by Hope
and Vickery, the articulation point occurs when a gesture
crosses a red line with a downward facing arrow [6] (See
Fig. 3). For singular events, the dynamic of the articulation
is featured as a small circle that is vertically bisected by a
black line (See Fig. 4). The performers were coached to re-
gard the center of this circle both as the “dynamic value” of
the note and as the point of attack as it passed through the
playhead indicator. Thus, as the circle passes the playhead
a note at the pitch specified on the staff is articulated with
the specified technique (described below) at the dynamic
corresponding to the height of the circle’s center point. For
durational events, the dynamic is read as the height of the
top of the envelope at the point where it is currently inter-
secting the playhead. In either case, the vertical range of
the envelope pipeline is listed on the score as dal niente at
the bottom and fff at the top. Most instruments were ex-
pected to perform dal niente as the quietest dynamic they
could possibly play.

Since all durational events approach dal niente as they

Figure 2. Playhead notational indicator.

Figure 3. Termination of durational event.

conclude, the final moment of these types of events was
initially very ambiguous. Because of the specificity that I
was seeking with the score, I added a vertical line to clearly
demarcate the termination point of these envelopes. To dis-
tinguish the function of this line from the line that is con-
nected to singular events, the termination point featured
an upward-pointing triangle at its top that is clearly distin-
guishable from the circle (of the singular event). Similar
to the singular event, the performers were coached to in-
terpret the top-most point of the triangle as the point of
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Figure 4. Singular Event.

Figure 5. Durational event envelope.

contact as it passes the playhead. This helped to cue events
such as that pictured in the Fig. 3, where a part stays at dal
niente for a long period of time (seemingly absent).

Initially, the technique was placed above the notes on
the stave, as would be expected on a more traditional pa-
per score. However, rehearsals demonstrated that much
more consistent attention was required for the dynamic en-
velopes, and the techniques were more effectively executed
when they were rendered with the envelope to which they
referred. This resulted in envelopes that are rendered with
their respective technique also moving down the pipeline
directly above their leading edge.

3. RASPBERRY PI AS NOTATION RENDERING
CLIENT

The most critical point in understanding the notation ren-
dering system is the distinction that the notation itself is a
front-facing, or front end notational representation of events
generated within a simulation system, or back end. To un-
derstand how the client renders these events, I will first de-
scribe how the simulation system generates events within
Accretion. At a macro-level, the piece is organized around
clusters of events with particular attention to densities of
players, the types of events they are performing (and in
what distribution the types of events appear amongst these
active players), and the dynamic levels of these events.
Within these events, or clusters, the collection of events
are generated much like random grains are spawned within
granular synthesis clouds. Fig. 6 shows a C struct called
automationData that holds the distribution parameters of
the event generation. As the piece progresses, these distri-
bution parameters are updated to vary the density, number

Figure 6. “automationData” struct.

of active players, the probability of each instrument family
generating events, and the probability of which event types
will be active at any given point.

Following from the notion that the score is a front-facing
representation of the system’s event generation, the net-
worked RPi scores are simply the interface elements of the
simulation without the simulation backend running locally
on the devices. Instead, the RPi’s listen for OSC mes-
sages that encapsulate the parameters of events as they are
generated. At the moment when an event is generated, its
parameters are packaged as this OSC message and broad-
cast to the clients via a LAN connection. The address of
these messages takes the format “\number of RPi device\
number of part” and these address numbers are hardcoded
locally. These messages take different forms depending
on the type of event they represent, so each OSC message
starts with an identifier of which event type it refers to, 0
for singular events and 1 for durational events. When the
messages represent a singular event, the rest of the mes-
sage’s arguments includes, in order: an integer midi pitch
value, an integer delay in milliseconds from the start of the
cluster, an enumerated integer value for the dynamic level,
an enumerated integer value for the instrument family (to
identify the technique behavior), and an enumerated inte-
ger value for the technique type (Winds only use legato, so
0 is used as a placeholder).

When a durational event is created, the OSC message
must describe the parameters of the ADSR envelope. The
arguments that appear after the durational events first iden-
tifier argument are as follows: an integer midi pitch value,
an integer delay in milliseconds from the start of the clus-
ter, an integer value for Attack time in milliseconds, an
enumerated integer value for initial Attack dynamic, an
enumerated integer value for the final Attack dynamic, an
integer value for Decay time in milliseconds, an enumer-
ated integer value for the final Decay dynamic, an integer
Sustain time in milliseconds, an enumerated integer value
for the final Sustain dynamic, an integer value for Release
time in milliseconds, an enumerated integer value for in-
strument family, and an enumerated integer value for tech-
nique type. The instrument identifier and technique type
behave as described for the singular events.
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Figure 7. Score rendering on linked Server (laptop, left) and
Client (large monitor, right) applications.

Fortunately, openFrameworks is becoming increasingly
well-supported for the Raspberry Pi. The code that ren-
dered the notation could be written initially on an Apple
OS X computer and redeployed later by recompiling the
application for ARM devices (RPi). Minor performance
optimizations were then be implemented to assure smooth
performance on the different architectures. One such im-
provement was using a time-based tick system for pro-
gressing the system. This allowed for slight fluctuations
in the framerate of the rendering system while maintaining
the temporal specificity necessary for the coordination of
events across multiple RPi’s.

The HDMI support that is natively included with the RPi
allows easy connection to most monitors or projectors on
hand. In the case of Accretion, I used four 32 inch video
monitors. Each of the RPi devices are small enough that
they could be located on stage with the monitors display-
ing the rendered material and supplied only with power
and ethernet cables. Thus, each monitor worked as one
client in a vaguely server-client relationship with the sim-
ulation. Because the RPi works just like most other Unix
systems, the rendering client on each device could be acti-
vated using SSL from the simulation machine off-stage at
the beginning of the performance. Once the performance
was over, each device was sent kill message also using the
SSL connection, allowing a quick strike from the stage.

4. CONCLUSION & FUTURE WORK

The first major benefit that has emerged since complet-
ing Accretion is the portability of the score. These inex-
pensive RPi devices are small enough that they can eas-
ily be shipped to new ensembles, plugged in, and ready
for rehearsal or performance in a relatively short amount
of time. By supplying the devices themselves, instead of
the application or source files for compilation, this setup

Figure 8. Stage setup in the Concert Hall at Rensselaer Polytech-
nic Institute’s Experimental Media and Performing Arts Center.
Monitors 2 (middle), 3 (right), and 4 (left) are visible.

has incidentally avoided the potential headaches stemming
from incompatible versioning of libraries or system archi-
tectures.

Furthermore, the RPi features a number of standard GPIO
ports that allow a variety of sensors to be attached. Each
Raspberry Pi client could simultaneously collect sensor data,
communicate that data back to the server system via OSC,
and create responsive feedback loops for interactive gen-
erative music systems with human performers. Though
Accretion was not interactive or responsive to outside el-
ements in the performance, this is fertile ground of future
work and significant precedent exists for adaptive realtime
scores [Nick Didkovsky’s Zero Waste, Harris Wulfson’s
LiveScore system [7], Paul Turowski’s Hyperions, Jason
Freeman’s LOLC system [2]].

Likewise, the devices are easily extended with other micro-
controller hardware, such as Arduino boards. By attaching
external Arduino devices to the device, it could be pos-
sible to do sophisticated distributions of sensor and data
processing in a highly networked setting.

There is also flexibility in the spatially-distributed net-
working potential on these devices, enabling work reminis-
cent of Arthur Clay’s China-Gates or Going Public. RPi’s
are equipped out of the box with ethernet capabilities, and
are extendable with usb wifi adapters, a tremendous advan-
tage in distributed or spatialized performance situations.
For instance, it could be possible to synchronize devices in
remote parts of a building via a network without any sig-
nificant demand to setup or infrastructure.

All of these considerations, however, require extensions
to hardware, software, notational practices, or all of the
above. This seems to be the nature of much of the promi-
nent practices in AMN already, though. Each composi-
tion’s needs can be contextually defined to the extent that
entirely new notational schemata might be created for indi-
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vidual pieces. Indeed, the system I designed was motivated
by the need to realize the compositional ideas that formed
Accretion. However, I see many potentials for generalizing
the tool along several of the trajectories outlined above to
further enable the compositional ideas I am interested in.

The main addition that I see for the system is inspired
by another common usage of the RPi: the networked me-
dia browser. Common media browser applications include
KODI (formerly XBMC). In the case of networked scores,
this type of score access would require the development
and implementation of configuration flat-files to aid in the
networking functionality. The configuration file schema
would theoretically allow scores to specify their role in the
network at runtime (such as the particular instruments they
display parts for, in the context of Accretion for example),
or support preset values that can be implemented at device
startup.

Similar benefits are represented by the ScorePlayer app,
developed by the Decibel Ensemble. This implementation
simply provides an alternative platform that enables a more
diverse configurability and extended low-level control over
notational structures, but at the expense of a less widely
distributed device (relative to iOS devices and their osten-
sible ubiquity). However, as stated above, the packaging
of scores on a standalone, pre-configured device, but re-
quiring little to no setup by performers, may increase the
potential for wider distribution.
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ABSTRACT 

Single Interface for Music Score Searching and Analysis 

(SIMSSA) project seeks to design tools and techniques 

for searching and analyzing digitized music scores. 

Specifically, we seek to provide researchers, musicians, 

and others to access the contents and metadata of a large 

number of scores in a searchable, digital format. In this 

project, we are developing prototypes for processing and 

accessing the scores by consulting closely music re-

searchers, musicians, and librarians. 

1. INTRODUCTION 

While a growing number of digitized images of music 

scores are being made available on-line to a global audi-

ence, these digital images are only the beginning of true 

accessibility since the musical content of these images 

cannot be searched by computer. The goal of the Single 

Interface for Music Score Searching and Analysis 

(SIMSSA) project is to teach computers to recognize the 

musical symbols in these images and assemble the data 

on a single website, making it a comprehensive search 

and analysis system for online musical scores. SIMSSA 

is creating an infrastructure for processing music docu-

ments, transforming vast music collections into symbolic 

representations that can be searched, studied, analyzed, 

and performed anywhere in the world. 

SIMSSA is made up of two research axes. The first 

axis, Content, is developing large-scale optical music 

recognition (OMR) systems for digital images to trans-

forming them into searchable symbolic notation. The 

second axis, Analysis, is developing tools and techniques 

for large-scale search and analysis. We have assembled a 

diverse team of researchers and partners to accomplish 

this mission: music scholars, composers, and performers 

will ensure that we build tools to address real-world 

problems, librarians will provide expertise in collection 

management, metadata, and information-seeking beha-

viour, and music technologists will develop OMR sys-

tems, accessible web-based interfaces, and search and 

analysis software. Partner institutions including muse-

ums, national and research libraries, and universities will 

provide both digital images and expertise. Central to 

SIMSSA is the use of collaborative computing, which has 

been shown to reduce costs and increase accuracy. Musi-

cians, students, and scholars from around the world will 

be provided with tools to correct and improve the results 

of the recognition process. They will correct the OMR 

output for music sources they care about, resulting in 

searchable music for their own work as well as for other 

musicians. The SIMSSA network will be a global net-

work of digital music libraries and participant-users: 

anyone with a web browser will be able to search through 

vast amounts of music from anywhere in the world. 

2. OBJECTIVES 

Our objective is to develop a new approach to building 

globally-accessible digital music scores with a public 

online digital document analysis and retrieval system. 

Using OMR technology, we are working with partner 

institutions to automatically transcribe the contents of 

their large digital collections, and allow users to search 

music notation in millions of music scores.  

The searchable symbolic content will make it possible 

to easily compare, analyze, study, arrange, and transpose 

musical material in new ways. Our tools will provide new 

kinds of access and exposure to the collections of our 

partner institutions, from document viewing technology 

to search engines. New access to large amounts of music 

and new tools will provide important fundamental mate-

rials for future scholarship, creation, and performance. 

The complexity and variety of musical styles and music 

notations will lead to important advances in information 

retrieval and digital document analysis with multiple uses 

beyond music. As the first project of its kind, we hope 
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that SIMSSA will establish common standards and best 

practices for these types of music information retrieval 

and serve as a baseline for future work in this field. 

3. BACKGROUND  

OMR research began in the late 1960s and has seen 

limited but continuous interest with several commercial 

software packages available (e.g., SmartScore and 

SharpEye). Development of this technology has been 

slow, and most of the research on OMR has concentrated 

on Common Western Notation, the most widely used 

music notation system today (for a recent review, 

see [1]). In the development stage of this project, we have 

created a site for the Liber usualis 

(http://liber.simssa.ca), to experiment with 

the methods and procedures of performing OMR on 

entire books containing older music notation. The website 

allows a user to search a digitized edition of this book 

using pitch names, neume names, and OCR-transcribed 

text [2] (Figure 1). Our experience with the Liber project 

has reinforced the need for a robust and efficient work-

flow system for OMR. 

 

 

Figure 1. Search the Liber usualis website 

(http://liber.simssa.ca) with the Mary had a little lamb 

tune search. 

4. THEORETICAL FRAMEWORK 

The SIMSSA project is developing a new cloud-based 

OMR system that introduces a completely new paradigm 

for this class of software. Typically, OMR software is 

installed and operated on a single computer or work-

station. Advanced techniques used to perform image 

restoration and automatic music transcription, however, 

are computationally intensive, sometimes requiring hours 

or even days to run on personal computers. Instead, we 

are developing systems where computationally intensive 

procedures can be distributed across many powerful 

server machines attached to the Internet to perform pro-

cessing in parallel, meaning any computer or mobile 

device with a modern web browser and access to the 

Internet may act as a document recognition station, of-

floading the computationally-intensive recognition tasks 

to large clusters of computers in data centers. We see this 

as our most significant technological contribution: these 

techniques, known as distributed computing, are currently 

being explored in text-recognition research but have not 

yet been explored for music recognition systems. 

There is a successful precedent for projects of this 

scope and scale. The IMPACT project [3] was a project 

funded by the European Union (€15.5 million, 2008–

2012) that focused on digitization, transcription, and 

policy development for historical text documents. This 

project brought together national and specialized librar-

ies, archives, universities, and corporate interests to 

advance the state of the art in automatic text document 

transcription, explicitly for the purposes of preserving 

and providing access to unique or rare historical docu-

ments. They have published significant advances in 

historical text recognition, tool development, policies, 

and best practices [4], [7].  

At the core of the IMPACT project was a networked 

and distributed document recognition suite, providing a 

common document recognition platform for all their 

partners across Europe. As the computer vision and 

software engineering teams developed new tools and 

algorithms to improve recognition, these were made 

available immediately to all partners simply by updating 

the online suite of tools. All partners could then supply 

realtime feedback and evaluation on these updates, com-

paring them to previous techniques “in the field” and 

reporting their findings. The development teams then 

incorporated the feedback into further developments and 

refinements. This project has become self-sustaining and 

is now known as the IMPACT Centre of Competence, a 

not-for-profit organization that continues to build the 

technologies and best practices of the formally funded 

project. This represents a model that we hope to repro-

duce in the domain of music. 

5. METHODOLOGY 

5.1 Content and Analysis Axis 

We are building a robust infrastructure with workflow 

management and document recognition systems, crowd-
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correction mechanisms, networked databases, and  tools 

for analyzing, searching, retrieving, and data-mining 

symbolic music notation. Responsibility for developing 

these tools within the project is shared between the Con-

tent and Analysis axes.  

The Content axis is divided into three sub-axes: Recog-

nition, Discovery, and Workflow. The Recognition sub-

axis is responsible for developing the underlying technol-

ogies in machine learning and computer vision. The 

Discovery sub-axis is responsible for large-scale web 

crawling, finding, and identifying images of books that 

contain musical content. Finally, the Workflow sub-axis 

is responsible for developing user-friendly web-based 

tools that harness the technologies developed by the other 

two sub-axes. 

The Analysis axis is divided into two sub-axes: Search 

and Retrieval, and Usability. Searching music is complex 

since, unlike text, it is not simply a string of characters: 

there are pitches, rhythms, text, multiple voices sounding 

simultaneously, chords, and changing instrumentation. 

The Search and Retrieval axis is responsible for develop-

ing ways of mining the notation data generated by the 

Content axis in all its complexity, building on the work 

done in the ELVIS Digging into Data Challenge project 

(http://elvisproject.ca). This axis is also developing 

techniques for computer-aided analysis of musical scores. 

The Usability sub-axis is responsible for studying retriev-

al systems and user behavior within the context of a 

symbolic music retrieval system, identifying potential 

areas where the tools may be improved to suit real-world 

retrieval needs.  

5.2 Content: Discovery sub-axis 

Mass digitization projects have been indiscriminately 

digitizing entire libraries’ worth of documents—both text 

and musical scores—and making them available on 

individual libraries’ websites. The Discovery sub-axis is 

developing a system that will automatically crawl mil-

lions of page images looking for digitized books with 

musical examples [8]. When it finds a document contain-

ing printed music it will use the OMR software to tran-

scribe and index the music content for these documents. 

5.3 Content: Recognition sub-axis 

One of the major tasks of the Recognition sub-axis is the 

integration of two desktop open-source OMR software 

platforms: Gamera, a document analysis toolkit [9], and 

Aruspix, an advanced OMR system developed by Laurent 

Pugin [10]. These systems are unique for their ability to 

“learn” from their mistakes by using human corrections 

of misrecognized symbols to improve their recognition 

abilities over time. We have shown this to be cost-

effective in digitization and recognition workflows [11]. 

The next logical step is to bring these systems to our 

cloud-based OMR platform. This will allow us to distrib-

ute the correction tasks to potentially thousands of users 

around the globe, thereby providing the means to collect 

large amounts of human correction data. This crowd-

sourced adaptive recognition system will be the first of its 

kind [12]. 

5.4 Content: Workflow sub-axis 

The Workflow sub-axis is primarily responsible for 

developing Rodan, the core platform for managing cloud-

based recognition. Rodan is an automatic document 

recognition workflow platform. Its primary function is to 

allow users to build custom document recognition work-

flows containing document recognition tasks, such as, 

image pre-processing and symbol recognition (Figure 2). 

Rodan is capable of integrating many different recogni-

tion systems, such as Aruspix and Gamera, with other 

systems (e.g., integrating text recognition tasks for per-

forming automatic lyric extraction) (see Figure 3). Once a 

workflow has been created, Rodan manages digital doc-

ument images’ progression through these tasks. Users 

interact with their workflows through a web application, 

allowing them to manage their document recognition on 

any Internet-connected device, but all tasks are actually 

run on the server-side. Storage and processing capabili-

ties can be expanded dynamically, and new tasks can be 

seamlessly integrated into the system with no need for the 

users to update their hardware or software. 

Moreover, as a web-based system, Rodan can incorpo-

rate many different methods for distributed correction or 

“crowd-sourcing” to provide human-assisted quality 

control and recognition feedback for training and improv-

ing recognition accuracy. This follows a similar model to 

that proposed by the IMPACT project where distributed 

proof-readers provide feedback. These proof-readers 

correct any misrecognized symbols, and their corrections 

will then be fed back into the recognition system, thereby 

improving the recognition for subsequent pages and 

documents. This type of crowd-sourced correction system 

is employed in many text-recognition projects [13], [14], 

but there are no such systems in development for musical 

applications. The success of crowd-sourcing as a viable 

means of collecting correction and verification data has 

been demonstrated by a number of projects, most notably 

the Australian newspaper (TROVE) [15], Zooniverse 

[16] and reCAPTCHA [17]. Along with developing the 

technical mechanisms for crowd-sourced musical correc-

tions, the Workflow team is also working with the Usa-

bility sub-axis on creating new ways to entice users to 

participate. Some ways of doing this would be to create a 

game that rewards users with points or community credi-

bility in exchange for performing work [18], or reframing 
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musical tasks as simple non-musical tasks (e.g., shape or 

colour recognition) so that they become solvable by an 

untrained audience. By diversifying the number of ap-

proaches to collecting crowd-sourced correction data, we 

expect to appeal to a wide number of communities, from 

specialists to the general public. 

Later in this project, we will experiment with optical 

character recognition (OCR) for print and manuscript 

sources of music. By this point in the project we will 

have collected a large number of written texts with hu-

man-transcribed ground-truth data. We will use this to 

train machine-learning algorithms to automatically rec-

ognize the various text scripts present in these sources. 

Our goal here is to automatically align text with the 

music above it, an important step that represents a signif-

icant challenge, and an avenue of research that has never 

before been explored. This will allow users to perform 

searches for recurring patterns that include music and text 

— to identify whether, for example, a particular musical 

idiom is frequently used when the text refers to “God” or 

“love” — a type of search that is not possible with cur-

rent systems. When the text-alignment task is complete, 

the Recognition team will work with the Analysis team to 

design and implement a search interface so that the users 

can search music and text simultaneously. 

Many musical documents, especially those that are 

hundreds of years old, pose difficulties for computer 

recognition due to faded inks, bleed-through, water, or 

insect damage. Each of these problems is a potential 

source of transcription errors. The Recognition team is 

working on integrating the latest document-imaging 

enhancement technologies, such as adaptive binarization, 

bleed-through reduction, colour adjustment, and distor-

tion analysis and correction. 

 

It is also important to have a robust modern file format 

to store all of the symbolic data representations of these 

musical documents to meet our needs. Based on previous 

work we have chosen the MEI (Music Encoding Initia-

tive) format [19]. As part of the SIMSSA project we will 

be forming a workgroup to enhance MEI support for 

digital encoding of early notation systems for chant and 

polyphonic music. 

Figure 2. Rodan client interface. 
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To evaluate Rodan and the accuracy of our OMR sys-

tems, we have selected several manuscripts and early 

printed scores that will be processed in order of increas-

ing difficulty for our tools. We have started with a selec-

tion of Renaissance prints and late chant manuscripts, 

some of which are already available online (Figure 4). 

Figure 4 : Salzinnes manuscript website, 

http://cantus.simssa.ca. 

As we proceed, we will evaluate the strengths and 

weaknesses of the workflow system, constantly adjusting 

our methods before moving on to the next source. For 

each document, we will create a human-created transcrip-

tion of the music notation. This data will be the “ground 

truth” against which we will evaluate the performance 

and accuracy of the OMR system (and later for the OCR 

system). This will allow us to quantify any improvements 

we make in our OMR systems as we develop new recog-

nition methods. By making incremental modifications 

using different types of sources, we hope to build a robust 

system capable of processing a wide range of musical 

documents. 

5.5 Analysis: Search and Retrieval sub-axis 

The Search and Retrieval component of the Analysis axis 

will involve music historians and music theorists to 

investigate how computerized searches of large collec-

tions of digital music can fundamentally change music 

history, analysis, and performance. They will develop 

new techniques for searching and analyzing digitized 

symbolic music. Searching music poses special chal-

lenges. A search interface must be able to search for 

strings of pitches, rhythms, or pitches and rhythms com-

bined, search polyphonic music for multiple simultaneous 

melodies or chords, and search vocal music for both text 

and music. Searching and retrieving are only the begin-

ning, however; members of the Analysis axis are devel-

oping software for many different types of computerized 

analysis of large amounts of music. This will allow 

scholars to describe style change over time, discovering 

which features of style stay the same and which change, 

or to describe what makes one composer’s music unlike 

that of his or her contemporaries. Musicians and students 

will be able to find all the different ways composers have 

Figure 3 : Rodan’s Gamera symbol classifier interface. The symbols are from a 10th-century St. Gallen music manuscript. 
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harmonized a specific melody from the Middle Ages to 

the present. Representation of search and analysis find-

ings will be another focus of this axis, investigating new 

methods for searching and retrieving millions of digitized 

music documents. 

Recent projects such as the Josquin Research Project 

(http://jrp.ccarh.org), Music Ngram Viewer 

(http://www. peachnote.com) [20], and ELVIS 

project (now part of the SIMSSA project) are already 

searching millions of notes. All these projects, however, 

have mostly depended on centralized, labour-intensive, 

manual processes to transcribe the sources into symbolic 

notation, append metadata to the resulting files, and 

arrange them in structured databases. SIMSSA will 

greatly streamline this process through automation and 

distributed labour, and enable the sophisticated automatic 

music analysis of very large corpora begun through 

ELVIS. 

5.6 Analysis: Usability sub-axis 

Librarians and information scientists are leading the 

Usability sub-axis. They are continually review the 

usability of our tools: Rodan, search interfaces, crowd-

sourcing interfaces, and analysis and visualization inter-

faces, considering the needs and skillsets of many differ-

ent types of users, from senior music scholars with little 

technical expertise, to computer-savvy amateur musi-

cians, to choral directors and guitarists searching for 

sheet music. 

6. CONCLUSIONS 

The most important outcome of this project is to allow 

users—scholars, performers, composers, and the general 

public—to search and discover music held in archives 

and libraries around the world. We expect that this will 

fundamentally transform the study of music and allow a 

global audience of musicians and artists to discover  

previously unknown or overlooked pieces for perfor-

mance, making undiscovered repertoires that extend 

beyond the classics available to the general public. We 

also expect the public availability of large amounts of 

musical data to lead to significant advances in the field of 

music theory and the birth of the long-awaited field of 

computational musicology. Lastly, we expect that the free 

and open-source tools we are developing will help lead 

significant advances in the following areas, all of which 

are either completely new or novel applications of exist-

ing technologies: 

 Public, web-based tools for historical image restora-

tion; 

 Public, web-based distributed (“cloud”) processing 

tools for OMR and OCR; 

 A large database of automatically transcribed music; 

 Prototypes for a web-based editor for making correc-

tions or comparative editions of digital sources;  

 A music exploration interface allowing quick and 

efficient content-based search and retrieval across a 

large-scale notation database; and 

 Advanced public, web-based music analytical tools. 
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ABSTRACT

Browsing soundscapes and sound databases generally re-
lies on signal waveform representations, or on more or less
informative textual metadata. The TM-chart representation
is an efficient alternative designed to preview and compare
soundscapes. However, its use is constrained and limited
by the need for human annotation. In this paper, we de-
scribe a new approach to compute charts from sounds, that
we call SamoCharts. SamoCharts are inspired by TM-
charts, but can be computed without a human annotation.
We present two methods for SamoChart computation. The
first one is based on a segmentation of the signal from a set
of predefined sound events. The second one is based on the
confidence score of the detection algorithms. SamoCharts
provide a compact and efficient representation of sounds
and soundscapes, which can be used in different kinds of
applications. We describe two application cases based on
field recording corpora.

1. INTRODUCTION

Compact graphical representations of sounds facilitate their
characterization. Indeed, images provide instantaneous vi-
sual feedback while listening sounds is constrained by their
temporal dimension. As a trivial example, record cov-
ers allow the user to quickly identify an item in a collec-
tion. Such compact representation is an efficient means for
sound identification, classification and selection.

In the case of online databases, the choice of a sound file
in a corpus can be assimilated to the action of browsing. As
proposed by Hjørland, “Browsing is a quick examination
of the relevance of a number of objects which may or may
not lead to a closer examination or acquisition/selection of
(some of) these objects” [1].

Numerous websites propose free or charged sound file
downloads. These files generally contain sound effects,

Copyright: c©2015 Patrice Guyot et al. This is an open-access

article distributed under the terms of the Creative Commons

Attribution Licence 3.0 Unported, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

isolated sound events, or field recordings. Applications
are numerous, for instance for music, movie soundtracks,
video games and software production. In the context of
the CIESS project 1 , our work focuses on an urban sound
database used for experimental psychology research.

Most of the times, on-line access to sound files and data-
bases is based on tags and textual metadata. These meta-
data are generally composed of a few words description of
the recording, to which may be added the name of its au-
thor, a picture of the waveform, and other technical proper-
ties. They inform about the sound sources, recording con-
ditions or abstract concepts related to the sound contents
(for example “Halloween”).

Natural sonic environments, also called field recordings
or soundscapes [2], are typically composed of multiples
sound sources. Such audio files are longer than isolated
sound events, usually lasting more than one minute. There-
fore, short textual descriptions are very hard to produce,
which makes it difficult to browse and select sounds in a
corpus.

The analysis and characterization of urban sound events
has been reported in different studies. Notably, they can be
merged in identified categories [3], which leads to a tax-
onomical categorization of environmental sounds (see [4]
for an exhaustive review). Outdoor recordings are often
composed of the same kinds of sound sources, for instance
birds, human voices, vehicles, footstep, alarm, etc. There-
fore, the differences between two urban soundscapes (for
example, a park and a street) mostly concern the time of
presence and the intensity of such identified sources. As a
consequence, browsing field recordings based on the known
characteristics of a set of predetermined sound events can
be an effective solution for their description.

Music is also made of repeated sound events. In instru-
mental music, these events can be the notes, chords, clus-
ters, themes and melodies played by the performers. When
electroacoustic effects or tape music parts come into play,
they can be of a more abstract nature. In the case of musique
concrete, the notion of “sound object” (which in practice is
generally a real sound recording) has its full meaning and

1 http://www.irit.fr/recherches/SAMOVA/
pageciess.html
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a central position in the music formalization itself [5]. As
long as events are identified though, we can assume that
the previous soundscape-oriented considerations hold for
musical audio files as well.

The TM-chart [6] is a tool recently developed to provide
compact soundscape representations starting from a set of
sound events. This representation constitutes a bridge be-
tween physical measures and categorization, including acous-
tic and semantic information. Nevertheless, the creation of
a TM-chart relies on manual annotation, which is a tedious
and time-consuming task. Hence, the use of TM-charts in
the context of big data sets or for online browsing applica-
tions seems unthinkable.

Besides sound visualization, automatic annotation of au-
dio recordings recently made significant progress. The gen-
eral public has recently witnessed the generalization of speech
recognition system. Significant results and efficient tools
have also been developed in the fields of Music Informa-
tion Retrieval (MIR) and Acoustic Event Detection (AED)
in environmental sounds [7], which leads us to reckon with
sustainable AED in the coming years.

In this paper, we propose a new paradigm for soundscape
representation and browsing based on the automatic iden-
tification of predefined sounds events. We present a new
approach to create compact representations of sounds and
soundscapes that we call SamoCharts. Inspired by TM-
Charts and recent AED techniques, these representations
can be efficiently applied for browsing sound databases. In
the next section we present a state of the art of online sound
representations. The TM-chart tool is then described in
Section 3, and Section 4 proposes a quick review of Audio
Event Detection algorithms. Then we present in Section 5
the process of SamoCharts creation, and some applications
with field recordings in Section 6.

2. SOUND REPRESENTATION

2.1 Temporal Representations

From the acoustic point of view, the simplest and predom-
inant representation of a sound is the temporal waveform,
which describes the evolution of sound energy over time.
Another widely used tool in sound analysis and represen-
tation is the spectrogram, which shows more precisely the
evolution of the amplitude of frequencies over time. How-
ever, spectrograms remain little used by the general public.

While music notation for instrumental music has focused
on the traditional score representation, the contemporary
and electro-acoustic music communities have introduced
alternative symbolic representation tools for sounds such
as the Acousmograph [8], and the use of multimodal infor-
mation has allowed developing novel user interfaces [9].

All these temporal representations are more or less in-
formative depending on the evolution of the sound upon
the considered duration. In particular, in the case of field
recordings, they are often barely informative.

2.2 Browsing Sound Databases

On a majority of specialized websites, browsing sounds is
based on textual metadata. For instance, freeSFX 2 clas-
sifies the sounds by categories and subcategories, such as
public places and town/city ambience. In a given subcate-
gory, each sound is only described with a few words text.
Therefore, listening is still required to select a particular
recording.

Other websites, such as the Freesound project, 3 add a
waveform display to the sound description. In the case of
short sound events, this waveform can be very informative.
On this website it is colored according to the spectral cen-
troid of the sound, which adds some spectral information
to the image. However, this mapping is not precisely de-
scribed, and remains more aesthetic than useful.

The possibility of browsing sounds with audio thumbnail-
ing has been discussed in [10]. In this study, the authors
present a method for searching structural redundancy like
the chorus in popular music. However, to our knowledge,
this kind of representation has not been used in online sys-
tems so far.

More specific user needs have been recently observed
through the DIADEMS project 4 in the context of audio
archives indexing. Through the online platform Telemeta 5 ,
this project allows ethnomusicologists to visualize specific
acoustic information besides waveform and recording meta-
data, such as audio descriptors and semantic labels. This
information aims at supporting the exploration of a corpus
as well as the analysis of the recording. This website il-
lustrates how automatic annotation can help to index and
organize audio files. Improving its visualization could help
to assess the similarity of a set of songs, or to underline the
structural form of the singing turns by displaying homoge-
neous segments.

Nevertheless, texts and waveforms remain the most used
and widespread tools on websites. In the next sections,
we present novel alternative tools, that have been specially
designed for field recording representation.

2 http://www.freesfx.co.uk/
3 https://www.freesound.org/
4 http://www.irit.fr/recherches/SAMOVA/DIADEMS/
5 http://telemeta.org/
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3. TM-CHART

3.1 Overview

The Time-component Matrix Chart (abbreviated TM-chart)
was introduced by Kozo Hiramatsu and al. [6]. Based on a
<Sound Source × Sound level> representation, this chart
provides a simple visual illustration of a sonic environment
recording, highlighting the temporal and energetic pres-
ence of sound sources. Starting from a predetermined set
of sound events (e.g. vehicles, etc.), and after preliminary
annotation of the recording, the TM-chart displays percent-
ages of time of audibility and percentages of time of level
ranges for the different sound sources. They constitute ef-
fective tools to compare sonic environment (for instance
daytime versus nighttime recordings).

3.2 Method

Despite a growing bibliography [11, 12], the processing
steps involved in the creation of TM-charts as not been pre-
cisely explained. We describe in this part our understand-
ing of these steps and our approach to create a TM-chart.

3.2.1 Estimation of the Predominant Sound

TM-charts rely on a preliminary manual annotation, which
estimates the predominant sound source at each time. To
perform this task, the signal can be divided in short seg-
ments, for example segments of one second. For each
segment, the annotator indicates the predominant sound
source. This indication is a judgment that relies on both
the loudness and the number of occurrences of the sources.
An example of annotation can be seen on Figure 1.

Afterwards, each segment label is associated to a cate-
gory of sound event, which can be for instance one of car,
voice, birds, or miscellaneous.

Figure 1. Preliminary annotation of a sound recording for the creation
for the creation of a TM-chart.

3.2.2 Computation of the Energy Level

An automatic process is applied to compute the energy of
the signal and the mean energy of each segment (respec-
tively in blue and red curves on Figure 1). We assume that
the sound pressure level can be calculated from the record-
ing conditions with a calibrated dB meter.

In this process, we can notice that the sound level of a
segment is not exactly the sound level of its predominant
source. Indeed the sound level of an excerpt depends upon
the level of each sound sources, and not only the predom-
inant one. However, we assume that these two measures
are fairly correlated.

3.2.3 Creation of the TM-chart

We can now calculate the total duration in the recording (in
terms of predominance) and the main sound levels for each
category of sound. From this information, a TM-chart can
be created.

Figure 2 shows a TM-chart based on the example from
Figure 1. It represents, for each category of sound, the
percentage of time and energy in the soundscape. The ab-
scissa axis shows the percentage of predominance for each
source in the recording. For one source, the ordinate axis
shows the duration of its different sound levels. For exam-
ple, the car-horn is audibly dominant for over 5 % of time.
Over this duration, the sound level of this event exceeds 60
dB for over 80 % of time.

Figure 2. Example of a TM-chart.

3.2.4 Interpretation of the TM-chart

Charts like the one on Figure 2 permit quick interpreta-
tions of the nature of the sound events that compose a
soundscape. We could infer for instance that the sound-
scape has been recorded close to a little traffic road, with
distant conversations (low energy levels). From such inter-
pretation, one can clearly distinguish and compare sonic
environments recorded in different places [6].

The main issue in the TM-chart approach is the need
for manual annotation, a time-consuming operation which
cannot be applied to big data sets. Therefore, the use of
TM-charts seems currently restricted to specific scientific
research on soundscapes. In the next sections we will show
how recent researches and works on sound analysis can be
leveraged to overcome this drawback.

119



4. AUDIO EVENT DETECTION

Various methods have been proposed for the Audio Event
Detection (AED) from continuous audio sequences recorded
in real life. These methods can be divided in two cate-
gories.

The first category of methods aims at detecting a large
set of possible sound events in various contexts. For in-
stance, the detection of 61 types of sound, such as bus
door, footsteps or applause, has been reported in [7]. In
this work the author modeled each sound class by a Hidden
Markov Model (HMM) with 3 states, and Mel-Frequency
Cepstral Coefficients (MFCC) features. Evaluation cam-
paigns, such as CLEAR [13] or AASP [14], propose the
evaluation of various detection methods on a large set of
audio recordings from real life.

The second category of methods aims at detecting fewer
specific types of sound events. This approach privileges
accuracy over the number of sounds that can be detected.
It generally relies on a specific modeling of the “target
sounds” to detect, based on acoustic observations. For ex-
ample, some studies propose to detect gunshots [15] or wa-
ter sounds [16], or the presence of speech [17].

These different methods output a segmentation of the sig-
nal informed by predetermined sound events. They can
also provide further information that may be useful for
the representation, particularly in the cases where they are
not reliable enough. Indeed, the detection algorithms are
generally based on a confidence score, that allows to tune
the decisions. For instance, Hidden Markov Model, Gaus-
sian mixture models (GMM) or Support Vector Machine
(SVM), all rely on confidence or “likelihood” values. Since
temporal confidence values can be computed by each method
of detection, it is possible to output at each time the proba-
bility that a given sound event is present in the audio signal.

Based on these observations, we propose a new tool for
soundscape visualization, the SamoChart, which can rely
either on automatic sound event segmentation, or on confi-
dence scores by sound events.

5. SAMOCHART

The SamoChart provides a visualization sound recordings
close to that of a TM-chart. At the difference of a TM-
chart, it can be computed automatically from a segmenta-
tion or from temporal confidence values.

In comparison with TM-charts, the use of the automatic
method overcomes a costly human annotation and avoids
subjective decision-making.

5.1 Samochart based on Event Segmentation

5.1.1 Audio Event Segmentation

SamoCharts can be created from Audio Event Detection
annotations. This automatic annotation is an independent
process that can be performed following different approaches,
as mentioned in Section 4. We will suppose in the next part
that an automatic annotation has been computed from a set
of potential sound events (“targets”). For each target sound
event, this annotation provides time markers related to the
presence or absence of this sound in the overall record-
ing. In addition to the initial set of target sounds, we add a
sound unknown that corresponds to the segments that have
not been labeled by the algorithms.

5.1.2 Energy Computation

As in the TM-chart creation process, we compute the en-
ergy of the signal. However, if the recording conditions of
the audio signal are unknown, we cannot retrieve the sound
pressure level. In this case, we use the RMS energy of each
segment, following the equation:

RMS(w) = 20× log10

√√√√
N∑

i=0

w2(i) (1)

where w is an audio segment of N samples, and w(i) the
value of the ith sample.

5.1.3 SamoChart Creation

From the information of duration and energy, we are able
to create a SamoChart. Figure 3 shows an example of a
SamoChart based on event segmentation considering two
possible sound events.

Figure 3. SamoChart based on event segmentation.

Unlike TM-charts, we can notice from this method that
the total percentage of sound sources can be higher than
100% if the sources overlap.
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5.2 Samochart based on Confidence Values

Most Audio Event Detection algorithms actually provide
more information than the output segmentation. In the
following approach, we propose to compute SamoCharts
from the confidence scores of these algorithms.

We use for each target sound the temporal confidence val-
ues outputted by the method, which can be considered as
probabilities of presence (between 0 and 1). The curve on
Figure 4 shows the evolution of the confidence for the pres-
ence of a given sound event during the analyzed recording.
We use a threshold on this curve, to decide if the sound
event is considered detected or not. This threshold is fixed
depending on the detection method and on the target sound.
To obtain different confidence measures, we divide the up-
per threshold portion in different parts.

Figure 4. Confidence measures for a sound event.

With this approach, we infer the probability of presence
for each sound event according to a confidence score. Fig-
ure 5 shows the SamoChart associated to a unique sound
event. In this new chart, the sound level is replaced by the
confidence score.

Figure 5. SamoChart based on confidence value.

5.3 Implementation

We made a JavaScript implementation to create and dis-
play SamoCharts, which performs a fast and “on the fly”

computation of the SamoChart. The code is downloadable
from the SAMoVA web site 6 . It uses an object-oriented
paradigm to facilitate future development.

In order to facilitate browsing applications, we also chose
to modify the size of the chart according to the duration of
the corresponding sound excerpt. We use the equation 2 to
calculate the height h of the Samochart from a duration d

in seconds.

h =





1 if d < 1

2 if 1 ≤ d < 10

2× log10(d) if d ≥ 10

(2)

We also implemented a magnifying glass function that
provides a global view on the corpus with the possibility
of zooming in into a set of SamoCharts. Furthermore, the
user can hear each audio file by clinking on the plotted
charts.

6. APPLICATIONS

6.1 Comparison of soundscapes (CIESS project)

Through the CIESS project, we have recorded several ur-
ban soundscapes at different places and times. The sound
events of these recordings are globally the same, for in-
stance vehicle and footstep. However, their numbers of oc-
currences are very different according to the time and place
of recording. As an application case, we computed sev-
eral representations of two soundscapes. Figure 6 shows
the colored waveforms of these extracts as they could have
been displayed on the Freesound website.

Figure 6. Colored waveforms of two soundscapes.

As we can see, these waveforms do not show great differ-
ences between the two recordings.

We used AED algorithms to detect motor vehicle, foot-
step and car-horn sounds on these two example record-
ings [18]. Then, we computed SamoCharts based on the
confidence score of these algorithms (see Figure 7).

The SamoCharts of Figure 7 are obviously different. They
provide a semantic interpretation of the soundscapes, which
reveals important dissimilarities. For instance, the vehicles
are much more present in the first recording than in the
second one. Indeed, the first recording was recorded on an
important street, while the second one was recorded on a
pedestrian street.

6 http://www.irit.fr/recherches/SAMOVA/
pageciess.html
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Figure 7. SamoCharts of the two recordings of Figure 6, based on confi-
dence values.

6.2 Browsing a corpus from the UrbanSound project

If the differences between two soundscapes can easily be
seen by comparing two charts, the main interest of the
SamoChart is their computation on bigger sound databases.

UrbanSound dataset 7 has been created specifically for
soundscapes research. It provides a corpus of sounds that
are labeled with the start and end times of sound events
of ten classes: air conditioner, car horn, children playing,
dog bark, drilling, enginge idling, gun shot, jackhammer,
siren and street music. The SamoCharts created from these
annotations allow to figure out the sources of each file, as
well as their duration and their sound level. They give an
overview of this corpus. Figure 8 shows the SamoCharts
of nine files which all contain the source car horn. The
duration of these files range form 0.75 to 144 seconds.

Figure 8. Browsing recordings of the UrbanSound corpus.

6.3 SoundMaps

Other applications can be found from the iconic chart of
a soundscape. Soundmaps, for example, are digital ge-
ographical maps that put emphasis on the soundscape of
every specific location. Various projects of sound maps

7 https://serv.cusp.nyu.edu/projects/
urbansounddataset/

have been proposed in the last decade (see [19] for a re-
view). Their goals are various, from giving people a new
way to look at the world around, to preserving the sound-
scape of specific places. However, as in general with sound
databases, the way sounds are displayed on the map is usu-
ally not informative. The use of SamoCharts on soundmaps
can facilitate browsing and make the map more instructive.

6.4 Music Representations

If the process we described to make charts from sounds
was originally set up to display soundscapes, it could cer-
tainly be extended to other contexts. Indeed, Samocharts
give an instantaneous feedback on the material that com-
pose the sonic environment. Handled with the appropri-
ate sound categories, they could provide a new approach
to overview and analyze a set of musical pieces composed
with the same material.

For example, Samocharts could be used on a set of con-
crete music pieces. The charts could reveal the global uti-
lization of defined categories of sounds (such as bell or
birds songs). In the context of instrumental music analysis,
they could reflect the utilization of the different families of
instrument (e.g. brass, etc.), representing the duration and
musical nuances. Applied on a set of musical pieces or ex-
tracts, they could emphasize orchestration characteristics.

Figure 9 shows an analysis of the first melody (Theme A)
of Ravel’s Boléro, which is repeated nine times with dif-
ferent orchestrations. The SamoCharts on the figure dis-
play orchestration differences, as well as the rising of a
crescendo. The main chart (Theme A-whole) shows how
each family of instrument is used during the whole extract.

Figure 9. Analysis of the first melody of Ravel’s Bolérol (repetitions
number 1, 4 and 9, and global analysis). The horizontal axis corresponds
to the percentage of time where a family of instrument is present. This
percentage is divided by the number of instruments: the total reaches
100% only if all instruments play all the time. The vertical axis displays
the percentage of time an instrument is played in the different nuances.
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7. CONCLUSION AND FUTURE WORKS

In this paper, we presented a new approach to create charts
for sound visualization. This representation, that we name
SamoChart, is based on the TM-chart representation. Un-
like TM-charts, the computation of SamoCharts does not
rely on human annotation. SamoCharts can be created
from Audio Event Detection algorithms and computed on
big sound databases.

A first kind of SamoChart simply uses the automatic seg-
mentation of the signal from a set of predefined sound
sources. To prevent eventual inaccuracies in the segmen-
tation, we proposed a second approach based on the confi-
dence scores of the previous methods.

We tested the SamoCharts with two different sound data-
bases. In comparison with other representations, Samo-
Charts provide great facility of browsing. On the one hand,
they constitute a precise comparison tool for soundscapes.
On the other hand, they allow to figure out what kinds of
soundscapes compose a corpus.

We also assume that the wide availability of SamoCharts
would make them even more efficient for accustomed users.
In this regard, we could define a fixed set of color which
would correspond to each target sound.

The concepts behind TM-charts and Samocharts can fi-
nally be generalized to other kind of sonic environments,
for example with music analysis and browsing.
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ABSTRACT 

This paper discusses the SCORE data format, a graph-

ically oriented music representation developed in the 

early 1970’s, and how such a representation can be con-

verted into sequential descriptions of music notation. The 

graphical representation system for the SCORE editor is 

presented along with case studies for parsing and convert-

ing the data into other symbolic music formats such as 

Dox, Humdrum, MusicXML, MuseData, MEI, and MIDI 

using scorelib, an open-source code library for parsing 

SCORE data. Knowledge and understanding of the 

SCORE format is also useful for OMR (Optical Music 

Recognition) projects, as it can be used as an intermediate 

layer between raw image scans and higher-level digital 

music representation systems. 

1. INTRODUCTION 

The SCORE notation editor is the oldest music-

typesetting program in continual use.  It was created at 

Stanford University in the early 1970’s by Leland Smith 

and initially was developed on mainframe computers 

with output to pen plotters that was then photo-reduced 

for publication.  In the 1980’s SCORE was ported to IBM 

PCs running MS-DOS with output to Adobe PostScript, 

and later ported to Microsoft Windows.  Due to the pro-

gram’s long-term stability and excellent graphical output, 

many critical editions have been created over the years 

using SCORE, such as the complete works of Boulez, 

Verdi, Wagner, C.P.E. Bach, Josquin and Dufay. 

     Throughout its history the SCORE editor has used a 

simple and compact data format that allows forwards and 

backwards compatibility between different versions of 

the SCORE editor.  The music representation system is 

symbolic, but highly graphical in nature.  Each notational 

element is represented by a list of numbers that derive 

their meanings based on their positions in the list.  This 

format was adapted from the one used in Music V soft-

ware for computer-generated sound developed by Max 

Mathews in the late 1950’s at Bell Labs.  In both cases, 

the list of numbers serves as a set of parameters describ-

ing an object—either to generate a sound in Music V or 

to place a graphical element on the page in SCORE.  This 

organization of the data is also parsimonious, due largely 

to memory limitations of computers on which these sys-

tems were developed. 

Figure 1. SCORE data for bar 3 of Beethoven Op. 81a. 

Figure 1 illustrates music typeset in the SCORE editor 

along with data describing the third measure. Each line of 

numbers represents a particular graphical element, such 

as the circled first note of the third measure measure that 

is represented on the second line in the data excerpt. 

The first four numbers on each line have a consistent 

meaning across all notational items: 

P1:   Item type (note, rest, clef, barline, etc.). 

P2:   Item staff number on the page. 

P3:   Item horizontal position on the page. 

P4:   Item vertical position on the staff. 

Copyright: © 2015 Craig Stuart Sapp. This is an open-access article 

distributed under the terms of the Creative Commons Attribu-

tion License 3.0 Unported, which permits unrestricted use, 

distribution, and reproduction in any medium, provided the original 

author and source are credited. 
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Parameter one (P1) indicates the element type—in this 

example 1=note, 5=slur, 6=beam, and 14=barline.  The 

second number is the staff onto which the element is 

placed, with P2=1 for the bottom staff and P2=2 for the 

next higher staff on the page.  The third parameter is the 

horizontal position of the item on the page, typically a 

number from 0.0 representing the page’s left margin, to 

200.0 for the right margin.  In Figure 1, items are sorted 

by horizontal position (P3) from left to right on the page; 

however, SCORE items may occur with any ordering, 

which typically indicates drawing sequence (z-order) 

when printing the items.  P4 indicates the diatonic verti-

cal position on a staff, with positions 3, 5, 7, 9, and 11 

being the lines of a five-lined staff from bottom to top. 

     These first four numbers on a line give each item an 

explicit location on the page.  The horizontal position is 

an absolute value dependent on the printing area, while 

the vertical axis is a hierarchical system based on the staff 

to which an item belongs: an item’s vertical position is an 

offset from the staff’s position on the page, and the staff 

may have an additional offset from its default position on 

the page.
1
  

Figure 2. Parameter values and meanings for a note. 

The meaning of parameters greater than P4 depends on 

the type of graphical element being described.  Objects 

with left and right endpoints (beams, slurs, lines) will use 

P5 as the right vertical position and P6 as the right hori-

zontal position.  Figure 2 illustrates some of the higher 

parameter positions for a note.  In this example, P5 de-

scribes the stem and accidental display type for the note, 

with “10” in this case meaning the note has a stem point-

ing upwards and that there are no accidentals displayed in 

front of the note. P6 describes the notehead shape, with 0 

meaning the default shape of a solid black notehead.  P7 

indicates the musical duration of the note in terms of 

quarter notes, such as 0.5 representing an eighth-note.  P8 

                                                           
1
 For a detailed description of the layout axes, see pp. 7–10 of 

http://scorelib.sapp.org/doc/coordinates/StaffPo

sitions.pdf 

indicates the length of the stem with respect to the default 

height of an octave.  All other unspecified parameters 

after the last number in the list are implied to be zero.  

This means either a literal 0, or it may mean to use the 

default value for that parameter.  For this example the 

implied 0 of P9 indicates that the note has no flags on the 

stem, nor are there any augmentation dots following the 

notehead. 

Multiple attributes may be packed into a single param-

eter value, such as P5 and P9 in the above example.  This 

parameter compression was due to memory limitations in 

computers during the 1970’s and 1980’s. All values in 

SCORE data files use 4-byte floating-point numbers.  

When a parameter can be represented by ten or fewer 

states, they are typically stored as a decimal digit within 

these numbers.  For example stem directions of notes are 

given in the 10’s digit of P5, while the accidental type is 

given in the 1’s digit. In addition, the 100’s digit of P5 

indicates whether parentheses are to be placed around the 

accidental, and the fractional portion of P5 indicates a 

horizontal offset for the accidental in front of the note.  

The Windows version of the SCORE editor retains this 

attribute packing system, primarily for backwards com-

patibility with the MS-DOS version of the program, since 

many professional users of SCORE still use the MS-DOS 

version of the program.  This minimal data footprint 

could also be taken advantage of in low memory situa-

tions such as mobile devices or over slow network con-

nections. 

     SCORE parameters have an interpreted meaning 

based on the item type and parameter number.  With the 

advent of greater and cheaper memory in computers, the 

general trend as seen in XML data formats is to provide a 

key description along with the parameter data.  Note that 

this is a trivial difference between data formats in terms 

of functionality, but is more convenient for readability 

and error checking.  Below is a hypothetical translation of 

the SCORE note element discussed in Figure 2 that has 

been converted into an XML-style element, providing 

explicit key/value pairs for parameters rather than the 

fixed-position compressed parameter sequence : 

<note> 

 <staff>2</staff> 

 <hpos>80.335</hpos> 

 <vpos>5</vpos> 

 <stem>up</stem> 

 <accidental>none</accidental> 

 <shape>solid </shape> 

 <duration>0.5</duration> 

 <stem-length>2.5</stem-length> 

 <flags>0</flags> 

 <aug-dots>0</aug-dots> 

</note> 
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A translation of these note parameters into MusicXML 

syntax might look like this: 

 

 <note default-x="13"> 

          <pitch> 

             <step>G</step> 

             <octave>4</octave> 

          </pitch> 

          <duration>4</duration> 

          <voice>1</voice> 

          <type>eighth</type> 

          <stem default-y="25">up</stem> 

          <beam number="1">begin</beam> 

       </note> 

 

The primary difference is that SCORE data does not 

encode explicit pitch information.  The pitch “G4” can be 

inferred from the context of the current clef and key sig-

nature as well as any preceding accidentals on G4’s in the 

measure.  Extracting pitch information from SCORE data 

requires non-trivial but straightforward parsing of the 

data (excluding slur/tie analysis).  A second important 

structural difference is encoding of beams.  In SCORE 

beams are independent notational items, and linking of 

notes to beams is inferred within the editor by their spa-

tial proximity and orientation.   

MusicXML 3.0 includes a relatively complete layout 

description, which is more hierarchical than SCORE’s 

layout description.  For example the attribute default-

x=“13” of the <note> element describes the distance from 

the left barline of the measure to the notehead, while in 

SCORE the P3=80.335 describes the distance from the 

left margin to the notehead.  The stem length is indicated 

in SCORE and MusicXML in an equivalent fashion, with 

SCORE setting P8=2.5, which means that the stems 

should be 2.5 diatonic steps longer than an octave, while 

MusicXML indicates the same information with the de-

fault-y attribute on the <stem> element.  Staff assignment 

in MusicXML is inferred from the part to which the note 

belongs, while SCORE encodes an explicit staff assign-

ment. 

     SCORE data is not purely a graphical description of 

music notation as demonstrated in the above conversion 

example into MusicXML.  It also contains some symbol-

ic information necessary for manipulating graphical items 

in musically intelligent ways.  Within the SCORE editor 

the musical data can be played, transposed, moved be-

tween systems, reformatted, and processed in other musi-

cally intelligent ways.   

For notes and rests, P7 indicates the duration of the 

item.  This means that there are two horizontal axes pre-

sent in the data: a spatial axis quantified in P3, and a 

temporal axis in P7 that describes time in quarter-note 

units.  Figure 3 illustrates these two spatial/time axes 

present in SCORE data.  The SCORE editor can manipu-

late the data based on either of these descriptions of the 

music.  For example, data entry on each staff can be done 

independently, in which case the notes on each staff are 

not aligned vertically.  The SCORE program’s LJ com-

mand aligns the notes across system staves based on the 

P7 durations, and this will cause the P3 values of notes to 

match their rhythmic partners on other staves.   

Figure 3. Duration and horizontal position information. 

In Figure 3, the vertical lines (in red) are located at the 

P3 positions of notes in both both staves. In the cases of 

chords containing intervals of a second, the notes offset 

to the opposite side of the stem have the same P3 hori-

zontal position of the other notes in the chord, but have a 

non-zero horizontal offset value (P10).  Thus all notes 

sounding at the same time on a staff must all have the 

same P3 horizontal position; otherwise, the SCORE edi-

tor will misinterpret the notes in a chord as a melodic 

sequence.  Notes on the offbeat of the first beat in meas-

ure three have been given an intentional P10 offset from 

the default spacing, so they do not visually align with the 

red guide line although their P3 values match the position 

of the line. 

The P7 duration values of notes and rests can be used 

to calculate the composite rhythm of polyphonic music as 

illustrated by the rhythm on the single-lined staff below 

the main musical excerpt in Figure 3.  Calculating this 

rhythmic pattern is necessary for horizontal spatial layout 

in music notation.  In SCORE, horizontal music spacing 

is calculated on a logarithmic scale, using a spacing fac-

tor of approximately the Golden ratio for every power-of-

two rhythmic level. 

2. SIMILARITY TO OMR PROCESSING 

Extracting symbolic musical data in optical music recog-

nition (OMR) can be divided into two basic steps: (1) 

recognizing graphical elements in a scan, and (2) inter-

preting their functions and interrelations.   In practice 

there is feedback between these two steps for interpreting 

the meanings of the elements: if a graphical symbol is 

ambiguous or incorrect, the context of other symbols 

around it may clarify the meaning of that item.  For musi-

cians this interaction mostly occurs at a subconscious 

level that can often be difficult to describe within a com-
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puter program in order to generate a correct interpretation 

of the notation.  As an example of the inter-dependency 

of these two steps, the OMR program SharpEye
2
 is quite 

sensitive to visual breaks in note stems.  Finding stemless 

noteheads often leads it to identifying the noteheads as 

double whole rests which roughly have the same shape as 

a stemless black notehead. This is clearly a nonsensical 

interpretation when occurring in meters such as 4/4 or 

against notes on other staves that do not have the same 

duration as a double whole note.   In such cases where 

interpretation stage yields such strange results, the identi-

fication stage of a graphical element should be reconsi-

dered. 

     SCORE’s data format can be considered a perfect 

representation of the first stage in OMR processing where 

all graphical elements have been correctly identified.  

Converting between a basic OMR representation of 

graphical elements and SCORE data is relatively easy.  

For example Christian Fremerey of the University of 

Bonn/ViFaMusik was able to write a Java program, 

called mro2score, within a few days that converts the 

SharpEye’s graphical representation format into SCORE 

data.
3
 

     The mro2score program essentially transcodes the 

identification-stage of musical data from OMR identifica-

tion and adds minimal markup to convert into SCORE 

data.  In order to convert such symbols into musically 

meaning syntaxes, more work is necessary.   Most OMR 

programs have built-in editors used to assist the correc-

tion of graphic symbol identification as well as their final 

interpretation.  Such editors function in a manner similar 

to the SCORE editor, which can display graphical ele-

ments containing syntactic errors such as missing notes, 

or incorrect rhythms.  Most graphical notation editors 

such as MuseScore, Sibelius or Finale require syntactical-

ly correct data, so they are not as well suited to interac-

tive correction of OMR data. 

     In order to convert from SCORE data into more 

symbolic music formats, an open-source parsing library 

and related programs called scorelib has been developed 

by the author.
4
  This library provides automatic analysis 

of the relations between notational elements in the data, 

linking music across pages, grouping music into systems 

and parts, linking notes to slurs and beams, as well as 

interpreting the pitches of notes.  This library is designed 

to handle the second stage in OMR conversions of 

scanned music into symbolically manipulable musical 

data.   Conversion from SCORE, and by extension low-

level OMR recognition data, into other more symbolic 

data formats becomes much simpler once these relation-

                                                           
2
 http://www.visiv.co.uk 

3
 http://www.ccarh.org/courses/253/lab/mro2score 

4
 http://scorelib.sapp.org 

ships between graphical items have been analyzed using 

scorelib.  Currently the scorelib codebase can convert 

SCORE data into MIDI, Humdrum, Dox, MuseData, 

MusicXML and MEI data formats.
5
 

     The following sub-sections describe the basic order 

of analyzing SCORE data in order to extract higher-level 

musical information needed for conversion into other 

musical data formats. 

2.1 Staves to Systems 

SCORE data does not include any explicit grouping of 

staves into musical systems (a set of staves representing 

different parts playing simultaneously).  So when extract-

ing symbolic information from SCORE data, the first step 

is to group staves on a page into systems.  Errors are 

unlikely to occur in this grouping process, since staves 

linked together by barlines are the standard graphical 

representation for systems.  In orchestral scores, parts 

may temporarily drop out on systems where they do not 

have notes.  In SCORE data, staves are give a part num-

ber so that printed parts can be generated from such 

scores by inserting additional rests for systems on which 

the part is not present. 

2.2 Systems to Movement 

Once musical systems have been identified on a page in 

SCORE (or with any raw OMR graphical elements), the 

identification of the sequence of systems across multiple 

pages forming a full movement is necessary in order to 

interpret items such as slurs and ties.  These may be bro-

ken graphically by system line breaks. If a set of pages 

describes a single work, this process is generally as trivial 

as the staves to systems identification; however, automat-

ic identification of new movements/works will be de-

pendent on the graphical style of the music layout.  Typi-

cally indenting the first system indicates a new move-

ment/work, but this assumption is not always true.  When 

interpreting SCORE or OMR data, manual intervention 

may sometimes be needed to handle non-standard or 

unanticipated cases in movement segmentation. 

2.3 Pitch Identification 

Pitch identification takes extensive processing of the data.  

The previous two steps linking staves into systems and 

systems across pages into movements must first be done 

before identifying pitch.  The data must then be read 

temporally system by system throughout the movement, 

keeping track of the current key and resetting the spelling 

of pitches at each barline for each part/staff.  Figure 4 

illustrates the result of automatic identification of the 

                                                           
5
 See http://scorelib.sapp.org/program for a list of 

available conversion and processing programs. 
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pitch sequence (g, g, d-flat, c, c, d-natural) for the top 

staff of music in measure three of Figure 1. 

      

Figure 4 : Automatic pitch labeling of SCORE data. 

     The scorelib library extends the basic SCORE data 

format to include a list of key/value pairs following the 

initial line of parameters for a graphical item.  In Figure 

3, the lines starting “@auto@base40Pitch” are examples 

of this additional key/value parameter system.  In this 

case the namespace “auto” indicates automatic identifica-

tion for the pitch of the note.  This can be overridden by a 

manual setting for the pitch with the “@base40Pitch” 

key. 

2.4 Beam grouping 

Grouping notes connected to a common beam is a step 

that can be done either before or after pitch identification, 

since these two components of notation are independent.  

In SCORE data this can be done deterministically with 

little error.  Since SCORE data is not organized into 

measures like many symbolic music data formats, beams 

crossing barlines are not a difficulty in SCORE, although 

expressing such barline-crossing beams in translated 

formats can be difficult. 

2.5 Layer Identification 

After beaming identification, the most appropriate analy-

sis is to interpret the number of independent monophonic 

rhythmic streams of notes/rests in each measure.  For 

music with one or two rhythmic streams on a staff, the 

assignment is relatively straightforward.   Three or more 

rhythmic layers in the music can be difficult to automati-

cally interpret.  Graphical music editors typically have 

four independent layers that can be overlaid on a single 

staff.  SCORE does not have a formalized system for 

keeping track of rhythmic layers (although there is an 

informal system in the Windows version of the SCORE 

editor), so occasionally manual intervention is necessary 

to assign music to different layers.  Figure 5 illustrates 

the layer interpretation of the music from Figure 1.  Since 

there are no more than two layers on any staff, automatic 

recognition of the layers is unambiguous.  The first layer 

(as defined in most graphical music editors) is the highest 

pitched music in the measure with stems pointing up-

wards if there is a second layer below it.  In Figure 5, the 

second layers in measures 5 and 6 are highlighted in red 

(or gray in black-and-white prints).  The circled rest on 

the bottom staff of measure 4 presents an interpretational 

ambiguity: either the bottom layer can be considered to 

drop out at the rest, or the rest can be interpreted as 

shared between the two layers on the bottom staff.  When 

extracting orchestral parts in such situations, both parts 

would share the rest, and the extracted parts would both 

display the rest. 

Figure 5. Automatic layer identification, 2nd layer in red. 

2.6 Slur/Tie differentiation 

After layers have been identified, the final complex step 

is to distinguish between slurs and ties.  For monophonic 

parts this is straightforward, but in polyphonic parts there 

are many corner cases to deal with, making 100% correct 

distinctions difficult to achieve. SCORE has a weak im-

plicit labeling system to differentiate between ties and 

slurs, but this cannot be depended upon on since the sys-

tem is primarily intended for graphical offsets of slurs 

rather than differentiation between slurs and ties.  After 

ties have been identified, pitch identifications need to be 

reconsidered since tied notes without accidentals will 

take their accidental from the starting note of a tied 

group. 

Figure 6. Disjunct ties in Beethoven op. 57, Presto, mm 20-24. 

     Additionally difficulties arise in both identifying and 

representing ties that do not connect rhythmically adja-

cent notes.  In particular notated arpeggios such as shown 

in Figure 6 bypass notating intermediate notes in a slur 

group, and instead have a single tie connecting the first 

and last notes in the tie group.   Music editors such as 

MuseScore/Sibelius/Finale cannot handle such cases, and 

it is also difficult to automatically identify such cases in 

OMR or SCORE data. 

20
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3. DATA CONVERSION FROM SCORE  

SCORE uses a two-dimensional description of musical 

notation, and its data can be serialized into any order 

since items’ positions on the page are independent of 

each other.  Nearly all other music-notation formats im-

pose a sequential structure onto their data, typically 

chopping up the score into parts, measures, and then 

layers, which form monophonic chunks that are serialized 

in different ways.  This section presents some of the con-

versions available with sample programs accompanying 

the scorelib library. 

Figure 7 illustrcates three serialization methods within 

measures that are commonly found in music-notation 

data formats.  In Humdrum data, notes are always serial-

ized by note-attacks times—in other words, all notes 

from each part/layer played at the same time are found 

adjacent to each other in the data.  This configuration is 

also true of Standard MIDI Files in type-0 arrangement, 

where all notes are presented in strict note-attack order.  

Most other data formats will organize music into horizon-

tal/monophonic sequences by measure rather than by 

vertical/harmonic slices.  MEI chops up a score into a 

sequence of measures/parts/staves, and finally the staves 

are segmented into a parallel sequence of monophonic 

layers. MuseData and MusicXML use the same serializa-

tion technique within a measure, but layer segmentations 

are not as hierarchical as MEI.  MusicXML has two ways 

of serializing measures in a score (partwise and time-

wise), but these methods do not affect serialization within 

a measure. 

Figure 7. Measure-level serialization schemes in sequential data for-

mats. 

In addition to serialization, an important distinction 

between data formats is the presence or lack of layout 

information.  SCORE data always contains explicit and 

complete layout information for displaying musical nota-

tion, while other data formats have a range of layout 

description capabilities.  The complexity of the notation 

will determine the necessity of preserving layout infor-

mation when translating to other file formats.  Simple 

music can automatically be re-typeset without problems; 

however, complex music is difficult to automatically 

typeset with a suitable readability quality, and usually 

human intervention is required to maximize readability in 

complex notational situations.  Many music-notation 

editing programs focus on ease of manipulation for the 

musical layout and try to minimize the need for manual 

control.  Likewise, they internally hide the layout infor-

mation that would be necessary to convert into layout 

explicit representations such as SCORE data.   

Automatic layout will always fail at some point, since 

the purpose of music notation is to convey performance 

data to a musician in the most efficient means necessary.  

Typesetting involves lots of rules and standards, but fre-

quently the rules will need to be broken, or conflicting 

rules will override each other.  Any confusion in the 

layout decreases the effectiveness of the notation, which 

a professional typesetter can deal with on a cognitive 

level much higher than a computer program.  Being able 

to preserve the precise musical layout of SCORE (or 

OMR) data is very useful, since this can retain human-

based layout decisions. 

Figure 8 : SCORE PostScript output (top) and SCORE data converted 

into Dox data in a screen-shot of the Dox editor (bottom). 

3.1 SCORE to Dox 

Figure 8 shows graphical output from a SCORE Post-

Script file above a conversion displayed in the Dox music 

editor written by David Packard.  The Dox data format 

encodes explicit layout information in a header for each 

system, followed by a listing of symbolic data for each 

part in the system.  For each system measure, a grid in-

struction specifies a spatial distance between times in the 

composite rhythm for the system.  These grid points can 
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be displayed as red vertical lines within the editor as 

show in the screen capture at the bottom of Figure 8.  

These gridlines are calculated directly from the horizontal 

placement (P3) of notes when converting from SCORE 

data.  Within Dox data, the absolute horizontal positions 

are converted into incremental distances from the previ-

ous composite rhythm time in the measure.  

Unlike SCORE data, the Dox format separates layout 

information from symbolic musical elements.  Figure 9 

shows some sample Dox data illustrating this property.  

At the start of the data for each system, a header gives 

layout information.  The bars directive controls the abso-

lute positions of the measures within the system, and each 

grid directive controls the spacing between composite 

rhythm positions within each measure.  For example 

“147x13” at the start of the grid for the first measure 

means that the first beat is 147 spatial units from the start 

of the measure (relatively wide, to allow for the system 

clef and key signature to be inserted), then the next posi-

tion in the composite rhythm sequence is a sixteenth note 

later, and this is placed 13 units after the notes of on the 

first beat. 

The Dox editor manipulates note spacing by adjusting 

these grid points, so notes across multiple staves in a 

system sounding at the same time are always vertically 

aligned. Vertical positioning of staves as well as the size 

of staves are also stored in Dox data, so page layout can 

be preserved when converting from SCORE data. 

Figure 9 : Scanned notation (top staff) with matching layout of music in 

Dox editor (bottom staff).  System layout is highlighted in gray below 

the staves, along with symbolic notation in Dox format for the staff. 

3.2 SCORE to Humdrum 

As a sample of a primarily symbolic data format, this 

section gives an example conversion result into the Hum-

drum data format, which is used in computational music 

analysis applications.  This data format typically contains 

no layout information since the primary focus is on en-

coding pitch, rhythm and meter for analysis, and not on 

layout for printing.  The Humdrum format is compact and 

allows the musical content to be read directly from the 

representation more so than any other symbolic digital 

representation of musical notation that encode parts seri-

ally rather than in the parallel fashion of Humdrum.   

The following text lists a conversion from the SCORE 

data of Figure 1 into Humdrum syntax.  Each staff is 

represented by column of data (spines), with staff layers 

causing splits of the spines into sub-columns.  Each line 

of data represents notes sounding at the same time, so the 

rows represent the composite rhythm of all parts, which is 

similar to the rhythm sequence of grid directives in Dox. 

 
**kern            **kern 

*staff2           *staff1 

*clefF4           *clefG2 

*k[b-e-a-]        *k[b-e-a-] 

*M2/4             *M2/4 

=1-               =1- 

2r                4e-/ 4g/ 

.                 4B-/ 4f/ 

=2                =2 

4.CC/ 4.C/        4.G/ 4.e-/ 

8C/ 8E-/          (16.e-/LL 

.                 32a-/JJk) 

=3                =3 

8BB-/ 8En/L       8g/L 

8BB-/ 8E/         (16.g/L 

.                 32dd-/JJk) 

8AAn/ 8F/         8cc/L 

8AA-/ 8F#/J       (16.cc/L 

.                 32ddn/JJk) 

=4                =4 

*^                *^ 

(8G/L     4.GG\   (8.ee-/L    8e-\L 

8An/      .       .           8e-\ 8f#\ 

.         .       16cc/k      . 

8Bn/J)    .       8bn/J)      8d\ 8g\J 

8r        8r      (16gg\LL    8r 

.         .       16eee-\JJ)  .    

*clefG2   *clefG2 *           * 

*v        *v      *           * 

=5        =5      =5 

*^        *       * 

8g/L      4.G\    8.eee-/L    8ee-\L 

8an/      .       .           8ee-\ 8ff#\ 

.         .       16ccc/Jk    . 

8bn/      .       8bbn/L      8dd\ 8gg\ 

8b-/J     8g\     8bb-/J      8dd\ 8gg\J 

*v        *v      *           * 

*                 *v          *v 

*-                *- 

 

Humdrum syntax is a generalized system, so if layout 

information needs to be preserved, an additional column 

of for horizontal positions could be added. This would 

duplicate the functionality of the grid directives in Dox 

files.  Other formats that do not encode layout infor-

mation would be converted in a similar manner as the 

conversion process from SCORE into Humdrum.   Data 

formats in this category include MIDI, ABC, LilyPond, 

and Guido Music Notation.  

3.3 SCORE to musicXML 

MusicXML is primarily used as a symbolic music format, 

but has a mostly complete system for specifying layout in 

notation.  In contrast to the Dox format, the layout pa-
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rameters are interleaved within the data, typically being 

given as element attributes. Figures 10 and 11 illustrate 

conversions from SCORE into musicXML for a work by 

Dufay generated by the score2musicxml converter.  These 

two figures highlight the page layout information that can 

be preserved when translating between SCORE and mu-

sicXML.  Both figures have the same system break loca-

tions, staff scalings and system margins.  While mu-

sicXML 3.0 has the capability to specify the horizontal 

layout of notes and measures, this information is current-

ly stripped out of the data when importing into the most 

recent version of Finale (2014). 

3.4 SCORE to MEI 

From SCORE’s point of view, conversion into mu-

sicXML and to MEI are similar, and the score2mei con-

verter was initially adapted from the musicXML conver-

sion program.   MEI data is more hierarchical than mu-

sicXML data, with elements such as beams and chords 

stored in a tree structure, while musicXML attaches these 

features to a flat listing of the notes.  Figure 12 demon-

strates the different encoding methods for a chord in 

SCORE, MEI and MusicXML.  MEI wraps individual 

notes within a <chord> element, while musicXML marks 

secondary notes of the chord with a Boolean <chord/> 

child element. 

Figure 10 : SCORE PostScript output matching to musicXML transla-

tion shown in Figure 11. 

Figure 11 : Screen shot of a musicXML conversion in the Finale music 

editor.  During conversion the rhythmic values of the converted score 

have been doubled to match the rhythmic values of the original 15th 

century score. 

 

Figure 12. A chord in SCORE format with translations into MEI and 

MusicXML below. 

3.5 SCORE and MuseData 

The MuseData printing system uses two data formats: 

one for symbolic data encoding, and another for explicit 

layout.  Typically music is encoded in the symbolic for-

mat that is then compiled into the format with specific 
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layout for interactive editing.
6
  MusicXML is structurally 

based on the symbolic for of MuseData.  The compiled 

layout-specific format is analogous to SCORE data.  A 

useful property of the MuseData printing system is access 

to both the high-level symbolic representation as well as 

the low-level graphical representation. 

3.6 SCORE and SVG 

Due to SCORE data’s graphical nature, converting it into 

images is less complex than generating images from 

purely symbolic representations (outside of the intended 

software for a representation, of course).  While each 

graphical element in SCORE can be placed independent-

ly at a pre-determined position in an image, software 

processing symbolic formats must first calculate a graph-

ical layout, and unlike MuseData this layout representa-

tion is typically inaccessible as an independent data for-

mat.  While SCORE software does not have native export 

to SVG images, minimal processing of its EPS output can 

produce SVG images.
7
  Analytic overlays on the notation 

image can be aligned to the image using the layout in-

formation from the original SCORE data. 

Since SCORE data is compact, it can be stored within 

an XML files.  For example the complete SCORE data 

for the music of Figure 1 can be found in an SVG image 

of the incipit used on the Wikipedia page for Beethoven’s 

26
th

 piano sonata.
8
  At the bottom of the SVG image’s 

source code, the SCORE data used to create the SVG 

image is embedded within a processor instruction using 

this syntax: 

       <?SCORE version=“4” 

              SCORE data placed here 

          ?> 

 

Embedding the source code for creating the image al-

lows the data to be used to regenerate an SVG image to 

fix notational errors or to prepare a new layout, and the 

embedded data can also be used to generate additional 

analytic markup.   

Further samples of SCORE data can be found in the 

GitHub repository for scorelib.
9
  Additional SCORE data 

samples can be found on IMSLP as attachments to PDFs 

of music that the author has typeset in SCORE.
10

 

                                                           
6
 The batch-processing version of the MuseData printing 

system (http://musedata.ccarh.org) can be used to 

generate both PostScript output and the intermediate layout 

representation called Music Page Files (MPG). 
7
 Using the open-source converter https://github.com/-

thwe/seps2svg 
8 http://en.wikipedia.org/wiki/Piano_Sonata-

_No._26_(Beethoven) 
9
 https://github.com/craigsapp/scorelib/tree/-

master/data 
10

 http://imslp.org/wiki/User:Craig 

4. CONCLUSIONS 

SCORE is an important historical data format for com-

puter-based music typesetting.  Understanding its graph-

ical representation system is particularly useful for pro-

jects in OMR, where interpreted graphical symbols must 

be organized in a similar process as converting from 

SCORE into other data formats. In addition, the SCORE 

representation system should be studied by projects writ-

ing automatic music layout of purely symbolic data.  

SCORE is primarily used by professional typesetters due 

to its high-quality output and the degree of control af-

forded to the typesetter.  Using the scorelib software 

allows SCORE data to be more easily converted into 

other musical formats, usually with minimal manual 

intervention and exactly preserving the original layout. 
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ABSTRACT 

This paper explores live coding environments in the con-

text of notational systems. The improvisational practice 

of live coding as combining both composition and per-

formance is introduced and selected systems are dis-

cussed. The author’s Threnoscope system is described, 

but this is a system that enables the performer to work 

with both descriptive and prescriptive scores that can be 

run and altered in an improvisational performance. 

1. INTRODUCTION 

The live coder sits on stage and writes software in front 

of a live audience. The desktop is projected on the wall in 

a gesture of sharing and audience engagement [1, 2]. In 

the past decade, live coding has become a popular per-

formance practice, supported by the diverse interpreted 

and high level programming languages that suit the prac-

tice. Furthermore, the popular hacker and maker cultures 

are affecting general culture such that coding is now 

considered a creative activity on par with drawing or 

playing an instrument. The live coding community has 

played an important role here and been active in dissemi-

nating the practice by sharing code, organizing festivals 

and conferences, and establishing research networks. 

Code is a form of notation that works extremely well in 

musical composition, especially when the aim is to write 

non-linear, interactive, or context aware music [3]. Alt-

hough general-purpose languages can be used for musical 

live coding, many live coders have created their own 

mini-languages for a particular performance style, genre, 

or even a performance. The new language becomes an 

instrument, a framework for thinking, with strong consid-

erations of notational design. Here, language designers 

have invented graphical interfaces like we find in Pure 

Data or Max/MSP; game interfaces, as in Dave Griffiths' 

Al Jazaari; functional notation, like McLean's Tidal; or 

Chris Kiefer’s physical controllers that encode genetic 

algorithms of sound synthesis [4]. 

2. NOTATION AND INTERPRETATION 

Notation is a way of communicating abstract ideas to an 

interpreter, and in live coding that interpreter is typically 

a compiler called the “language interpreter.” Standard 

Music Notation is a system of notation that has developed 

from the general recognition that symbols can capture 

more information, coherent in meaning between compos-

ers, interpreters and cultures, in a smaller space than 

natural language or bespoke new symbolic languages. 

Standard Music Notation is a cognitive tool that has de-

veloped with requirements for a standard language and 

concerns about sight-reading and rapid understanding. 

Composers are able to rely on the performer’s expertise 

and creative interpretation skills when the piece is played. 

Conversely, in the symbolic notation for computer music 

composition and performance, we encounter an important 

difference in the human and the computer capacity for 

interpretation: the human can tolerate mistakes and ambi-

guity in the notation, whereas the computer cannot. Natu-

ral language programming of computers is clearly possi-

ble, for example: 

produce a sine wave in A 

 name this synth "foo" 

 wrap this in an ADSR envelope 

 repeat foo four times per second 

 name this pattern "ping" 

However, the problem here is one of syntax: what if 

the coder writes “Sine” instead of “sine,” “440” instead 

of “A,” or “every 0.25 second” instead of “four times per 

second?” The cognitive load of having to write natural 

language with the programming language’s unforgiving 

requirements for perfect syntax makes the natural lan-

guage approach less appealing than writing in traditional 

programming languages, for example in functional or 

object orientated languages. Of course, semi-natural lan-

guage programming languages have been invented, such 

as COBOL, Apple Script, or Lingo. The problems with 

Copyright: © 2015 Thor Magnusson. This is an open-access article dis- 

tributed under the terms of the Creative Commons Attribution 

License 3.0 Unported, which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided the original author and 

source are credited. 
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those were often that they became quite verbose and the 

‘naturalness’ of their syntax was never so clear. Conse-

quently, in a more familiar object oriented dot-syntax, the 

above might look like: 

w = Sine("foo", [\freq, 440]); 

 w.addEnvelope(\adsr); 

 p = Pattern("ping"); 

 p.seq(\foo, 0.25);  

In both cases we have created a synthesizer and a pat-

tern generator that plays the synth. The latter notation is 

less prone to mistakes, and for the trained eye the syntax 

actually becomes symbolic through the use of dots, 

camelCase, equals signs, syntax coloring, and brackets 

with arguments that are differently formatted according 

to type. This is called ‘secondary notation’ in computer 

science parlance, and addresses the cognitive scaffolding 

offered by techniques like colorization or indentation [5]. 

3. LIVE CODING AS NOTATION 

Live coding is a real-time performance act and therefore 

requires languages that are relatively simple, forgiving in 

terms of syntax, and high level. Certain systems allow for 

both high and low level approach to musical making, for 

example SuperCollider, which enables the live coder to 

design instruments (or synths) whilst playing them at 

another level of instructions (using patterns). Perhaps the 

live coding language with the most vertical approach 

would be Extempore [6], which is a live coding environ-

ment where the programming language Scheme is used at 

the high level to perform and compose music, but another 

language – type sensitive and low level, yet keeping the 

functional programming principles of Scheme – can be 

used for low level, real-time compiled instructions (using 

the LLVM compiler). In Extempore, an oscillator, wheth-

er in use or not, can be redesigned and compiled into 

bytecode in real-time, hotswapping the code in place. 

However, live performance is stressful and most live 

coders come up with their own systems for high-level 

control. The goals are typically fast composition cycle, 

understandability, novel interaction, but most importantly 

to design a system that suits the live coder’s way of 

thinking. Below is an introduction of four systems that all 

explore a particular way of musical thinking, language 

design, and novel visual representation. 

 

Figure 1 : A screen shot of Tidal. We see the score written in the quota-

tion marks, with functions applied. 

Alex McLean’s Tidal [7] is a high level mini-language 

built on top of Haskell. It offers the user a limited set of 

functionality; a system of constraints that presents a large 

space for exploration within the constraints presented [8]. 

The system focuses on representing musical pattern. The 

string score is of variable length, where items are events, 

but these items can be in the form of multi-dimensional 

arrays, representing sub-patterns. This particular design 

decision offers a fruitful logic of polyrhythmic and poly-

metric temporal exploration. The system explicitly af-

fords this type of musical thinking, which consequently 

limits other types of musical expression. The designers of 

the live coding languages discussed in this section are not 

trying to create a universal solution to musical expres-

sion, but rather define limited sets of methods that ex-

plore certain musical themes and constraints. 

Dave Griffiths’ Scheme Bricks is a graphical coding 

system of a functional paradigm, and, like Tidal, it offers 

a way of creating recursive patterns. Inspired by the MIT 

Scratch [9] programming system, a graphical visualiza-

tion is built on top of the functional Scheme program-

ming language. The user can move blocks around and 

redefine programs through visual and textual interactions 

that are clear to the audience. The colored code blocks are 

highlighted when the particular location of the code runs, 

giving an additional representational aspect to the code.  

 

Figure 2 : Scheme Bricks. In simple terms, what we see is the bracket 

syntax of Scheme represented as blocks. 

Scheme Bricks are fruitful for live musical performance 

as patterns can be quickly built up, rearranged, muted, 

paused, etc. The modularity of the system makes it suita-

ble for performances where themes are reintroduced (a 

muted block can be plugged into the running graph).  

This author created ixi lang in order to explore code as 

musical notation [10]. The system is a high level lan-

guage built on top of SuperCollider and has access to all 

the functionality of its host. By presenting a coherent set 

of bespoke ‘ixi lang’ instructions in the form of a nota-

tional interface, the system can be used by novices and 
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experienced SuperCollider users alike. The system re-

moves many of SuperCollider’s complex requirements 

for correct syntax, whilst using its synth definitions and 

patterns; the original contribution of ixi lang is that it 

creates a mini-language for quick prototyping and think-

ing. 

Figure 3 : ixi lang Agents are given scores that can be manipulated, and 

changed from other code.  

In ixi lang the user creates agents that are assigned per-

cussive, melodic, or concrete scores. The agents can be 

controlled from other locations in the code and during 

that process the textual document is automatically rewrit-

ten to reflect what is happening to the agents. This makes 

it possible for the coder and the audience to follow how 

the code is changing itself and the resulting music. As 

code can be rewritten by the system, it also offers the 

possibility of storing the state of the code at any given 

time in the performance. This is done by writing a snap-

shot with a name: the snapshot can then be recalled at any 

time, where running new code is subsequently muted 

(and changes color), and agents whose score has changed 

return to their state when the snapshot was taken. 

Figure 4 : Gibber. Here textual code can change size, color or font 

responding to the music. All user-defined. 

A recent live coding environment by Charlie Roberts 

called Gibber [11] takes this secondary notation and 

visual representation of music further than ixi lang: here 

we can see elements in the code highlighted when they 

are played: the text flashes, colors change, and font sizes 

can be changed according to what is happening in the 

music. Gibber allows for any textual element to be 

mapped to any element in the music. The code becomes a 

visualization of its own functionality: equally a prescrip-

tion and description of the musical processes. 

Gibber is created in the recent Web Audio API, which 

is a JavaScript system for browser-based musical compo-

sition. As such it offers diverse ways of sharing code, 

collaborating over networks in real-time or not. 

All of the systems above use visual elements as both 

primary and secondary notation for musical control. The 

notation is prescriptive – aimed at instructing computers 

– although elements of secondary notation can represent 

information that could be said to be of a descriptive pur-

pose [12]. The four systems have in common the con-

strained set of functions aimed to explore particular mu-

sical ideas. None of them – bar Gibber perhaps – are 

aimed at being general audio programming systems, as 

the goals are concerned with live coding: real-time com-

position, quick expression, and audience understanding.  

4. THE THRENOSCOPE 

In the recent development of the Threnoscope system, the 

author has explored representational notation of live 

coding. This pertains to the visualization of sound where 

audible musical parameters are represented graphically. 

The system is designed to explore microtonality, tunings, 

and scales; and in particular how those can be represented 

in visual scores aimed at projection for the audience. 

The Threnoscope departs from linear, pattern-based 

thinking in music and tries to engender the conditions of 

musical stasis through a representation of sound in a 

circular interface where space (both physical space and 

pitch space) is emphasized, possibly becoming more 

important than concerns of time. 

The system is object oriented where the sound object – 

the ‘drone’ – gets a graphical representation of its state. 

This continuous sound can be interacted with through 

code, the graphical user interface, MIDI controllers, and 

OSC commands, and changes visually depending upon 

which parameters are being controlled. The user can also 

create ‘machines’ that improvise over a period of time on 

specific sets of notes, as defined by the performer. These 

machines can be live coded, such that their behavior 

changes during their execution. Unlike the code score, 

discussed below, the machines are algorithmic: they are 

not intended to be fully defined, but rather to serve as an 

unpredictable accompaniment to the live coder. 
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Figure 5. The Threnoscope in 8-channel resolution. The straight cross-

ing lines are speakers. The circles are harmonics, and the colored wedg-

es are (moving) drones. 

Figure 6. The Threnoscope’s code interface on the right. The system is 

here in a scale-mode, with scale degrees rather than harmonics. A 

machine is running in the middle, affecting a selection of the running 

drones. 

Figure 5 shows the circular interface where the inner-

most circle is the fundamental frequency, with the har-

monics repeated outwardly. The lines crossing the inter-

face represent the audio channels or speakers (the system 

can be set from 2 to 8 channels). The sound/drone can 

have a length extending up to 360 degrees, but it can also 

be short and move fast around the space. Figure 6 depicts 

the system with the command line prompt on the right, 

and a console underneath that reports on the state of the 

engine, errors in code, or events being played in a run-

ning score. By clicking on a particular drone, its sonic 

information appears in the console in a format that gives 

the coder quick entry to manipulate the parameters. 

Musical events in the Threnoscope system are created 

through code instructions. Since the default envelope of 

the drone is an ASR (Attack, Sustain, Release) envelope, 

a note duration can range from a few milliseconds to an 

infinite length. Each of the speaker lines could be seen as 

a static playhead, where notes either cross it during their 

movement or linger above it with continuous sound. A 

compositional aspect of the Threnoscope is to treat notes 

as continuous objects with states that can be changed 

(spatial location, pitch, timbre, amplitude, envelope, etc.) 

during its lifetime.  

The Threnoscope has been described before both in 

terms of musical notation [11] and as a system for im-

provisation [12]. This paper explores further the notation-

al aspects of the system, and the design of the code score. 

5. THE CODE SCORE 

Code is rarely represented on a timeline, although certain 

systems have enabled programmers to organize code 

linearly over time, although in Macromedia’s Director 

and Flash multimedia production software this becomes a 

key feature. This general lack of a timeline can pose a 

problem when working with code as a creative material 

in time-based media such as music, games or film. The 

lack of timeline makes navigating the piece for composi-

tional purposes cumbersome and often impossible.  

The Threnoscope’s code score is a two dimensional 

textual array where the first item is the scheduled time 

and the second contains the code to be executed. This 

makes it possible to jump to any temporal location in the 

piece, either directly or through running the code that is 

scheduled to happen before (with some limitations 

though, as this code could be of a temporal nature as 

well).  

Scores in textual code format, like that of the Threno-

scope, can make it difficult to gain an overview of the 

musical form, as multiple events can be scheduled to take 

place at the same moment with subsequent lack of activi-

ty for long periods. This skews the isomorphism between 

notational space (the lines of code) and time if working 

with the mindset of a linear timeline. For this reason the 

Threnoscope offers an alternative chronographic visuali-

zation to represent the code in the spatial dimension. This 

is demonstrated in Figure 7.  

The code score timeline is vertically laid out as is 

common in tracker interfaces. The code can be moved 

around in time, deleted, or new elements added. By click-

ing on relevant 'code tracks' the user can call up code into 

a text field and edit the code there. The drones are created 

on the vertical tracks on the timeline. They have a begin-

ning and an end, with code affecting the drones repre-

sented as square blocks on the drone track. The drone 

itself and the events within it can be moved around with 

the mouse or through code. The score can therefore be 
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manipulated in real-time, much like we are used to with 

MIDI sequencers or digital audio workstations. 

 

Figure 7. A graphical visualization of the code score. When a vertically 

lined drone is clicked on, a page with its code appears above the circular 

interface. 

Most timelines in music software run horizontally 

from left to right, but in the Threnoscope the score verti-

cal and runs from top down. This is for various reasons: 

firstly, the available screen space left on most display 

resolutions when the circular score has taken up the main 

space on the left is a rectangular shape with the length on 

the vertical axis; secondly, when a user clicks on the 

visual representation of the drone, its score pops up in the 

textual form of code, and this text runs from top to bot-

tom. It would be difficult to design a system where code 

relates to events on a horizontal timeline. 

6. PERFORMING WITH SCORES 

The code score was implemented for two purposes: to 

enable small designed temporal patterns to be started at 

any point in a performance: just like jazz improvisers 

often memorize certain musical phrases or licks, the code 

score would enable the live coder to pre-compose musical 

phrases. The second reason for designing the code score 

system is to provide a format for composers to write 

longer pieces for the system, both linear and generative. 

The score duration can therefore range from being a 

short single event to hours of activity; it can be started 

and stopped at any point in a performance, and the per-

former can improvise on top of it. Scores can include 

other scores. As an example, a performer in the middle of 

a performance might choose to run a 3-second score that 

builds up a certain tonal structure. The code below shows 

the code required to start a score. 

~drones.playScore(\myScore, 1) // name of score & time scale  

~drones.showScore(\myScore) // visual display of the score 

The first method simply plays the score without a 

graphical representation. This is very flexible, as multiple 

scores can be played simultaneously, or the same score 

started at different points in time. Scores can be stopped 

at will. Whilst the scores are typically played without any 

visual representation, it can be useful to observe the score 

graphically. The second method creates the above-

mentioned graphical representation of the score shown in 

Figure 7. For a live performance, this can be helpful as it 

allows the performer to interact with the score during 

execution. The visual representation of the score can also 

assist in gaining an overview of a complex piece. 

For this author, the code score has been a fruitful and 

interesting feature of the system. Using scores for digital 

systems aimed at improvisation becomes equivalent to 

how instrumentalists incorporate patterns into their motor 

memory. The use of code scores question the much bro-

ken unwritten ‘rule’ that a live coding performance 

should be coded from scratch. It enables the live coder 

work at a higher level, to listen more attentively to the 

music (which, in this author’s experience, can be difficult 

when writing a complex algorithm), and generally focus 

more on the compositional aspects of the performance. 

7. CONCLUSION 

This short paper has discussed domain specific program-

ming languages as notational systems. Live coding sys-

tems are defined as often being idiosyncratic and bespoke 

to their authors’ thought processes. The Threnoscope and 

its code score was presented as a solution to certain prob-

lems of performance and composition in live coding, 

namely of delegating activities to actors such as machines 

or code scores.  
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ABSTRACT

This paper introduces Thema, a custom music notation soft-
ware environment designed to automatically and transpar-
ently capture quantitative data into a relational database.
The majority of research into musical creativity is quali-
tative in nature, and this software addresses several areas,
such as search and improvisational data, which are diffi-
cult to study with current qualitative methods. Thema’s
database provides advantages over ad hoc file collection
mechanisms by providing integrated search; the software
also is able to consistently identify musical material via au-
tomatically assigned identification codes, and this provides
a useful supplement to content-based search. In 2013, a
study was conducted of ten graduate-level composers us-
ing Thema, and the dataset from this study was used to
develop new analytical tools for examining compositional
data.

1. INTRODUCTION

Until recently, most research into the compositional pro-
cess of adult composers has been conducted using qualita-
tive methodologies. Creativity is complex and researchers
have rightly appreciated the role that composers play in il-
luminating their creative process. A variety of techniques
have been used by researchers and composers including
interviews, verbal protocol, sketch studies, and journals.
With the commodification of recording technology, so-
called real-time studies of compositional process have be-
come more common. These typically involve audio or
video recordings of the composer. To provide insight into
the composer’s thought process, verbal protocol techniques
are often used, either concurrently with composition or
retrospectively. This data may then be triangulated with
versioned musical sketches or computer files and supple-
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mented by journals and other documentation. While com-
bining multiple sources gives relatively good coverage of
activity, utilizes the composers’ personal insights, and al-
lows composers to work with familiar tools, it also re-
quires effort on the part of the composer and the researcher
to collect and organize data. [1, p. 246-7]. In the short
run, this is certainly manageable, but it is difficult to scale
these techniques up to larger studies, and, as might be ex-
pected, longitudinal studies are rare in the qualitative liter-
ature concerning adult composers, as are studies featuring
large sample sizes. 1

Musical informatics have proved useful for addressing
questions that concern a large amount of music, and it
stands to reason that they could be of some aid in the study
of compositional process. While computerized analysis
is unlikely to bring the same type of insight that a qual-
itative study can, it has strengths in complementary ar-
eas: namely, it can be pursued over time and at scale be-
cause the data can be automatically analyzed. Anecdotal
accounts from composers in the process literature suggest
that composers benefit from participating in these studies
but most composers will never have the opportunity to do
so. Quantitative analytical tools could allow composers to
systematically examine their own music and behavior on
an ongoing basis without a dedicated researcher.

It is increasingly common for composers to use software
in the act of composing music rather than purely for type-
setting. Though the impacts of this trend are subject to
debate, it seems unlikely to change in the near future. The
software that composers use to create music is uniquely
suited to observing quantitative data about the creative pro-
cess since it can see not only the document, but also the
composer’s interactions with the document. Several stud-
ies in the literature have used dedicated software to ob-
serve compositional behavior [4–6]; these have not, how-
ever, utilized Common Music Notation. Other studies have
observed composers at work via automatic screen captures
or screen recording [7–9]. Peterson’s 2008 study presents
quantitative results, but the data was acquired through the
manual analysis of automatically collected screen captures.

1 Collins [2] and Donin [3] provide useful reviews of the literature.
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2. PREVIOUS AND RELATED WORK

A few projects have used custom software to study compo-
sitional process. Otto Laske and Barry Truax used the Ob-
server I program to observe children making music with a
synthesizer [4]. Maude Hickey wrote a program to study
creativity in children [5]. The QSketcher research project
at IBM developed an environment for film music compo-
sition that automatically recorded and organized impro-
visational material, and maintained a persistent view of
its environment. [10]. Recently, Chris Nash created re-
ViSiT, a free “tracker”-style audio plugin that captured us-
age data [6]. He used the software to collect data from
over 1,000 musicians; his is by far the largest sample size
in this area, but his data set does not include the music that
his subjects created.

In considering the use of quantitative data for studying
compositional process, it is helpful to consider existing in-
frastructure for storing data. Standardized open file for-
mats have been a boon to music informatics researchers
as they allow musical data to be examined independently
of the program that created the data. This is helpful since
designing music notation software is a time-intensive task,
and standard file formats provide some degree of interop-
erability between programs. At present, however, there is
no standard for how a music notation program should op-
erate, and that also means that standard music file formats
such as MusicXML include very little, if any, information
outside that already present in the score such as how the
composer is using the program or improvisational MIDI
data. Additionally, our ability to understand how multiple
versions of a score are related depends on effective com-
parison algorithms. Though comparison works for simple
additions and deletions, it becomes less useful as the com-
poser’s actions become more dispersed across time.

As an alternative to an ad hoc approach to data collection
which combines multiple data formats such as MusicXML
and SMF and exists separately from the music software,
there is a good argument to be made for an integrated data
collection system which operates from within the software
used to create the music. Such a system would have a
greater understanding of how its constituent elements re-
late and would be able to integrate the information it col-
lects into its operation. This capability could also be ma-
terially useful to composers, particularly in its ability to
bridge the gap between improvisational development and
transcription. There are certainly drawbacks to such a sys-
tem, most notably, in that it ties the composer’s work to a
particular software. Nevertheless, it allows access to data
which is not well-served by existing methods; this data
may provide insight outside of that available in score and
MIDI data.

3. THEMA

Thema is a music notation software environment, written
using the Java Music Specification Language’s JScore pack-
age [11], that has been purpose-built for automatic data
collection. On the surface, Thema is designed to operate in
a manner similar to existing music notation software. Note
entry occurs in step-entry mode, optionally with MIDI in-
put, and most functions in the interface are available via
keyboard shortcuts, including score playback. Selections
may be made with the mouse, and a variety of commands
such as transposition and clipboard operations are avail-
able. Thema has two different playback modes: cursor
and selection; cursor mode plays the score from the cur-
rent cursor location, while selection mode plays back only
the selected material. Like ENP [12], Thema can make
use of non-contiguous selections in the score, and this in-
cludes playback operations. Thema’s musical representa-
tion is relatively limited relative to other software in the
field such as Bach [13] and ENP. It cannot, for instance,
represent nested tuplets, and it does not support breakpoint
function notation or proportional notation in editing.

Thema, like JScore, allows the user to operate on rhythm
in relative units via doubling and halving operations, and
this works for both selections as well as for setting the cur-
sor’s duration. This latter aspect is useful in that it does not
require the composer to remember specific key mappings
for durations, though those are also available. In step-entry
mode, the user may also select a rhythmic motive and then
use its durations and ties as a source sequence for a new
stream of notes, as shown in figure 1. This simplifies the
entry of repetitive figures such as dotted eighth and six-
teenth note pairs. Additionally, the composer may advance
to an arbitrary position within the sequence or reset to the
beginning, and this allows for greater flexibility in apply-
ing the current sequence without requiring changes to its
content; this can be useful, for example, in creating rhyth-
mic ostinato figures in fluctuating meters.

Figure 1. Step entry with rhythmic sequence
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3.1 Storage

By design, Thema focuses on automatically and transpar-
ently capturing low-level data at a fine time granularity.
Where possible, data is stored as it is captured, and all
entries are stored with time stamps at millisecond resolu-
tion. In order to enable frequent storage, Thema models the
score, as well as the state of the program, as a collection of
tables within a relational database, and only stores mate-
rial that has changed over subsequent states. The database
maintains previous versions of edited items so that all past
states of an item are reachable. In order to easily iden-
tify multiple versions of an item across time, each item
is tagged with a unique, automatically generated perma-
nent identifier which is consistent across all versions of the
item.

Storage in Thema is tightly integrated into to the work-
ings of the program, and it occurs as the result of actions
by the composer, instead of at an arbitrary time interval.
This makes it easier to discern the composer’s actions in
the data stream, since any entry in the database is present
as the direct result of the composer’s actions; it also pre-
vents multiple actions from being condensed into a single
entry, as might occur when saving at a particular time inter-
val. A command identifies elements which may have been
intentionally changed, and the program proceeds to discern
whether those elements were actually changed, as well as
any changes to surrounding elements which may have oc-
curred as a result. For example, changing the duration of
the first note in the measure has the effect of changing the
starting times of subsequent notes within the measure.

3.2 Data Representation

Thema represents the structure of the score in a straight-
forward, hierarchical fashion: a score contains measures,
measures contain staves, staves contain tracks, and tracks
contain notes. Following normalized database practices,
objects within that hierarchy only reference the class of
objects immediately above them in the hierarchy, with the
exception that all objects maintain a reference to their con-
taining score. 2 For example, when storing a note in the
database, a reference is stored to its track’s identifier, but
not to its containing staff or measure. This insulates lower
level objects from being affected by changes in higher-
level objects such as the insertion of a measure earlier in
the piece.

With a score changing over time, the amount of data that
could be stored is potentially large. It would be inefficient
to store the entire document for a small change, so Thema
stores only objects that have changed. On load, it reassem-

2 A database can contain multiple scores, and by explicitly filtering
based on the score, queries run an order of magnitude faster.

bles the score from the desired version. This is different
than a diff-based approach because the state of the en-
tire score across time is visible to search functions without
the need for derivation. Accessing earlier versions of a
score is as efficient as loading the current score, and it is
simple to make comparisons across versions. When undo-
ing commands or reverting to a previous state of the score,
the state of the score at the desired moment is loaded from
the database and then made current. A detailed description
of this mechanism is provided in [14, p.85-109]; one in-
teresting feature of this design is that though it appears to
operate like a conventional undo-redo stack, all past states
are accessible.

3.3 Processes

Processes are the primary unit of work within Thema. Any
action that the composer initiates within the program cre-
ates a timestamped entry in the process table, and each en-
try represents a state in the score or the environment, with
the exception of MIDI data, which is stored independently
of process information. This distinction is made because
the volume of MIDI data is considerable, and may happen
in parallel with other actions. MIDI data is recorded with
a time stamp, and may be combined with the process table
data via an SQL join.

Thema separates processes into two categories: score and
environment. Score processes alter the content of the score
whereas environment actions, such as adjusting the view-
able area, playing back the score, and making drag selec-
tions with the mouse, do not. With score processes, the
program also records whether or not a command had any
effect, e.g., the user attempting to transpose a rest or make
a deletion when the cursor is in a blank measure. This al-
lows the program to skip over commands which had no im-
pact when undoing, and also makes it possible to remove
empty operations from consideration for analysis.

3.4 Separation of Identity from State

Whether using qualitative or quantitative data, working with
multiple versions of a single score often can lead to refer-
ence problems. The score is not static over time in these
situations, but most of our musical terminology for label-
ing material depends on it being so. For example, a label
such as “the first A5 in measure 7” is tied inextricably to
its current state. If the note is transformed, or measures
are added in front of it, it is no longer an accurate descrip-
tor. Adding timing information makes it easier to find the
particular material as it existed at the moment, but it does
not provide a sense of its identity across time. Labeling
systems may be used where the software supports it, but
these depend on the composer or the researcher to main-
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tain consistency, as indicated by David Collins notes in his
long-term study of compositional process [1].

Rather than identifying material in the score based on
mutable state, it is a better approach to use a permanent
identifier that is decoupled from state, e.g., “note #1273”.
In relational database design, synthetic keys are preferred
over natural keys for this same reason in that they preserve
the unique identity of a row even when its values change.
By using a synthetic key to identify notes and other ob-
jects, continuity across time is preserved. It also makes it
simple to compare different versions of the same passage
which are separated by a large amount of time. This does
not preclude searches based on content or comparison, but
it reduces dependency on comparison. It is worth noting,
however, that this approach is only practical in a situation
where the program automatically manages this informa-
tion.

Thema identifies material by using unique identification
numbers. Each object in the score has a unique, permanent
identifier as well as a version number. The first value is
static and identifies an object across time; it is also guar-
anteed to be unique across object classes, e.g., for a note
with the identifier #1273, no other objects in the database
will share the same identifier, even across scores. The sec-
ond value indicates the specific version of the object within
the database table; each version occupies a row in the ta-
ble. The permanent identifier decouples an object’s iden-
tity from its state which allows searches to be conducted
on the basis of identity rather than musical content. Search
based on comparison is certainly still possible, but it is not
necessary in order to locate material across time. This is
useful because identity-based searches will typically run
several orders of magnitude more rapidly than comparison-
based ones; for example, it is much simpler to find the his-
tory of a particular group of notes by searching for rows
with corresponding identifiers than it is to compare thou-
sands of iterations of a score.

3.5 Attribution and Context

When storing data, it is useful not only to be able to iden-
tify changed material but also to know how the changes
were effected. For example, a “cut” operation is identical
to a “clear” operation in terms of the difference between
successive states in the score; in the case of a “cut” com-
mand, however, it is likely that the material may reemerge
as the result of a “paste” command, and it is helpful to
identify this relationship as it indicates a larger cognitive
process. In this example, Thema will not only indicate the
command type during storage, but it will also store a set of
parent-child relationships between the source and destina-
tion materials so that the link between the two states of the
score—however distant—is maintained. The software also

records the context of the program, including the location
of the cursor, any selections in the score, the current state
of playback, and so forth.

Additionally, in storing objects, Thema makes a distinc-
tion between directly edited objects and objects that have
changed state as a result of edits to other objects. For ex-
ample, a change in the duration of a note appearing at the
beginning of the measure would affect the state of subse-
quent notes; the first note would be considered to be di-
rectly edited, while the other notes would be marked as in-
directly edited in the database. Similarly, deleting a mea-
sure causes the measure numbers of all subsequent mea-
sures to be decremented. By indicating the target of the
operation, Thema reduces ripple effects in the data and pro-
vides a more accurate picture of the composer’s actions.

3.6 Model Objects

Latency can be a challenge for object-oriented applications
which use databases for storage. If an object changes be-
fore it is correctly stored, the values in the database could
become inconsistent with the program values. At the same
time, it is important that the user interface for the program
is responsive to its user, so it is also impractical to delay
processing user input while storage is occuring. To ad-
dress this problem, Thema uses immutable data objects
between the application logic and the database. For ob-
ject in the score or the environment, the program maintains
an immutable data model of each object’s current state,
e.g., a Note object contains a reference to a NoteModel
object. 3 When an object may have changed as the re-
sult of a command, a new model is constructed and com-
pared against the previous state; if different, the new model
is added to the storage queue and replaces the previous
model. Though the construction of models increases mem-
ory requirements, it also allows storage to safely proceed
in a separate thread from the user interface, ensuring re-
sponsiveness while maintaining data integrity. Because the
model objects cannot change once created, they may also
be safely cached in memory in order to accelerate loading
when undoing or redoing actions in the score. Each model
has two fields titled process and kill process. These
fields serve to mark the lifespan of the specific model. Fig-
ure 3 and table 1 show an example of the lifecycle of mod-
els in Thema.

4. DATASET

In order to establish a dataset for studying compositional
process data collected in Thema, a study was conducted
at New York University with ten graduate-level composers
creating piano pieces using the software. Subjects were

3 For a useful discussion of the virtues of immutability, see [15].
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Figure 2. Entities, models, and the database
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introduced to the software via a tutorial session, and were
then asked to notate a brief excerpt from Bartok’s Mikrokos-
mos; the excerpt was selected because it would require
users to perform a variety of tasks, handling time-signature
changes, articulations, and multiple voices within a staff.
Following this, the remainder of the four-hour session was
spent composing a short piano piece for an intermediate-
level performer in a style of the composer’s choosing. This
controlled setting ensured that participants had access to
a full-size MIDI keyboard and were able to receive techni-
cal support if they had questions about the software. While
this arrangement is not ideal from the standpoint of natural-
ism, it ensured that the data was captured reliably and that
composers were able to use the program, and the knowl-
edge gained will allow for future, less-restrictive studies to
proceed. Though the composers had relatively little time
to work with the software, all of the composers were able
to complete the study. At the end of the session, the com-
posers provided a segmentation of the work, indicating ma-
jor sections, as well as any smaller subdivisions. The com-
posers were compensated for their time and agreed to re-
lease their work and data under a Creative Commons li-
cense with the option of being attributed for their work or
remaining anonymous. 4

In addition to capturing quantitative data, Thema also
recorded screen captures for every entry in the process ta-
ble. The bounding-box coordinates for currently visible
notes, dynamics, and articulations were also stored into
a table in the database. This makes it possible to create
graphical overlays on the score images without having to
use the program itself, and provides a simple means of
rapidly browsing through past states of the score. Non-
linear browsing and montaging can be realized via database
queries, e.g., “select all activity within a two-minute win-

4 The terms of the license are available at https:
//creativecommons.org/licenses/by-nc-sa/4.0/

entity id process kill process
127 439 239 245
133 440 239 247
127 441 245 253
145 442 245 null
133 443 247 250
127 444 253 null

Table 1. Entity states from fig. 3 as represented in the database.

dow of a clipboard operation” or “show all versions of the
selected passage.”

5. VISUALIZATIONS

Thema contains a suite of visualizations in a variety of
formats for examining compositional data. These visual-
izations can be synchronized together via a central time
slider. For example, one window might contain the score
at the time indicated by the slider, while another window
displays the structure of the score over the course of a two
hour sliding window, and a third window contains a score
which displays incoming pitches from the MIDI keyboard
in a two minute window. Each window can also contain
multiple graphical overlays, such as, for example, show-
ing the location in the score and duration of playback su-
perimposed on the long-term structural view. Thema also
features an API for developing user-defined graphical over-
lays.

The score overlay section of the API allows programmers
to access the drawing subroutines for notes in the score.
Figure 4 shows a heat map of the composer’s edit activity
superimposed on the score.

Figure 4. Heatmap Overlay

In figure 5, the arrows between pairs of notes indicate
pairs of notes that were edited in close time proximity to
each other. The weight of the line is proportional to the
number of times they were edited as well as how closely in
time they were edited, with simultaneous edits producing
thicker lines. As can be seen, the notes in the first two
measures are densely connected to each other; they are also
connected to the previous (unseen) measure. The notes in
the last measure, however, are not connected to the notes in
the prior measures, indicating that they were never edited
in close time proximity to the notes in the second measure.
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This location is also one of the major boundaries in the
score indicated by the composer.

Figure 5. Edit Time Connections Overlay

Observations such as this inspired the development of
a novel pitch-agnostic boundary detection algorithm, de-
scribed in [14, p.183-190]. The algorithm operates on the
premise that low-level musical boundaries parallel bound-
aries in the composer’s process as represented by edit times;
similarly, areas of musical continuity in the score are more
likely to be closely related in terms of editing time. While
the premise is naive, when tested against the boundaries
indicated by the composers, the algorithm achieved sur-
prisingly respectable results. Future work will address the
algorithm and its parameters in depth, and compare the
segments found via this method against those found by
content-based algorithms.

6. CONCLUSIONS AND FUTURE WORK

The sample size from the NYU study is small, but it demon-
strates that Thema can be an effective tool for research.
More data in this area is needed, particularly in tandem
with current qualitative methods. The planned public re-
lease of the software in the Fall of 2015 will allow com-
posers to experiment with the program over time and in
a naturalistic setting, with the option of sharing their data
with researchers. Development is also underway on a wrap-
per written in Python to convert Thema’s data into Music21
streams and this will provide access for other researchers
in computational musicology.

Low-level musical behavior has not as yet received much
attention in the compositional process literature, and it is
hoped that this tool will provide a new means for studying
it and, in so doing, allow compositional process research to
connect to existing research in computational musicology.
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ABSTRACT 

Digital typefaces containing the symbols used in Western 

common music notation have been in use for 30 years, 

but the development of the repertoire of symbols that are 

included, their assignment to code points, and design 

considerations such as glyph metrics and registration, 

have been rather ad hoc. The Standard Music Font 

Layout (SMuFL) establishes guidelines for all of these 

areas, and a reference implementation is available in the 

Bravura font family. 

Software developers and font designers alike are 

beginning to develop implementations of SMuFL in their 

products, and benefits including easier data interchange, 

interoperability of fonts with a variety of software 

packages, are already being felt. 

1. A BRIEF HISTORY OF MUSIC FONTS  

Computer software has been displaying musical symbols 

of various kinds since the 1960s, but the first font for 

musical symbols did not arrive until 1985, when Cleo 

Huggins designed Sonata for Adobe.
1
 

Sonata mapped the musical symbols onto keys on the 

standard QWERTY keyboard, using some simple 

mnemonics (the treble G clef, for example, was mapped 

onto the & key, and the sharp sign onto #). Most music 

fonts developed since then, including Steve Peha’s 

Petrucci (the first music font for the commercial scoring 

application Finale, dating from 1988
2
) and Jonathan 

Finn’s Opus (the first music font for the commercial 

scoring application Sibelius, dating from 1993), have 

                                                           
1
 See http://www.identifont.com/show?12A  

2 See 

http://blog.finalemusic.com/post/2010/02/18/Meet

-Steve-Peha-creator-of-Petrucci-Finales-first-

music-font.aspx  

followed Sonata’s layout. 

However, since Sonata includes fewer than 200 

characters, and even conventional music notation
3
 

requires many more symbols than that, individual 

vendors have devised their own mappings for characters 

beyond Sonata’s initial set. 

By 2013, for example, the Opus font family that is still 

Sibelius’s default font set contains no fewer than 18 fonts 

with more than 600 characters between them. 

In 1998, Perry Roland of the University of Virginia 

drafted a proposal for a new range of musical symbols to 

be incorporated into the Unicode Standard.
4
 This range of 

220 characters was duly accepted into the Unicode 

Standard, and is found at code points U+1D100–

U+1D1FF.
5
 However, its repertoire of 220 characters 

does not extend dramatically beyond the scope of the 

original 1985 version of Sonata, though it does add some 

characters for mensural and Gregorian notation. 

To date the only commercially available music font 

that uses the Unicode mapping is Adobe Sonata Std, and 

its repertoire is incomplete. 

The designers of other music applications have 

developed their own approaches to laying out music fonts 

that are incompatible with both the Sonata-compatible 

approach, and the Unicode Musical Symbols range. In 

short, existing standards are either ad hoc or insufficient 

for the development of fonts for rich music notation 

applications. 

2. GOALS FOR A NEW STANDARD  

Steinberg began work on a new scoring application at the 

start of 2013, and quickly identified both the need for a 

new music font, and the lack of an adequate standard for 

the layout and design of such a font. 

Surveying a range of commercial, open source and 

freeware music fonts from a variety of sources, and 

                                                           
3 A term coined by Donald Byrd, Senior Scientist and Adjunct 

Associate Professor of Informatics at Indiana University. 
4 The original proposal is no longer available, but an archived 

version can be found at http://archive.is/PzkaT 
5 See http://www.unicode.org/charts/PDF/-

U1D100.pdf  

Copyright: © 2015 Daniel Spreadbury et al. This is an open-access 

article distributed under the terms of the Creative Commons 

Attribution License 3.0 Unported, which permits 

unrestricted use, distribution, and reproduction in any medium, provided 

the original author and source are credited. 
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considering the needs of the in-development application, 

provided the impetus to create a new standard, with the 

following goals identified from the outset: 

2.1 Extensible by design 

The existing Unicode Musical Symbols range is a fixed 

set of 220 characters in a fixed range of 256 code points 

at U+1D100–U+1D1FF. This range is not easily 

extensible, though of course it would be possible for one 

or more non-contiguous supplemental ranges to be added 

to future versions of Unicode. 

Sonata pre-dates the introduction of Unicode: in 

common with other PostScript Type 1 fonts of its age, it 

uses an 8-bit encoding that limits its repertoire of glyphs 

to a maximum of 256 within a single font. Fonts that 

broadly follow a Sonata-compatible layout are therefore 

likewise limited to a maximum of 256 glyphs, and as 

their developers have needed to further expand their 

repertoire of characters, they have unilaterally added 

separate fonts, with no agreement about which characters 

should be included at which code points. 

A new standard should be extensible by design, such 

that even if the repertoire of characters needs to expand, 

there is both a procedure for ratifying the inclusion of 

new characters into the standard, and a means for 

individual font designers or software developers to add 

glyphs for their own private use in a way that does not 

break the standard for other users. 

2.2 Take advantage of modern font technologies 

The development of the Unicode standard and the 

OpenType font specification, and their adoption by 

operating system, software, and font developers, are both 

enormously important: Unicode provides categorization 

and structure to the world’s language systems, while 

OpenType enables the development of more advanced 

fonts with effectively unlimited glyph repertoires and 

sophisticated glyph substitution and positioning features. 

A new standard should enable software developers and 

font designers to build software that takes advantage of 

these features, without tying the standard to a specific set 

of technologies, so that it is as broadly applicable and 

resistant to future obsolescence as is practical to achieve. 

2.3 Open license 

In order to minimize the number of obstacles for software 

developers and font designers to adopt the new standard, 

it should be free of onerous software licensing terms. 

A new standard should be released under a permissive, 

open license that both protects Steinberg’s copyright in 

the standard, but makes it free for anybody to use in 

whole or in part in any project, whether that project itself 

is made available on a commercial basis or under a 

permissive or free software license. 

Accordingly, Steinberg has released SMuFL under the 

MIT License,
6
 which is a permissive free software license 

that allows reuse within both proprietary and open source 

software. 

2.4 Practical and useful 

Although it is impossible to say with certainty why the 

Unicode Musical Symbols range has failed to gain 

support among software developers and font designers, it 

is reasonable to assume that the range did not sufficiently 

solve the existing problems with the ad hoc Sonata-

compatible approach, perhaps most crucially the lack of 

extensibility afforded by the limit of 220 characters, 

which represented only a very modest expansion of the 

176 characters present in Sonata. 

A new standard should not only be extensible, but 

should be developed with the practical needs of software 

developers and font designers as the top priority, 

including providing detailed technical guidelines on how 

to solve some of the issues inherent in representing music 

notation using a combination of glyphs drawn from music 

fonts and drawn primitive shapes (stroked lines, filled 

rectangles, curves, etc.). 

2.5 Facilitate easier interchange 

As existing music fonts have been developed in isolation 

by independent software developers and font developers, 

despite broad intent to make it possible for end users of 

scoring programs to use a variety of fonts, including 

those designed for other applications, in practice the level 

of compatibility between fonts and scoring programs is 

rather low. 

A comparison of the repertoire of glyphs in Sonata, 

Petrucci, and Opus shows that only 69 of 176 glyphs in 

Sonata are also present in both Petrucci and Opus; a 

further 38 glyphs are present in Sonata and Petrucci, but 

not Opus; and a further 5 glyphs are present in Petrucci 

and Opus, but not Sonata; a further 59 glyphs in Sonata 

are present in neither Opus nor Petrucci. 

Furthermore, there is no practical way for an end user 

to know in advance of attempting to use a different font 

whether or not a given range of characters is 

implemented in that font, and when transferring 

documents created in software between systems there is 

little guarantee that the software can translate the required 

glyph from one font to another. 

A new standard should improve the compatibility of 

music fonts between different systems by providing not 

only an agreed mapping of characters to specific code 

                                                           
6 See http://opensource.org/licenses/MIT 
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points, but also a means for font designers to describe 

programmatically the repertoire of characters 

implemented in a given font. 

2.6 Build community support 

The range of symbols used in Western music notation is 

so deep and broad that it is difficult for any individual 

person or small group to have sufficient knowledge to 

correctly identify and categorize the characters. 

Furthermore, without broad support among software 

developers and font designers, any new standard is 

destined to languish unused. 

A new standard should be developed in the open, 

inviting interested parties to contribute ideas and 

discussion to the development of the repertoire of 

characters, their categorization, and technical 

recommendations about font design, glyph metrics, and 

glyph registration. 

3. NON-GOALS FOR A NEW STANDARD 

At the outset of the project, it was determined that, in the 

short- to medium-term at least, targeting ratification of 

the new standard by the Unicode Consortium in order to 

broaden the range of musical symbols encoded by 

Unicode was not a goal of the project. Developing the 

standard independently, away from the more rigorous 

requirements of the proposal and review process, gives 

greater agility and faster iteration as new requirements 

emerge. 

Initially it was also determined that attempting to 

develop a set of recommendations for fonts to be used 

inline with text fonts in word processing or page layout 

software would be too much work to undertake right 

away, in addition to the core goal of developing 

recommendations for fonts to be used in specialized 

music notation software. However, after the launch of the 

new standard at the Music Encoding Conference in 

Mainz, Germany in May 2013, the members of the 

nascent community identified this as a high priority 

activity, and the development of guidelines for fonts to be 

used in text-based applications was added as a 

requirement for the first stable release of the new 

standard. 

4. WHAT IS SMUFL? 

The Standard Music Font Layout, or SMuFL 

(pronounced “smoofle”), provides both a standard way of 

mapping music symbols to the Private Use Area of 

Unicode’s Basic Multilingual Plane, and a detailed set of 

guidelines for how music fonts should be built. 

As a consequence of the joint effort of the community 

that has arisen around the development of the standard, it 

also provides a useful categorization of thousands of 

symbols used in Western music notation. 

4.1 Character repertoire and organization 

The initial public release of SMuFL, version 0.4, 

included around 800 characters. By the time of the 

release of version 1.0, in June 2014, the total number of 

characters included had grown to nearly 2400, organized 

into 104 groups. 

SMuFL makes use of the Private Use Area within 

Unicode’s Basic Multilingual Plane (code points from 

U+E000–U+F8FF). The Unicode standard includes three 

distinct Private Use Areas, which are not assigned 

characters by the Unicode Consortium so that they may 

be used by third parties to define their own characters 

without conflicting with Unicode Consortium 

assignments. 

SMuFL is a superset of the Unicode Musical Symbols 

range, and it is recommended that common characters are 

included both at code points in the Private Use Area as 

defined in SMuFL and in the Unicode Musical Symbols 

range. 

The groups of characters within SMuFL are based on 

the groupings defined by Perry Roland in the Unicode 

Musical Symbols range, but with finer granularity. There 

are currently 108 groups, proceeding roughly in order 

from least to most idiomatic, i.e. specific to particular 

instruments, types of music, or historical periods. The 

grouping has no significance other than acting as an 

attempt to provide an overview of the included 

characters. 

Groups are assigned code points in multiples of 16. 

Room for future expansion has, where possible, been left 

in each group, so code points are not contiguous. The 

code point of each character in SMuFL 1.0 is intended to 

be immutable, and likewise every character has a 

canonical name, also intended to be immutable. Since the 

release of SMuFL 1.0, a few additional characters have 

already been identified that should be added to groups 

that were already fully populated, and, in common with 

the approach taken by the Unicode Consortium, new 

supplemental groups have been added at the end of the 

list of existing groups to accommodate these additions. 

4.2 Inclusion criteria 

No formal criteria have been developed for whether or 

not a given character is suitable for inclusion in SMuFL. 

Members of the community make proposals for changes 

and additions to the repertoire of characters, giving rise to 

public discussion, and once consensus is reached, those 

changes are made in the next suitable revision. 

In general a character is accepted if it is already in 

widespread use: although composers and scholars invent 
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new symbols all the time, such a symbol can only be 

included in SMuFL if there is broad community support. 

4.3 Recommended and optional glyphs 

One of the aims of SMuFL is to make it as simple as 

possible for developers both of fonts and of scoring 

software to implement support for a wide range of 

musical symbols. Although modern font technologies 

such as OpenType enable a great deal of sophistication in 

automatic substitution features, applications that wish to 

use SMuFL-compliant fonts are not obliged to support 

advanced OpenType features. 

The basic requirements for the use of SMuFL-

compliant fonts are the ability to access characters by 

their Unicode code point, to measure glyphs, and to scale 

them (e.g. by drawing the font at different point sizes). If 

applications are able to access OpenType features such as 

stylistic sets and ligatures, then additional functionality 

may be enabled. 

However, all glyphs that can be accessed via OpenType 

features are also accessible via an explicit code point. For 

example, a stylistic alternate for the sharp accidental 

designed to have a clearer appearance when reproduced 

at a small size can be accessed as a stylistic alternate for 

the character accidentalSharp, but also by way of its 

explicit code point, which will be in the range U+F400–

U+F8FF. 

Because optional glyphs for ligatures, stylistic 

alternates, etc. are not required, and different font 

developers may choose to provide different sets (e.g. 

different sets of glyphs whose designs are optimized for 

drawing at different optical sizes), SMuFL does not make 

any specific recommendations for how these glyphs 

should be assigned explicit code points, except that they 

must be within the range U+F400–U+F8FF, which is 

reserved for this purpose and for any other private use 

required by font or application developers. 

In summary, recommended glyphs are encoded from 

U+E000, with a nominal upper limit of U+F3FF (a total 

of 5120 possible glyphs), while optional glyphs 

(ligatures, stylistic alternates, etc.) are encoded from 

U+F400, with a nominal upper limit of U+F8FF (a total 

of 1280 possible glyphs). 

In order for a font to be considered SMuFL-compliant, 

it should implement as many of the recommended glyphs 

as are appropriate for the intended use of the font, at the 

specified code points. Fonts need not implement every 

recommended glyph, and need not implement any 

optional glyphs, in order to be considered SMuFL-

compliant. 

4.4 SMuFL metadata 

To aid software developers in implementing SMuFL-

compliant fonts, three support files in JSON format [1] 

are available. 

glyphnames.json maps code points to canonical glyph 

names, which by convention use lower camel case, a 

convenient format for most programming languages. The 

file is keyed using the glyph names, with the SMuFL 

code point provided as the value for the codepoint key, 

and the Unicode Musical Symbols range code point (if 

applicable) provided as the value for the 

alternateCodepoint key. The description key contains 

the glyph’s description. 

classes.json groups glyphs together into classes, so that 

software developers can handle similar glyphs  (e.g. 

noteheads, clefs, flags, etc.) in a similar fashion.  Glyphs 

are listed within their classes using the names specified in 

glyphnames.json. Not all glyphs are contained within 

classes, and the same glyph can appear in multiple 

classes. 

ranges.json provides information about the way glyphs 

are presented in discrete groups in this specification. This 

file uses a unique identifier for each group as the primary 

key, and within each structure the description specifies 

the human-readable range name, glyphs is an array 

listing the canonical names of the glyphs contained 

within the group, and the range_start and range_end 

key/value pairs specify the first and last code point 

allocated to this range respectively. 

4.5 Font-specific metadata 

It is further recommended that SMuFL-compliant fonts 

also contain font-specific metadata JSON files. The 

metadata file allows the designer to provide information 

that cannot easily (or in some cases at all) be encoded 

within or retrieved from the font software itself, including 

recommendations for how to draw the elements of music 

notation not provided directly by the font itself (such as 

staff lines, barlines, hairpins, etc.) in a manner 

complementary to the design of the font, and important 

glyph-specific metrics, such as the precise coordinates at 

which a stem should connect to a notehead. 

Glyph names may be supplied either using their 

Unicode code point or their canonical glyph name (as 

defined in the glyphnames.json file). Measurements are 

specified in staff spaces, using floating point numbers to 

any desired level of precision. 

The only mandatory values are the font’s name and 

version number. All other key/value pairs are optional. 

The engravingDefaults structure contains key/value 

pairs defining recommended defaults for line widths etc.  

The glyphsWithAnchors structure contains a structure 

for each glyph for which metadata is supplied, with the 
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canonical glyph name or its Unicode code point as the 

key, and is discussed in more detail below.  

The glyphsWithAlternates structure contains a list of 

the glyphs in the font for which stylistic alternates are 

provided, together with their name and code point. 

Applications that cannot access advanced font features 

like OpenType stylistic alternates can instead determine 

the presence of an alternate for a given glyph, and its 

code point, using this data. 

The glyphBBoxes structure contains information about 

the actual bounding box for each glyph. The glyph 

bounding box is defined as the smallest rectangle that 

encloses every part of the glyph’s path, and is described 

as a pair of coordinates for the bottom-left (or southwest) 

and top-right (or northeast) corners of the rectangle, 

expressed staff spaces to any required degree of 

precision, relative to the glyph origin. 

The ligatures structure contains a list of ligatures 

defined in the font. Applications that cannot access 

advanced font features like OpenType ligatures can 

instead determine the presence of a ligature that joins 

together a number of recommended glyphs, and its code 

point, using this data. 

The sets structure contains a list of stylistic sets defined 

in the font. Applications that cannot access advanced font 

features like OpenType stylistic sets can instead 

determine the presence of sets in a font, the purpose of 

each set, and the name and code point of each glyph in 

each set, using this data. 

4.5.1 Example of how font-specific metadata is used 

Figure 1 shows how font-specific metadata may be used 

in conjunction with the conventions of glyph registration 

to construct two notes: an up-stem 16
th

 note 

(semiquaver), and a down-stem 32
nd

 (demisemiquaver). 

• The horizontal grey lines denote staff lines, for scale. 

• The dashed boxes show glyph bounding boxes, with 

the left-hand side of the box corresponding to x=0, while 

the horizontal lines bisecting the blue boxes show the 

origin for each glyph, i.e. y=0. 

• The shaded red boxes show the locations of the glyph 

attachment points, as specified in the font metadata JSON 

file. 

• The shaded area on the down-stem note shows the 

amount by which a stem of standard length (i.e. the 

unfilled portion of the stem) should be extended in order 

to ensure good on-screen appearance at all zoom levels. 

Note that the stemUpSE attachment point corresponds 

to the bottom right-hand (or south-east) corner of the 

stem, while stemDownNW corresponds to the top left-

hand (or north-west) corner of the stem. Likewise, for 

correct alignment, the flag glyphs must always be aligned 

precisely to the left-hand side of the stem, with the glyph 

origin positioned vertically at the end of the normal stem 

length. 

4.6 Glyph registration and metrics recommendations 

In addition to providing a standard approach to how 

musical symbols should be assigned to Unicode code 

points, SMuFL also aims to provide two sets of 

guidelines for the metrics and glyph registration, 

addressing the two most common use cases for fonts that 

contain musical symbols, i.e. use within dedicated 

scoring applications, and use within text-based 

applications (such as a word processors, desktop 

publishers, web pages, etc.). 

Since it is helpful for scoring applications that all 

symbols in a font be scaled relative to each other as if 

drawn on a staff of a particular size, and conversely it is 

helpful for musical symbols to be drawn in-line with text 

to be scaled relative to the letterforms with which the 

musical symbols are paired, in general a single font 

cannot address these two use cases: the required metrics 

and relative scaling of glyphs are incompatible. 

Therefore, it is recommended that font developers make 

clear whether a given font is intended for use by scoring 

applications or by text-based applications by appending 

“Text” to the name of the font intended for text-based 

applications; for example, “Bravura” is intended for use 

by scoring applications, and “Bravura Text” is intended 

for use by text-based applications (or indeed for mixing 

musical symbols with free text within a scoring 

application). 

The complete guidelines for key font metrics and glyph 

registration are too detailed to reproduce here, so they can 

be read in full in the SMuFL specification.
7
 Those 

guidelines that apply to the font as a whole, rather than 

specific groups of glyphs, are reproduced below. 

                                                           
7 See http://www.smufl.org/download 

Figure 1 : Diagram illustrating how points defined in font-specific 

metadata can be used by scoring software. 
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4.6.1 Guidelines for fonts for scoring applications 

Dividing the em in four provides an analogue for a five-

line staff: if a font uses 1000 upm (design units per em), 

as is conventional for a PostScript font, one staff space is 

equal to 250 design units; if a font uses 2048 upm, as is 

conventional for a TrueType font, one staff space is equal 

to 512 design units. 

The origin (bottom left corner of the em square, i.e. 

x = 0 and y = 0 in font design space) therefore represents 

the middle of the bottom staff line of a nominal five-line 

staff, and y = 1 em represents the middle of the top staff 

line of that same five-line staff. 

All glyphs should be drawn at a scale consistent with 

the key measurement that one staff space = 0.25 em. 

Unless otherwise stated, all glyphs shall be horizontally 

registered so that their leftmost point coincides with 

x = 0. 

Unless otherwise stated, all glyphs shall have zero-

width side bearings, i.e. no blank space to the left or right 

of the glyph. 

4.6.2 Guidelines for fonts for text-based applications 

Upper case letters in a text font do not typically occupy 

the whole height of the em square: instead, they typically 

occupy around 75–80% of the height of the em square, 

with the key metrics for ascender and caps height both 

falling within this range. In order for the line spacing of a 

font containing music characters to be equivalent to that 

of a text font, its key metrics must match, i.e. the 

ascender, caps height and descender must be very similar. 

Glyphs with unusually large ascenders and descenders 

(such as notes of short duration with multiple flags) 

should not be scaled individually in order to fit within the 

ascender height, as they will not then fit with the other 

glyphs at the same point size; however, the behavior of 

glyphs that extend beyond the font’s ascender and 

descender metrics is highly variable between different 

applications. 

Leading on from the premise that a SMuFL-compliant 

font for text-based applications should use metrics 

compatible with regular text fonts, specific guidelines are 

as follows: 

Dividing 80% of the height of the em in four provides 

an analogue for a five-line staff. If a font uses 1000 upm 

(design units per em), as is conventional for a PostScript 

font, the height of a five-line staff is 800 design units, or 

0.8em; therefore, one staff space height is 200 design 

units, or 0.2 em. If a font uses 2048 upm, as is 

conventional for a TrueType font, the height of a five-line 

staff is 1640 design units, and one staff space is 410 

design units. 

The origin (bottom left corner of the em square, i.e. 

x = 0 and y = 0 in font design space) therefore represents 

the middle of the bottom staff line of a nominal five-line 

staff, and y = 0.8 em represents the middle of the top staff 

line of that same five-line staff. 

Unless otherwise stated, all glyphs should be drawn at a 

scale consistent with the key measurement that one staff 

space = 0.2 em. 

Unless otherwise stated, all glyphs shall be horizontally 

registered so that their leftmost point coincides with x = 

0. 

Unless otherwise stated, all glyphs shall have zero-

width side bearings, i.e. no blank space to the left or right 

of the glyph. 

Staff line and leger line glyphs should have an advance 

width of zero, so that other glyphs can be drawn on top of 

them easily. 

5. REFERENCE FONT 

To demonstrate all of the key concepts of SMuFL, a 

reference font has been developed. The font family is 

called Bravura, and consists of two fonts: Bravura, which 

is intended for use in scoring applications; and Bravura 

Text, which is intended for use in text-based applications. 

The word Bravura comes from the Italian word for 

“cleverness”, and also, of course, has a meaning in music, 

referring to a virtuosic passage or performance; both of 

these associations are quite apt for the font. From an 

aesthetic perspective, Bravura is somewhat bolder than 

most other music fonts, with few sharp corners on any of 

the glyphs, mimicking the appearance of traditionally-

printed music, where ink fills in slightly around the edges 

of symbols, and the metal punches used in plate 

engraving lose their sharp edges after many uses. A short 

musical example set in Bravura is shown below (Figure 

2). 

Steinberg has released the Bravura fonts under the SIL 

Open Font License [2]. Bravura is free to download, and 

can be used for any purpose, including bundling it with 

other software, embedding it in documents, or even using 

it as the basis for a new font. The only limitations placed 

on its use are that: it cannot be sold on its own; any 

derivative font cannot be called “Bravura” or contain 

“Bravura” in its name; and any derivative font must be 

released under the same permissive license as Bravura 

itself. 

Figure 2. Example of the Bravura font. 
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6. IMPLEMENTATION CASE STUDY: THE 

NOVEMBER FONT 

Unlike designers of text fonts, music font designers have 

historically had great freedom, which has been both a 

blessing and a curse. Before SMuFL, while there was 

some common sense about what the kernel of music 

symbols should be (clefs, noteheads, accidentals, etc.), 

the actual position of characters in the font, their naming 

(though there was generally none provided), and the 

addition of rarer symbols beyond the basic set was left up 

to the designer’s imagination and to some specific 

requirements of the target music notation software. 

Things are changing for the font designer with SMuFL 

as its main goal is to address the issues of symbol 

position, naming and repertoire in a universal way. 

SMuFL is a great source of inspiration for the designer – 

surely one of its benefits – but it also imposes new 

constraints and requirements, and leads to a more 

demanding design workflow. 

6.1 The November Font – Summary 

The November music font was designed in 1999 

specifically for the software Finale, and its repertoire of 

330 characters, spread over two font files, ranging 

through historical periods spanning the Renaissance to 

the 20th century avant garde, was considered large at that 

time. Before SMuFL, the extension of November’s 

repertoire had often been considered, but it would have 

most likely led to the multiplication of font files, as had 

occurred with, for example, Opus or Maestro, which the 

designer was reluctant to do, and consequently only small 

updates had been made over the years. 

6.2 Moving to SMuFL 

The emergence of SMuFL back in 2013 was a great 

opportunity for November to make a bigger jump: one 

single font file with a greatly extended range of 

characters, wrapped in OpenType, and complying with a 

new standard. 

By switching to SMuFL, the font designer, who 

generally is a single individual, must be ready to face the 

temptation of adding more and more symbols, making the 

development process potentially much longer.
8
 And not 

only must the designer deal with thousands of vectors and 

points, but also to some extent he or she must turn into a 

programmer. Python scripting, for instance, can be a 

great ally for generating the required metadata 

automatically; this was used extensively for the 

                                                           
8 Somehow the designer could not resist this temptation with 

November 2.0 in any case! 

November 2.0 project.
9
 For SMuFL-scaled font projects, 

it is impractical to create those metadata manually, and, 

to make the design workflow even better, one can invent 

sophisticated tools, for instance to compare the font being 

crafted with the reference font, Bravura. All of these 

considerations change the font development workflow 

deeply. 

November 2.0, released in February 2015, now has over 

1100 characters, with about 80% of them coming from 

the SMuFL specifications, and is the first commercially-

released font to comply with SMuFL. A short musical 

example set in November 2.0 is shown below (Figure 3). 

6.3 Compatibility with existing scoring software 

Unlike the font Bravura, which for now has largely 

served as a reference font for SMuFL, commercial 

SMuFL-compliant music fonts are intended to be used in 

existing music notation programs. 

At the present time, no currently available notation 

software officially directly supports SMuFL, though such 

support is likely forthcoming in the future. In the short- to 

medium-term, therefore, a SMuFL-compliant font like 

November 2.0 must still be packaged specifically for 

each notation program. The SMuFL metadata, for 

instance, is currently not consumed at all by any of the 

major existing applications (including Finale, Sibelius, 

and LilyPond), and idiosyncratic component files
10

 must 

be supplied along with the font in order to ensure a 

smooth user experience. 

But in a positive way, the claim of SMuFL-compliance 

for a popular music font like November can potentially 

help serve as an impetus for the developers of music 

notation software to support SMuFL more quickly. 

7. SUPPORT FOR SMUFL 

SMuFL 1.0 was released in June 2014. The standard 

remains under active development, and it is hoped that an 

increasing number of software developers and font 

designers will adopt it for their products. Below is a 

                                                           
9 November 2.0 was made with the open source program FontForge 

(http://fontforge.github.io/), which has a powerful Python 

interface. 
10 Finale’s Font Annotations and Libraries, Sibelius’s House Styles, 

LilyPond’s snippets… 

Figure 3. Example of the November 2.0 font. 
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summary of the projects that have been publicly 

announced that are making use of SMuFL. 

7.1 Software with SMuFL support 

Steinberg’s forthcoming scoring application will support 

SMuFL-compliant fonts. 

The open source scoring application MuseScore 

supports SMuFL-compliant fonts in version 2.0, which is 

currently in beta testing.
11

 

The web browser-based interactive sheet music and 

guitar tablature software Soundslice uses SMuFL and 

Bravura for its music notation display.
12

 

The open source Music Encoding Initiative (MEI) 

rendering software, Verovio, also uses SMuFL for its 

music notation display.
13

 

The commercial scoring application Finale, from 

MakeMusic Inc., will support SMuFL in a future 

version
14

. MakeMusic’s MusicXML import/export plug-

in for Finale, Dolet, supports SMuFL as of version 6.5.
15

 

The commercial digital audio workstation application 

Logic Pro X, from Apple Inc., supports SMuFL and is 

compatible with Bravura from version 10.1.
16

 

7.2 Fonts with SMuFL support 

In addition to the reference font Bravura, other SMuFL-

compliant music fonts are beginning to be available. 

MuseScore 2.0 includes SMuFL-compliant versions of 

Emmentaler and Gootville, based respectively on the 

Emmentaler and Gonville fonts designed for use with 

LilyPond. 

Verovio includes a SMuFL-compliant font called 

Leipzig. 

Robert Piéchaud has designed an updated version of his 

November font family that is SMuFL-compliant
17

. 

8. FUTURE DIRECTIONS 

Although SMuFL has reached version 1.0 and contains 

an enormous range of characters, it remains under active 

development, and further minor revisions are expected 

for the indefinite future as new characters are identified, 

proposed, and accepted for inclusion, and as the need for 

new or improved metadata is identified. 

                                                           
11 See http://musescore.org/en/node/30866 
12 See http://www.soundslice.com  
13 See https://rism-

ch.github.io/verovio/smufl.xhtml?font=Leipzig 
14 See http://www.sibeliusblog.com/news/finale-

2014d-and-beyond-a-discussion-with-makemusic/ 
15 See http://www.musicxml.com/dolet-6-5-finale-

plugin-now-available/ 
16 See http://support.apple.com/en-us/HT203718 
17 See http://www.klemm-

music.de/notation/november/index.php 

It is also expected that MusicXML, a widely-used 

format for the interchange of music notation data between 

software of various kinds, will develop closer ties to 

SMuFL in its next major revision, version 4.0, which may 

necessitate some changes to SMuFL. 

9. CONCLUSIONS 

In this paper, a new standard for the layout of musical 

symbols into digital fonts has been outlined. The new 

standard, called the Standard Music Font Layout 

(SMuFL) is appropriate for modern technologies such as 

Unicode and OpenType. Through community-driven 

development, the standard has reached version 1.0 and 

includes nearly 2400 characters, categorized into 104 

groups, and is poised for future expansion as necessary. 

A reference font family, Bravura, has been developed to 

promote the adoption of the new standard. Both SMuFL 

and Bravura are available under permissive free software 

licenses, and are already being adopted by software 

developers and font designers. 
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ABSTRACT

In this paper we present a case study for the creation of an
open system for graphically developing symbolic notation
which can function both as professional quality print or
online documentation, as well as a computer performable
score in electro-acoustic music and other computer aided
contexts. Leveraging Adobe Illustrator’s graphic design
tools and support for the Scalable Vector Graphics (SVG)
file format, the study shows that SVG, being based on Ex-
tensible Markup Language (XML), can be similarly used
as a tree-based container for score information. In the
study, OpenSoundControl (OSC) serves as middleware used
to interpret the SVG representation and finally realize this
interpretation in the intended media context (electronic mu-
sic, spatial audio, sound art, kinetic art, video, etc.). The
paper discusses how this interpretive layer is made pos-
sible through the separation of visual representation from
the act of rendering, and describes details of the current
implementation, and outlines future developments for the
project.

1. BACKGROUND

The twentieth century was a time full of notational exper-
imentation and development. Due to the explosion of per-
formance technologies, new materials entered the scope of
composition that previously were considered outside the
realm of “music.” [1] Works dealing with complex rhyth-
mic and microtonal inflections, chance, and stochastic pro-
cesses each exposed new compositional parameters that
where not easily addressed by traditional music notation.
Developments in purely mechanical music production such
as piano rolls, automata, optical synthesizers, and eventu-
ally digital audio workstations allowed composers to pre-

Copyright: c©2015 Rama Gottfried et al. This is an open-access

article distributed under the terms of the Creative Commons

Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

cisely sculpt the resulting sounds by manipulating the many
parameters of sound creation. [2, 3]

In some works, such as Stockhausen’s Plus-Minus, Feld-
man’s Projection series, Riley’s In C, and others 1 , the
score is designed as a description of structural processes
which require the performer to interpret the instructions
and create their own performance score. In other works,
such as Cardew’s Treatise, the score contains no instruc-
tion, but only graphic symbols to be interpreted by the
performer. Some, like Lachenmann, began to draw from
tablature notation where the score describes the actions of
the performers on their instruments rather than the results,
while others like Kagel began to compose physical spatial
movements. Similarly, in the dance world choreographers
were composing movements based on the work of Laban
and others [4].

Key to all of the above works is that they were all con-
ceived and printed on paper and were designed to be read
and performed by humans. Thus, the symbolic informa-
tion contained in them is expressive to a human intelli-
gence, who then performs their interpretation with an in-
strument or physical action. In the fields of electronic mu-
sic, kinetic, video, and other types of mechanical and dig-
ital arts, the output of the instrument is via an electron-
ically mediated system, or rendering, which often is un-
notated [5]. With the ubiquity of powerful personal com-
puters we now have immense rendering capabilities at our
fingertips, along with many specialized tools to control
these various media. These systems provide new ways for
artists to incorporate many new types of media into their
practice that were not previously available, however there
remains a dearth of symbolic notation tools to compose
with these new medias while still providing the richness
of symbolic representation designed to be interpreted by a
human intelligence.

The following study looks at what a more open frame-
work for notation might look like for composing and per-
forming scores designed for new and existing types of ren-
dering contexts.

1 Including Mozart’s Musikalisches Würfelspiel
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Figure 1. Screenshot from Max for Live environment showing breakpoint functions used to control flocking behaviors of virtual sources
in a piece using spatial audio. On the right side of the screen are OpenGL visualization of point locations generated by the many
parameters contained within the algorithm. In a more symbolic notation environment, the parameters of the resulting rendering would
be representational of their function.

2. CONTEXTUAL EXAMPLE:
COMPOSING FOR SPATIAL AUDIO SYSTEMS

Mixed works for live acoustic instruments and real-time
spatial audio rendering systems present significant chal-
lenges for relating the graphic visualizations of spatial pro-
cessing with the traditional musical notations used in a
score.

For example, Ircam’s “Spat” 2 MaxMSP 3 library for spa-
tial audio processing comes equipped with several useful
forms of representation for visualizing spatial processing.
The simplest visualization tools in Spat display the place-
ment of a point source in two dimensions, viewed from
either “top” (XY) or “front” (XZ) vantage points. The 2D
representation makes the location of points very clear and
minimizes occlusion issues. For 3D visualization Spat’s
viewer may be easily integrated with OpenGL tools in Max’s
Jitter library. These are valuable methods for visualizing
and developing a conceptual basis for spatial design, but
as interactive graphic user interfaces they are time-variant,
and so do not provide a clear mechanism for relating spa-
tial processing with score notated actions to be performed
by the instrumentalist.

Part of this problem is that there is no widely adopted no-
tation system for incorporating spatial movement within a
musical score. Interactive UIs are an intuitive way to ex-
periment and learn the expressive capabilities in new me-
dia contexts, however when seeking to compose temporal
structures, time must be represented as well. Traditional
music notation symbolically represents the articulation of

2 http://forumnet.ircam.fr/product/spat/
3 https://cycling74.com

sound over metric time, and composers trained in this tradi-
tion learn to silently hear through the spatial organization
of symbols on paper. Similarly, we might develop inner
spatial perception by drawing from a long history of dance
notation to describe spatial movement [4], which could
be used to control a rendering system like Spat. What is
needed is a symbolic graphic environment to explore ways
of composing for these new types of media contexts, we
have many new tools for controlling media, but very few
ways of utilizing symbolic notation practice in these con-
texts.

2.1 Perceptual representations and breakpoint
functions

Composition for spatial processing systems typically oc-
curs in media programming environments or digital audio
workstations, where the compositional approach must be
contextualized within the types of controls provided by the
software tools. As with interactive UIs, real-time process-
ing is time-variant, and so the control parameters of a given
process need to be contextualized in time if a score is de-
sired 4 . This type of system has a natural affordance to-
wards the triggers and breakpoint functions, which are ex-
tremely useful for fine control over the movement of one
value (Y) over time (X).

This 2D representation, however, requires our spatial per-
ception to be fragmented into three separate parameters
(X-Y-Z or azimuth-elevation-distance). Working in this
perforated situation the user must compose each parame-

4 Keeping in mind that the score does not necessarily need to describe
all events as “fixed” in time.
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ter individually, so there is a natural tendency to focus on a
smaller number of dimensions (e.g. a tendency to focus on
azimuth over distance). This computationally friendly rep-
resentation comes at the expense of a more intuitive data
manipulation, which is always one step removed in uni-
variate control over multi-dimensional spaces. Figure 1
shows an example of this, where many lines of automation
are composed to describe the spatial behavior of the three
dimensional space shown on the right.

The strength of a well-developed notation system is in the
way layers of contextual meanings are signaled by a com-
bination of symbols. For example, a staccato dot above a
note head is immediately heard and physically felt in the
mind of a musician. There is an interpretive act that ac-
companies a notation symbol that is bound up in a cul-
tural history of practice and experience. This interpretive
act may also be present for electronic musicians who have
worked with breakpoint functions for many years, how-
ever, the breakpoint function is fundamentally a concrete
control over a single parameter as a function of time, where
a symbolic representation is an aggregate of many parame-
ters, functioning through abstract, contextual implications
for how it should be interpreted.

In order to take advantage of the expressivity contained
in symbolic notation into other media contexts, we need
a way to experiment with different notational systems and
strategies outside of music notation.

3. WHY NOT USE MUSIC NOTATION
SOFTWARE?

Software has built-in affordances that simplify certain uses,
while making other approaches more difficult [6]. As mu-
sic notation has become increasingly digitalized over the
last 20 years, software applications designed for music no-
tation have also become increasingly specialized tools fo-
cusing on a specific context at the exclusion of others. Mu-
sic notation software tools expose the author(s)’s idea of
what “music” is, through the types of functions they pro-
vide their users.

The most used music notation programs, Finale 5 , Lily-
Pond 6 , NoteAbility 7 , and Sibelius 8 , all target the pro-
duction of traditional music scores, and also provide mech-
anisms for MIDI playback of these scores. Many of these
applications provide APIs for manipulating the musical pa-

5 http://www.finalemusic.com
6 http://www.lilypond.org
7 http://debussy.music.ubc.ca/NoteAbility – note:

NoteAbility provides some support for communication with MaxMSP
through the use of breakpoint functions and qlist max messages, as well
as an option to export to Antescofo (http://repmus.ircam.fr/
antescofo) score following format. This is useful for traditional mu-
sic, but does not solve the problem of symbolic notation of the processes
occurring in Max.

8 http://www.sibelius.com

rameters computationally, in particular LilyPond’s Scheme
based scripting language.

As we have been discussing, traditional notation was not
designed to handle sound’s relationship to advanced instru-
mental techniques, spatial audio, dance, installation art,
and so on. Most traditional notation software has pre-
defined interpretations of the symbolic information con-
tained in the score, a prime example being the ubiquitous
MusicXML 9 format, which is designed specifically for
“music,” and so does not provide an optimal encoding for
symbolic notation for contexts traditionally thought of as
outside “music.” While most of the above musical notation
programs do allow the user to create custom symbols, the
user is bound to an underlying assumption that the score
is either to be read only by humans or to be performed as
MIDI within a specifically musical context.

Computer aided composition tools such as Abjad 10 , Bach 11 ,
INScore 12 , MaxScore 13 , OpenMusic 14 , and PWGL 15 ,
provide environments for algorithmically generating musi-
cal scores, as well as providing connectivity to the types of
new media outputs mentioned above. However, these tools
rely on text input or visual programming, requiring the
artist to formalize their thought process to function within
the confines of a computational structure. In some cases
basic drawing tools are available, however they are limited
in flexibility.

Other experimental notation programs (e.g. GRM’s Acous-
mographe [7], IanniX 16 , MaxScore’s Picster 17 , Pure Data’s
Data Structures [8], etc.) provide new ways of perform-
ing graphic information, but they also contain symbolic
limitations, which are not found in a graphic design en-
vironment, either through a forced method of playback, or
through a limitation of graphic flexibility. Thus, at the mo-
ment, purely graphic design tools seem to provide a more
flexible option for developing – and composing with – ap-
propriate notation systems. For this reason, many contem-
porary composers use Adobe Illustrator for creating their
scores.

The UPIC (Unit Polyagogique Informatique CEMAMu)
project was one of the first to connect the act of human
drafting with digital sound resources [9]. This integration
of the drawing gesture is related to the working method
in discussion here, the design of the UPIC was however
very much tied to specific rendering contexts (amplitude

9 http://www.musicxml.com
10 http://abjad.mbrsi.org
11 http://www.bachproject.net
12 http://inscore.sourceforge.net
13 http://www.computermusicnotation.com
14 http://repmus.ircam.fr/openmusic/home
15 http://www2.siba.fi/PWGL
16 http://www.iannix.org
17 http://www.computermusicnotation.com/?page_

id=314
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Figure 2. An example of using Adobe Illustrator’s grouping
mechanism to create a hierarchy of graphic data

envelopes, waveforms, etc.) and so required specific kinds
of symbolic composition, which make it not extendable to
other types of interpretation.

3.1 Sketching and babbling

The recent MusInk [10] and InkSplorer [11] projects have
shown that Livescribe 18 pen technology may also be a
way to connect symbolic thinking on paper with digital
rendering capabilities. The MusInk project also provides
the capability to assign a type to an arbitrary symbol, which
is closely related to the present study, however since these
Livescribe projects are designed for paper, they forgo some
of the possibilities offered by graphic design environments.
These studies point to the importance of sketching in de-
veloping new graphic ideas.

Sketches are by definition incomplete, and provide the
mind with an image to reflect on and continually refine
through iteration [12]. David Wessel describes this type
of enactive engagement in his discussion of babbling as a
method for free experimentation in sensory-motor devel-
opment in language and instrument learning, leading to-
wards the development of a “human-instrument symbio-
sis” [13]. Such a symbiosis should also be possible with
symbolic thought and computer controlled rendering sys-
tems.

3.2 Performing digital graphic scores

Graphic design applications like Adobe Illustrator, InkScape,
OmniGraffle are created to have the basic affordances of a
drafting table: a piece of paper, pen, stencils, and ruler –
with the end goal of creating publication ready documents.
There are no built-in musical functions, no button for trans-
position, no MIDI playback, etc. What these applications
provide are the basic tools for visually creating whatever
it is that you want to draw, generally in two dimensions.
The user is left to decide what the meaning of the graphics
might be.

Composers who choose to work in graphic design pro-
grams rather than music notation programs are silently stat-
ing that they do not expect to be able to render their score
with the computer in the way that a typical musical nota-
tion program will have built in MIDI playback. Rather, it

18 http://www.livescribe.com

is implied that they accept that due to software constraints
their work is graphic, and either meant to be performed
only by humans who will be able to interpret the score,
or that the score is a descriptive notation of electronic re-
sults rather than proscriptive notation of how to perform
the material. However this does not need to be the case.
As a preliminary study implementation, the SVG output of
Illustrator was used as a container for performable graphic
information, leveraging Illustrator’s layer panel as a con-
trol for hierarchical grouping.

4. IMPLEMENTATION

Scalable Vector Graphic (SVG) 19 is an XML-based open
standard developed by the World Wide Web Consortium
(W3C) for two dimensional graphics. In addition to being
widely supported in software applications, the SVG Stan-
dard provides several key features that make it an attractive
solution for digital graphic notation: (1) it is human read-
able which makes it easy to open an SVG file in a text edi-
tor and understand how the data is structured; (2) the SVG
format provides a palette of primitive vector shapes that are
the raw building blocks for most notations (and also pro-
vides tags for adding further types); (3) inheriting XML’s
tree structure model, SVG provides standardized grouping
and layer tags allowing users to create custom hierarchies
of graphic objects; and (4) the header for SVG files in-
cludes the canvas information for contextualizing the con-
tent of the file.

In this paper, we propose replacing the graphics renderer
with a new type of rendering interpretation, be it sonic,
spatial, kinetic, or any other possible output type. Thought
of this way, the SVG file functions as hierarchical input
data, to be rendered, or performed by an electronic instru-
ment. In our implementation, OpenSoundControl (OSC)
[14] serves as a transcoding layer used for processing an
interpretation of the SVG file structure.

4.1 SVG→ Odot→ Performance

As a first test to interpret and perform the SVG score within
the Max environment, the LibXML2 20 library was used to
parse the SVG file created in Adobe Illustrator (figure 2),
and convert the SVG tree (figure 3), into an OSC bundle
(figure 4). For convenience, this was implemented in C
and put in a Max object called “o.svg”. The SVG graphic
data was then reformatted, and interpreted for performance
utilizing the “odot” OSC expression language developed at
CNMAT over the last few years [15].

Based on the OSC protocol, CNMAT’s new odot library
provides tools for handing OSC bundles as time-synchronized

19 SVG Standard: http://www.w3.org/TR/SVG
20 http://xmlsoft.org
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Figure 3. The contents of the SVG file, showing the hierarchical graphic information designed in Figure 2.

Figure 4. The contents of the SVG file designed in Figure 2,
transcoded to Odot in the MaxMSP programming environment.

hierarchical data structures within data-flow programming
environments like Max, Pure Data (Pd) 21 , and NodeRed 22 .
Through odot’s expression language, the OSC bundle be-
comes a local scope for time-synchronized variables in which
functions may be applied referencing the named contents
of the bundle [16]. Thus, by transcoding the SVG file con-
tents into an OSC bundle, it is possible to process the data
in Max/Pd, interpreting the values intended for graphic
rendering as control parameters for synthesis, spatializa-
tion, and any other parameter controllable with the com-
puter.

The graphic content and grouping relations within an SVG
file are described by the organization of XML elements,
and graphic primitives as specified by the SVG Standard.
For example, a group of SVG elements might look like
this:
<g id="note-duration-event">

<circle id="notehead" cx="100" cy="300" r="3.76"/>

<line id="duration" fill="none" stroke="#000000" stroke-width=

"3" stroke-miterlimit="10" x1="100" y1="300" x2="200" y2=

"300"/>

</g>

Each SVG element follows a similar structure, the ele-
ment tag name is followed by a list of attributes to the

21 http://puredata.info
22 http://nodered.org

element. The <g> tag indicates a group which is closed
by the </g> tag, and has an id attribute with the value
"note-duration-event". The o.svg object creates
an OSC bundle, mirroring the structure of the SVG file,
and creating OSC addresses for each attribute name of a
given SVG element, using the id attribute as the element
name for example:
/note_duration_event/notehead/type : "circle",

/note_duration_event/notehead/cx : 100,

/note_duration_event/notehead/cy : 300,

/note_duration_event/notehead/r : 3.76,

...

After transcoding the SVG file into OSC, the SVG data
may be interpreted, and performed in Max through the odot
library, allowing us to sort and iterate over the items, and
to apply interpretive functions (figure 5).

4.2 Grouping strategies

With the transcoding from SVG to OSC in place it be-
comes possible to begin composing within a graphic de-
sign program in a way that facilitates the interpretation and
performance downstream in OSC. Using the id attribute to
identify groups and graphic objects, it is then possible to
use the SVG tree structure as a framework for developing
grammars which can be used later to interpret the graphic
information for the generation of control parameters.

Taking traditional musical notation as a starting point, a
logical structural design to facilitate rendering might be
something like the one illustrated in figure 6. With the root
<svg> tag understood as the global container for a full
score, the next largest container would be the page, fol-
lowed by a system which might contain many instrument
staves (or other output types), each with their own staff
and clef. Within the individual staff group, there might be
graphic information providing the bounds of the staff (e.g.
lines marking different qualities within the vertical range
of the staff as described by the clef; where the X dimension
usually (but not necessarily) representing time). Within
this grammar structure, the bounds of the staff provide a
context for interpreting event objects contained within the
staff group. Further, each event object grouping may con-
tain any number of graphic objects. For example a note-
duration-event might contain a shape identified as a note-
head, with other graphic objects representing the event’s
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Figure 5. Example of storing interpretations of graphic information contained in the SVG file in Odot lambda functions. Here, the
function describes a process of interpretation where the x1 value indicates the start time, scaled to a given time constant, and the duration
is the horizontal span of the object.

page

stave

system

clef sta� bounds

sta� event objects

note-duration-event

note-head-shape onset marker duration-line other parameters . . .

Figure 6. Example namespace hierarchy for identifying score
elements. Event object could be any user defined graphic symbol
(e.g. a circle, line, paths, gradients, etc.).

onset, duration, and any other parameters.
Figure 7 shows a potential expansion of the note-duration-

event object to include with a second frame-staff placed
above the pitch-staff used to notate the spatial trajectory of
the sound source in a 2D frame. In this example, a dot-
ted vertical line identified as a stem is used to coordinate
the beginning of the trajectory with the beginning of a col
legno battuto jeté glissando, with a duration indicated by
the length of the beam line identified as duration. This
type of trajectory is the simplest type of spatial processing,
in cases with more complex treatments, such as spherical
harmonic manipulation, other types of notation would be
more appropriate.

5. CRITIQUE AND FUTURE WORK

The initial results of the work are encouraging, however,
there are many areas that could be developed further. The
study shows that it is possible to increase the rendering
context flexibility by separating the score editing environ-
ment from pre-conceived ideas about how the score might
be interpreted or rendered. The flip-side to the current
implementation which uses only the odot/OSC expression
language for parsing the assigned meaning of the notation,

Figure 7. A more developed example showing a 2D trajectory
in frame notation in Adobe Illustrator. The hierarchy structure is
shown on the right side.

is that while the possibilities of the system are extremely
large, this flexibility comes at the price of the parsing pro-
gramming that must be written to interpret and perform
the score. For example, if a user wants to also use tradi-
tional musical notation formatting rules, the entire mecha-
nism for traditional score interpretation must be built using
the odot expression language. As daunting as this might
sound, the symbolic flexibility of the graphic design envi-
ronment plus the many rendering media accessible through
OSC may make the development of multiple rendering sys-
tems worth the effort.

Illustrator’s editing environment has been very well de-
veloped for many years to become the standard for graphic
design, which in addition to extensive support for print out-
put, provides a large number graphic functions that can
be leveraged for temporal media composition. However,
since Illustrator is designed for graphic art not “renderable
scores,” there are noticeable limitations on the amount of
data that can be contained in a graphics file before it begins
to effect the application’s responsiveness. This eventually
points to the fact that a specialized tool for notation might
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indeed be useful, providing a database and Model View
Controller (MVC) architecture for interacting with score
data.

Adobe’s recently announced support for Node.js 23 opens
up several new options for working within the Illustrator
application. For example, with odot’s SWIG 24 based JS
bindings, a Node plug-in could be created to stream OSC
score data directly from Illustrator without the need to save
the file to disk and reload it with the o.svg object. With the
addition of Node as a plug-in backend this means that Pa-
per.js 25 could be used to create custom interactive GUIs
for handling data. Paper.js is developed by the same team
who wrote Scriptographer 26 which was a powerful JS based
drawing tool building suite for Illustrator, and was one of
the initial tools for an earlier version of our study. Un-
fortunately, Adobe drastically changed their plugin design
in Illustrator CS6, which broke Scriptographer. This is an
important point to be considered for any future work in
the present study, and is one indicator that possibly an in-
dependent design environment might be a more reliable
long-term solution. A future iteration of the study might
be in the form of a Node and Paper.js based editor with a
stripped-down toolkit for symbolic graphic notation. The
Paper.js front-end would allow users to easily create their
own interactive tools, and either export a rendering of the
score to SVG for printing with a program like Illustrator, or
the score could be streamed via odot/SWIG. There is some
possibility that INScore’s V8 27 integration might provide
a suitable platform for these developments, this would also
allow the editor to take advantage of INScore’s MVC de-
sign, and traditional notation tools.

Other improvements might include a more intuitive sys-
tem for defining meaning for symbols. In the process of
sketching and developing a notation, it was time consum-
ing to constantly keep objects nicely grouped and labeled
using Illustrator’s layer and grouping tools. This issue can
be mitigated thought the use of search algorithms to auto-
detect symbol patterns (i.e. containing similar types of
graphic objects, gestures, etc.) which would allow the artist
to later apply semantic structuring rule to different mem-
bers of these symbolic groupings.

6. CONCLUSION

The authoring of data in computer music systems is pre-
dominately done through graphical representations of uni-
variate functions, whereas symbolic notation systems like

23 http://www.adobe.com/devnet/
cs-extension-builder/articles/
extend-adobe-cc-2014-apps.html

24 http://www.swig.org
25 http://paperjs.org
26 http://scriptographer.org
27 https://code.google.com/p/v8

music notation are aggregate and contextual. A symbol in
a notation system is given meaning through the interpre-
tation of a human or computerized intelligence based on
contextual understanding, for example the nature of a stac-
cato string articulation is different for different dynamic
ranges. Complex rendering systems incorporating digital
signal processing and/or other electronic media often have
a large number of parameters that artists wish to control
expressively. Due to the affordances of the programming
environments in which these pieces are created, there is
typically a focus on control of many single parameters.
However, the symbolic representation of information such
as spatial location becomes fragmented in these systems,
forcing a point in space to be represented with three sepa-
rate coordinates, which in many ways obscures its percep-
tual simplicity.

The SVG format provides a useful method for defining
meanings of symbols leveraging Illustrator’s grouping and
layering tools, while the graphic editing environment pro-
vided by graphic design programs like Illustrator provide a
flexible vector graphic drafting environment for symbolic
experimentation. Since Illustrator was designed without
musical applications in mind, there are no pre-conceived
playback limitations based on the application developer’s
idea of what “music” is, or how graphic symbols on a page
should be organized. This lack of meaning leaves room
for the user to sketch and experiment, as well as requiring
extra effort to create meaning through an interpretive al-
gorithm if the score is meant to be performed by the com-
puter. Transcoding SVG format into OSC facilitates the
interpretation of notation through the use of the odot ex-
pression language in the Max media programming envi-
ronment, providing digital artists a mechanism to perform
graphic symbolic notation with any electronic media ac-
cessible with Max, Pd, or any other application that can
interpret OSC.

Preliminary work on developing an interpretation and per-
formance system for notation stored in SVG format has
proven feasible, however there is still significant work needed
to bring the system to a point where it would be compet-
itive with existing rendering systems that are specifically
designed for a given medium. On the other hand the open-
ness of the SVG format, combined with its compatibility
with OSC points towards a myriad of new ways to expres-
sively controlling new media formats with symbolic no-
tation. Looking towards the future, the above plans for a
new symbolic graphic notation editor discussed in section
5 seem to be a promising direction for the creation of no-
tation software that is capable of being used to render new
media forms that have proven difficult to notate (such as
spatial audio), as well as those that have yet to be thought
of.
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ABSTRACT

The Abjad API for Formalized Score Control extends the
Python programming language with an open-source, object-
oriented model of common-practice music notation that
enables composers to build scores through the aggregation
of elemental notation objects. A summary of widely used
notation systems’ intended uses motivates a discussion of
system design priorities via examples of system use.

1. INTRODUCTION

Abjad 1 is an open-source software system designed to
help composers build scores in an iterative and incremen-
tal way. Abjad is implemented in the Python 2 program-
ming language as an object-oriented collection of packages,
classes and functions. Composers can visualize their work
as publication-quality notation at all stages of the compo-
sitional process using Abjad’s interface to the LilyPond 3

music notation package. The first versions of Abjad were
implemented in 1997 and the project website is now visited
thousands of times each month. This paper details some
of the most important principles guiding the development
of Abjad and illustrates these with examples of the sys-
tem in use. The priorities outlined here arise in answer to
domain-specific questions of music modeling (What are the
fundamental elements of music notation? Which elements
of music notation should be modeled hierarchically?) as
well as in consideration of the ways in which best practices
taken from software engineering can apply to the develop-
ment of a music software system (How can programming
concepts like iteration, aggregation and encapsulation help
composers as they work?). A background taxonomy mo-
tivates a discussion of design priorities via examples of
system use.

1 http://www.projectabjad.org
2 http://www.python.org
3 http://www.lilypond.org
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2. A TAXONOMY

Many software systems implement models of music but
few of these implement a model of notation. Many music
software systems model higher-level musical entities appar-
ent in the acts of listening and analysis while omitting any
model of the symbols of music notation. Researchers and
musical artists have modeled many such extrasymbolic mu-
sical entities, such as large-scale form and transition [1–5],
texture [6], contrapuntal relationships [7–13], harmonic ten-
sion and resolution [14–16], melody [17, 18], meter [19],
rhythm [20–22], timbre [23–25], temperament [26, 27] and
ornamentation [28, 29]. This work overlaps fruitfully with
analysis tasks because models of listening and cognition
can enable novel methods of high-level musical structures
and transformations, like dramatic direction, tension, and
transition between sections [30].

Software production exists as an organizationally designed
feedback loop between production values and implemen-
tation [31]. It is possible to understand a system by under-
standing the purpose for which it was initially designed.
This purpose can be termed a software system’s genera-
tive task. In the classfication of systems created for use
by artists, this priority yields a dilemma instantly, as anal-
yses that explain a system’s affordances with reference
to intended purpose must contend with the creative use
of technology by artists: a system’s intended uses might
have little or nothing in common with the way in which
the artist finally uses the technology. For this reason, the
notion of generative task is best understood as an explana-
tion for a system’s affordances, with the caveat that a user
can nonetheless work against those affordances to use the
system in novel ways.

While composers working traditionally may allow intu-
ition to substitute for formally defined principles, a com-
puter demands the composer to think formally about mu-
sic [32]. Keeping in mind generative task as an analytical
framework, it is broadly useful to bifurcate a notation sys-
tem’s development into the modeling of composition, on
the one hand, and the modeling of musical notation, on
the other. All systems model both, to greater or lesser
degrees, often engaging in the ambiguous or implicit mod-
eling of composition while focusing more ostensibly on a
model of notation, or focusing on the abstract modeling
of composition without a considered link to a model of
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notation. Generative task explains a given system’s balance
between computational models of composition and nota-
tion by assuming a link between intended use and system
development.

Many notation systems — such as Finale, Sibelius, SCORE
[33], Igor, Berlioz, Lilypond [34], GUIDO [35] NoteAbil-
ity [36], FOMUS [37, 38] and Nightingale — exist to help
people engrave and format music documents; because these
systems provide functions that operate on notational ele-
ments (i.e., transposition, spacing and playback), hidden
models of common-practice music notation must underly
all of these systems, and each system’s interface constrains
and directs the ways in which users interact with this un-
derlying model of notation. These systems enable users to
engrave and format music without exposing any particular
underlying model of composition, and without requiring, or
even inviting the user to computationally model composi-
tion. Such systems might go so far as to enable scripting,
as in the case of Sibelius’s ManuScript [39] scripting lan-
guage or Lilypond’s embedded Scheme code; although
these systems enable the automation of notational elements,
it remains difficult to model compositional processes and
relationships.

Other systems provide environments specifically for the
modeling of higher-level processes and relationships. Open-
Music [40], PWGL [41] and BACH [42] supply an inter-
face to a model of common-practice notation, as well as a
set of non-common-practice visual interfaces that enables
the user to model composition, in the context of a stand-
alone application and with the aid of the above notation
editors for final engraving and layout via intermediate file
formats. Similarly purposed systems extend text-based pro-
gramming languages rather than existing as stand-alone ap-
plications, such as HMSL’s extension of Forth [43], JMSL’s
extension of Java [44] and Common Music’s extension of
Lisp [45]. Other composition modeling systems, such as
athenaCL [46] and PILE/AC Toolbox [47] provide a vi-
sual interface for the creation of compositional structures
without providing a model of common-practice notation.

Some composers make scores with software systems that
provide neither a model of notation nor a model of com-
position. Graphic layout programs, such as AutoCAD and
Adobe Illustrator, have been designed broadly for the place-
ment and design of graphic elements. While scripting en-
ables automation, composers must model both notation and
composition from scratch, and the symbolic scope of po-
tential automations described in the course of modeling
ensures that composers spend as much time addressing ele-
mental typographical concerns (e.g., accidental collisions)
as would be spent modeling compositional processes and
relationships.

Many models of musical notation have been designed
for purposes of corpus-based computational musicology.
Formats such as DARM, SMDL, HumDrum and Muse-
Data model notation with the generative task of searching
through a large amount of data [48]. Commercial nota-
tion software developers attempted to establish a data inter-
change standard for optical score recognition (NIFF) [49].
Since its release in 2004, MusicXML has become a valid

interchange format for over 160 applications and maintains
a relatively application-agnostic status, as it was designed
with the generative task of acting as an interchange format
between variously-tasked systems [50].

An attempt to survey more comprehensively the history
of object-oriented notation systems for composition, in the
context of the broader history of object-oriented program-
ming, lies beyond the scope of this paper but has recently
been undertaken elsewhere [51].

3. ABJAD BASICS

Abjad is not a stand-alone application. Nor is Abjad a pro-
gramming language. Abjad instead adds a computational
model of music notation to Python, one of the most widely
used programming languages currently available. Abjad’s
design as a standard extension to Python makes hundreds
of print and Web programming resources relevant to com-
posers and further helps to make the global communities
of software developers and composers available to each
other. 4 5 Composers work with Abjad exactly the same as
with any other Python package. In the most common case
this means opening a file, writing code and saving the file:
from abjad import *

def make_nested_tuplet(
tuplet_duration ,
outer_tuplet_proportions ,
inner_tuplet_subdivision_count ,
):
outer_tuplet = Tuplet.from_duration_and_ratio(

tuplet_duration , outer_tuplet_proportions)
inner_tuplet_proportions = \

inner_tuplet_subdivision_count * [1]
last_leaf = outer_tuplet.select_leaves ()[-1]
inspector = inspect_(last_leaf)
right_logical_tie = inspector.get_logical_tie ()
right_logical_tie.to_tuplet(inner_tuplet_proportions)
return outer_tuplet

The classes, functions and other identifiers defined in the
file can then be used in other Python files or in an interactive
session:
>>> rhythmic_staff = Staff(context_name='RhythmicStaff ')
>>> tuplet = make_nested_tuplet ((7, 8), (3, -1, 2), 3)
>>> rhythmic_staff.append(tuplet)
>>> show(rhythmic_staff)

 

) )� )

12:7

3:2

�� �

This paper demonstrates examples in Python’s interactive
console because the console helps distinguish input from
output. Lines preceded by the >>> prompt are passed to
Python for interpretation and any output generated by the
line of code appears immediately after. The example above
creates a tuplet with the tuplet-making function defined ear-
lier and calls Abjad’s top-level show() function to generate

4 See the Python Package Index for extensions to Python for purposes
as diverse as creative writing and aeronautical engineering. The Python
Package Index contains 54,306 packages at the time or writing and is
available at https://pypi.python.org.

5 Abjad is an importable Python library. It can be used in whole or
in part as a component of any Python-compatible system. For example,
Abjad supports IPython Notebook, a Web-based interactive computational
environment combining code execution, text, mathematics, plots and rich
media into a single document. Notational output from Abjad can be
transparently captured and embedded into an IPython Notebook that has
loaded Abjad’s IPython Notebook extension. See http://ipython.org/
notebook.html.
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a PDF of the result. But note that composers work with Ab-
jad primarily by typing notationally-enabled Python code
into a collection of interrelated files and managing those
files as a project grows to encompass the composition of an
entire score.

4. THE ABJAD OBJECT MODEL

Abjad models musical notation with components, spanners
and indicators. Every notational element in Abjad belongs
to one of these three families. Abjad models notes, rests
and chords as classes that can be added into the container-
like elements of music notation, such as tuplets, measures,
voices, staves and complete scores. Spanners model nota-
tional constructs that cross different levels of hierarchy in
the score tree, such as beams, slurs and glissandi. Indicators
model objects like articulations, dynamics and time signa-
tures that attach to a single component. Composers arrange
components hierarchically into a score tree with spanners
and indicators attached to components in the tree. 6

5. BOTTOM-UP CONSTRUCTION

Abjad lets composers build scores from the bottom up.
When working bottom-up, composers create individual
notes, rests and chords to be grouped into tuplets, measures
or voices that may then be included in even higher-level
containers, such as staves and scores. Abjad affords this
style of component aggregation via a container interface
which derives from Python’s mutable sequence protocol.
Python’s mutable sequence protocol specifies an interface
to list-like objects. Abjad’s container interface implements
a collection of methods which append, extend or insert into
Abjad containers:
>>> outer_tuplet_one = Tuplet ((2, 3), "d ''16 f '8.")
>>> inner_tuplet = Tuplet ((4, 5), "cs ''16 e '16 d'2")
>>> outer_tuplet_one.append(inner_tuplet)
>>> outer_tuplet_two = Tuplet ((4, 5))
>>> outer_tuplet_two.extend("d '8 r16 c '16 bf '16")
>>> tuplets = [outer_tuplet_one , outer_tuplet_two]
>>> upper_staff = Staff(tuplets , name='Upper Staff ')
>>> note_one = Note(10, (3, 16))
>>> upper_staff.append(note_one)
>>> note_two = Note(NamedPitch("fs'"), Duration(1, 16))
>>> upper_staff.append(note_two)
>>> lower_staff = Staff(name='Lower Staff ')
>>> lower_staff.extend("c8 r8 b8 r8 gf8 r4 cs8")
>>> staff_group = StaffGroup ()
>>> staff_group.extend ([ upper_staff , lower_staff ])
>>> score = Score ([ staff_group ])
>>> show(score)
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Notes and chords may be initialized with pitches named ac-
cording to either American or European conventions. Notes

6 Abjad chords aggregate note-heads instead of notes. This corrects a
modeling problem sometimes present in other music software systems: if
chords aggregate multiple notes and every note has a stem then how is it
that chords avoid multiple stems? Abjad chords implement the container
interface described below to add and remove note-heads to and from
chords.

and chords may also be initialized with the pitch numbers
of American pitch-class theory or from combinations of
Abjad pitch and duration objects. Unlike many notation
packages, Abjad does not require composers to structure
music into measures. All Abjad containers can hold notes,
rests and chords directly.

Ties, slurs and other spanners attach to score components
via Abjad’s top-level attach() function. The same is true
for articulations, clefs and other indicators. For example,
after selecting the notes, rests and chords from each staff, in-
dividual components and slices of contiguous components
may be selected by their indices within each selection. 7

Indicators and spanners may then be attached to those com-
ponents:
>>> upper_leaves = upper_staff.select_leaves ()
>>> lower_leaves = lower_staff.select_leaves ()
>>> attach(Tie(), upper_leaves [4:6])
>>> attach(Tie(), upper_leaves [-3:-1])
>>> attach(Slur(), upper_leaves [:2])
>>> attach(Slur(), upper_leaves [2:6])
>>> attach(Slur(), upper_leaves [7:])
>>> attach(Articulation('accent '), upper_leaves [0])
>>> attach(Articulation('accent '), upper_leaves [2])
>>> attach(Articulation('accent '), upper_leaves [7])
>>> attach(Clef('bass'), lower_leaves [0])
>>> show(score)
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When does it make sense for composers to work with Abjad
in the bottom-up way outlined here? Instantiating compo-
nents by hand in the way shown above resembles notating
by hand and composers may choose to work bottom-up
when doing the equivalent of sketching in computer code:
when making the first versions of a figure or gesture, when
trying out combinations of small bits of notation or when in-
serting one or two items at a time into a larger structure. For
some composers this may be a regular or even predominant
way of working. Other composers may notice patterns in
their own compositional process when they work bottom-up
and may find ways to formalize these patterns into classes
or functions that generalize their work; the next section
describes some ways composers do this.

6. TOP-DOWN CONSTRUCTION

What are the objects of music composition? For most com-
posers, individual notes, rests and chords constitute only
the necessary means to achieve some larger, musically in-
teresting result. For this reason, a model of composition
needs to describe groups of symbols on the page: notes
taken in sequence to constitute a figure, gesture or melody;

7 Python allows indexing into sequences by both positive and negative
indices. Positive indices count from the beginning of the sequence, starting
at 0, while negative indices count from the end of the sequence, with -1
being the last item in the sequence and -2 the second-to-last. Subsegments
of a sequence may be retrieved by slicing with an optional start and
optional stop index. The slice indicated by [1:-1] would retrieve all of
the items in a sequence starting from the second and going up until, but
not including, the last. The slice indicated by [:3], which omits a start
index, retrieves all items from the sequence up until, but not including, the
fourth.
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chords taken in sequence as a progression; attack points
arranged in time as the scaffolding of some larger texture.
These entities, and the others like them, might result from a
flash of compositional intuition that then requires detailed
attention and elaboration.

Abjad invites composers to implement factories as a way
of generalizing and encapsulating parts of one’s own com-
positional process. In this way, composers can extend the
system as they work to implement their own models of com-
position. Abjad also provides a variety of factory functions
and factory classes that exemplify this way of working.
These range from simple note-generating functions, like
make notes(), which combine sequences of pitches and
rhythms to generate patterned selections of notes and rests,
to more complexly-configured maker classes for creating
nuanced rhythmic patterns or entire scores.

As an example, consider the rhythmmakertools package
included with Abjad. The classes provided in this package
are factory classes which, once configured, can be called
like functions to inscribe rhythms into a series of beats or
other time divisions. The example below integrates config-
urable patterns of durations, tupletting and silences:

>>> burnish_specifier = rhythmmakertools.BurnishSpecifier(
... left_classes =(Rest , Note),
... left_counts =(1,),
... )
>>> talea = rhythmmakertools.Talea(
... counts =(1, 2, 3),
... denominator =16,
... )
>>> tie_specifier = rhythmmakertools.TieSpecifier(
... tie_across_divisions=True ,
... )
>>> rhythm_maker = rhythmmakertools.TaleaRhythmMaker(
... burnish_specifier=burnish_specifier ,
... extra_counts_per_division =(0, 1, 1),
... talea=talea ,
... tie_specifier=tie_specifier ,
... )
>>> divisions = [(3, 8), (5, 16), (1, 4), (3, 16)]
>>> show(rhythm_maker , divisions=divisions)
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Once instantiated, factory classes like this can be used over
and over again with different input:

>>> rhythmic_score = Score ()
>>> for i in range (8):
... selections = rhythm_maker(divisions , seeds=i)
... measure = Measure ((9, 8), selections)
... staff = Staff(context_name='RhythmicStaff ')
... staff.append(measure)
... rhythmic_score.append(staff)
... divisions = sequencetools.rotate_sequence(
... divisions , 1)
...
>>> show(rhythmic_score)
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7. SELECTING OBJECTS IN THE SCORE

Abjad allows composers to select and operate on collections
of objects in a score. Composers can select objects in
several ways: by name, numeric indices or iteration. A
single operation, such as transposing pitches or attaching
articulations, can then be mapped onto the entirety of a
selection.

Consider the two-staff score created earlier. Because both
staves were given explicit names, the upper staff can be
selected by name:
>>> upper_staff = score['Upper Staff ']
>>> show(upper_staff)
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Using numeric indices, the lower staff can be selected by
indexing the second child of the first child of the score:
>>> lower_staff = score [0][1]
>>> show(lower_staff)
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The top-level iterate() function exposes Abjad’s score
iteration interface. This interface provides a collection of
methods for iterating the components in a score in different
ways. For example, all notes can be selected from a single
staff:
>>> for note in iterate(lower_staff ). by_class(Note):
... attach(Articulation('staccato '), note)
...
>>> show(score)
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Groups of tied notes can be selected from an entire score.
Abjad uses the term logical tie to refer to the collection of
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notes or chords joined together by consecutive ties. The
‘logical’ qualifier points to the fact that Abjad considers
untied notes and untied chords as logical ties of length 1,
which makes it possible to select untied notes and chords
together with tied notes and chords in a single method call:

>>> for logical_tie in iterate(score ). by_logical_tie ():
... if 1 < len(logical_tie ):
... attach(Fermata(), logical_tie.tail)
... for note in logical_tie:
... override(note). note_head.style = 'cross '
...
>>> show(score)
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8. PROJECT TESTING AND MAINTENANCE

Abjad has benefited enormously from programming best
practices developed by the open-source community. As
described previously, the extension of an existing language
informs the project as a first principle. The following other
development practices from the open-source community
have also positively impacted the project and might be
helpful in the development of other music software systems.

The literature investigated in preparing this report remains
overwhelmingly silent on questions of software testing.
None of the sources cited in this article reference software
test methodologies. The same appears to be true for the
larger list of sources included in [51]. 8 Why should this
be the case? One possibility is that authors of music soft-
ware systems have, in fact, availed themselves of important
improvements in software test methods developed over the
previous decades but have, for whatever reasons, remained
quiet on the matter in the publication record. Perhaps the
culture of software best practices now widely followed
in the open-source community simply has not yet arrived
in the field of music software systems development (and
especially in the development of systems designed for non-
commercial applications).

The use of automated regression testing in Abjad’s de-
velopment makes apparent the way in which tests encour-
age efficient development and robust project continuance.
Abjad comprises an automated battery of 9,119 unit tests
and 8,528 documentation tests. Unit tests are executed by
pytest. 9 Documentation tests are executed by the doctest
module included in Python’s standard library. Parameter-
ized tests ensure that different classes implement similar
behaviors in a consistent way. Developers run the entire
battery of tests at the start of every development session.
No new features are accepted as part of the Abjad codebase
without tests authored to document changes to the system.
Continuous integration testing is handled by Travis CI 10

8 AthenaCL [46] and Music21 [52] are important exceptions. Both
projects are implemented in Python and both projects feature approaches
to testing in line with those outlined here.

9 http://pytest.org
10 https://travis-ci.org

to ensure that all tests pass after every commit from every
core developer and newcomer to the project alike.

The presence of automated regression tests acts as an in-
centive to new contributors to the system (who can test
whether proposed changes to the system work correctly
with existing features) and greatly increases the rate at
which experienced developers can refactor the system dur-
ing new feature development. Abjad currently comprises
about 178,000 lines of code. The Abjad repository, hosted
on GitHub, 11 lists more than 8.7 million lines of code com-
mitted since the start of the project. This refactor ratio of
about 50:1 means that each line of code in the Abjad code-
base has been rewritten dozens of times. The freedom to
refactor at this rate is possible only because of the approach
to automated regression testing Abjad has borrowed from
the larger open-source community.

Testing benefits project continuance when the original
developers of a music software system can no longer de-
velop the system. Automated regression tests help make
possible a changing of the guard from one set of developers
to another. Automated tests serve as a type of functional
specification of how a software system should behave after
revision. While automated tests alone will not ensure the
continued development of any software system, adherence
to the testing practices of the open-source community con-
stitutes the most effective hedge available to music software
systems developers to fend against project abandonment in
the medium and long term.

9. DISCUSSION & FUTURE WORK

The design and development priorities for Abjad outlined
here derive from the fact that the developers of Abjad are
all composers who use the system to make their own scores.
Abjad is not implemented for the type of music information
storage and retrieval functions that constitute an important
part of musicology-oriented music software systems. Nor is
Abjad designed for use in real-time contexts of performance
or synthesis. Abjad is designed as a composers’ toolkit for
the formalized control of music notation and for modeling
the musical ideas that composers use notation to explore
and represent. For example, figure 1 shows a one-page ex-
cerpt from a score constructed entirely with tools extending
Abjad and typeset with LilyPond. Although Abjad embeds
well in other music software systems, future work planned
for Abjad itself does not prioritize file format conversion,
audio synthesis, real-time applications or graphic user inter-
face integration. Future work will instead extend Abjad for
object-oriented control over parts of the document prepara-
tion process required of complex scores with many parts.
Future work will also extend and reinforce the inventory of
factory classes and factory functions introduced in this re-
port. We hope this will encourage composers working with
Abjad to transition from working with lower-level symbols
of music notation to modeling higher-level ideas native to
one’s own language of composition.

11 https://github.com/Abjad/abjad
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Figure 1. Page 8 from Josiah Wolf Oberholtzer’s Invisible Cities (ii): Armilla for two violas (2015), created with tools
extending Abjad. Source for this score is available at https://github.com/josiah-wolf-oberholtzer/armilla.
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of International Computer Music Conference, 2003.
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ABSTRACT 

The “sound diffusion” (or “sound projection”), that is, 

“the projection and the spreading of sound in an acoustic 

space for a group of listeners”[1], of works for solo 

electronics or for acoustic instruments and electronics (so 

called, “mixed pieces”), has always raised the issue of 

notating the levels to be reproduced during a concert or 

the correct balance between the electronics and the in-

struments. 

If, in the last decades, some attempts were made by 

few composers or computer-music designers, mostly in 

the form of scores, none of these managed to establish a 

common practice. In addition, little theoretical work has 

been done so far to address the performative aspects of a 

piece, that is, to provide just the useful information to the 

person in charge of the sound diffusion.  

Through the discussion of three historical examples 

and the analysis of two experiences we developed, we 

will try to identify some possibly general solutions that 

could be adopted independently on the aesthetic or tech-

nological choices of a given piece.  

1. PRELIMINARY CONSIDERATIONS 

The notation of electronic music has generated only few, 

often partial, essays. Most of the literature is either quite 

theoretical [2], or it delves into the automated translation 

of electronic sounds into a sort of graphical score, such as 

in [3]. These experiments were mainly aimed at provid-

ing ways to analyse purely electronic pieces more deeply 

than when simply listening to them, to account for the 

compositional process, or as an attempt to digitally pre-

serve and archive cultural assets [4]. 

To our knowledge, little theoretical work has been 

done to tackle the more general issue of how to notate 

dynamic levels on a score that is to be read by the com-

puter music performer (CMP) who will perform the elec-

tronics during a concert. The CMP does not need to be 

the composer or the first performer of the piece. 

Although this task could be programmed on a com-

puter and automated during the concert, a much better 

result can be achieved when doing it by ear. The listening 

and musical skills of a human being are, in fact, still 

much superior to what a machine can realize. The sound 

diffusion can be adapted to the acoustics of the hall, the 

properties of the loudspeakers, the whole audio system, 

the relationship between these and the acoustic image of 

the instruments on stage, whether they are amplified or 

not, and, finally, to the emotional reaction of the audi-

ence. 

As a consequence, most of the time, the dynamic lev-

els are controlled by ear (and by hand) by the CMP or the 

composer. Often they are only roughly sketched on the 

score. If a faithful recording will certainly help as a refer-

ence, the information is usually insufficient, especially in 

the case of particular spatial configurations that cannot be 

reproduced by a stereo recording.  

Therefore, the most effective solution is to notate all 

the information about the sound diffusion directly on the 

score that will be used during the performance. 

To delimit our scope, we will concentrate on the nota-

tion of dynamic levels and will not tackle the issue of 

notating other parameters used for real-time sound pro-

cessing, such as, for instance, the transposition factor of a 

harmonizer.  

1.1 Levels vs. loudness vs. musical dynamics 

Objectively, levels are normally expressed in decibels, a 

logarithmic unit that is related to the ratio between the 

value of a given and of a reference sound pressure (usual-

ly, either the threshold of audibility, or the maximum 

available value in a given system)
1
. 

However, there are other ways to do it: from the point 

of view of the perception, the dynamic levels are called 

“loudness” and use phons (a unit that takes into account 

                                                           
1 See http://en.wikipedia.org/wiki/Decibel (accessed 

3/10/2015) 
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the psycho-acoustic effect of the equal-loudness curves 

ISO 226:2003)
2
; from a musical point of view, levels are 

called “dynamics” and use symbols such as ff, mf, pp.  

Three important factors need to be taken into account: 

first, the same musical dynamics played by different 

instruments, or in different ranges of the same instrument, 

might yield different objective or perceptual levels; sec-

ond, choices of interpretation play an important role and 

produce different absolute levels for the same musical 

dynamics, as pointed out in [5]
3
; third, the perception of 

an acoustic instrument’s crescendo is always associated 

to the production of a richer and broader spectrum, that 

is, to a shift of the spectral “centre of gravity” toward a 

higher value. These spectral aspects differ specifically 

from each instrument and can be easily demonstrated by 

recording three sound files at three different dynamics 

(say, pp, mf, ff), clean them from background noises and 

finally normalize them. Even though they have the same 

maximum amplitude, their dynamics can be easily and 

correctly identified.  

Hence, simply raising a fader will not be sufficient to 

convey a real feeling of crescendo, but rather of a sound 

getting closer. When notating levels into a performance 

score, which unit should be used: dBs, loudness or musi-

cal dynamics?  

1.2 Level changes 

The notation of levels changes (usually, albeit incorrect-

ly, called crescendo or diminuendo) can use several strat-

egies, like, for instance, crescendo or diminuendo sym-

bols to illustrate the change between adjacent values 

(Figure 1a), simple straight lines, either with (Figure 1c) 

or without (Figure 1b) a reference scale of amplitude 

ranges for each level in the score, or, finally, simple small 

upward or downward arrows, eventually with some abso-

lute values (Figure 1d-e). 

Figure 1. Different ways of notating changes of levels. 

                                                           
2
 See http://en.wikipedia.org/wiki/Phon (accessed 

3/10/2015) 
3
 “The absolute meanings of dynamic markings change, depend on the 

intended (score defined) and projected (actual) dynamic levels of the 

surrounding context”, [5] abstract. 

These strategies clearly suggest that a compromise be-

tween space or information economy and score readabil-

ity need to be found. Their usage also depends on the 

nature of the required movements: simply raising a fader 

to a given static level does not require the same precision 

as a jagged change over a longer period of time. 

2. THREE HISTORICAL EXAMPLES 

2.1 K. Stockhausen: Kontakte 

Kontakte [6] was originally a 4-channel electronic piece 

composed in 1958-60 by Karlheinz Stockhausen. Soon 

after, the composer wrote a version for piano, percussion 

and the same 4-channel electronic material. The original 

score shows one of the first, composer-written, attempts 

to graphically notate the electronic material using uncon-

ventional, graphical signs. The second edition, published 

in 2008, adds some hints at the balance between the am-

plified instruments and the electronics. In Figure 2, a + 

above the piano means that the level of the amplification 

of that instrument should be raised until N (normal) is 

found. 

Figure 2. Kontakte (p. 1 excerpt, © Stockhausen Stiftung für Musik, 

Kürten, by kind permission). 

Some gestures can be notated, but are hard to realize 

by hand, as they are very short, as the sudden reinforce-

ment of the, respectively, electronics and marimba (+) in 

Figure 3. 
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Figure 3. Kontakte (p. 17, excerpt, © Stockhausen Stiftung für Musik, 

Kürten, by kind permission ). 

On one occasion (Figure 4, page 32), after lowering 

the electronics (-), the composer explicitly asks for the 

channels II and IV to be reduced by ca. 5dB, because of a 

problem of balance in the original mixing, while the 

channels I and III remain at the N level. 

Figure 4. Kontakte (p. 32, excerpt, © Stockhausen Stiftung für Musik, 

Kürten, by kind permission ). 

To summarize: if the positions and panning of the mi-

crophones are very clearly specified in the technical notes 

that come with the score, information about the sound 

diffusion, added only in the second edition, is limited to 

+, - and N (normal) signs. However, this is already suffi-

cient to have an idea of the sound diffusion.  

2.2 L. Nono: A Pierre / Omaggio a György Kurtàg 

The late mixed pieces by Luigi Nono make an extensive 

usage of simple, but continuous live-electronic treat-

ments. Since the original score totally lacked information 

about the electronics, André Richard and Alvise Vidolin, 

who assisted the composer during several performances, 

together with Ricordi’s editor Marco Mazzolini, em-

barked on the ambitious task of notating both the elec-

tronic setup and the sound diffusion in such a detailed 

way, that other people might play the piece without re-

quiring other information than what is marked in the 

score. 

In A Pierre [7], for bass flute, double bass clarinet and 

electronics (4 loudspeakers), the dynamics are marked 

using a mixture of the strategy shown in Figure 1b and 

musical dynamics, in spite of the fact, that the latter re-

quire both a level and a spectral change to be correctly 

perceived (Figure 5). 

Figure 5. Level changes in L. Nono’s A Pierre. 

In another work, Omaggio a György Kurtàg [8], for 

contralto, flute, clarinet, tuba and electronics (6 loud-

speakers), a further distinction is made between micro-

phone faders (M1, M2, etc.), mainly used for sending the 

sound to the treatments, and output faders (L1-6). In 

addition, the portion of sound that needs to be recorded 

by a treatment is greyed in the score  (Figure 6).  

The notation is adequate to the needs of the composer, 

and many aspects of it can also be generalized. 

2.3 P. Boulez: Anthèmes 2 

The Universal Edition performance score of Pierre Bou-

lez’s Anthèmes 2 [9], for violin and electronics, was real-

ized by the composer’s musical assistant at Ircam, An-

drew Gerzso. Up to now, it is one of the rare examples 

that features a complete and detailed notation of the elec-

tronics (using dedicated staves for each electronic part or 

treatment). Together with the extensive technical manual, 

the score allows for the re-constitution of the electronics 

even without the original patch (Figure 7). 
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Figure 6.L. Nono’s Omaggio a György Kurtàg (p. 8, © Casa Ricordi, 

by kind permission). 

 

Figure 7. Beginning of P. Boulez’s Anthèmes 2 (© Universal Edition, 

Wien, by kind permission). 

Surprisingly, there are almost no indications about 

dynamic levels: all the information is, in fact, contained 

in the Max patch for the piece. The balance between the 

violin and the electronics is explained in the technical 

manual and set in the patch. Levels are automated and 

changed globally, by recalling a different preset for each 

movement. The presets should be revised during the 

rehearsals, but, during the concert, only minor adjust-

ments might be required from time to time.  

This approach is related to those mixed pieces in 

which it is mainly the acoustic musician who is responsi-

ble for the amplitude of the real-time treatments; the 

interaction with the CMP, though still important, is there-

fore less crucial, the work being rather structured around 

pitches and timbral articulations.  

It is therefore clear, that in Anthèmes 2 the dynamic 

levels of the electronics play a different role as, for in-

stance, in Nono’s works, and, hence, do not need to be 

notated in the same detailed way.  

3. HYPOTHESES 

3.1 The case of Spirali (1987-88) 

3.1.1 Setup 

In Marco Stroppa’s Spirali (Spirals) [10], for string quar-

tet projected into the space, the electronics is constituted 

by a unique setup, exclusively made of six simultaneous, 

always active, types of reverb. Placed on stage as far as 

possible from the audience, the acoustic quartet, closely 

miked, is amplified and only heard through 4 or 6 loud-

speakers around the audience, depending on the size of 

the hall (Figure 8). 

 

 

Figure 8. Spirali: setup with 6 loudspeakers. 

Originally performed with analog equipment, Spirali 

was ported at Ircam by Serge Lemouton in 2005 as a Max 

patch with 18 control faders. The performance of the 

electronic part was a terribly virtuoso and risky undertak-

ing and required an extensive study and clear skills! In 

2013, Carlo Laurenzi integrated the Antescofo language
4
 

to the patch and automated some controls. This resulted 

in a more effective interface, with only 13 faders to move 

during the performance, although it is still quite challeng-

ing to perform. 

                                                           
4
See http://repmus.ircam.fr/antescofo/documents 

for an abundant bibliography about Antescofo (accessed 1/28/2015). 
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3.1.2 Spatial taxonomy: space families 

During the composition, Stroppa organised space into a 

personal taxonomy made of three space families: points 

(P), surfaces (S) and diffused space (D). He then related 

the six reverbs and the amplified instruments to it. Points 

correspond to the direct amplification of an instrument, to 

which correspond only one or two loudspeakers depend-

ing on the setup (Figure 9) 

 

Figure 9. Points: double amplified quartet (6 loudspea-kers)  

Surfaces use only the early reflections and cluster 

stages of reverberation. At each point two adjacent loud-

speakers are added, providing a certain spread (called 

“width”) to the sound image. The control of the width 

size is automated during the performance (Figure 10).  

Figure 10. Surface: width spread for the viola and cello. 

Finally, the diffused spaces only use the late reverber-

ance, and produce a sound that seems to come from eve-

rywhere or… nowhere! 

In the performance score, each instrument is consid-

ered as one of the voices of the electronics, and is “spa-

tially orchestrated” by the CMP, that is, sent to one or 

another spatial family depending on what is being played. 

The final result is an augmented sound image that is not 

only much larger and deeper than usual, but it also dy-

namically varies during the performance. The spatial 

projection hence highlights the frequently used “spiral-

like” materials, characterized by musical figures that 

present similar musical elements across the instruments at 

slightly different times.  

3.1.3 Notational choices 

Given these preliminary factors, and after 25 years of 

performance experience, a definitive musical score for 

the electronics was established and written immediately 

below the instrumental parts. 

We decided to notate the composed spatial taxonomy 

directly, by associating a symbol (P, S or D) and a colour 

(blue, green or red) to each family. The other parameters 

(spatial width and reverb time) are automatized in An-

tescofo, but their change is mentioned above the instru-

mental score, near the event name (see Figure 11, 

e.254.1-2), since this proved to be a useful reminder for 

the CMP. 

3.1.4 Reference Level 

Our hypothesis for notating the dynamic levels is based 

on the crucial notion of “Reference Level” (RefLev). The 

RefLev is a perceptual, empirically established value. It 

depends not only on the audio setup and the characteris-

tics of the hall, but also on the aesthetical preferences of 

the CMP. We define the RefLev as the level at which the 

points (the directly amplified instruments) sound “natu-

rally amplified” in the hall and balanced between each 

other.  

Once the RefLev for the points is specified, the Re-

fLev for the other spaces is defined as the level at which 

they sound “naturally balanced” with the points. 

When all the RefLev’s are setup, the same physical 

position of the faders should sound equally loud, in spite 

of the differences (size of the instrument, position and 

type of microphones, nature of the spaces, and so on) for 

all the spaces
5
. This is, of course, a very personal estima-

tion, as it is not easy to compare, for instance, the sound 

of an amplified violin, coming from one loudspeaker, 

with a reverberated sound of a cello coming from all the 

loudspeakers. 

At the beginning of the rehearsals, the RefLev’s must 

be empirically and precisely set up. In the score, they are 

notated with the letter “N” (normal). Notice that the same 

RefLev may produce a very loud sound, if the musicians 

are playing fff, or a very soft sound, if they are playing 

ppp. 

                                                           
5 This position, as well as the dynamic curves, can be defined 

by the user in the patch, but, usually, it is located at about ¾ of a 

fader’s length. 
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3.1.5 Level changes 

Once the RefLev’s are defined, all the other levels are 

notated as a dynamic difference with respect to them and 

marked with 1 to 3 “+” or “-” (that is, for instance, “+++” 

or “- -”). They are defined as three clearly different and 

perceptible dynamic layers: one +/– means slightly loud-

er/softer than the RefLev, two +/– means clearly louder 

or softer, three +/– are extreme levels, from macro-

amplified to barely amplified. 

These levels are not absolute, but rather correspond to 

perceptual areas, and will, therefore, vary during the 

piece as a function of what kind of music is being per-

formed. They indicate subjectively different “steps” in 

the amplification process: seven dynamic steps were 

considered as necessary and sufficient to accurately per-

form the sound diffusion of Spirali. 

Since the changes between levels are not very com-

plex, the traditional signs of cresc. and dim. were adopt-

ed, because they are expressive, use a space in the score 

that does not depend on the dynamic range and allow for 

the notation of a duration (see Figure 11).  

3.1.6 Final score 

Placed below the instrumental score, once the preliminary 

choices are clear, the notation of the electronics is quite 

straightforward (Figure 11). 

 

Figure 11. Spirali: manuscript score, p. 58 (© Casa Ricordi, by kind 

permission ). 

The usage of colours to identify the different spatial 

families turned to be a very important ergonomic feature, 

in order to improve the readability of the score. The rela-

tion between the notation and the physical gestures need-

ed to operate the control faders becomes more straight-

forward and faster to learn. 

In addition, the isolation of single elements in the in-

strumental score, using the same colour as the space they 

belong to, helps to focus on the correct timing and action 

to perform, especially if the passage is short and/or diffi-

cult to perform. 

Finally, if printing a score in colours is still not very 

diffused, because of the production costs, generating a 

coloured PDF file and performing Spirali reading the 

score on a computer or a tablet already seems very rea-

sonable. 

Notice that the acoustic string quartet should not be 

aware of what is going on in the space, as the spatial 

changes risk to negatively influence the quality and accu-

racy of the interpretation. It just has to play! 

3.2 Levels of sound synthesis: the case of Traiettoria 

3.2.1 Setup 

Traiettoria [11] is a 45’ long cycle of three pieces for 

piano and computer-synthesized sounds written by M. 

Stroppa in the early 80s. 

The electronics is solely made of eight stereo sound 

files (from ca. 3’ to 7’ long), which exclusively use addi-

tive synthesis and frequency modulation, with no refer-

ence to the piano’s spectral structure. A strong connec-

tion with the instrument is established by “tuning” the 

electronic material to some harmonic structures played by 

the piano. The integration between the synthetic and the 

acoustic materials is very deeply structured, and can 

produce a compelling fusion, if the electronics is correct-

ly performed! 

The piano and the electronics are loosely synchro-

nised by means of temporal pivots [12]. 

3.2.2 Spatial families 

The sound diffusion of Traiettoria is composed of two 

main spaces: 

a. a reduced space, made of the amplified piano (2 

loudspeakers placed near the instrument) and of 

one loudspeaker facing the piano’s sound board 

and placed under the instrument, from which a 

mono version of the electronics is diffused, so as 

to sympathetically interfere with the resonating 

strings. 

b. an enlarged space, around the audience, unique-

ly reserved to the electronic sounds. 

 

The constitution of the enlarged space was not speci-

fied in the original score, and could span from two loud-

speakers behind the audience to a whole Acousmonium
6
. 

Ideally, the more loudspeakers are at avail, the more 

dimensions the enlarged space may have, and, therefore, 

the more subtle and expressive the spatial nuances can be. 

But the difficulty of the electronic performance is signifi-

cantly increased! 

After several decades of experience, and thanks to the 

work of Carlo Laurenzi at Ircam, the electronics was 

implemented in Max. As in Spirali, a spatial taxonomy 

was defined, but, this time, only as a result of the perfor-

                                                           
6 See http://fr.wikipedia.org/wiki/Acousmonium 

(accessed 1/28/2015). 
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mances with several different audio systems and configu-

rations, and not when the piece was composed. Then, a 

suggested, standard taxonomy for the sound diffusion 

was defined: 7 families of spaces (totalling 11 main loud-

speakers, see Figure 12). Each family is given a name and 

a symbol and is controlled by one fader: FC (Front Cen-

tre), Pf (Piano), U (Under the piano), F[R/L] (Front 

[Left/Right]), M[L/R] (Middle), R[L/R] (Rear), RC (Rear 

Centre). It is for this taxonomy that a new notation was 

established. 

3.2.3 Notational choices 

When Traiettoria…deviata was first published, it was 

provided with a unique, exhaustive notation of the syn-

thetic sounds [13], a simple notation of the two main 

diffusion spaces (M=under the piano, D/S = left/right) 

and a double time staff (Tpo, Figure 13). The absolute 

times placed in the middle of the time staves are temporal 

pivots, the other markings belong to either the piano or 

the electronics
7
. 

 

 

Figure 12. Traiettoria: standard audio setup. 

Notice that the traditional cresc/dim signs are used, 

but that the composer explicitly asks for a shift of the 

                                                           
7 Since the electronics has to be tuned to the piano’s A by 

slightly changing the reading speed, these times are not meant 

to be strictly followed, but to serve as an indication. Because of 

this, the usage of a stopwatch would simply not be precise 

enough. None of the pianists with whom we have worked ever 

used one during a concert. 

spectral centre of gravity toward a higher region together 

with the movement of the faders. This was done with a 

HP-filter placed on the electronics’ stereo input moved 

together with the fader.  

As impressive as it may look, this notation proved not 

to be very practical for the sound diffusion. It contained 

too much information that was not required during a 

concert and too little information regarding the actual 

spreading of sound. 

Finally, its “orchestral” appearance made it difficult 

for the pianist to grasp which sounds are easier to hear, 

and therefore to visually identify the essential cues corre-

sponding to the temporal pivots to which the performance 

had to be synchronised. A more pragmatic and expres-

sively efficient solution had to be found. 

3.2.4 Reference Level 

Based on our experience with Spirali, we defined a Re-

fLev for Traiettoria as the subjective level at which the 

piano sounds “naturally amplified”, and the electronics 

“naturally balanced” with it. However, here, it did not 

seem necessary to explicitly mark it in the score (with N). 

Three degrees of +/- indicate, as in Spirali, six perceptu-

ally different dynamics for the piano or the electronics. 

Figure 13. Traiettoria…deviata: original version, p. 21 (© Casa Ri-

cordi, by kind permission). 
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During the performance of Traiettoria, the most diffi-

cult task is to find a musical balance between the sound 

in the hall and the piano (and some electronics) on stage. 

How to compare, for instance, an electronic sound com-

ing from behind the audience with the piano? When the 

same level is indicated in the score, it is the task of the 

CMP to (subjectively) estimate the correct sound image 

and intensity. 

3.2.5 Composition of the sound diffusion 

Even though, in theory, there are as many ways to per-

form the sound diffusion of Traiettoria as there are con-

certs, the practical experience showed that some strate-

gies were more musical and tended to be regularly re-

peated. 

In the tradition of the acousmatic music, the sound 

diffusion is thought as a real orchestration of the electron-

ic voices over a moving, imaginary space. Stroppa com-

posed a precise hierarchy that organises not only the 

audio setup, but also the spatial form of Traiettoria. 

For instance, Traiettoria…deviata starts with a barely 

amplified piano that gets increasingly louder, that is, 

more amplified. This yields a larger and larger sound 

image. When the electronics joins in, it fades into the 

piano’s decaying resonance, and comes out only from U 

(see 3.2.2). Little by little, the constricted space of the 

electronics opens up to the Pf and the F groups, thus 

unfolding its image around the piano. It is only at 1’57 

that the R group is activated. A detailed analysis of the 

spatial form of the sound diffusion of Traiettoria is be-

yond the score of this text, but it is important to remark 

that, since it is an important part of the composition of the 

piece, it needs to be precisely and correctly notated. 

Each spatial group is represented by one fader on the 

control interface
8
 and by one vertical position in the 

score. Since each group is identified by a letter, it needs 

to appear in the score only when it is active. In this way, 

the usage of the space within the page is more efficient. 

3.2.6 Level changes 

It did not seem necessary to find a more refined way to 

notate level changes than what was used in Spirali. In the 

few moments, where a random spread is needed, it is 

directly asked for by some text written in the score and 

each CMP can freely choose how to perform it. 

3.2.7 Main/Secondary loudspeaker(s) 

Together with the taxonomy explained in 3.2.2, the sound 

diffusion of Traiettoria extends the concept of loud-

speaker. Each spatial family, identified by a letter, repre-

sents the “main loudspeaker”, defined as the loudspeaker 

                                                           
8 A MIDI mixer or an OSC-driven device, such as an iPad. 

(or the couple of loudspeakers) that is heard as the main 

source of diffusion. 

It is, however, always possible, depending on the 

characteristics of the hall or personal taste, to enlarge the 

focus of a single loudspeaker by diffusing the same elec-

tronic material into nearby loudspeakers (called “second-

ary loudspeakers”), at a softer level, so as to change the 

acoustic image of the main loudspeaker, without directly 

perceiving the other ones. 

Being rather a performer’s aesthetical choice, we de-

cided not to notate this sound-diffusion technique, except 

when it had a compositional role. 

3.2.8 Score 

The final score is still under preparation, but concrete 

experiments and current sketches showed that simply 

notating the levels above the piano part was not sufficient 

to achieve a good performance and efficiently learning 

from the score. 

After some tests, we found that adding a sonogram 

window of a mono mix of the synthetic sounds on top of 

the page was the best choice to correctly perform the 

electronics. 

Even if a sonogram is very concise and cannot pre-

cisely represent pitched and rhythmic material, the most 

important temporal elements are still clearly identifiable 

and help both performers to follow the spectro-

morphological unfolding of the electronics. And if some 

special pitch or rhythmic structures need to be marked, it 

is always possible to locally add this information on the 

sonogram or between it and the dynamic levels. 

Thanks to the very explicit images of the sonogram of 

synthetic sounds, learning the correct synchronization is 

no longer difficult (Figure 14). 

When dealing with several sound files that are inher-

ently unbalanced
9
, the sound diffusion can become a 

tedious and cumbersome task, as each new sound would 

require a different position of the fader to compensate the 

inherent lack of balance. 

To avoid this problem, a special solution, called “rela-

tive faders” (RelFad) was implemented in all the patches 

for Stroppa’s electronic works. Before being multiplied 

by the value corresponding to the position on the control 

interface, each RelFad is first multiplied by a value writ-

ten in the Antescofo score. In this case, if the written 

values are just right, it is enough to keep the fader at its 

neutral value (1.0). However, if unpredictable circum-

stances modify the perception of the diffused sounds, the 

RelFad can still be moved away from its neutral value. 

                                                           
9 For instance, because they are synthesized with radically 

different techniques and have extremely dissimilar spectral 

contents. 
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As a consequence, the movement of faders during the 

performance is greatly reduced, and the performance 

itself becomes more ergonomic and gesture-effective. 

The written values lay half way between the realm of the 

composition and of the interpretation and can always be 

very easily changed. One might also imagine to have 

presets of good values for different acoustical situations. 

Since they were implemented, RelFad’s have greatly 

improved the task of learning to perform the electronics 

of a mixed piece, and have helped to spread the sound 

diffusion technique to a larger community of CMP’s. 

Figure 14. Traiettoria : sketch of the new electronic score. Relative 

faders 

4. CURRENT STATE 

The notation of dynamic levels in the performance scores 

of Spirali and Traiettoria was inspired by the late Nono’s 

works, but the musical context is very different and has a 

totally diverse goal. 

In Nono’s works the notation was intended to approx-

imately indicate the behaviour of the levels, in order to 

provide a schematic structure for the performance of 

pieces which allowed for a certain degree of improvisa-

tion from both the instrumental and electronic parts. 

Stroppa, on the other hand, intends to confer a much 

higher responsibility to role of the CMP, who is required 

to possess a performance skill comparable to that of an 

instrumentalist. For this reason, the performance score 

must contain all the information needed to interpret the 

piece and accurately represent the time relationships 

between the acoustic instrument(s) and the electronics. 

It is obvious that such a detailed performance score 

needs some time to be learnt and practiced.  

Finally, this score may also have the crucial function, 

not only to effectively transmit precise information about 

the sound diffusion to other CMP’s, but especially to 

make it possible to understand how to render a complex 

orchestration of synchronized spatial events between 

electronics and instruments.  

Due to the complexity of the music and the amount of 

actions involved in the sound diffusion, learning the score 

by heart rapidly became a necessity. However, the per-

formance score was still extremely useful during the 

learning phase and the rehearsals.  

5. CONCLUSIONS 

Our experience has shown that it is possible to find gen-

eralized and efficient symbols to notate the sound diffu-

sion of electronic works, if it is not automated. 

Our first step was to identify a spatial taxonomy adapted 

to a given piece, in order to find an intermediate layer of 

notation between the compositional concepts, the perfor-

mance needs and the physical audio setup. 

The next step was to define the meaning and the value of 

a RefLev for each situation and to notate all the other 

relative dynamic changes with respect to this subjective 

value. Introducing RelFad’s also greatly improved the 

gestural aspects of a performance. 

Our next step will be to extend this experience to the 

control of real-time treatments.  
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ABSTRACT 

Within this paper we firstly examine the determination of 

a number of temporal aspects of Electroacoustic Music, 

and their representations. Then various automated 

segmentation methods, for Harrison’s Unsound Objects, 

are investigated. We find the multi-granular approach 

outlined by Lartillot et al., combined with the use of 

MFCCs, is a very efficient and salient segmentation 

strategy for music structured predominantly according to 

timbre. Further, the ‘Contrast’ parameter is both versatile 

and effective in determining the granularity of 

segmentation.  

INTRODUCTION 

Traditional Electroacoustic Music is a studio-based 

artform involving the mixing of field recordings, 

processed field recordings, and synthesized sounds. 

Electroacoustic Music can also include performance of 

live electronic instruments in the form of laptops or other 

electronic devices and/or sensors.  

This paper concentrates on studio-based Electroacoustic 

Music. Being largely an aural tradition, there is no widely 

accepted standard of notation or representation for this 

kind of music, either in the creation of the music, or the 

analysis of this kind of music. Our work seeks to explore 

ways in which signal analysis and/or perceptual models 

can assist in automating some aspects of the analysis of 

Electroacoustic Music in order to augment the aural 

analysis that is the predominant analytical method for this 

style of music. 

Here we set out three recent attempts to automate 

analytical aspects of Electroacoustic Music associated 

with the temporal dimension of the music: 

1. The representation of a measure of the activity 

within a section of an Electroacoustic musical 

piece, and the associated density of musical 

events. 

2. The use of auditory models to derive a 

‘Rhythmogram Representation’ of both short 

and long sections of music within a work. 

3. Segmentation of Electroacoustic Music works, 

over a longer time-span, using the Music 

Information Retrieval Toolbox (MIRToolbox). 

MEASURING SONIC ACTIVITY 

The Problem Defined 

While undertaking a recent analysis of Jonty Harrison’s 

electroacoustic musical work, Unsound Objects [1] the 

initial phase involved analysing the acoustic surface to 

identify sound objects. The next phase required an 

examination of relationships between sound objects, 

giving rise to the following question: What propels the 

work along from moment to moment, section to section, 

scene to scene ? To help answer this question, I observed 

that an increase in sonic activity seems to elicit 

expectation in the listener that an important event is about 

to occur. There is a tension build up that seems to require 

a release the longer the build up goes on. But how can we 

measure something I have called “sonic activity” and, 

even better, how can we display sonic activity easily 

within a work ? Can some form of signal processing be 

used and be represented to assist in the interpretation of 

electroacoustic musical works ? 

The Analytical Process 

With Electroacoustic Music, the first part of an analysis 

can be described as analysing the acoustic surface. This 

involves “segmentation”. Large scale segmentation into 

sections, and then small-scale segmentation of sound 

events from each other. In the analysis of Unsound 

Objects, the spectrogram and audio waveform displays 

were useful for the process. Sound events were annotated 

Copyright: © 2015 David Hirst. This is an open-access article 

distributed under the terms of the Creative Commons 

Attribution License 3.0 Unported, which permits 

unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 
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on the spectrogram and it was possible to get a time-

stamped listing of the annotation layer, using the program 

Sonic Visualiser [2], which was then imported into a 

spreadsheet program (Microsoft Excel) and printed as a 

listing of all the annotations. The visual screens and 

printed time-stamped sound object listings became the 

data that facilitated detailed identification and 

specification of sound events within the aurally identified 

sections of the work. 

The next phase of the analysis involved moving 

beyond the acoustic surface to examine structures, 

functions and motions between sound events. By 

“zooming out” to look at longer sections of the work, or 

carrying out “time-span reduction”, we can observe 

changing sonic patterns over the course of the work. We 

can look at the different sections and ask questions like: 

What propels the work along from moment to moment, 

section to section, or scene to scene ? To help answer this 

question, we can observe that an increase in sonic activity 

seems to elicit expectation in the listener that an 

important event is about to occur. But how can we 

measure and, even better, display activity within a work ? 

Well the Sonic Visualiser program provides access to a 

suite of plugins of signal analysis. In the Unsound 

Objects article, I postulated that the type of analysis that 

seems to correlate best with sound object activity is a plot 

of “spectral irregularity” versus time. 

There are several different methods for calculating the 

irregularity present within a spectrum, but essentially 

they both give a measure of the degree of variation of the 

successive peaks of the spectrum. Jensen, for example, 

calculates the sum of the square of the difference in 

amplitude between adjoining partials [3]. What I am 

postulating here is that where there is a large variation 

across the spectrum, partial to partial, then this can 

provide us with a depiction of a high degree of activity. 

Figure 1 depicts a spectral irregularity plot for the whole 

of Unsound Objects. 

  

Figure 1 : A spectral irregularity plot for the whole of Unsound Objects. 

 

Figure 2 : Plot of Inter-onset Time vs Time (secs) for the whole of Unsound Objects. 

 

Figure 3. Plot of Inter-onset Rate vs Time (secs) for the whole of Unsound Objects. 
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The analysis of Unsound Objects then combined the 

use of spectral irregularity plots with aurally identified 

sections, within the work, to provide a detailed analysis 

of “activity” and to tabulate “sound types” for each 

section. This table showed “activity amount and type” 

and “selected sound object types”. The work actually 

divides into two main halves and after the two halves 

were compared, a summary of sonic archetypes (in the 

form of mimetic archetypes and structural archetypes), 

sound transformations, functional relations, and sonic 

activity were discussed. 

Determining Activity 

The aim of the next study [4] was to seek an alternative 

method to the use of “spectral irregularity” for measuring 

activity in electroacoustic music. 

In essence, activity could be defined as the number of 

sound events in a given time period. Therefore we are 

interested in the onset time of each sound event, and its 

duration. Let’s start with onset time. What signal analysis 

tools exist for determining sound event onset time within 

a musical work ? 

The program Sonic Visualiser, has a number of tools 

within it to perform such an analysis. Aubio onset 

detection (aubio.org) has eight different types which 

all produce a single list of time “instants” (vertical lines 

when plotted) of individual start times. This output can be 

exported to a spreadsheet. Their algorithm can be varied 

to suit the source material. The Queen Mary, University 

of London, in-built Sonic Visualiser onset detection 

algorithm lists three types of onset detector, but these are 

just the one detector with lots of variables: Program; 

Onset detection function type; Onset detection sensitivity; 

Adaptive whitening; Channel options for stereo files; 

Window size; Window increment; and Window shape. 

Output is an “onset detection function” which is a 

probability function of a “note” onset likelihood. 

In developing a method for the detection of onsets in 

Unsound Objects, combining several forms of 

representation was found to provide a more reliable guide 

to data gathering rather than using any single plot. After 

some experimentation, the following combination was 

employed, using the Queen Mary algorithms: 

1. RMS Amplitude. 

2. Smoothed detection function: Time Values 

(displays probability function of onsets). 

3. Note onsets: Time Instants. Program: Soft 

Onsets; Onset detection function: Complex 

Domain; Onset detection sensitivity: 60%; 

Adaptive whitening: Yes. 

This resulted in the onsets (#3 above) aligning pretty 

well with the smoothed detection probability (#2 above), 

but with some low level noise swells failing to trigger the 

onset detector (#3 above). 

The “time instants” data (#3 above) was exported, then 

imported into an Excel spreadsheet in order to be able to 

make further calculations such as “inter-onset times” (the 

time between onsets). Figure 2 shows a plot of Inter-onset 

Time versus Time for the whole of Unsound Objects. Its 

peaks show us where there are long breaks in the work, 

and give a pointer to how the work may be divided up in 

analysis. 

Displaying time instants, however, only progresses us 

part of the way to obtaining a measure of event “activity”. 

Inter-onset “rate” was then calculated and plotted, as 

shown in Figure 3. This provides us with a measure of the 

number of onsets per second, which, in turn, provides a 

guide to the amount of event initiation activity at a 

particular time within the work. 

Implications of Activity Plots 

Determining inter-onset time can give us a plot (Figure 2) 

that is useful in showing the main sections within a work. 

Calculating its reciprocal, inter-onset rate can generate a 

graph that provides some measure of the varying activity 

within an electroacoustic work (Figure 3). If we had 

graphed Figure 3 at the beginning of the analysis, we 

would have observed that the piece does divide into two, 

with little activity between about 390 and 410 seconds. 

The first half begins with three bursts of activity, 

followed by a longer, more active phase of increasing 

activity until the “mid-break”. The second half is more 

continuously active until around 660 seconds, where the 

work has several less active periods, perhaps in 

preparation for the end of the piece. 

In the previous analysis of Unsound Objects, sections 

were first determined aurally, then superimposed over the 

irregularity plot. Comparing the plot of inter-onset rate 

(Figure 3) with the irregularity plot (Figure 1) we can see 

that the piece appears to be much more active in Figure 3 

than Figure 1, especially in the second half. The question 

remains as to which is a better measure of “activity” ? 

The inter-onset rate is probably a more accurate method, 

but it seems exaggerated. This is possibly because it 

doesn’t take into account the loudness of the events. 

Perhaps if this plot (Figure 3) was modified by the RMS 

amplitude, then a more useful picture of “effective 

activity” may emerge. There are also inherent definition 

problems for “iterative” sound events, such as drum rolls 

or machine sounds. Is such a sound type one long event 

or many short events ? This phenomenon may skew the 

events per second data. 

In terms of automating analysis, the inter-onset time 

plot (Figure 2) is very effective in identifying sections in 

a long musical piece, while the inter-onset rate (Figure 3) 
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does provide a measure of active versus inactive 

depiction for various passages in a long piece. 

The next step in this work was to examine activity and 

other temporal measures in other works, including more 

rhythmical pieces. 

RHYTHMOGRAM REPRESENTATIONS 

This section of our paper introduces work that is well 

documented in a paper from the ICMC in 2014 [5], but it 

will be very briefly summarized here to place our 

subsequent work on automated segmentation into a 

context of our ongoing work, and to demonstrate some 

contrasting and varied representations. 

Having investigated activity plots, the aim of the next 

stage of our work was to continue our Segregation, 

Integration, Assimilation, and Meaning (SIAM) approach 

of employing a cognitive model [6], in combination with 

signal processing techniques, to analyse the “raw” audio 

signal, and more specifically, to depict time-related 

phenomena (beat, rhythm, accent, meter, phrase, section, 

motion, stasis, activity, tension, release, etc.). Such 

depictions should assist or enhance aural analysis of, 

what is essentially, an aural art-form. 

After an extensive literature search, the use of the 

“rhythmogram” in the analysis of speech rhythm, and the 

analysis of some tonal music, seemed to fulfill the 

requirement of a cognition-based method that uses an 

audio recording as its input signal to produce a plot of the 

strength of events at certain time points. 

The Rhythmogram 

In my ICMC 2014 paper [5], I provided a thorough 

explanation of the rhythmogram, so I will only briefly 

summarise it here. The framework is documented in Todd 

[7], Todd & Brown [8] and Marr [9]. It makes use of 

quite a traditional auditory model where outer and middle 

ear responses are modelled by filtering, then gammatone 

filters model the basilar membrane. This is followed by 

the Meddis [10] inner hair cell model, which outputs the 

auditory nerve firing probability. It is then summed and 

processed by a multi-scale Gaussian low-pass filter 

system. Peaks are detected, summed and plotted on a time 

constant versus time graph, resulting in a plot known as a 

rhythmogram.
1
 

Figure 4 shows an example rhythmogram for a 

repeating pattern of three short 50ms tones, followed by a 

550ms period of silence, lasting 7 seconds. 

 

                                                           

1 
A version of Silcock’s schematic [11] for Todd and Brown’s model is 

shown in the Hirst (2014) ICMC paper [5]. 

Figure 4. Rhythmogram for a repeating pattern of three short 50ms 

tones, followed by a 550ms period of silence. 

Notable features of the rhythmogram model are: 

 Consideration of sensory memory consisting of 

a short echoic store lasting up to about 200 to 

300 ms and a long echoic store lasting for 

several seconds or more2. 

 Each filter channel detects peaks in the response 

of the short-term memory units. 

 The sum of the peaks is accumulated in a 

simplified model of the long echoic store. 

 An “event” activation is associated with the 

number of memory units that have triggered 

the peak detector and the height of the memory 

unit responses. 

 The hierarchical tree diagrams of Lerdahl and 

Jackendoff [12] have visual similarities to 

rhythmogram plots and so rhythmograms may 

help the researcher with gaining insights into 

the hierarchical structure of a musical work 

under investigation. 

 Not only does the rhythmogram model detect the 

onsets of events, but it can represent other 

rhythmic grouping structures based on inter-

onset times, changes in rhythm, and meter. 

 Changing the analysis parameters allows the 

researcher to “zoom in” or “zoom out”, to 

focus on short-term rhythmic details, or 

provide a representation of an entire section, or 

even a complete work. 

In the case of the final point above, both of these levels 

of focus have been explored, and a summarised 

illustration of both short-term and long-term structures 

will be recapitulated briefly here. 

Analysis of Normandeau’s Electroacoustic works 

This study utilised the MATLAB code written by Guy 

Brown, and adapted by Vincent Aubanel for the LISTA 

                                                           

2
 Todd (1994), pp. 34-35. 
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project [13]. The code makes use of the fact that it is 

possible to increase the efficiency of the computation and 

still obtain a useful, meaningful rhythmogram plot by 

using a rectified version of the input signal directly, i.e. 

bypassing the Gammatone filterbank and inner hair cell 

stages
3
.  

The electroacoustic works which were chosen for 

analysis in this study are collectively known as Robert 

Normandeau’s Onomatopoeias Cycle, a cycle of four 

electroacoustic works dedicated to the voice.  The 

Onomatopoeias Cycle consists of four works composed 

between 1991 and 2009, which share a similar structure 

of five sections and are of a similar duration of around 15 

minutes. The works have been documented by Alexa 

Woloshyn [14], and by Normandeau himself, in an 

interview with David Ogborn [15]. 

Two types of analysis were performed. The first is a 

detailed rhythmic analysis of a short segment of one of 

the works. The second analysis zooms out to examine the 

formal structure of three pieces in the cycle and make 

comparisons. 

Detailed analysis of a short segment of Spleen 

The work chosen for detailed rhythmic analysis was the 

second work in the cycle called Spleen [16]. This work
4
 

was chosen as it has a very distinctive beat in various 

sections and it is slightly unusual for an electroacoustic 

work in that respect. Figure 5 shows a rhythmogram for 

the 13.5 second segment of musique et rythme  from 

Normandeau’s Spleen. The X-axis is time (in secs) and 

the Y-axis is filter number (from 1 to 100). For the full 

test parameters see [5]. For now we note that the 

minimum time constant was 10 msec, and the maximum 

time constant was 500 msec for this test. 

Figure 5. Rhythmogram for 13.5” of  musique et rythme from Spleen. 

                                                           

3 
See Todd (1994) “Appendix A.3.3 Input” p. 65. 

4
 The first two mins of musique et rythme can be heard via the link on 

the electrocd site: 
http://www.electrocd.com/en/cat/imed_9920/ 

Labelled as ‘A’ in Figure 5, the tallest spikes 

correspond with a “low thump”, somewhat like a bass 

drum. Using these spikes we could even infer a tempo 

from their regularity. Labelled as ‘B’ and “soft low 

thumps” in figure 5, these softer peaks (B) are 

interspersed between the louder peaks (A) and are 

equidistant. 

To summarise our observations further we can note 

that there is a rhythmic background of regular beats, 

consisting of low thumps, arranged in a hierarchy with 

softer low thumps interspersed. The “tempo” is around 66 

bpm. An implied duple meter results from the loud-soft 

thump beats alternating. 

Against this regular background is a foreground of 

vocal “yow” shouts. Less regular in their placement, the 

shouts become elongated to “yeow”, and then amplitude 

modulated to add colour and variety. Although less 

regular in their placement, the “shouts” always terminate 

on a “thump” beat and thereby reinforce the regular 

pulse. 

There are finer embellishments too, labelled ‘C’ in 

figure 5. This third level of spikes in the rhythmogram 

depicts events that are placed between thump beats and 

have a timbre that is somewhere between a saw and a 

squeaky gate. I’ll describe these events as “aw” sounds, 

and they function as an upbeat to the main thump beat. 

This “one and two and three and four” pattern has a 

motoric effect on the passage. The presence of further, 

shorter, and regular spikes is an indication of more sound 

events which function to embellish the basic pattern. 

Looking at the rhythmogram as a whole, for this 

passage, we can observe that it tells us there are regular 

time points in the sound, there is a hierarchy of emphasis 

in the time points (implying some meter), and a further 

hierarchy in the sense that there is a background of a 

regular part (the thumps) and a foreground of less regular 

vocal shouts. Both the background and the foreground 

have their own embellishments - anticipation of the 

events in the case of the former, and an increase in length 

and use of amplitude modulation, in the case of the latter. 

Comparison of whole works from the cycle 

The second part of this study involved the use of the 

rhythmogram in the representation and analysis of whole 

works. It turns out that the works of Robert Normandeau 

are ideally suited to this application as well. The 

Onomatopoeias Cycle comprises four works, which 

consist of the same basic form. Normandeau used the 

same timeline, but different samples, to create a cycle of 

works. In 1991 he composed the piece Éclats de Voix 

using samples of children’s voices [15]. In 1993 came 

Spleen using the voices of four teenage boys, and in 1995 

Le renard et la rose used the same timeline with adult 
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voices. The final piece in the cycle is Palimpseste, from 

2005, and it is dedicated to old age. The first three works 

were analysed, and rhythmograms were created for them.  

As these works are each about 15 minutes long, a 

different set of analysis parameters was required from the 

analysis of just a 13.5 second excerpt. After a lot of 

experimentation, a suitable set of parameters was found. 

The reader can see [5] for further details, but 

significantly, the minimum time constant was 0.6 

seconds, and the maximum time constant was 30 seconds. 

These parameters represent a “zoomed out” temporal 

view of the three pieces.  

Figure 6 depicts the rhythmogram (Time vs Filter No.) 

for Éclats de Voix for its full duration of around 15 

minutes. The alternating grey and white areas mark out 

the five sections that each piece is divided into - as 

tabulated by Woloshyn in her paper [14]. 

There is not the space within the confines of this paper 

to show the Rhythmograms for all three Normandeau 

works in the cycle. Neither is there the space to go into 

our detailed findings, however we can make some 

indicative comparisons in summary here.  

Comparing Spleen with Le renard we observed 

similarities between the rhythmic profiles of sections 1, 3, 

4 and 5. Comparing the rhythmograms from Éclats de 

voix   and Spleen, there are some similarities of shape, 

especially in sections 3, 4 and 5. Éclats  is more busy 

than Spleen, which is busier than Le renard et la rose. 

Finally, the contrasts become more exaggerated with each 

piece. 

Remarks About Rhythmograms 

This initial use of the rhythmogram in the analysis of 

electroacoustic music has demonstrated that the algorithm 

is capable of displaying the temporal organization of a 

short segment with details that may enhance analysis 

through listening. The algorithm is also flexible, given 

the careful selection of analysis parameters, in the sense 

that it can also be used on entire pieces to help elicit 

information regarding more formal temporal 

organisational aspects, and to make comparisons with 

other works.  

Some of its short-comings are that it can’t solve the 

separation problems of polyphonic music, rhythmograms 

can be awkward to interpret, and they also rely on aural 

analysis. Careful selection of analysis parameters is 

crucial in obtaining meaningful plots. 

 

 

 

Figure 6. Rhythmogram of the whole of Éclats de voix from Normandeau’s Onomatopoeias cycle. 

AUTOMATED SEGMENTATION OF 

ELECTROACOUSTIC MUSIC 

Following on from the investigation of the rhythmogram, 

the work on the entire Normandeau pieces brought up the 

research question of whether the segmentation of entire 

pieces into their sectional constructs could be automated 

somehow.   

Recalling from section 2.2 above, the analysis of 

Unsound Objects began with analysing the acoustic 

surface. This process involves large-scale segmentation 

into sections, and then small-scale segmentation of sound 

events from each other. 

To explore such segmentation, signal analysis routines 

from the MIRToolbox [17] were investigated as they 

represent a collection of auditory perceptual models on 

the one hand, and a modular approach in their selection 

and combination, on the other hand. 
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Automated segmentation Model 

For large-scale segmentation, a method for media 

segmentation, proposed by Foote and Cooper [18], was 

used as a model. Their method focuses on the notion of 

self-similarity. Essentially, the spectrum of every time-

segment of an audio work is compared with every other 

time-segment spectrum, and a “similarity matrix” is 

created for the whole work. Foote and Cooper [18] 

describe how the work can be divided into sections from 

the similarity matrix through the construction of a 

“novelty curve”: ‘To detect segment boundaries in the 

audio, a Gaussian-tapered “checkerboard” kernel is 

correlated along the main diagonal of the similarity 

matrix. Peaks in the correlation indicate locally novel 

audio, thus we refer to the correlation as a novelty score’.  

Large peaks detected in the resulting time-indexed 

correlation are then labeled as segment boundaries. 

Foote and Cooper go on to describe how they calculate 

similarity-based clustering to derive the signature of a 

musical piece, but our work has only proceeded as far as 

testing the segmentation technique within the 

electroacoustic musical realm. 

 

Automated Segmentation in Practice Method I 

Figures 7 and 8 demonstrate an example of a “novelty 

curve” and its accompanying segmented audio for the 

first 3 minutes of Harrison’s Unsound Objects [19]. 

Figure 9 shows the sections derived by a human listener 

superimposed over the spectral irregularity plot for the 

same extract of Unsound Objects. Figure 9 is included for 

the sake of comparison between automated methods and 

a human analyst. 

Using this segmentation method, the “kernel size” was 

manipulated to produce section lengths approximating the 

manual analysis. With a kernel size of 1250 samples, 7 

segments were created in the first 3 minutes. 

Comparing figures 8 and 9 we can observe that 

automated segments 1 and 2 (Figure 8) match Section 1 

of the manual analysis pretty well (Figure 9). Similarly 

automated segments 3 and 4 seem to match Section 4, 

automated 5 and 6 line up with Section 3, and automated 

segment 7 matches the manual Section 4. At first glance 

then, this seems quite a useful method of segmentation. 

However, in deriving this representation, a convolution 

computation time of nearly 16 minutes is required for a 

“kernel size” of 1250 samples in the similarity matrix 

(quite a large kernel size). Clearly a more efficient 

method was needed. 

Figure 7. Novelty curve for the first 3 minutes of Unsound Objects – Method I. 

Figure 8. Audio waveform segmented using the novelty curve for the first 3 minutes of Unsound Objects – Method I. 
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Figure 9 : Irregularity plot with section specification notated by a human listener for the first 3 minutes of Unsound Objects. 

 

 

Figure 10 : Novelty curve for the first 3 minutes of Unsound Objects – Method II. 

 

 

Figure 11 : Audio waveform segmented using the novelty curve for the first 3 minutes of Unsound Objects – Method II. 

 

 

Figure 12 : Novelty curve for the first 3 minutes of Unsound Objects – Method II, lower Contrast value. 

 

Figure 13. Audio waveform segmented using the Figure 12 novelty curve – Method II, lower Contrast value. 
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Automated Segmentation in Practice Method II 

In Method I, segments are determined from peaks in the 

novelty curve. The novelty curve represents the 

probability along time of the presence of transitions 

between successive states, indicated by peaks, as well as 

their relative importance, indicated by the peak heights. 

For electroacoustic music, we use the spectrum as input 

to the similarity matrix specification routine. The Kernel 

based approach is described by Foote and Cooper [18] as 

follows: ‘Novelty is traditionally computed by comparing 

– through cross-correlation – local configurations along 

the diagonal of the similarity matrix with an ideal 

Gaussian checkerboard kernel.’ That is, every segment of 

the piece is compared with every other segment to look 

for similarities and differences. The sequence of 

operations is: audio in - spectrum - similarity matrix - 

novelty - convolution - peaks - segmented audio display - 

novelty score display. 

Method II makes use of the simpler, multi-granular 

approach outlined by Lartillot, Cereghetti, Eliard & 

Grandjean [20]: ‘For each instant in the piece, novelty is 

assessed by first determining the temporal scale of the 

preceding homogeneous part as well as the degree of 

contrast between that previous part and what just comes 

next. The idea is to estimate the temporal scale of the 

previous ending segment as well as the contrastive 

change before and after the ending of the segment. The 

novelty value is then represented as a combination of the 

temporal scale and the amount of contrast’. 

Using this multi-granular approach, the following 

MIRToolbox command yields the novelty curve shown in 

figure 10 and the segmented audio given in figure 11: 

mirsegment(a,'Novelty','MFCC','Rank',1:10,'Con

trast', 0.6) 

Note that this method also uses the first ten Mel-

Frequency Cepstral Coefficients (MFCCs) in order to 

decrease computation time, and the ‘Contrast’ level is set 

at 0.6. With this ‘Contrast’ value there are 8 segments 

identified in figure 11. These segments correlate quite 

well with the 4 sections shown in Figure 9 in the 

following way : Section 1 (segments 1-3); Section 2 

(segments 4-5); Section 3 (segments 6-7); and Section 4 

(segment 8). 

It is also possible to vary the ‘Contrast’ parameter to 

segment on a shorter-term or longer-term event basis – 

using the same novelty curve. ‘Contrast’ is defined as: ‘A 

given local maximum will be considered as a peak if the 

difference of amplitude with respect to both the previous 

and successive local minima (when they exist) is higher 

than the threshold value specified’.  

For example, by halving the ‘Contrast’ value to 0.3 

(Fig. 12), six additional peaks in the novelty curve are 

included, and the audio is segmented into 14 segments 

(Fig. 13). This provides an effective means to vary 

segmentation from large sections to individual events, 

depending on the ‘Contrast’ value. In our examples, 

segmentation is on the basis of timbre, however pitch, 

rhythm and meter could also be used. 

In contrast to the 16 minutes required to calculate 

segmentation using Method I, Method II is at least four 

times faster and more efficient. 

CONCLUSIONS 

Within this paper we have examined the determination of 

a number of temporal-related analytical aspects of 

Electroacoustic Music, and their representations. We 

calculated onset times, inter-onset times, and inter-onset 

rate for Harrison’s Unsound Objects. We explored the use 

of the “rhythmogram” as a means of  hierarchical 

representation in the works of Normandeau’s 

Onomatopoeias cycle. 

Finally we investigated various automated 

segmentation methods for Unsound Objects. We found 

the multi-granular approach outlined by Lartillot et al, 

using MFCCs, was a very efficient and salient 

segmentation strategy for music structured predominantly 

according to timbre (as opposed to pitch or rhythm). 

Further, the ‘Contrast’ parameter is effective in 

determining the granularity of segmentation – short 

events to long sections. 
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ABSTRACT 

This paper presents and adapts the Cognitive Dimensions 

of Notations framework (Green and Petre, 1996) for use 

in designing and analysing notations (and user interfaces) 

in both digital and traditional music practice and study. 

Originally developed to research the psychology of  

programming languages, the framework has since found 

wider use in both general HCI and music. The paper 

provides an overview of the framework, its application, 

and a detailed account of the core cognitive dimensions, 

each discussed in the context of three music scenarios: 

the score, Max/MSP, and sequencer/DAW software. 

Qualitative and quantitative methodologies for applying 

the framework are presented in closing, highlighting 

directions for further development of the framework.  

1. INTRODUCTION 

Music and programming are two creative mediums  

mediated through notation. In both scenarios, notation is 

used to describe the behaviour of a system for subsequent 

execution – be that by computer or human performer. As 

a representation of a creative domain, notation shapes 

how the practitioner perceives and interacts with their art. 

In formal systems, such as computers and common  

practice music, the design of notation defines what  

actions and expressions are possible. However, the design 

of notation and techniques for manipulating can also 

dispose (or discourage) users to certain actions and  

formulations – what actions and expressions are easy. 

This paper draws on research and findings in the  

psychology of programming and music HCI to describe a 

flexible approach to analysing and evaluating notations 

and user interfaces in a variety of digital and traditional 

musical practices. It begins with a discussion of the  

parallels between musical creativity (e.g. composition) 

and programming, before introducing the Cognitive  

Dimensions of Notation framework. [1] To demonstrate 

the application and adaptability of the framework,  

Section 4 explores sixteen core dimensions of notation 

use through three scenarios of notation-mediated music 

interaction: sketching and transcription using traditional 

score; audio/music programming using Max/MSP; and 

composition and production using a sequencer or digital 

audio workstation (DAW). Finally, Section 5 offers a 

survey of methodologies for applying the framework. 

2. FROM PROGRAMMING TO MUSIC 

There are many parallels between programming and 

creative musical scenarios such as composition, both in 

digital interaction and more traditional music practice. 

Fundamentally, both practices can be mediated 

through notation. In Western music, formal training and 

practice is oriented around the musical score. Composers 

exploit the flexible affordances of pencil and paper to 

sketch and experiment with musical ideas, before tran-

scribing their work more formally for communication to 

the performer, who interprets the notation to realise the 

written form as music (i.e. sound). The listener, as the 

consumer, does not see the notation. In programming, 

developers describe processes and interactive systems in 

source code, using symbol-based formal languages (such 

as C/C++, BASIC, or LISP). The code is compiled or 

interpreted by the computer to create a program that en-

capsulates some kind of functionality and processing of 

input and/or output. As in music, the end-user does not 

see the source code. 

In both instances, the formal rules of the notation de-

fine what actions and entities can be represented with 

respect to the creative domain – music or program behav-

iour. The musical score developed over centuries to effi-

ciently capture the formal rules of Western tonal music, 

during the common practice period (1600-1900). [2] 

While this covers a wide gamut of musical practices and 

styles, and continues to be relevant in modern styles, the 

format and conventions of the score implicitly shape the 

creativity of anyone working through it. [3, 4, 5] 

Unlike music, no single standard programming nota-

tion exists; users have an element of choice over formal-

isms. Most coding languages are Turing complete, mean-

ing they are practically capable of encapsulating any  

desired computer functionality. Thus, the issue with such  

notations is not what is possible, but what functionality is 

Copyright: © 2015 Chris Nash. This is an open-access article distribut-

ed under the terms of the Creative Commons Attribution 

License 3.0 Unported, which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided the original author and 

source are credited. 
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easy or quick to code, given the formal rules of the  

notation. [1] Different languages (and dialects) offer 

distinctions in syntax and semantics to facilitate different 

users and uses. For example: BASIC is designed using 

simple English keywords to be easily comprehended by 

beginners (at the expense of structure); Assembler more 

directly exposes low-level workings of hardware (at the 

expense of human-readability); and object-oriented  

languages, like Java and C++, are designed around  

creating modular systems and abstract data models that 

map onto user ontologies to enable notation of both low- 

and high-level concepts. As music notation similarly 

seeks to support beginners, instrument affordances, and 

flexible levels of abstract representation, it is instructive 

to analyse usability factors in notations for programming. 

Beyond the format of notation, editing tools also im-

pact the usability of a notation, and although text-based  

notations can be separated from code editors, other  

programming paradigms are more integrated with the 

user experience of the development environment. For 

example, visual programming languages (VPLs), such as 

Max/MSP, are manipulated through a graphical user 

interface, the usability of which impacts how users  

perceive the language and its capabilities. Other coders 

develop using an integrated development environment 

(IDE), offering unified platform for writing, building, 

running and debugging code. The integration of such 

tools allows code edits to be quickly tested and evaluated, 

accelerating the feedback cycle and thus enabling rapid 

application development, in turn facilitating experimenta-

tion and ideation. [6] Thus, any approach for analysing 

notation should likewise address factors in the UI. 

In music, similar considerations can be made of the 

design of interactive modes supported by tools to  

manipulate notations – be that pencil and paper, ink and 

printer, or mouse and computer screen. Score notation 

supports composers in creating music, performers in 

interpreting it, scholars in analysing it, and learners in 

understanding it. In each case, practitioners use different 

techniques and tools to interact with the encapsulated 

music. Moreover, while music plays a functional role in 

many aspects of culture, it is also about personal, creative 

expression, and thus it is important to look at how the 

development of musical ideas is shaped by the design of 

notations. To consider this, the following section uses the 

analogue of programming to adapt an established analysis 

framework that might be used to reveal limitations, influ-

ences and opportunities in music notations and interfaces. 

3. A USABILITY FRAMEWORK 

The Cognitive Dimensions of Notations [1] is a usability 

framework originally developed by Thomas R. G. Green 

and Marian Petre, to explore the psychology of interac-

tion with notation in the field of programming, breaking 

different factors of the software designer’s user experi-

ence into cognitive dimensions that separately focus on 

affordances of the notation, but which collectively help to 

paint a broad picture of the user experience involved with 

editing code and crafting interactive software systems. 

The definitions of each dimension (see Section 4) are 

borne from research in cognitive science, but shaped to 

operationalise the framework as a practical analysis  

tool for use by interaction designers, researchers, and  

language architects. [7] It is intended that each dimension 

describe a separate factor in the usability of a notation, 

offering properties of granularity (continuous scale; 

high/low), orthogonality (independent from other dimen-

sions), polarity (not good or bad, only more or less desir-

able in a given context), and applicability (broader rele-

vance to any notations).  

In practice, these properties cannot always be met. 

[1, 7] Interactions between dimensions are evident, with 

either concomitant or inverse relationships. For example,  

low viscosity (~ ease of changing data) contributes to 

provisionality (~ ease of experimentation); whereas, 

higher visibility (~ ease of viewing) may reduce hidden 

dependencies (~ invisible relationships). Moreover, some 

dimensions are value-laden; intuitively it may be difficult 

to see how error proneness, hard mental operations, and 

hidden dependencies are desirable. However, knowledge 

of these relationships can be useful in solving usability 

issues, where a solution to one dimension can be ad-

dressed through a design manœuvre targeted at another. 

The exact set of cognitive dimensions is not fixed, and 

various proposals for new dimensions, designed to  

capture aspects of a notation or user experience beyond 

the original framework, have been forwarded – many 

arising from its expanded use in other fields in and 

around HCI (non-programming interaction, tangibles, 

computer music). New dimensions should be measured 

against the aforementioned requirements, but their value 

is most effectively gauged by how much they reveal 

about the interaction context in question, and arguably 

the greatest contribution of the framework is that it  

provides a vocabulary and structure for discussing and 

analysing notation from multiple perspectives.  

As an HCI tool (and in contrast to other usability 

methodologies), it allows both broad and detailed analy-

sis of human factors in a notation or user interface, adapt-

able to different use cases and audiences. By considering 

each cognitive dimension in the context of a specific 

system, designers and evaluators can assess how the 

notation fits their user or activity type, whether that’s 

making end-user systems easier to use [5] or making 

musical interaction more rewarding by increasing chal-

lenge. [8, 9] 
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For a detailed discussion of the background and defini-

tion of dimensions in the original framework, see [1]. For 

further publications on the subject, see the framework’s 

resource site and associated bibliography.
1
 

4. DIMENSIONS OF MUSIC NOTATION 

In this section, sixteen core dimensions of the framework, 

adapted for a musical context, are detailed and discussed 

in the context of three common musical interaction sce-

narios. To evaluate both formal and informal music nota-

tion, each dimension is respectively reviewed in the con-

text of the musical score and sketch (SCORE). The inter-

section of musical expression and programming is then 

similarly explored in the context of the Max audio syn-

thesis environment (MAX/MSP). Lastly, the framework is 

used to review the user interfaces and experiences offered 

by mainstream end-user systems, through an analysis of 

digital audio workstation (DAW) and sequencer software 

(DAW). In addition to a description of the dimension, each 

is introduced with a simple question designed to encapsu-

late the definition in a form that can be used to capture 

feedback from end-users (e.g. a user survey 

[3, 8, 10, 11]).  

4.1 Visibility 

“How easy is it to view and find elements or parts of the 

music during editing?” 

This dimension assesses how much of the musical 

work is visualised in the notation or UI, as well as how 

easy it is to search and locate specific elements. While 

hiding data will make it difficult to find, showing too 

much data can also slow the search. Pages and screens 

limit the amount of space available for displaying data, 

requiring a careful balance of visual detail and coverage. 

[Related dimensions: juxtaposability, abstraction 

management, hidden dependencies, concise-

ness/diffuseness, closeness of mapping, role expressive-

ness.] 

SCORE: In sheet music, all notated elements are visible 

on the page; there is no feature to dynamically hide notat-

ed elements, beyond using separate sheets. However, 

music is hidden on other pages, where page turns also 

present  

challenges for typesetter or performer, if phrases continue 

over a join. This can be accounted for in layout, with 

forethought, but this increases the premature commit-

ment. Things are easier for the composer, as a draft musi-

cal sketch need not cater for the performer, and pages can 

be laid side-by-side (see juxtaposability). Some aspects of 

                                                           
1
 http://www.cl.cam.ac.uk/~afb21/Cogn

itiveDimensions/ 

the final musical form (e.g. expression and prosody of 

performance) may not be visually explicit in the musical 

score (see closeness of mapping). 

MAX/MSP: As a visual programming language (VPL), 

visibility is a key dimension of Max, which explicitly 

represents the flow of audio and musical data. As in 

many programming languages, the visibility of process 

(code/data-flow) is prioritised over musical events (data). 

In Max, many elements of a system are not visualised, 

such as the internal state of most objects (e.g. default or 

current values). There is also no inherent linear / serial 

representation of musical time, making it difficult to 

sequence past or future events or behaviour. As such, 

Max best suits generative and reactive (live) applications. 

DAW: Like most end-user software, DAWs offer a 

graphical user interface (GUI) that is inherently visual. 

However, different sub-devices (views) reveal or hide 

different properties of the music; no screen provides a 

comprehensive or primary notation. Notably, the arrange 

window is the only window designed to provide an over-

view of the whole piece, but filters low-level detail (e.g. 

notes), which must be edited through other interfaces 

(score, piano roll, data list). As a result musical data is 

dispersed through the UI and can be difficult to find, 

often involving navigating and scrolling through win-

dows and views with the mouse. Arguably the primary 

and most expressive interaction medium for the sequenc-

er is inherently non-visible: performance capture 

(MIDI/audio recording). 

4.2 Juxtaposability 

“How easy is it to compare elements within the music?” 

Related to visibility, this dimension assesses how no-

tated music can be compared against other data. Pages 

and moveable windows allow side-by-side comparison, 

albeit at some cost to visibility. How clearly elements and 

their purpose are represented will also affect how easy it 

is to compare notated passages (see role expressiveness).  

Music systems may also provide tools for non-visual 

comparisons – e.g. sound (see progressive evaluation). 

[Related dimensions: visibility, conscise-

ness/diffuseness, role expressiveness, progressive evalua-

tion] 

SCORE: Pages allow side-by-side comparison of ele-

ments, and the formal rules for encapsulating music make 

visual inspection an effective tool for assessing similarity 

(rhythmic patterns, melodic contour, etc.). However, 

some musical properties are distinguished more subtly in 

the visual domain (e.g. harmony, key, transposed parts – 

see hidden dependencies), requiring musicianship as well 

as notational literacy to enable effective comparison. 
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MAX/MSP: Max’s windowed system allows side-by-

side comparison, so long as abstraction (sub-patching) is 

applied effectively. Groups of objects can be dragged 

next to each other, but this becomes cumbersome as the 

patch grows and objects are intricately woven and linked 

to surrounding objects (see viscosity and premature 

commitment). Broad visually similarity and functional 

similarity may not always align (see role expressiveness). 

DAW: As in Max, windowed systems allow side-by-

side comparisons, though sizing, scrubbing, and scrolling 

can be cumbersome in the face of many windows, a 

common issue in traditional linear sequencers [4, 12]. 

Most visualisations of musical elements are easy to com-

pare to similar properties of other tracks, bars, etc., and 

generalised  

representations (track automation envelopes) also offer a 

basis for comparison across different musical properties. 

4.3 Hidden Dependencies 

“How explicit are the relationships between related ele-

ments in the notation?” 

This definition assesses to what extent the relation-

ships and dependencies (causal or ontological) between 

elements in the music are clear in the notation. Showing 

dependencies can improve visibility, but there is often a 

trade-off with editing viscosity. For example, in pro-

gramming, textual source code (e.g. C/C++) can be easily 

edited, but the relationships between sections of code, 

functions, and variables are not explicitly shown. How-

ever, in visual programming languages (VPLs), objects 

and variables are linked using arcs, making their func-

tional connection visually explicit, but making it harder 

to edit, once woven into the rest of the code. [1, 13] 

[Related dimensions: visibility, closeness of mapping, 

role expressiveness, viscosity, conciseness/diffuseness] 

SCORE: The visibility of the score ensures no actual da-

ta is hidden, except on separate pages, though the musical 

relationship between notated elements is not always  

explicit. Some elements are visually linked (e.g. slurs and 

phrasing) and there are other visual cues that events are 

related, as in the use of beams or stems to respectively 

bridge rhythmic or harmonic relationships. However, 

musical events are sensitive to context, as with dynamic 

marks, previous performance directions, and key changes 

– though a visual link between each individual note and 

the markings that affect its performance would be ineffi-

cient to notate explicitly (increasing the diffuseness).   

MAX/MSP: A key attribute of all VPLs; the graphical  

connection of elements using patch cables explicitly 

identifies dependencies between Max objects, and help to 

show signal flow and the wider architecture of a patch. 

However, patch execution in Max is also affected by the 

relative placement and spatial relationship of objects (e.g. 

right-to-left processing of outlets), which is not visualised 

explicitly and can lead to unexpected patch behaviour 

that confuses users. While relations between objects are 

shown, its specific functional purpose is not explicit and 

the object’s current state or value is hidden. For example, 

default values specified as arguments can be replaced by 

messages, but there is no visual indication the value of 

the object has changed from its displayed default value.  

   Use of sub-patching can also hide functionality, 

though this is a common trade-off with the additional 

expressive power offered by abstraction mechanisms. 

Moreover, as a data-flow environment (and in contrast to 

imperative programming, as in C++), musical time and 

the sequence of events are not visually explicit, hiding 

causal and timing relationships between musical ele-

ments. 

DAW: The variety of different views and UIs designed 

for different purposes and perspectives can lead to a large 

number of hidden dependencies within DAWs. [3]  

For example, across the different screens and settings 

there are dozens of variables that impact the final volume 

of an individual note, and often no explicit visual link 

between them. Similarly, the routing of audio signals 

through a DAW is usually not visually illustrated, but 

dependent on the values of (potentially hidden) drop 

menus. Some DAWs have attempted to address this: 

Tracktion enforces a left-to-right signal flow where a 

track’s inputs, inserts, send effects, outputs, and other 

processes are aligned in sequence (in a row) within the 

tracks of its arrange screen; whereas Reason takes a 

skeuromorphic approach using visual metaphor to the 

studio, enabling users to inspect and manipulate the wired 

connections on the back of virtual hardware devices. 

4.4 Hard Mental Operations 

“When writing music, are there difficult things to work 

out in your head?” 

This dimension assesses the cognitive load placed on 

users. While this is one of the few dimensions with a 

prescribed polarity (to be avoided in a user experience), 

musical immersion, motivation, and enjoyment is predi-

cated on providing a rewarding challenge commensurate 

with ability, such that music may be one of the few fields 

where this dimension is to some degree desirable. 

[Related dimensions: consistency, hidden dependen-

cies] 

SCORE: Formal music notation carries a high literacy 

threshold, making the score inaccessible to untrained or 

novice users. Moreover, aspects of the score also require 

experienced musicians to solve problems in their head, 
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such as applying key signature, deducing fingering, etc. 

(see hidden dependencies). By not notating these  

elements, scores can be more concise, as well as less 

prescriptive for interpretation by performers. Interaction 

with music notation also draws heavily on rote learning 

and deliberate practice to develop unconscious skills and 

reflexive playing techniques that would be less efficiently 

or fluidly performed if mediated through notation. 

MAX/MSP: While arithmetic and computation tasks can 

be offloaded to the Max, some aspects of patch behaviour 

must be carefully approached. Execution order and causal 

relationships are not visually explicit in a Max patch; 

users must comprehend the flow of processing to under-

stand the behaviour of their program. Similarly, the lack 

of a timeline makes time a more abstract concept, making 

less process-oriented styles of music harder to create and 

conceive, unless mentally simulated by the user. 

DAW: Pro audio software is created with design princi-

ples favouring usability and ease-of-use: to be accessible 

to musicians and non-computer audiences. The various 

sub-devices in a DAW allow users to edit data through a 

UI style suiting their background (score, mixer, piano 

roll, MIDI instrument, etc.). However, because complexi-

ty is hidden from the user, there is some risk of such 

systems becoming less flexible and more opaque; made 

of black boxes supporting established artistic workflows 

(see closeness of mapping, premature commitment). The  

apparent disjunction between usability and the virtuosity 

musicians embrace in other aspects of their practice  

(performance, score literacy, composition) may suggest 

that such users would accept the cost of developing skill, 

when more flexible approaches to musical creativity is 

the reward, and thus design heuristics based on virtuosity 

rather than usability may be more apt. [9, 14] 

4.5 Progressive Evaluation (Audibility / Liveness) 

“How easy is it to stop and check your progress during 

editing?”  

This dimension details how easy it is to gain domain 

feedback on the notated work during editing. How  

complete must the work be before it can be executed?  

   In music, this is defined by what facilities are availa-

ble to audition the sound or performance of the music. 

‘Liveness’, another concept adapted from programming, 

defines the immediacy and richness of domain feedback 

available in the manipulation of notation [15, 16], and is a 

key factor in the user’s feeling of immersion in the crea-

tive process and domains such as music. [11,17] 

[Related dimensions: provisionality, premature com-

mitment, hard mental operations] 

SCORE: Musical feedback is available through manual-

ly playing, sight-reading, and auditioning the notated 

music using an instrument. Material can be evaluated 

through performance (possibly requiring transposition) 

on various instruments – commonly, a piano. Crucially, 

the piece needn’t be complete (or ‘correct’) to audition 

individual phrases or parts. Moreover, lo-fidelity musical 

scores (sketches) allow unfinished, informal notation of 

ideas that can still be interpreted by the composer. There 

may, however, be a disparity between notated forms and 

a musical performance, where performers may add their 

own interpretations to the notes on the page (individual  

prosody, articulation, rubato, etc.). Simulation of material 

on a different instrument also relies on the composer’s 

knowledge of the target instrument and related technique 

– e.g. a piano may be more or less musically flexible, and 

offer a different timbre to the target instrument. 

MAX/MSP: The environment allows patches to be run at 

any time, though they must be coherent and syntactically 

correct to evaluate the sound design or music. Good  

programming practice encourages a modular approach 

that allows sub-components and simpler configurations to 

be tested individually, early in development, though its 

function and output might be abstracted from the final 

sonic intent of the code. 

DAW: The timeline, mixer, playback and track controls 

(e.g. mute, solo) enable the user flexible control of listen-

ing back to musical data and auditioning individual edits. 

A piece can be auditioned as it is built up, track-by-track, 

bar-by-bar, or note-by-note, and there is no requirement 

that the ‘solution’ or notated form be musically correct or 

coherent to be heard. The rigid UI prevents the entry of 

non-sensical data, and informal or ambiguous directions 

(see secondary notation) cannot be auditioned. For digi-

tally-produced music, the sound output offers an exact 

representation of the music notated in the UI. 

   Sequencers designed to accelerate the edit-audition 

cycle enable a higher level of liveness in the user  

experience of notation-mediated digital music systems, as 

evidenced by loop- and pattern-based sequencer software 

such as Ableton Live and most soundtrackers [11], which 

focus editing on shorter excerpts of music, shortening  

the feedback cycle. This contrasts the unbroken linear 

timelines of traditional sequencers, where (beyond the 

literally live experience of recording), interaction styles 

for editing and arranging parts offer lower liveness. 

4.6 Conciseness / Diffuseness 

“How concise is the notation? What is the balance  

between detail and overview?” 

This dimension assesses the use of space in a notation. 

Both pages and screens have limited space, and both the 
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visibility and viscosity of a notation suffer when data 

escapes from focus. Legibility may also suffer if the  

notation is simply shrunk or packed tightly, such that 

conciseness must normally be balanced with careful use 

of abstraction mechanisms. In music, composers need to 

be able to access every detail of a piece, but also able to 

get a sense of the ‘big picture’. [3, 12] 

[Related dimensions: visibility, juxtaposability, hidden 

dependencies, abstraction management, consistency] 

SCORE: The score has evolved to provide a concise  

representation of music. Unlike digital notations, no  

abstractions or sub-views are available to hide detail; all 

elements are always visible, requiring economical use of 

space. Time is represented using a pseudo-linear scale, 

where notes are positioned within the bar to reflect rela-

tive position in a piece, but bar sizes are compressed such 

that sparse phrases consume less space. Musical time and 

page position are further decoupled through the symbolic 

representation of note duration, such that slow passages 

(e.g. of semi-breves) do not consume excessive space, but 

fast passages (e.g. of demi-semi quavers) are expanded to 

show the detail more clearly. This symbolic encoding of 

time, however, does lower the closeness of mapping, 

increasing the onus on literacy (virtuosity). 

MAX/MSP: The layout and density of a Max patch is  

flexible, though readability suffers when objects are 

densely packed together or connecting patchcords  

obscure each other. When complex patches grow outside 

the confines of a window, visibility suffers and mouse-

based interaction can be cumbersome. Abstraction mech-

anisms such as sub-patching are critical in managing 

complex systems and avoiding sprawling patches, but 

trade diffuseness over screen space for diffuseness over  

separate, possibly hidden windows.  

DAW: The variety of notations and views in DAWs of-

fer a varied level of conciseness. The arrange view sacri-

fices visibility of data to accommodate a broader over-

view of a piece in the UI. Part editors, like the score and 

piano roll interfaces, offer more detail (in a manner simi-

lar to the traditional score), but only partial views of the 

entire work. More generally, the lack of a comprehensive  

principle notation or interface means that information is 

diffused over different views within the program. Many 

DAWs do little to optimise window management, naviga-

tion, or searching, compounding interaction issues. 

4.7 Provisionality 

“Is it possible to sketch things out and play with ideas 

without being too precise about the exact result?” 

This dimension assesses how easy it is to experiment 

with new ideas through the notation or UI, and how fully 

formed those ideas must be. Accordingly, it is a critical 

factor in a musical system’s support for sketching, idea-

tion, and exploratory creativity. [3, 5, 11, 16] In digital 

systems, an ‘undo’ facility significantly contributes  

to provisionality, allowing inputs and edits (‘what if’  

scenarios) to be trialled and reversed, reducing premature 

commitment to a particular approach [1] – reducing the 

risk of trying new ideas. The dimension is closely related 

to viscosity and progressive evaluation, where the ease 

and flexibility of editing and auditioning similarly facili-

tates exploring new ideas. Secondary notation also offers 

the opportunity to make incomplete or informal remarks, 

but in a non-executable form that can’t be auditioned. 

[Related dimensions: premature commitment, viscosi-

ty, progressive evaluation, secondary notation] 

SCORE: In a musical sketch, the affordances of paper 

and pencil support a powerful and flexible medium for  

capturing part-formed ideas. [5, 18] Pencil can be easily 

and quickly erased, facilitating experimentation and idea-

tion. By contrast, the formality of the typeset, printed ink 

manuscript is less flexible and more permanent, used 

only to finalise a composition for archiving or communi-

cation (e.g. to performers). These two instances of score 

notation compliment each other in an established  

ecosystem that facilitates both composition (creativity) 

and performance (production) (cf. [19]). 

MAX/MSP: The visual drag-&-drop, interactive debug-

ging environment of Max facilitates its use as a rapid 

prototyping tool, useful in the exploratory design of new 

audio processing tools and synthesis techniques [13] – 

though some more involved musical constructs or expres-

sions can be harder to develop or articulate quickly, re-

ducing provisionality and ideation. Conversely, as a pro-

totyping tool, Max’s focus on experimentation and early 

stage creativity comes at the expense of subsequent stag-

es of the creative process (“productivity” [19]): finalisa-

tion, refinement, and continued development of designs 

(e.g. for consumption by end-users, non-programmers, 

and other musicians) is normally conducted using other 

development tools (e.g. C/C++). 

DAW: Like other authoring tools, DAWs offer multiple 

ways of quickly adding, editing and deleting elements in 

the document (i.e. musical piece). Moreover, the presence 

of ‘undo’ functionality makes it easy to backtrack  

actions, reducing the risk of experimenting with new 

ideas, encouraging ideation [1]. The primary mode of 

input – digital audio or MIDI performance capture – in 

combination with practically unlimited storage (length, 

tracks, etc.) represents an improvement in provisionality 

over historic recording techniques (e.g. tape). Users can 

also address issues in live recordings using advanced 

overdub tools, without recourse to re-recording entire 
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performances. Offline editing, through part editors like 

score or piano roll, allows experimentation with different 

ideas, though such interfaces are not always optimised for 

the rapid entry, editing and auditioning of new material to 

support creative exploration of musical ideas. [11] 

4.8 Secondary Notation  

“How easy is it to make informal notes to capture ideas 

outside the formal rules of the notation?” 

This dimension evaluates a system’s provision for re-

cording information beyond the formal constraints of the 

notation. As informal notation, data is typically not  

executable by computer or performer, and may only be 

related to the encapsulated piece / performance indirectly. 

Decoupled from the formal rules of expression in the 

notation, secondary notations often allow users to make 

freeform notes to support their edit process, though  

flexibly designed facilities may be used for a variety of 

purposes – including evaluation (peer feedback), working 

out problems, highlighting relationships in the notation, 

sketching rough high-level structure, aesthetic decoration, 

to-do lists, incomplete ideas, etc. In programming, code 

commenting is used to annotate code with useful labels, 

instructions, explanations, ASCII art, etc., helping to 

make the code more readable, but also as a form of  

communication between coders. As such, secondary 

notations should be designed to be as flexible as possible, 

to allow users to appropriate them for their own needs. 

[Related dimensions: provisionality, hard mental op-

erations, hidden dependencies, role expressiveness] 

SCORE: The expressive freedom of pencil and pen 

marks on paper allow musical scores to be annotated with 

any additional information, such as personal notes, deco-

ration, as well as irregular performance instructions.  

Formal notation places more constraints on what is  

representable, though written language can be freely used 

in performance directions. The human interpretation of 

scores enables a further degree of flexibility in applying 

and developing new terminology, such that informal 

notes that break from standard semantics may still be 

executable. Performers can also add their own notes to  

manuscripts to guide their own interpretation of the piece. 

MAX/MSP: Like other programming tools, code com-

ments are an important part of developing and maintain-

ing Max patches. Max’s visual medium supports annota-

tions using free text (comment boxes), shaded areas, and 

imported images (bitmaps), used to explain workings, 

usage, or as decoration. However, drawing facilities are 

very limited in comparison to pencil and paper, and even 

digital graphics, with no provision for freehand sketching 

or drawing lines, arrows, or shapes (other than rectan-

gles). Given the proven benefits of such affordances in 

other music notations (e.g. the musical sketch and score 

[5]), their omission in such a visual medium is surprising. 

DAW: Despite the proliferation of different notational 

styles in DAWs, each UI is rigidly structured to fulfil a 

defined purpose and offer specific tools for editing the 

underlying data. Limited provisions for annotations are 

provided by way of labelling and colour-coding parts and 

tracks, and free text is often supported for meta-data, but 

few mechanisms are provided for flexibly annotating the 

music in any of the sub-notations or views, beyond those 

forms formally recognised by the program.  

4.9 Consistency 

“Where aspects of the notation mean similar things, is 

the similarity clear in the way they appear?” 

This dimension defines how coherent and consistent 

the methods of representing elements in a notation or UI 

are. Consistency facilitates the learning of a system (see  

virtuosity), as users used to a style of presentation can 

apply knowledge learnt in one area to understand others. 

However, consistency may also be sacrificed to improve  

conciseness, visibility, or role expressiveness. 

[Related dimensions: conciseness, visibility, virtuosity, 

role expressiveness, abstraction management] 

SCORE: In sheet music, notated passages that are simi-

lar musically share similar visual cues, e.g. melodic con-

tour, repeated passages, etc. Formal rules applied consist-

ently likewise ensure recognisable and learnable conven-

tions. However, compromises are made for conciseness, 

and to optimise the presentation of common expressions, 

at the expense of readability in less canonical works. For  

example, the symbolic representation of note rhythm in a 

passage completely alters if offset within the bar (e.g. 

moved by a quaver). Similarly, the representation of pitch 

depends on key; an identical phrase requires accidentals 

following a change of key signature. Both scenarios  

present limited issues in common practice music, but the 

inconsistency makes the notation harder to learn and 

understand, and the difficulty of using it outside its  

intended purpose encourages conformity, discouraging 

experimentation and creativity. Moreover, in digital use 

(notably MIDI sequencers), such inflexibility markedly 

reduces the usability of score notation, where systems are 

unable to unpick the expressive prosody in a captured 

live performance to display a coherent visual score. 

MAX/MSP: By design, programming languages offer  

diverse paths to produce similar code functionality.  

Textual languages are based on rigid, carefully designed 

formal grammars that ensure basic low-level consistency 

among programming primitives, also enabling many 

syntactic errors to be identified during compilation. 

Max’s collection of objects is less formally designed and, 
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as the accumulation of several developer’s efforts (and 

coding styles), less consistent. Inconsistencies exist in 

many areas, including object-naming schemes, inlet and 

outlet conventions, processing behaviour, message  

handling, audio quality (and level), and configuration 

methods. These nuances produce unanticipated code 

behaviour that increases the learning curve for novices. 

Objects behave like self-contained programs or plugins; 

black boxes that have to be mastered individually.  

DAW: The added flexibility in the visualisation of data, 

in the various views afforded by DAWs inevitably comes 

at the cost of consistency of representation throughout the 

program. For example, volume might variously be repre-

sented as a MIDI value (0-127), automation value (0-1), 

gain (dBFS, e.g. -96dB to 0dB for 16-bit audio), or using 

graphics (colour, bar size, rotary knob angle). The trend 

towards skeuromorphic visual metaphors to electronic 

studio equipment similarly encourages inconsistencies in 

representation, drawing on the conventions of previously 

separate, loosely connected hardware devices. Moreover, 

while the advent of third-party plugins brings great  

advantages and creative flexibility, inconsistencies in 

control, representation, terminology, and interaction  

create usability issues and a fragmented user experience 

that is difficult to integrate with the host application. 

4.10   Viscosity 

“Is it easy to go back and make changes to the music?” 

This dimension defines how easy it is to edit or change 

a notation, once data has been entered. A common exam-

ple is knock-on viscosity, where making a simple edit to 

the notation requires further edits to restore data integrity. 

High viscosity prevents or discourages alterations, forcing 

users to work in a prescribed, pre-planned order (see 

premature commitment); low viscosity simplifies and 

encourages making changes, reducing the investment 

associated with trialling new ideas (see provisionality). 

Being able to easily explore and revisit ideas (ideation) is 

a key factor in supporting creativity [6, 19], requiring 

creative systems engender low viscosity.  

[Related dimensions: provisionality, premature com-

mitment, progressive evaluation] 

SCORE: The provisionality of pencil marks simplifies 

the alteration, erasure and overwriting of notes and pas-

sages in a musical sketch. If more drastic changes are 

required, the reduced emphasis on neatness and third-

party  

readability allows the composer to strike out larger  

sections. Inserting new material is harder, but composers 

can similarly sketch the inserted passage where there is 

space (or on a new sheet) and note the insertion. Final 

manuscripts are intentionally more rigid, but performers 

can still annotate their copy with alternative instructions. 

MAX/MSP: Simple changes to values and local objects 

are straightforward in Max. However, as patches grow 

and the interconnectedness of objects increases, Max 

suffers from knock-on viscosity [1], where one change 

requires further edits to restore patch integrity. For exam-

ple, deleting, editing, or replacing objects removes all  

cords to other objects. Increased viscosity is a common 

trade-off in tools designed to avoid hidden dependencies, 

often seen in data-flow and visual programming  

languages like Max. As a graphical notation, changes to a 

patch often require the layout of a patch to be reworked 

to make room for object insertions, and to maintain  

readability. In text-based coding environments, such 

housekeeping is simplified by the inherent serialisation of 

code, but in VPLs like Max, leads to increased viscosity.  

DAW: As with provisionality, the level of viscosity in 

DAW interaction varies between the interfaces and inter-

action modes of the sequencer. By itself, a tape recorder 

metaphor of recording a live performance makes it easy 

to erase and re-record a take, but harder to edit recorded 

data. Audio data can be processed (e.g. EQ, mixing, FX, 

splicing, etc.), but musical content (e.g. individual notes 

or harmonies) is not easily addressed or manipulated. 

Recorded MIDI data is easier to edit, though visual repre-

sentations (e.g. score – see consistency) and interaction 

styles can be cumbersome and unwieldy for anything but 

simple edits. [11, 12]  

4.11  Role Expressiveness 

“Is it easy to see what each part is for, in the overall 

format of the notation?” 

This dimension evaluates how well the role or purpose 

of individual elements is represented in the overall 

scheme of the notation or UI. Different elements may not 

be visually indistinct, or their function may be unclear in 

the way they are presented. For example, English lan-

guage keywords in a menu or programming language can 

be used to express their function, whereas cryptic sym-

bols or icons may need to be learnt. Alternatively, the 

visual design of GUI may impose a consistent aesthetic 

or  

layout that fails to capture the diverse functionality en-

capsulated, or the relationship to other elements of the UI 

(see hidden dependencies and closeness of mapping). 

[Related dimensions: visibility, hidden dependencies, 

closeness of mapping] 

SCORE: While some aspects of the score may be in-

ferred by listening to the music (such as a general sense 

of pitch and rhythm), most involve learning syntax and 
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rote practice. Similarly, while some signs offer more 

expressive visual cues to role (crescendo and diminuendo 

hairpins; tremolo marks), many do not – clefs, acciden-

tals, key signatures, note shapes, ornaments, and foreign 

terms symbolise complex musical concepts that require 

tuition. Once learnt, however, the symbols facilitate the 

rapid comprehension of notated music – e.g. different 

note shapes and beaming conventions provide clear dif-

feren-tiation between different note lengths. However, 

recent approaches to contemporary scores tend to exploit 

more expressive geometric forms, rather than new sym-

bol sets. 

MAX/MSP: The role of some specialised objects, nota-

bly user controls, is clear from their representation in 

Max. However, beyond caption and inlet/outlet configu-

ration, Max offers little visual distinction in the represen-

tation of most coding objects, which appear as text boxes. 

Patchcords help to define the context and role of connect-

ed objects, and visual distinction is made between audio 

and message types (though not between int, float, list, or 

bang subtypes) – but, despite the unidirectional flow of 

data, flow direction is not depicted (e.g. using arrows). 

DAW: Many aspects of DAW UIs rely on a degree of 

familiarity with studio equipment and musical practice. 

However, the graphical user interfaces of most packages 

make prominent use of expressive icons and detailed 

graphics to indicate the function of controls. Visual  

metaphor and skeuromorphisms are commonly used to 

relate program controls to familiar concepts. Image 

schema and direct manipulation principles are similarly 

applied to highlight interaction affordances, in the context 

of both music and generic computer interaction styles.  

4.12   Premature Commitment 

“Do edits have to be performed in a prescribed order, 

requiring you to plan or think ahead?” 

This dimension defines how flexible a notation is with 

respect to workflow, and the process of developing ideas. 

Notations or system features that must be prepared or 

configured before use entail premature commitment. 

Notations with high viscosity, where it is hard to back-

track, also entail forward planning and commitment. In 

programming, an illustrative example is the need to  

declare variables and allocate memory before coding 

actual functionality (cf. C/C++ vs. BASIC). 

[Related dimensions: provisionality, viscosity] 

SCORE: A degree of viscosity in altering page layout 

means that some forward thinking is required to commit 

musical ideas to the page, which generally proceeds left-

to-right, bar-by-bar. However, separate pages allow  

sections and movements to be developed non-linearly, 

and the provisionality of the musical sketch allows some 

flexibility with development of musical phrases and bars. 

Multiple approaches to composition are possible:  

horizontal (part-by-part), vertical (all parts at once, start 

to finish), bottom up (bar-by-bar), top down (musical 

form). Historically, the literacy and musical experience of 

composers meant that musical material was often part-

formed before being committed to the page – either men-

tally, or through experimentation with instruments. 

MAX/MSP: As a prototyping tool, Max supports exper-

imentation with partially-formed design concepts. Often, 

however, audio processes will be designed with a plan or 

general architecture in mind; in Max, forethought with 

respect to abstraction (sub-patching) or layout benefits 

development, though housekeeping may be needed  

retrospectively (see also viscosity). The open-ended  

canvas allows patches to be flexibly extended in any  

direction, and a modular approach to programming al-

lows piecewise development of complex systems. 

DAW: Musical parts and audio segments can be easily 

inserted, moved, and copied in the arrange window, 

though complex phrases with overlapping tracks and 

automation can be difficult to split and re-sequence.  

Furthermore, the unified linear timeline and tape  

recorder metaphor encourages a linear workflow. [12] In  

modelling studio workflows, DAWs can be seen as  

transcription tools, rather than environments for explora-

tory creativity, where artists only turn to the recording 

process once a work has already taken form. [3,20]  

By contrast, pattern- and loop-based sequencers (Live, FL 

Studio, tracker-style sequencers) offer a flexible non-

linear approach to developing and sequencing musical 

forms, facilitating digitally-supported creativity and flow. 

4.13   Error Proneness 

“How easy is it to make annoying mistakes?” 

This dimension identifies whether the design of a UI 

or notation makes the user more or less likely to make 

errors or mistakes. These can manifest as accidental in-

teractions with a program, or incoherent, unexpected 

musical results arising from vagueness or ambiguity in 

the notation (see role expressiveness). In programming, 

for example, a notation is error prone if its function 

markedly alters upon the addition/omission/position of a 

single character. Errors are broadly undesirable, but can 

lead to creative, serendipitous formulations in artistic 

expression. [21] 

[Related dimensions: hidden dep., role expressivness] 

SCORE: In scoring, the literacy threshold means mis-

takes are more likely during early stages of learning. 

Aspects of consistency and hidden dependencies contrib-

199



ute to a user’s propensity to make errors. However, like 

language, fluency with the notation reduces mistakes. 

Sketching, as a private medium for the composer, is also 

tolerant of errors; they are free to misuse or invent nota-

tion, which remains meaningful to them personally. 

When scores are used for communication, mistakes have 

consequences; but the impact on early creative process is 

minimal. 

MAX/MSP: As a formal language, it is easy to make  

mistakes in Max, through the creation of ill-formed code. 

However, aspects of the Max UI make it more prone to 

errors in certain situations. As a graphical UI, mouse 

interaction is cumbersome, and Max attempts to avoid 

diffuseness with compact objects, such that selecting and 

connecting inlets or outlets using patchcords is awkward. 

As with the score, consistency issues and hidden depend-

encies also invite mistakes relating to coding semantics.  

DAW: Recording performances in real-time heightens 

the likelihood of input errors, though facilities exist to 

correct or overdub recorded data, and the occasional 

mistake is often acceptable for the improved flow (musi-

cal and creative) afforded by live interaction with an 

instrument. As in Max, DAWs invite mistakes through 

dependence on the mouse, where delicate pointer control 

is required – many edits require targeting the edge of 

elements (track segments, notes, etc.), and the extent of 

such hotspots may be small and visually indistinct. Prox-

imate and overlapping objects can be similarly difficult to 

target. 

4.14   Closeness of Mapping 

“Does the notation match how you describe the music 

yourself?”  

This dimension assesses how well a notation’s repre-

sentation of the domain aligns with the user’s own mental 

model. In a UI, this also applies to how closely work-

flows and interaction styles fit a user’s working methods. 

Music perception and aesthetics are quintessentially sub-

jective, making it difficult to encode a universally or 

intuitively acceptable formalisation, so notations and 

systems are built around common cultural practices. This 

can constrain the creative expression or affordances of a 

notation. To mitigate this, abstraction mechanisms may 

enable users to appropriate, redefine, and extend systems. 

[Related dimensions: role expressiveness, abstraction 

management, virtuosity] 

SCORE: While the score is not an intuitive representa-

tion that untrained users might themselves conceive or 

comp-rehend, it remains a widespread and established 

technique for notation in Western music. At the same 

time, the canonical score systematises music in a way that 

makes assumptions about the musical practices and aes-

thetics of its users, such that modern composers identify 

the format as a constraint on their personal expression 

and creativity. However, the flexibility offered by indi-

vidual sketching techniques allows composers to invent 

and appropriate notation techniques for their own person-

al use. 

MAX/MSP: The data-flow model of Max maps closely 

to diagrammatic forms used widely in signal processing, 

with a shared legacy in electronics and circuit diagrams. 

The inherent role of electronics in the studio, and repre-

sentation of audio as voltage, also make this an analogy 

that musicians and producers can relate to. The functional 

and visual resemblance to generic flow charts further 

helps to make the programming environment accessible 

to non-technical users. However, for musical applications 

(rather than audio processing) such as arrangement and 

composition, the abstract representation of time offers a 

poor closeness of mapping to familiar representations of 

music. Similarly, for traditional programmers used to 

imperative programming (ordered sequences of instruc-

tions), scripting program behaviour over time is difficult. 

DAW: For its intended audience of musicians and 

sound engineers, traditional sequencers and DAWs pro-

vide a strong closeness of mapping, using visual meta-

phors and interaction paradigms based on studio process-

es and audio hardware, to allow skills transfer. Notably, 

MIDI and audio recording tools focus interaction on 

musical instruments. However, in recent years, more 

computer-oriented musicians, with greater technical liter-

acy, have begun to embrace tools that rely less on analo-

gies to the recording studio and focus on the affordances 

of digital and computer music technologies – as offered 

by Ableton Live and FL Studio. Ultimately, engagement 

with music, as a personal experience, should be based on 

articulations of the music domain crafted by the user 

themselves, which the rising level of computer literacy 

might enable, as end-users increasingly engage with pro-

gramming. 

4.15   Abstraction Management 

“How can the notation be customised, adapted, or used 

beyond its intended use?” 

This dimension defines what facilities a system offers 

for appropriating, repurposing, or extending a notation or 

UI. All notations present an abstract model of a domain 

(e.g. music, software), providing a set of fixed abstrac-

tions representing basic objects (e.g. notes, parts) and 

properties (e.g. pitch, time, etc.) that enable the articula-

tion of solutions (e.g. a piece). The creative possibilities 

are defined by what encapsulations of objects are possible 

and how easy they are to extend. Notations defined for a 
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specific purpose fix the possible abstractions and ways of 

working. However, the opportunity to define new  

abstractions (e.g. in terms of existing ones) offers the user 

a way to develop their own toolset and facilitates the 

building of more complex solutions (e.g. by abstracting 

low-level detail), and helps to personalise and raise the 

creative ceiling of a system. [6] In programming, exam-

ples include defining custom functions and abstract data 

types (objects). In end-user computing, systems may 

support automation, macros, or plugins to enable users to 

add new functionality. Simpler abstraction mechanisms 

such as grouping and naming elements are also possible. 

[Related dimensions: visibility, closeness of mapping, 

role expressiveness, conciseness/diffuseness, consistency] 

SCORE: In sketching the piece during the creative pro-

cess, composers are able to appropriate or invent new  

terminology of notation technique to describe music more 

concisely (composer shorthand) or to encapsulate uncon-

ventional musical devices and practices – only when it is 

transcribed for communication to a performer (or com-

puter) must it conform to established notational forms. 

   The canonical score format is more limited; designed 

around common practices and conventions in formal 

music, but offers some support for grouping mechanisms 

(e.g. brackets, phrasing) and abstraction (e.g. custom 

ornaments). However, a composer can use the preface to 

a score to introduce original notation techniques and 

syntax, to instruct the performer’s interpretation.  

MAX/MSP: As a programming language, abstraction is a 

key technique for building and maintaining complex 

solutions. Max offers several provisions for abstracting 

and extending code: sub-patches allow embedded and 

external patches to be nested inside other patches, repre-

sented as new objects (linked using inlets and outlets); 

externals use a plugin model to allow new objects to be 

coded in C/C++ with defined inputs and outputs; and 

presentation mode allows patches to be rearrange, simpli-

fied and selectively exposed in end user-oriented UIs. 

DAW: Sequencers and DAWs are designed to support 

specific working styles in music / production scenarios. 

Part editors support low-level editing of notes and other 

musical events. In other screens, higher-level abstractions 

are used to structure music (tracks, parts, etc.), with some 

provision for grouping and organising objects (e.g. group 

channels, folders, track segments). Most packages also 

support audio plugin formats that extend FX processing 

and synthesis options. However, few sequencers support 

more flexible abstraction mechanisms to facilitate inter-

action with notation, such as macros, scripting, or auto-

mation. Exceptions to this include Live, which can be 

integrated with Max, CAL Script in Cakewalk SONAR, 

and Sibelius plugins. In the tracker domain, Manhattan 

[23] offers end-user programming for music using an 

extended implementation of spreadsheet-style formulae. 

4.16   Virtuosity / Learnability 

“How easy is it to master the notation? Where is the 

respective threshold for novices and ceiling for experts?” 

This dimension assesses the learnability of the nota-

tion, and whether it engenders a scalable learning curve – 

that is, a “low threshold” for practical use by beginners, a 

“high ceiling” for flexible expression by experts, afford-

ing “many paths” by which users can express themselves. 

In addition to supporting multiple levels of expertise and 

creativity, virtuosity should be understood in terms of the 

balance of challenge and ability experienced by the user. 

A slight challenge, relative to their ability, intrinsically 

motivates users and helps create the conditions for flow. 

[3, 9, 11, 22] Too much challenge and users become 

anxious; too little and they become bored. The best  

model for systems are based around “simple primitives”  

(building blocks) that can be easily understood by begin-

ners, but flexibly combined to form more complex  

abstractions and functionality. [6] 

[Related dimensions: consistency, prog. evaluation, 

role expressiveness, closeness of mapping, error prone-

ness] 

SCORE: The score has a steep learning curve and  

beginners require formal tuition and practice to master it. 

Novices can be discouraged from learning music by  

the literacy entry threshold. [3] The complexity of the  

notation reflects its relatively high ceiling and capacity to 

flexibly encapsulate a wide variety of musical styles and 

pieces, though contemporary and electronic composers 

can find traditional, formal syntax limiting. [2, 3, 12] 

MAX/MSP: While programming languages often present 

a high threshold for novices, Max is explicitly designed 

for musicians, and uses a visual programming model to  

appeal to non-coders. Tutorials present beginners with 

simple patches that produce useful results, enabling a 

working knowledge to develop quickly. Innovative  

interactive in-program documentation and a strong user 

community supports both learners and practitioners. 

There are aspects of the environment that also impede 

learning (see consistency, error proneness and hidden 

dependencies). The creative ceiling for developing audio 

and music systems in Max is high, further supported by 

abstraction mechanisms – though audio programmers 

and more music-oriented users may graduate to other 

tools (e.g. C/C++, OpenMusic, SuperCollider). 

DAW: Music and audio production packages are de-

signed to provide a low threshold for musicians and those 

familiar with studios. The use of visual metaphor and 

direct manipulation principles allows knowledge transfer 
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from these other practices [4], though users without such 

backgrounds may struggle. Packages provide a wide 

array of tools and features for a variety of purposes, 

though few users will have need of all features. The ceil-

ing for musical creativity is relatively high, within the 

confines of conventional practices, though UIs are often 

optimised for specific workflows and techniques, and 

users are largely dependent on software developers to 

provide new opportunities for expression. Unlike the 

traditional score, and programming languages (like Max), 

users efforts to master authoring packages can be frus-

trated by a lack of continuity between versions. 

5. PRACTICAL METHODOLOGIES 

This section briefly surveys existing applications of the 

Cognitive Dimensions of Notations in musical contexts, 

highlighting both qualitative and quantitative methods for 

analysing notations and interaction. 

Blackwell (with others [7-11, 16, 20, 24]) has used  

cognitive dimensions to highlight aspects of musical 

interaction in several settings, including music typeset-

ting software [10, 20], programming languages [16, 24], 

and digital tools for composition (e.g. sequencers, track-

ers) [8-11]. In such treatments, the framework provides a 

language for discussing the affordances of notation, but 

has also lead to the development of tools to elicit feed-

back from end-users, such as questionnaires that probe 

dimensions in user-friendly, accessible language. [10] 

McLean’s work on music and art programming languages 

similarly applies and develops the framework for analysis 

of new music coding notations and interfaces. [21] 

   Nash [3, 9, 11] extended previous qualitative analy-

sis techniques to develop a quantitative approach to eval-

uating notations. Using a Likert scale, each dimension is 

formulated as a statement that users can agree or disagree 

with to a greater or lesser extent. The mean response 

from a large sample of users can then be used to plot a 

dimensional profile of the notation under evaluation. 

Figure 1 shows profiles for a survey of various music 

sequencer tools (n=245), not only highlighting relative 

strengths and weakness with respect to properties of each 

UI, but also revealing a general profile for music systems, 

where the trend may indicate the desired polarity of each 

cognitive dimension in music interaction. Moreover, the 

approach was combined with psychometric-style surveys 

of the experience of creative flow [22], using a battery of 

questions to also measure users’ subjective experience of  

 

 

    

Figure 1 Cognitive dimension and flow profiles of music tools, based 

on quantitative user testing [3, 11]. 

nine components of flow. Using cross-correlation and  

multiple-regression analysis, the results for individual 

flow components and dimensions of the notation were 

used to identify the key properties of notations facilitating 

flow, findings of which can be used to guide the design of 

immersive or embodied interaction systems. The study 

[3,11] suggests that key dimensions in the support of flow 

were visibility (visual feedback), progressive evaluation 

(audio feedback) and consistency (support for learning 

and sense of control) – as well as virtuosity (balance of 

skill and ability), abstraction management (high creative 

ceiling), viscosity (ease of editing), premature commit-

ment (freedom of action) and role expressiveness  

(support for learning). The findings were used to propose 

a set of design heuristics for music systems based around 

the concept of virtuosity, rather than usability (see [3, 9]). 

6. CONCLUSIONS 

This paper has presented a musical reworking of the 

Cognitive Dimensions of Notations usability framework, 

and suggested methods and tools for using it to analyse 

music notations, interfaces, and systems. Several applica-

tions have been identified that use the framework to pro-

vide insight into the human factors of notation-mediated 

musical systems, including creativity, virtuosity and flow. 

   Future work will focus on further use and develop-

ment of the framework, including its application to other 

music interaction scenarios and systems, the evaluation of 

new dimensions, and research of other dimensional pro-

files in other music interactions. The growing intersection 

of music and programming practice is also likely to re-

veal other parallels between these creative domains that 

can further inform both theory and practice. 
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ABSTRACT

This paper introduces several examples of utilizing the in-
formation design concepts of Edward Tufte in musical no-
tation and score-design. Tufte is generally considered a
modern pioneer in the field of information design. Through-
out several authoritative texts [1] [2] [3] [4], Tufte’s work
displays countless examples of successful and unsuccess-
ful attempts of displaying information while also offering
a few personal redesigns of especially troubled instances.
Overall, Tufte reveals interesting concepts which could be
useful when applied to designing musical notation systems.
The author presents three personal notational examples which
have been aided by Tufte’s work. Information design is a
vast multidisciplinary field which could provide composers
and musicians with an abundance of technical approaches
to complex notational challenges.

1. INTRODUCTION

The task of displaying information in a visual way is often
a challenging one, riddled with difficult decisions, pitfalls,
and corrupting influences [5]. All throughout history, ex-
perts and students of science and the arts alike have stum-
bled in their attempts to visually communicate ideas or
concepts. The lessons of successful models of information
design (see Figure 1) have often gone unnoticed, leading
to poor work which could have been prevented. Edward
Tufte’s work in the field of information design brings ex-
amples, concepts, and lessons from across human history
in an effort to show how the visual realm can be a powerful
tool for communication.

Mr. Tufte’s first book on data visualisation, The Visual
Display of Quantitative Information, published in 1982 [1],
stands as a landmark work in the field of data visualisa-
tion [6]. This book provides a clear and concise roadmap,
richly packed with intellectual tools for the effective dis-
play of visual information. Elegant examples drawing from

Copyright: c©2015 Benjamin Bacon . This is an open-access article dis-
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some of the most brilliant thinkers in history are beautifully
displayed in order to showcase their qualities, paired in
stark contrast with examples of poorly-executed displays.

Since the release of Visual Display, which is mostly fo-
cused on the logic of statistical evidence, Mr. Tufte has
broadened his focus to include any design relying on vi-
sual reasoning strategies. This conceptual expansion has
yielded equally acclaimed results in the realm of visual de-
sign [7], with his later three books [2] [3] [4] providing
an abundance of compelling cases advocating for the eth-
ical, aesthetically grounded, and truthful representation of
visual evidence. His examples extend across many diverse
applications including choreography, weather-maps, train-
schedules, and the causal analysis of historically signifi-
cant events.

Figure 1. This orbital diagram by Christiaan Huygens in 1659
displays 32 images of Saturn across two different perspectives.
The clarity of design in this diagram is frequently referenced by
Tufte [1] as a superb example of small multiple design, as well as
proof that good information design has existed for a long time.

1.1 General Principles of Design

While the examples Tufte draws upon to illustrate his ideas
and notions in visual design span many cultures spread
across hundreds of years, there are several main underlying
themes which can be traced throughout his work. Among
one of the most well known is the idea of chartjunk, which
refers to the superfluous use of graphical elements (i.e.
gradient shading or skeuomorphism) which serve no log-
ical purpose in communicating the intended information.
Chartjunk makes interpreting the intended information of
a graphic difficult, since the eye is presented with extra
non-essential stimuli. The creation of chartjunk can be
avoided by making use of what Tufte coined the data-ink
ratio, the data-ink ratio, which is the proportion of data-
representative ink to total ink used in the graphic. The
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more ink that is used on non-representative graphics, the
more the designer endangers the clarity of the graphic’s in-
tent.

In each of his publications, dozens of techniques and ex-
amples are shown describing how to layer, differentiate,
and communicate information efficiently. The notions of
chartjunk and data-ink ratios hold at their core the idea that
graphical representations of information should maximise
the space which they inhabit. This promotes the efficient
transfer of ideas, un-obscured by the noise of poor design.
Without a careful understanding of how graphical content
interacts with itself, and indeed, other content, it is easy to
obfuscate critical concepts while simultaneously detract-
ing thinking and attention from the observer. While min-
imalism may come to mind when adopting Tufte’s design
strategies, he does not advocate for the avoidance of com-
plexity. In fact, many examples are dense and complicated,
showing at times thousands of data-points in a single im-
age.

Above all, Tufte’s principles ask the designer to employ
techniques relevant to the cognitive task at hand. It is up
to the designer to choose a methodology which commu-
nicates the primary message of the presented information.
As Tufte clearly states [8]:

If the thinking task is to understand causal-
ity, the task calls for a design principle: show
causality. If a thinking task is to answer a
question and compare it with alternatives, the
design principle is show comparisons.

1.2 Information Design and the Score

The inclusion of diverse graphical examples in Tufte’s books,
spanning across many different disciplines and points in
history, is an effort to showcase the universality of his the-
ories. These graphic examples are meant to inspire and
provoke thought on a variety of possible scenarios when
designing, while also demonstrating how a technique can
be used in a given discipline. Information design is inter-
disciplinary in nature, and can be applied to nearly any-
thing where information is represented graphically.

Therefore, it would not require any stretch of the imag-
ination to apply Tufte’s principles when creating a mu-
sical score. Composers, especially of contemporary mu-
sic, work with an ever-expanding palette of sonic param-
eters [9]. While most composers are not specifically at-
tempting to display data or evidence for something that al-
ready exists, visuals are employed to provide reasoning for
something that is about to happen (i.e. a performance).

Today, extended techniques, electronic processing, and
even new instruments themselves place interesting demands
on the composer. In many cases, complicated ideas must

be communicated graphically to the performer, making care-
ful distinctions between the representative elements of dy-
namic, technical, rhythmic, timbral, and pitched content.
Further distinctions between micro- and macro-formal trends
are often useful for performers, and add more demands to
the score.

2. EXAMPLES IN SCORE-DESIGN

The following sections will discuss three examples of Tuftian
design theories employed by the author in his own compo-
sitions, including one work from a scientific study. These
examples will discuss specific musical ideas, and how in-
formation design theories can provide the composer with a
useful toolbox for finding innovative solutions to graphical
demands.

2.1 Graph-based Notation in de Chrome

The first example inspired by Tufte’s writings on informa-
tion design is a piece entitled de Chrome written by the
author in 2012, seen in Figure 2. This composition gives
the performer a role in shaping the piece on a micro-level,
while the larger form is dictated. Choices can be made
by the performers on which content to perform and which
pitches to sound, but are limited to a sub-phrasal level.
Overall, the piece is to be performed by 3-5 players on
any instrument.

This piece is comprised of graphical sub-phrases grouped
together by page, which can be seen in Figure 2aa. Each
graph depicts the dynamic contour of a sustained sound,
with dynamic references located on the y-axis. The dura-
tion of each sub-phrase is indicated by the two numbers
in the top left-hand corner page, best seen in Figure 2bb.
In this case, the performers are instructed to choose any
three sub-phrases (with no repeats), and to perform each
one for thirty seconds; hence the notation of 3x30”. After
the completion of the phrases, the performers may move
onto the next page. The gradient shading refers to the level
of timbral pressure exerted in each phrase. Black indicates
a heavy amount of force while white indicates little or no
extra force. This can correspond to the pressure exerted on
the bow, embouchure, etc.

The small box beneath the contour-graph contains the
group of pitches the performer may choose from when
sounding the sub-phrase. Note-heads with no indicated
pitch are to be interpreted as non-pitched sustained sounds.
This simply means the performed sound must, above all,
not contain any tuned-pitch as detuned sounds are appro-
priate. Outside the box, percussive articulations are marked
with the + symbol.
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Figure 2. Subfigure a displays page 3 of de Chrome, which in-
cludes a collection of 6 sub-phrases. Subfigure b shows the first
subphrase in detail.

2.2 Design Theories in de Chrome Score

The goal of de Chrome was to create a dynamic tonal land-
scape while guiding performers through their own deci-
sions in interpreting the score. Since there are no temporal-
metric markers higher than the sub-phrasal level, the con-
cept of small-multiples was employed to give performers a
better view each sub-phrase.

Small-multiples, popularized by Tufte in Envisioning In-
formation [2], consists of a series of design elements show-
ing multi-variate information. This design model directly
encourages comparisons and promotes awareness between
data-sets. The eye can easily move from one element to
the next while maintaining a larger analytical perspective.
In the case of de Chrome, the data is replaced by musical
notation. To promote awareness and cohesion between per-
formers in a graphically dominant score such as this, small-
multiples bring each sub-phrase into view. The distinct dif-
ferences between each sub-phrase can easily be identified,
allowing each performer to blend, hear, and interact with
one another.

In addition to the small-multiple design, the use of gradi-
ent shading to convey the timbral-pressure parameter was
purposefully fitted within the negative space of the contour-

line. Grey-scales are superior to colouring techniques in
displaying hierarchical content. As mentioned by Tufte
in Visual Display, grey-scales give an immediate multi-
functional element to the inhabitant information, allowing
for increased viewing resolution in a smaller space, and
using less ink. An additional benefit to the increased in-
formation resolution of the employed visual techniques in
de Chrome is the opening of white space for extra notation
from the performer.

2.3 Scoring Bi-manual Action

The second score in this example is a percussion solo piece
written by the author between 2013-2014. Entitled Dextral
Shift, this work is focused on the bi-manual nature of per-
cussion performance. With the exception of method books
which are educational in purpose, most written percussion
pieces are not too concerned with separating the left- and
right-hands. Dextral Shift was conceptually inspired by the
author’s previous research in the field of laterality [10].
Laterality is an interdisciplinary field concerned with the
behavioural differences between the left- and right-sides
of the body. Everyone engages a preferred-side (i.e. left
or right) when it comes to a specific task [11]. This score
was designed with the two hands notated separately, with
specific actions assigned based on the abilities dictated by
handedness.

In Figure 3, two excerpted stems from the Dextral Shift
score can be seen. This piece was written for four pitched
temple-bowls in the left-hand, and one detuned tom-tom
for the right-hand. On the left-side of the score along the
y-axis are indicators denoting the notational domains of the
hands. These domains are split by the center x-axis. The
y-axis also doubles as an indicator of pitch/instrumental
differentiation and dynamic intensity. In the left-hand, the
closer a note is written to the center line, the lower the
pitch. For the right-hand, notes written close to the center
line indicate a striking area closer to the rim of the drum-
head. Notes written further from the center line are to be
played further from the rim of the drum-head. Dynamic
markings also rely on the y-axis and are represented as a
continuous line, shaded softly behind the note-heads. The
markings for dynamics of each hand are again separated
by the center line. The further from the center the grey-
shading goes, the louder the dynamics for the notes placed
over it.

2.4 Design Theories in Dextral Shift Score

Several important design strategies were employed in the
creation of the Dextral Shift’ s notational system. This
piece is essentially two different scores presented as one.
The left- and right-hands, except for a few short sections,
are notated individually. Each hand is tasked with perform-
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ing its own content on a different instrument using differ-
ent techniques. This division was the primary goal of the
composition, as it was intended to explore the physical dif-
ficulties of combining and separating the hands from each
other.

Figure 3. Two excerpted lines from Dextral Shift. These seg-
ments display the graphical shading techniques of the dynamics,
as well as the split of the left- and right-hands over the center line
(i.e. x-axis).

While keeping the hands apart was the primary goal, cre-
ating a comprehensive and unified systemic structure for
the notation was also a top priority. This was achieved
by assigning multiple variables to the two-axis notational
platform. The score uses the same space and graphical lan-
guage to display several different parameters all at once, in
what Tufte describes as layering and separation [2]. Dy-
namic intensity and instrumentation share the same indi-
cators (i.e. the high-low-high notation), which allowed
for compact notational techniques. The grey-shaded dy-
namic contour freed space from the traditional dynamic
notation techniques, which usually includes both graphi-
cal elements and text. The removal of such elements al-
lowed for the mirrored note stemming from the center line.
Further space was uncluttered by omitting traditional staff-
lines as well. Instead, staff-markers are shown at the begin-
ning of each musical system, of which there are three per
page.

These multi-purposed graphic elements allowed for in-
formation to be concentrated along the center line, creat-
ing a reliable focal point for the performer. Comparisons,
changes, and detailed compositional information are easily
embedded within the score in an intuitive manner. Extra
text which is usually required for dynamic or tempo mark-
ings, along with their own graphical content, are no longer
necessary. The efficiency and compactness of this design
strategy speaks directly to Tufte’s design teachings in re-

ducing administrative elements, while simultaneously in-
creasing the data-ink ratio on the page. The system of nota-
tion in Dextral Shift places weighted emphasis on the most
important elements of the score, while enabling graphical
flexibility. The removal of staff lines clears-up the page
and avoids the activation of negative space. Unused grid-
space, especially those with pronounced lines, can often
be confusing [12]. The unnecessary interaction of graph-
ical elements can make the discernment of important in-
formation from non-important/existing information quite
difficult [13].

2.5 Using Disinformation Design

The last example of using Tufte’s design theories in cre-
ating a musical score comes from a scientific study per-
formed by the author [14]. This example does not come
from a specific piece intended for concert performance, but
from a gestural analysis study on the effects of handedness.
An experiment was devised in order to study how the hands
are used when performing unrehearsed music, also known
as sight reading. Insight from this study was used to bet-
ter understand the role of the participant’s internal-timing
mechanisms in relation to their hand use.

In an effort to challenge the participants’ sense of timing,
the author composed a short rhythmic exercise. This exer-
cise, roughly one minute in length, gradually increased in
rhythmic complexity as it progressed. The beginning of the
score contained simple 8th-note and quarternote rhythms
and ended with a series of tricky multi-metered syncopa-
tions. Tuplets and other poly-metered rhythmic units re-
quire the performer to use delicate time-keeping techniques
in order to perform a given passage accurately. The grad-
ual change in difficulty allowed the performer to establish
a comfortable counting routine before more difficult mate-
rial appeared.

A major challenge in creating the experimental exercise
score was developing a rhythmic environment which seam-
lessly moved from one segment to the next. Making the
participants feel comfortable was important, as it would
allow them to exhibit their most natural tendencies. Any
extreme changes in notation or glaring multi-rhythmic tan-
gles of obvious difficulty would undoubtedly put the par-
ticipant at unease.

2.6 Design Theories in Sight-Reading Score

In designing how the score for the handedness experiment,
tuplets and syncopated groupings were the primary mecha-
nisms for the introduction of challenging material. Tuplets
require complex counting strategies, even when perform-
ing rehearsed material [15], as they contain beats falling
outside of the traditional beat-matrix. The design concept
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Figure 4. This is an excerpt from the handedness study music. The underlined segments highlight the areas where Tufte’s concepts on
disinformation design were employed.

of disinformation design, found in the book Envisioning
Information [3] was used.

Disinformation design is in most ways the complete op-
posite of information design; the goal is obscure the truth
or to produce an illusion. In Tufte’s book Visual Explana-
tions, an entire chapter is co-authored with magician Jamy
Ian Swiss, as various examples of technical explanations
and magic guidebook diagrams are discussed in detail. The
notational methodology for the excerpt presented in the
handedness study specifically disguised the introduction of
new, and more challenging material.

In Figure 4, the underlined segments highlight areas where
disinformation design tactics were employed. The first
underline (measure 11) is a syncopated 3/4 pattern using
16th-notes. The measure begins with two 8th-notes, estab-
lishing a firm rhythmic foundation for the measure. The
syncopated rhythm is written using 16th-notes only for the
note-heads, and a collection of 16th-note and 8th-note rests
for the spaces in between. The busy notation of this mea-
sure obscures a sense of regularity, and masks the metric
identity of the measure. The graphical repetition of the
16th-note rest pairs serves as a kind of notational anomaly.
When two rests are paired of equal value, they are usually
grouped into one. Using two rests requires more subdivid-
ing by the performer which is reliant on internal counting
strategies.

Measure 11 was repeatedly misplayed by the participants
of the handedness study, as many had to suddenly dial-in
on the resolution of their internal counting, which usually
happened too late. The designed error-zone provided an
opportunity to observe which hand would be used when in-
tensified timing-based decisions needed to be performed.
Consistent with previous findings on the matter [16], the
preferred-hand performed most of the notes in this mea-
sure.

The second underlined segment seen in Figure 4 begins
with a quintuplet figure with an 8th-note rest on the fourth

beat. Following the quintuplet figure is another syncopated
rhythm. The visual presentation of the syncopation is par-
tially what makes it challenging. The isolated 8th-note on
the quintuplet leads into the syncopated rhythms consisting
of a 3/8 feel over several 2/4 measures. The graphical rep-
resentation of the last quintuplet note in measure 13 leads
into the next bar, much like the 8th-note in measure 15.
While they look similar, one is bound to the beat-matrix
while the other is not. This entire system (mm.13-17), was
one of the most complicated segments to read. A clear ma-
jority of participants performed these measures with only
their preferred-hand.

3. DISCUSSION

Musical content is represented graphically in a diverse and
varied landscape, full of rich historical context and tra-
ditions. In musical notation, there is no right or wrong
way to pursue or represent an idea. Composers often work
with abstracted concepts in a visceral way, which is in turn
reinterpreted by the performers and the audience. Con-
versely, information design is often grounded in verifiable
data. Graphical elements are used in information design to
give form to numbers and reveal trends. Information de-
sign is concerned with the visual presentation of evidence.
For these differences, perhaps musical notation techniques
may have remained separate from the quantitatively-driven
world of information design. Music’ s representation on
paper is entirely arbitrary, and often self-containing. In
contemporary music, the composer devises a new graphi-
cal language for each piece [17], largely shaped by what
the composer wants to communicate.

Quantitatively speaking, the way in which traditional mu-
sic is represented revolves around a grid-based system, where
exact information can be presented. Timing and pitch can
be precisely notated, but this system has been challenged
to a great extent due to its limitations in displaying highly-
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specified technical information [18]. The limitations of
grid-based notation gave way to graphical-based methods.
Interestingly enough, the two systems have generally been
segregated and have been thought to conflict with one an-
other [19].

4. CONCLUSION

This paper sought to explore the possibilities of combining
information design tactics, most notably those of Edward
Tufte, and musical composition. Tufte’s books trace com-
mon mistakes and important solutions in presenting infor-
mation throughout history. These examples and lessons
can provide musicians with a rich resource for solutions
to displaying challenging musical material. As previously
mentioned in Section 1.1, one of the primary questions
designers of graphical content should ask is: What is the
thinking task? The graphical representation of any given
idea should help aid that task.

The examples presented herein were solely produced by
the first author, as it was not the goal of this article to cri-
tique the works of others, or to highlight what makes a
score good or bad. Composers are free to use any method
or system necessary to express themselves, and in most
cases the ends justify the means. Traditional western no-
tation is highly customisable, and serves as the framework
for a great deal of the contemporary music written today.
It is, at its core, a highly successful and excellent example
of information design. Furthermore, while it has the po-
tential to be graphically difficult to navigate, western no-
tation’s visual grammar is widely recognized and familiar
to its users. The difficulties of understanding its systemic
structure are usually overcome in the early stages of a mu-
sicians career, allowing the experienced and professional
to transcend any possible limitations of the notation in their
music making.

Tufte’s work is at its heart multidisciplinary, leaving an
open framework for the interpretation of musicians. His
ideas open the door to countless other persons and organi-
zations who have discovered solutions to complex graph-
ical questions. Musical composition is certainly compli-
cated and multidisciplinary as well. Inspiration can be
drawn from anything when writing music. The work of
Edward Tufte and the world of information design has the
potential to be a rich resource for imaginative compositions
in the future.
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ABSTRACT 

The paper explores the hybridization of notation and 

instrument as a cognitive movement from 

representation to enaction. Features of such 

hybridization are latent in every notation, as a mix of 

descriptive and prescriptive functions. Current advances 

in the fields of computer music representation 

(interactive scores) and New Interfaces for Musical 

Expression, with precedents in graphic and action-

oriented scores, are turning notation into a shared 

multimodal platform between composer and performer, 

liquidizing the limit between notation and instrument. 

We will present this dynamic rapport between scores 

and interfaces (haptic interactions, INScore, GesTCom, 

post-Klaus K. Hübler tablature notations of decoupled 

action-structures) in the light of theoretical models 

(enaction defined as navigation of affordances from the 

field of embodied and extended cognition, Leman’s 

action-reaction cycle extended from instrument-making 

into notation, Veitl’s conception of software as 

tablature, Atau Tanaka’s definition of instruments as 

open-ended systems etc.). We are following an explicit 

line from new interfaces involving notation back to 

graphic and action-oriented scores, considering them in 

the theoretical framework of enaction. 

INTRODUCTION: ONTOLOGY OF NOTATION 

TODAY 

In an extension of its primordial role as recording of 

musical praxis and mnemotechnics, music notation 

today is still assuming the central position in the 

sophisticated communicative chain of conception, 

composition, performance and reception. 

This role persists despite the 'performative turn' in 

musicology, which advocates the multiple nature of the 

musical work of art beyond an Urtext and into 

performances, recordings and improvisations [1, 2]; and 

despite the problematizations in view of music’s medial 

extension, paradigmatically in early electronic music. 

[3] 

  The role of notation today could be described as 

one of attracting compositional activity and releasing 

performing activity. All compositional activity is aiming 

at the generation of notation, all performing activity is 

itself generated by notation, thus a linear model of 

musical communication. 

 Interestingly enough, the linear nature of this 

arrangement is perplexed by the omnipresence of 

performance inside composition and vice versa: From a 

composer’s perspective, notation attempts to codify a 

future presence of performing bodies and instruments in 

virtue of their real absence in the act of composition; 

and from a performer’s perspective, this set of virtual 

presences in the form of notation has to be 

deconstructed (through the understanding of the 

notation and of the composer’s intention) and 

reconstructed in  material presences. 

  Alternatively to this ambivalent communicative 

chain, notation can be viewed as equal constitutive part 

in a self–organized, feedback-loop dynamic system, in a 

formulation originating in the field of 

embodied/extended/enacted cognition [4]. At its current 

state of development notation can be thought of and 

further developed into a shared multimodal platform for 

both composers and performers in the form of a 

tablature and/or interface, that is: in the form of an 

instrument.  

 We will explore different manifestations of such 

hybridization, starting with Tomás and Kaltenbrunner 

Tangible Scores [4]. 

Copyright: © 2015 Eric Maestri et al. This is an open-access article 

distributed under the terms of the Creative Commons 

Attribution License 3.0 Unported, which permits 

unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 
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TANGIBLE SCORES AND GESTCOM AS 

COMPOSER AND PERFORMER 

PERSPECTIVES RESPECTIVELY 

Tomás-Kaltenbrunner Tangible score: inherent score 

and multi-morphophoric sound elements 

The question of an inherent-in-the-instrument score 

frames in new terms the problem of interaction design 

and affordance exploration of instruments and notations 

alike
1
.  

The problem of a differentiation between scores and 

interfaces is largely debated in the NIME community. A 

NIME designer develops a notation system that is 

inherent to the instrument. The designer thus cancels the 

difference between music composer and instrument 

maker: the score is the instrument. The definition is 

compatible with Atau Tanaka’s definition of instruments 

as open-ended systems, whose architecture includes a 

structural-compositional layer, next to the input and 

output systems, mapping algorithms and sound 

synthesis systems.[5] 

The example provided by Tangible Score highlights 

very well this particular evolution. He claims that 

different layers, namely the instrument and the score, 

accompany the interaction between the composer and 

the performer. However, the evolution of electronic 

instruments implies a radical change in this perspective: 

the construction of the instrument is not only an 

instrument-maker realization, but it becomes an act of 

composing.  

Inherent scores are in this sense an expansion of 

what an instrument normally is: these instruments 

expand and reinforce their affordances, turning into 

objects acting in the sense of musical composition. The 

instrument implies gestures and sounds, exploding in a 

multiplicity of instrumental morphophoric elements. 

Duchez defines morphophoric: “The notion herein 

referred to as morphophoric - or form-bearing - 

element, has always and unfailingly guided musical 

action, that is to say strategies of production 

(inspiration, invention, representation, execution) and 

reception (listening, memorization). But this essential 

guidance is first of all only a more or less conscious, 

empirical practice based on immediate perception. Its 

efficiency, therefore, though direct and reliable, is 

limited, and it corresponds to what are generally called 

"primitive", orally-transmitted musics” [6]. 

 

 

 

                                                           
1
 A demo of Tangible Score is available at : 

 http://vimeo.com/80558397. 

Graphic scores as proto-inherent scores 

Tomás and Kaltenbrunner traces back the development 

of the notion of inherent scores in the 1960s and in 

particular in graphic scores. 

The NIME designer programs the affordances. In this 

sense the instrument tends to be part of the composition, 

exactly as a graphic score was in the 50s or 60s. These 

scores are interfaces of interaction with the instruments: 

The sound result is open, but conducted by the graphic 

constructions prescribed by the score. Inherent scores 

are similar to graphic scores, despite the fact that the 

first are are sound producing and performable while the 

latter are only representational. As remembered by 

Tomás and Kaltenbrunner :  

[…] performing became the creative exploration in 

freedom of the musical affordances, musical reactions 

or acoustic relations to the physical space performed, 

without the need of any kind of musical notation. 

In this sense, inherent scores are evolutions of 

graphic scores, conceived as musical interfaces. 

Composers design the instrument, after Lachenman's 

motto: “Konponieren heißt: ein Instrument bauen”.  

The tangible score is the result of a compositional 

process that enacts  gestures and strategies:  

We define a tangible score as the physical layer that is 

incorporated into the configuration of a digital 

instrument with the intention of conducting the tactile 

gestures and movements. 

Thus, the tangible score influences and orients the 

process of enactment of the instrument: it affords tactile 

gestures and movements. In this sense this instrument 

embodies gestural scores.  

However Tomás and Kaltenbrunner focuses mainly 

on the physical interaction, avoiding the problem of the 

acoustic one. For him tangible score,  

as a traditional score, it encodes a musical intention and 

delegates the decoding part to other agents. 

That is partially true: a traditional score implies 

sounds that a gestural one does not. The score of a 

violin sonata is an encoding of the intention via the 

gestures, that leaves the decoding to another agent. 

However we must remark that we can't program 

differently the sound of a violin. In this sense the 

tangible score is not exactly traditional, but rather an 

exciting new extension of traditional possibilities. Each 

instrument has compositional constraints, but, until 

now, instruments are the result of historical and 

intersubjective evolution based on fundamental 

morphophoric elements – like pitches -; the tangible 

score, as mosts of NIMEs, is design on open 

morphophoric elements, that can be chosen by the 

composer or the performer, inventing in that manner 

different possible arrangements of the score. 
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GesTCom (Gesture Cutting through Textual 

Complexity)  

A different example of a shared multimodal platform 

which amalgamates instrument, gesture and notation is 

the GesTCom. Its novelty lies in that it highlights the 

enactive potential of traditional musical scores from a 

performer- specific (rather than composer-specific) 

perspective. 

It was developed in the course of a musical research 

residency 2013-2014 at the Ircam, as a prototype system 

based on the a. performative paradigm of embodied 

navigation of a complex score  b. on the INScore 

platform and c. on the Gesture Follower [7]. The 

concept of corporeal (or embodied) navigation attempts 

to offer an embodied and medial performer-specific 

alternative to the classical UTI
2
 paradigm. Instead of a 

strictly linear arrangement of its formants -

understanding notation, then employing purposefully 

technique and then allowing, in the end, for expressive 

interpretation-, it proposes the conceptualization of 

learning and performance as embodied navigation in a 

non-linear notational space of affordances: The 

performer “moves” inside the score in several 

dimensions and manipulates in real-time the elements of 

notation as if they were physical objects, with the very 

same gestures that s/he actually performs. This 

manipulation forms indispensable part of the cognitive 

processes involved in learning and performing and 

transforms the notation. This transformation can be 

represented as a multilayered tablature, as in Figure 1. 

b. INScore [8] is an open source platform for the 

design of interactive, augmented, live music scores.  

INScore extends the traditional music score to 

arbitrary heterogeneous graphic objects: symbolic 

music scores but also images, texts, signals and videos. 

A simple formalism is used to describe relations 

between the graphic and time space and to represent the 

time relations of any score components in the graphic 

space on a master/slave basis. 

It includes a performance representation system 

based on signals (audio or gestural signals).  

It provides interaction features provided at score 

component level by the way of watchable events. These 

events are typical UI events (like mouse clicks, mouse 

move, mouse enter, etc.) extended in the time domain. 

These interaction features open the door to original 

uses and designs, transforming a score as a user 

interface or allowing a score self-modification based on 

temporal events. 

INScore is a message driven system that is based on 

the Open Sound Control [OSC] protocol. This message-

oriented design is turned to remote control and to real-

                                                           
2
 Acronym for Understanding-Technique-Interpretation 

time interaction using any OSC capable application or 

device (typically Max/MSP, Pure Data, but also 

programming languages like Python, CSound, Super 

Collider, etc.)  

A textual version of the OSC messages that describe 

a score constitutes the INScore storage format. This 

textual version has been extended as a scripting 

language with the inclusion of variables, extended OSC 

addresses to control external applications, and support 

for embedded JavaScript sections. 

All these features make INScore particularly suitable 

to design music scores that need to go beyond 

traditional music notation and to be dynamically 

computed. 

c. The Gesture Follower was developed by the 

ISMM Team at Ircam [9, 10]. Through the refinement 

of several prototypes in different contexts (music 

pedagogy, music and dance performances), a general 

approach for gesture analysis and gesture-to-sound 

mapping was developed.  

The “gesture parameters” are assumed to be multi-

dimensional and multimodal temporal profiles obtained 

from movement or sound capture systems. The analysis 

is based on machine learning techniques, comparing the 

incoming dataflow with stored templates. The creation 

of the templates occurs in a so-called learning phase, 

while the comparison of a varied gesture with the 

original template is characterized as following.  

The GesTCom, equally rooted on embodied 

navigation, INScore and Gesture Follower,  takes the 

form of a sensor-based environment for the production 

and interactive control of personalized multimodal 

tablatures out of an original score. As in the case of 

Embodied navigation (Figure 1), the tablature consists 

of embodied representations of the original (Figure 2). 

The novel part is, that those representations derive from 

recordings of an actual performance and can be 

interactively controlled by the player. The interaction 

schema takes the following feedback loop form 

(Figure 3). 

More specifically, the input performative gesture 

produces four types of recorded datasets (gestural 

signals, audio, MIDI and video), which are 

subsequently used for the annotation, rewriting and 

multimodal augmentation of the original score. Those 

output notations are embodied and extended: They are 

produced through performative actions, they represent 

multimodal data, they can be interactively controlled 

through gesture and they can dynamically generate new 

varied performances. 
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Figure 1. The embodiment of a Xenakian cloud / fingers-, hand-, and  arm-layer in 1b, 1c, 1f respectively 

 

  

Figure 2. INScore tablature of combined representions. They can be synchronized  with video and audio and interactively 

controlled. The player navigates between the several representations  
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They can be considered as the visualization and 

medial extension of the player’s navigation in the score-

space, creating an interactive feedback loop between 

learning and performance.
3
 

Figure 3. Interaction schema. 

ACTION-BASED SCORES 

Historical account 

The relationship between notation and instrument, 

conceived as trigger of imagined and concrete gestures, 

emerges in various work since the 60s. The sonic 

invention of contemporary music restored the  problem 

of notation, multiplying the number of possible 

morphophoric elements that inform the composition. 

Our aim is to indicate some different perspective in 

an historical order. Even if incomplete, we remember 

three examples that seem to us to highlight the problem. 

Lachenmann: Pression, for solo cello (1969) 

One important composer that conceives composing as 

instrument making is Helmut Lachenmann. In a certain 

perspective the work of the German composer is 

inspired by phenomenology and primitivism, and more 

directly by the references to Schaeffer's musique 

concrète. 

Lachenmann defined his music as musique concrète 

instrumentale. However, behind this intriguing 

definition, the composer is not making instruments, by 

exploring new possibilities that, still, are strongly 

idiomatic.  

In Pression, a renowned piece for solo cello by 

Helmut Lachenmann, the composer invents new sounds 

and new writing for the cello. In this piece composed in 

1969, the composer prescribes the cellist to play in 

unorthodox manners, precisely notating the gestures and 

the places that must be activated by the performer's 

gesture.The composer explores the instrument, exactly 

as the tangible score must be explored by the performer. 

                                                           
3 A demo of GesTCom is available at: 
https://www.youtube.com/watch?v=KV9nQUhhy

uI 

A milestone in subsequent developments towards the 

representation of independently organized, or 

decoupled, actions towards indeterminate sound results 

is offered by the work of Klaus K. Hübler, and in 

particular his article “Expanding String Technique” 

[11]. There, Hübler soughts to present a “completely 

new perspective on the instrument” through “an 

expansion of sound and technique that has its roots in 

the specific resources of the instrument and its manner 

of performance”.  

Aaron Cassidy: Second String Quartet (2010) 

The activity of Aaron Cassidy is known for his original 

approach to the notation problem. Cassidy's scores   

invest deeply in  the notion of musical gesture. 

Following the examples ok Hübler, Barrett and 

Frneyhough, Cassidy works on the instrumental 

decoupling: “a separation of the various activities of 

instrumental sound production” (Figure 4).  

The work of Cassidy expands the approach that we 

highlighted in Lachenmann: Not only  is there an 

exploration of instrumental affordances, but even an 

exploration of the performer's body affordances.  

Therefore the instrument and the score are, means of 

representation and at the same time stimulation of the 

gestural content of the player's activity:  Physicality is 

conceived in material terms.   

In his Second String Quartet (Figure 4) Cassidy 

resumes the gestural parameters to a unique staff, 

making an evolution in relation with the former string 

quartet. The score has the role of being the interface for 

instrumental and physical enactement of the global 

musical body – the performer and the instrument. In this 

sense the score acts as a state space of gestural 

affordances. The relationship with sound, being open, 

reveals a coessential element with the tangible score: 

The graphics afford gestures on a known instrument, the 

string quartet, and the performer interacts with the 

sounds creating the acoustic output, that is not written 

in the score. In a similar manner the tangible score 

affords gestures creating open sounds possibilities. On 

the contrary Lachenmann indicates precisely the sound 

result. 

On both our examples, the score is in the centre of 

the relationship between gesture and sound, being an 

abstract symbolic interface for physical movement, 

even if with different degrees of prescription. 
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Figure 4. Aaron Cassidy's Second String Quartet page 

THEORETICAL FRAMEWORK 

Efforts of projection in time  

We try to argue that scores, instruments and 

compositions seem to have a common essence. If scores 

are, or might be, abstract symbolic interfaces, and 

instrument concrete ones, we highlight how the recent 

evolution of new musical interfaces seems to make the 

limit fluid.  

Scores and instruments not only collimate today in 

multimodal interfaces, but have, in our opinion, a 

common essence characterized by the typology of 

intentionality, based on the effort of projection of the 

maker: composition of scores or construction of 

instruments are forms of projection in time, based on 

enactive experience.  

Making Musical instruments, making scores 

Making of musical instruments involves action and 

perception; it also involves the understanding of the 

action-relevant value of sounds, the judgment of these 

sounds in view of musical ideals, and shaping physical 

environment that produces sound: projections of 

movements in virtue of the absence of physical 

presence. 

  The composer, the performer and the instrument-

maker project the sound-object in time: they must 

project their subjective experience in an intersubjective 

dimension. Projection is expectation of reality based on 

past experience.  
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The action-reaction cycle proposed by Marc Leman 

as a paradigm for instrument making (and more widely, 

for music making and perception), frames theoretically, 

for us, this concept [12]. If the process of instrument 

making described by Leman as the synergic relationship 

between “Play, Listen, Judge and Change” is true, then 

the process of composition can be equally described. In 

fact 

While musical instrument is being built, a set of action-

reaction cycles, which may occur on different time 

scales and perhaps in hierarchical order, transforms 

matter and energy into a cultural artefact for making 

music [Leman, 2007: 52] 

There are forms of projections through writing that 

evolve in technology. Performers and composers are 

entailed in a similar form of projection, characterized by 

a different degree of distance from the gestural and 

sonic output. The projection is the conception of a 

process of accumulation of experience that comes to 

define the good shape of the instrument and of the 

score. Leman underlines the process as the Ratchet 

Effect:  

[…] the actual process of instrument-making 

(ontogenesis) and the history of how an instrument 

evolves (phylogenesis) can be seen as the result of a 

repeated cycling of Play, Listen, Judge, Change. The 

action-reaction cycling is a dynamic model with the 

capacity to subsume a cumulative process similar to a 

ratchet effect [Leman, 2007: 54] 

In our opinion, we can extend this model from 

instrument to notation, assuming that in both of them 

perception induces intentionality and anticipation: “the 

world is conceived from the viewpoint of action and 

prediction rather than merely based on the construction 

of gestalts”.   

Scores are the result of a ratchet effect, in the sense 

that they simulate the economic growing of knowledge 

during the last centuries, similarly to the instruments. 

The abstraction of the musical practice in a few number 

of variables allows a global control of the instruments, 

that arrives to a certain control of the body of the 

performer. This kind of prescriptive approach is similar 

to the machines, that are totally, or almost, controlled. 

In this sense the composer uses the score as an 

instrument, as a temporal and physical interface of 

abstract interaction in time and space: scores are 

extensions of the body of the composer in the body of 

the performer via the projection of the instrument 

represented by the score. That creates a singular 

temporal dimension based on the absence and presence 

of the instrument: the composer constructs absences and 

the performer reconstructs the projected presences.  

 

Notational system as performed system 

We would like to suggest a framework of the 

definition of score as instrument, drowing a line 

between the programming of the sound result and the 

design of instrument and scores. We would like to argue 

that if scores are instruments, then this common essence 

is still developed in NIMEs.  

As highlighted by Tomás and Kaltenbrunner, circuits 

are conceived as scores and instruments, because their 

combination implies specific sounds. This relationship 

is at the basis of the conception of synthetic 

instruments. Also for Max Mathews, computer is an 

instrument [13]; at the same time the computer is not a 

normal instrument, but it performs data that are 

memorized and activated.  

In the case of NIMEs, the computer is still central. 

The computer controls the loudspeaker, but the musical 

interface controls the computer. It is a particular 

instrument that not only can be controlled by interfaces, 

like keyboards controls organs, but it can be 

programmed in infinite manners.  

The interfaces have a role similar to that of scores: 

they generate information in real-time, but still record 

and encode data: interfaces are causal for scores. 

Anne Veitl [14], following Cadoz's work [15], 

focuses on the notion of causality, that is the central 

element of the relation between scores and instrument. 

The comprehension and the definition of causality lies 

at the centre of the definition of the musical instrument. 

Veitl's model allows a kind of generalized 

instrumentality: highlighting the principle of causality 

fundamental, it becomes evident that instruments and 

score are part of the same causal process.  

Criteria of a performed notational system 

Considering the sound synthesis environments 

partitioned as score and instruments, Anne Veitl 

proposed to interpret softwares as notational systems.  

Veitl proposed six criteria that seem to us to highlight 

some general properties of notational systems and 

instruments at the same time. These criteria stress the 

fact that softwares are notations, and, essentially, 

performable notations. A notational system is 

primarily : 

a. material: it must be somewhere, memorized 

on a concrete and existing object, the paper 

or a hard disc ; 

b. visible: that's why the machine language is 

not a notation, but softwares are visible ; 

c. readable: it has to be read by a machine, a 

human being or both; 

d. performative: it describes the action 

potential of a system. Softwares and 

computers are highly performative because 
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the material inscription is translated 

instantaneously in sound; 

e. systemic: the signs, or the physical elements 

of the system can operate structurally ; 

f. causal: notation must indicate and enable 

sounds. It must indicate the manner and the 

means necessary to produce the sound or 

the event.  

In this sense, for Veitl, softwares are scores, thus 

NIMEs are expression of this essential character.  

CONCLUSIONS 

Technological advances have broadened our 

conception of notation and instrument as mutually 

shaping, action-oriented, open-ended systems, as much 

as they have contributed in their actual, material 

amalgamation. 

Tomás’ tangible score and Antoniadis’ GesTCom 

offer instances of new interfaces-and-scores, which 

have historically followed up from graphic and action-

oriented notations. In those instances, notation and 

instrument share common criteria (Veitl) and 

evolutionary cycles (Leman) beyond the prescriptive-

descriptive classical dichotomy, materializing both 

representational and enactive cognitive features.  

Eventually the very communicative chain and roles 

between instrument-makers, composers, performers and 

computer-music designers are to be genuinely rethought 

as cycles of synergy rather than linear models, with 

obvious implications for both pedagogy and creation in 

all respective fields. 
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ABSTRACT 

This paper outlines a research project currently underway 

in Malaysia that, through spectography, seeks to find 

models that might assist in the future development of a 

timbral notation. Located within the music creation and 

performance practices of the researchers, the project has 

elements of interculturality, which both enrich and inform 

the research. The authors consider the nature of a music 

score, the explicit and implicit information it carries, and 

how this impacts on the models being developed. The 

understandings elicited to date are not only located in 

music practice, but are underpinned and supported by the 

theoretical works of a number of theorists. The overall 

research project is broken down into smaller discrete sub-

projects which are discussed, andcontextualized in the 

wider project. The paper includes a discussion of the 

score as artifact or ‘thing’ the relationships that are im-

plicit within it, and the infinite potential it contains. Other 

outcomes are suggestive of a possible model of gestural 

notation which will be a further avenue of research. The 

paper concludes with suggestions of future research areas 

following the models of timbral notation being explored 

in this project.  

1. INTRODUCTION 

This paper is a brief exposé of a Fundamental Research 

Grant Scheme (FRGS) project, funded by the Malaysian 

Ministry of Education, being carried out at the Universiti 

Pendidikan Sultan Idris, Tanjong Malim, Perak in central 

Peninsular Malaysia – Spectromorphological Notation - 

Notating the unNotatable?  Modeling a new system of 

timbral and performance notation for ethnomusicologi-

cal, musique-mixte and electroacoustic music composi-

tions. The focus of this fundamental research is broad, 

encompassing a range of intercultural, performance and 

sonic representation issues; and this report is necessarily 

of work in progress as the project is evolving clarity of 

direction and practical application. The project develop-

ment and structure, research questions, reflections on the 

nature of the score and the creation of models for timbral 

representation are discussed. 

This research is seeking answers to diverse timbre no-

tation and music representation questions within three 

sub-projects that focus on, respectively, ethnomusicolo-

gy, musique-mixte and electroacoustic music. Crucial to 

the first and second sub-projects is our interest in devel-

oping ways of representing timbre that can be understood 

from both Malaysian and Western perspectives of per-

formance, and provide a live performance functionality. 

New compositions are being created as frameworks for 

these investigations that are experimenting with forms of 

notation that accommodate timbre as an addition to pitch 

and duration. A software independent means of notating 

electroacoustic music is a goal of the final sub-project. 

The project began in mid 2014, and the first and second 

sub-projects are currently underway. The third sub-

project that focuses on electroacoustic notation will con-

clude in early 2016. 

Denis Smalley (1994) begins to define timbre as “the 

attribution of spectromorphological identity” [1]. He 

points to the ‘hazardous operation’ of definition, of ex-

panding the assumed notions of timbre based on acoustic 

sound and the trouble of refining and standardizing re-

sponses to such a complex element or identity. Within 

Spectromorphological Notation: Notating the Un-

notatable? we are addressing both the acoustic and elec-

troacoustic, aiming to create an investigative continuum 

that proceeds and informs from one to another. Elements 

of the study and documentation of the timbral characteris-

tics of both traditional and modern instruments occurring 

in the initial stages of the research will lead to experimen-

tation with notation and explorations of the relationships 

of score and performance. In the creation of new works, 

the transformation of the acoustic sound spectra through 

Copyright: © 2015 Blackburn et al. This is an open-access article 

distributed under the terms of the Creative Commons Attribu-

tion License 3.0 Unported, which permits unrestricted use, 

distribution, and reproduction in any medium, provided the original 

author and source are credited. 
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digital signal processing is extending this exploration into 

the electroacoustic context.  

Further areas of exploration include an articulation of 

the relationship between the sound and context. This 

relationship is reflected in the scope of our definition of 

timbre based on Smalley’s approach, and making recog-

nition of Lasse Thoresen’s assertion that we need to de-

velop a terminology (and lexicon) to describe the 

“…phenomenology of music in experiential terms” [2]. 

This phenomenological approach to timbre was initially 

begun by Schaeffer and then carried forward by Smalley, 

and between the writings of all three, begins to accom-

modate the multiplicity of meanings of ‘timbre’: structur-

al, contextual, analytical, tonal, and sound quality.  

Timbral elements in musique-mixte works are central 

to interpretation and realization in performance, but often 

include somewhat vague or technology specific indica-

tions. The authors’ experience as performers (flautist and 

organist) in the musique-mixte domain has prompted 

aspects of this study, and provides a practical basis for 

these explorations. In flute works, for example, timbre 

changes may be indicated by signs (often extended tech-

niques) or words that can be highly evocative and poetic; 

the electronics may be indicated by effects or technical 

instructions such as fader control levels, or a particular 

form of synthesis. Where acoustic and electronic sounds 

merge, indications of timbre may become the ‘property’ 

of the software or mixing desk – the programmed effect. 

The authors suggest that a creative collaboration working 

within a performance environment to recreate the com-

poser’s intentions, rather than technical instructions, 

could be more effectively enabled with semiotically rele-

vant timbral representation. In organ works, timbre is 

often suggested through assumed knowledge of historical 

performance practice
1
, or specific stop indications com-

bined with an understanding and knowledge of the in-

strument for which a piece was composed. In the works 

for organ and live electronics composed since 1998, the 

aural and spatial effect of the processing on the overall 

timbral environment is only ‘discovered’ in the space 

after all has been set up. A more specific representation 

of timbral effect in the score would allow the performers 

to adapt and optimally develop interpretation and tech-

nical set up according to the performance space.  

Investigations of timbral descriptions of traditional in-

struments led us to Ngabut (2003) in Kenyah Bakung 

Oral Literature: an Introduction in which the author 

describes the odeng talang jaran (or jews harp) from the 

Borneo Kalimantan region. The description includes 

detailed descriptions of the instrument’s construction 

(dimension, materials, and decoration), mode of playing, 

                                                           
1 e.g. Organo Pleno for North German baroque instruments, or 

the Tierce en Taille of the Classical French organ tradition. 

social function and many other cultural features, but 

makes only one reference to the actual sound of the in-

struments: “The sound produced resembles that of a 

frog” [3]. Assuming one knows the species of frog being 

referred to by the author, and what call it is giving, per-

haps this is helpful. A motivating factor in this project is 

to try to find an objective, non-metaphorical process for 

notating the sound of the frog. Through spectrographic 

measurement we hope, as far as the visual can represent 

the aural, to find symbols and images that can communi-

cate sound quality in all its complexity to a literate ob-

server. 

Referring to sound quality – its spectral content, sonic 

identity and recognition of source – Udo Will attests: 

“…It remains immensely difficult to ‘talk about’ them – 

oral cultures have no music theory. Things seem to be dif-

ferent in literate cultures, though. Through the very in-

vention of writing systems, man has acquired means to 

cope with the elusiveness of sounds: the transformation 

from an aural-temporal form into a visual-spatial one. 

Sounds seem to be tamed and time seems more under 

control if treated spatially, however, this is only seeming-

ly so because the accomplishments of such a transfor-

mation are limited and can at times be deceiving” [4]. 

Combined with the other informal explorations and con-

siderations these comments became enabling texts to 

launch this exploration of timbral notation.  

Central to the project is the music score itself – what is 

it, and what relationships the various participants each 

have with this thing or artifact? One common factor in all 

our understandings is of the score as an object of poten-

tial. The project is generating new questions and raising 

uncertainties about the nature or ontology of musical 

scores, as well as the syntactical conventions that exist in 

different cultures. Our references to Ingold and Foucault 

support this need for exploration. Kathleen Coessens calls 

the music score a “coded tool in the arts” and furthermore 

a score “…is a two-dimensional visual and coded artifact 

that allows for multiple performances or “resounding 

processes” by musicians…[and merging] the visual and 

the musical, the fixed and the dynamic, space and time” 

[5]. These are well-understood concepts, which confirm 

our (Western) cultural understandings of the ontology of 

a musical score. The project is also grounded in non-

Western, oral-based paradigms: what does the score (as 

artifact or ‘thing’) mean within these cultures?  

This project will explore the creation of models for the 

timbral and performance notation of music, incorporating 

both acoustic and electronic sound sources initially work-

ing with traditional instruments, then within contempo-

rary Western Art Music research through the creation and 

performance of new musique-mixte and electroacoustic 
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compositions using these possible models and systems.”
2
 

The overall project consists of two conferences, bookend-

ing three sub-projects that, taken together, provide oppor-

tunities to envision the possibilities and value of timbral 

notation, aiming to create models from which to develop 

practical performance based scores, which are of value to 

participants in each area.  The project’s co-researchers are 

practitioners in ethnomusicology, acoustic, electroacous-

tic and musique-mixte as academics, creators and per-

formers. 

Already queries are arising regarding our ontological 

understandings of what comprises a score, and, how it 

functions and communicates, particularly over time. As 

Marc Battier, who presented at the project’s opening 

conference in June 2014, observed 

“… the preservation of a [musical] score is a big issue, 

and has implications for notation”. 

A score must be in a form which can be understood 

and read over long historical time frames, and in a form 

which allows long term archival storage and retrieval. 

2. THE PROJECT 

Research questions have evolved for each sub-project 

based on the following investigative parameters: 

1. Can an intuitive notation system for electroacoustic 

music be developed from spectral analysis and spectro-

morphological representation? 

2. What are the elements that composers, musicolo-

gists, performers require from a notation system and how 

can these be represented? 

4. Can spectrographic analysis and software be used to 

provide a method for defining and identifying unique 

qualities of Malaysian indigenous instruments? 

5. Can this information be used to ‘describe’ and no-

tate the specific individuality of sounds, materials and 

performance methods in ways that expand the range and 

musical vocabulary of the ethnomusicologist? 

6. What parameters of analysis can be defined to pro-

vide useful and universally ‘understood’ symbols using 

spectrographic softwares? 

2.1 Issues Arising – a problem statement? 

This research project is adopting a multi-faceted ap-

proach to exploring the possibilities of creating scores 

that describe and notate timbre and which might eventu-

ally come to some degree of functionality. The practice of 

the various co-researchers and the paradigm of their ex-

perience provide multiple sites and contexts for the re-

search. These paradigms also encompass the realms of 

traditional and non-Western music performance, acoustic 

                                                           
2 Blackburn (2014), 
http://spectronotation.upsi.edu.my 

Western art music performance and music creation, and 

the environments of electroacoustic and musique-mixte. 

The range of modes of transmission of music and musical 

ideas is equally broad – being passed from one generation 

to the next, from creator to acoustic and electronic per-

formance.  Further, it encompasses oral and rote learning, 

common notation scores to software, and works depend-

ent on the software that was used to create them as a way 

of preserving them. In these notation systems, with the 

exception of the electroacoustic performance software, 

there is no way of describing the quality of imagined 

sound – our ‘frog call’.  

 What is notation and what is a score? Both are sepa-

rate objects, but intertwined with cultural, ontological and 

semiotic inferences, all of which impact the artifact we 

call the score. In Western art music, a score is an artifact 

(often on paper, but perhaps in other media or in soft 

copy) used to communicate the musical ideas of the 

score’s creator to the performer and, with an assumption 

of the performer’s active creative input, to the listener. In 

traditional Malaysian music, we can describe the score as, 

more commonly, a series of memories and traditions, 

perhaps articulated mnemonically but not, until quite 

recently, written down. In this traditional music, pitch 

and rhythmic inaccuracies that arise from the use of 

common practice notation are considerable but, except 

that they are measured in spectrograms, beyond the scope 

of this presentation. 

Our conception of the score as ‘thing’ connects the 

meaning of the score to Ingold’s theory of ‘correspond-

ence’ [6] drawing us to a significant difference between a 

score and a spectrogram – the spectrogram is an historical 

document – ‘this sound was like this’. We can measure 

the sound that happened in this way, and read it as such. 

Contrarily, a music score (with its multiplicity of mean-

ings) is a ‘thing’ of possibility [7]. It is a crea-

tor/composer’s conception of some sounds that, if recre-

ated in this or that way by the performer, has the possibil-

ity of generating non-verbal ideas and concepts in the 

minds of the performers and listeners. Manuella Black-

burn suggests a new way of using the spectrogram to help 

generate compositional ideas in her exploration of the 

potential of spectromorphology and its associated lan-

guage as a process for composition” [8].  She writes, 

“… spectromorphology can be approached from an alter-

nate angle that views the vocabulary as the informer upon 

sound material choice and creation. In this reversal, vo-

cabulary no longer functions descriptively; instead the 

vocabulary precedes the composition, directing the path 

the composer takes within a piece. This new application 

is an attempt at systemization and an effort to (partly) 

remedy the seemingly endless choice of possibilities we 

are faced with when beginning a new work” [8]. 
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Blackburn’s suggestion of the use of spectromorphol-

ogy as a compositional tool suggests the possibility of 

changing the historic nature of the spectrogram into one 

of potential.   

Other researchers have struggled with many of the is-

sues that have arisen in our individual and collective 

deliberations. Rob Weale
3
 in the EARS Glossary of 

terms, Spectromorphology notes there is both interde-

pendence and dynamism in the word spectromorphology. 

Whist not reducing the historic quality of a spectrogram, 

this is helpful to this project for the conceptual develop-

ment of a timbral score, as he describes spectromorphol-

ogy as a tool for “describing and analyzing listening 

experience.” He continues: “The two parts of the term 

refer to the interaction between sound spectra (spectro-) 

and the ways they change and are shaped through time (-

morphology). The spectro- cannot exist without the -

morphology and vice versa: something has to be shaped, 

and a shape must have sonic content” [9]. So there is the 

possibility of dynamism in a spectral score.  

The score, if incorporating some form of spectrogra-

phy, will probably contain graphics that also have semiot-

ic qualities. Martin Herchenröder, in discussing the score 

of Ligeti’s graphic score of the organ work Volumina, 

adds musical and performative gesture to the inherent 

quality of a score as he attests 

“…, it is a coherent system of signs [semiotics], whose 

details can all be translated into musical patterns. A look 

at the third page of the score of Volumina illustrates the 

cluster through visual analogy. The horizontal dimension 

corresponds to the flowing of time: The time sequence of 

musical events (according to the reading habits of the 

western world) is a left-right succession of notes. Thus, in 

principle, each event is fixed in time - the new cluster in 

the right hand as posits an approximately after 17 sec-

onds, after another 10 seconds of complete, another 4 

seconds later” [10].  

It has been argued that this gestural quality is also se-

miotic and tied to the sonic gesture.  The ‘left-right’ suc-

cession of symbols and their vertical location on the page 

indicating pitch (high/low) also has sonic inferences that 

offer potential for developing elements of performance 

notation [11]. Treating the score of Volumina as an xy 

graph for time and pitch, we can see that the evident 

gestures and sonic shapes are potentially useful in timbral 

notation. It is an area where the left-right and vertical 

associations could be helpful in ‘notating’ gestures, 

which, by their musical outcomes are also timbral. 

O’Callaghan and Eigenfeldt have demonstrated how 

spectral density can be implied within acoustic and mu-

sique-mixte compositions [12]. Combining colour, which 

can be ascribed various meanings, and graphic, gestural 

                                                           
3 www.ears.dmu.ac.uk/spip.php?rubrique28 

notation as outlined above is proving a rich potential 

model in creating gestural notation in the musique-mixte 

performance environment. This model is described in 

greater detail below.  

2.2 The Sub-Projects 

This research project is structured with three principal 

sub-projects, which, though operating in parallel, allow a 

sequential development of models and notational ideas. 

The applications used to create the spectrographs used in 

this project are Pierre Couprie’s eAnalysis [13] and Sonic 

Visualiser [14]. 

2.2.1 Project 1 Ethnomusicology Project 

The ethnomusicological sub-project, using spectrograms 

provides traditional music professionals with an objective 

understanding of the nature of the sound quality of spe-

cific instruments, and the musical or ritual context in 

which they prefer to use it. As a music tradition that is 

oral, transmission of music and pieces is achieved by 

rote, repetition, and aural memory. This research is not an 

attempt to standardize the sound of instruments. Instead, 

it adds to the knowledge of the Wayan Kulit artform, 

which is presently in a difficult phase. In parts of Malay-

sia, including one of its places of origin, Kelantan, it is 

banned. University programmes, such as those main-

tained by UPSI, are important in the continued artistic 

viability and vibrancy of Wayan Kulit (Director of Kelan-

tan Arts and Culture Museum, personal communication 

in Penny/Blackburn FRGS The Imaginary Space, 2014). 

This spectrographic process is demonstrating the value of 

profiling instruments, allowing makers objective 

knowledge of the range of sounds preferred by the musi-

cians who play and perform.  

The first process within this sub-project has been to 

record the sound of, then create spectrograms of, tradi-

tional Malaysian Wayang Kulit shadow puppet music 

theatre. UPSI maintains a group of resident musicians 

specializing in this musical form. In performance, a group 

of four to six musicians and the master puppeteer are all 

located out of sight behind a large translucent screen, 

which is the stage for the shadow puppets. Our study 

includes an exploration or profiling of sounds preferred 

by professional traditional musicians in certain percus-

sion instruments.  

The orchestra of the Wayang Kulit Siam (as found in 

Kelantan, Malaysia) consists of percussion instruments 

including a pair of double-headed drums – gendang, a 

pair of single-headed goblet-shaped drums – gedumbak, a 

pair of vertically standing drums (gedug) hit with beaters, 

hand small cymbals – kesi, a pair of inverted gongs – 

canang, and, a pair of hanging knobbed gongs – tetawak. 

Melodic instruments include the serunai (a double-reed 

instrument, similar to the shawm) and a three-string spike 
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bowed instrument – rebab. The instruments, while indi-

vidually important, gain their true significance in an en-

semble and dramatic context. When making recordings of 

various instruments, initially it seemed sensible to just 

record the instrument in a dry unadorned environment. 

However, in order for the Wayang Kulit leader (Pak 

Hussain) to make his assessments, the recordings that 

ended up being made were of the whole group playing 

while testing out the Gedumbak for different dramatic 

environments. Selecting instruments for their suitability 

in a given drama (normally, the stories are drawn from 

thirty of so traditional stories) means that the players are 

more interested in their collective role than the individu-

al, so the recordings were made to reflect this. The ge-

dumbak was close miked, and the rest of the ensemble 

sound was allowed to spill into these microphones.  The 

longer red lines in the last section of this short segment 

show the moment when the serunai enters.  

Why, for example, is one pair of Gedumbak preferred 

in one piece over another? Spectrograms can show a 

profile of the sound, which may then be attached to a 

musical (or in the case of Wayang Kulit) dramatic con-

text. Spectrograms further show us that by using different 

modes of playing, different timbral qualities can be em-

phasized in the same instrument – brighter or more mel-

low and so on. Co-researcher, Mohd. Hassan Abdullah 

has pointed out that mnemonic forms of teaching and 

communicating musical content in Malaysian traditional 

music also imply different timbral and gestural modes of 

playing. So, we ask the question, can this content be 

given a visual (spectrographic) or written form, and ap-

plied in the other projects?  

A second strand in this project investigates a ‘Western’ 

facet – the creation of a recorded catalogued of extended 

flute performance techniques, using a concert flute, 

which have been spectrographed and analysed for their 

characteristics. These characteristics are being extracted 

for the development of a form of spectral representation 

that can be adapted for use in common notation scores, 

particularly for acoustic instruments. This strand has been 

productive, opening ideas and knowledge that leads into 

the second sub-project, combining acoustic and electroa-

coustic musical contexts in new compositions.  

2.2.2 Project 2 Musique Mixte project 

The musical score as semiotic medium can be understood 

as an “infinite substance” [15] that activates the musi-

cian’s ability to imagine and translate notation into a 

temporal unfolding of new knowledge and experience. As 

we look towards extending performance practices into 

new conceptual contexts and relationships, new para-

digms that reflect and drive new expressions and activi-

ties evolve. Timbral notation as a context of change mo-

tivates explorations of shifting performative relationships, 

new ways of thinking and performing, and a reconceptu-

alization of the score/performer relationship. 

This part of the project will create models for spectro-

graphic notation as performance scores. Analyses of 

notation, timbre and organology associated with chosen 

instruments and electronics (musique mixte) will be un-

dertaken to develop a framework for investigating spec-

trographic analyses, evaluations and outcomes. New 

works will generate performance analyses through phe-

nomenologically based studies, following the sound spec-

trum and performer responses to new musical works. 

We question the role of the score as mediator between 

mind and sound [16]. What information is conveyed 

through spectral timbre notation? What are the semiotic 

implications of sound codification? Is the information 

rigid, or a point of departure for the performer? A per-

former’s notation needs clarity and embedded knowledge 

or information that directly communicates to them – that 

is clear, readable, interpretable, and informative of what 

the music is about. The multiple layers of a spectrograph 

emit different levels of information, multiple meanings, 

different streams of representation – all systems that 

require understanding and evaluations of the relations of 

the score. What can a performer expect – information of 

spectral density? Aesthetically, a spectrograph is a beauti-

ful object – but just how effective and informative is it as 

timbral notation for the performer? Is it instructional, or 

suggestive, gestural, strictly coded or freely interpretable? 

Can a spectrograph be as revealing or evocative as a 

beautifully notated score? Can it evoke spatialities, mem-

 

Figure 2. Spectrogram of Wayang Kulit ensemble –segment of 

recording focused on Gedumbak with strong onset feature.  

 

 

Figure 1. Testing the Gedumbak   
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ories, or sonic energies? What is the need for this as nota-

tion?  

Investigating the recordings and single frame spectro-

graphs of the Western flute extended techniques will 

allow us to experiment with the flautist to see how effec-

tive this is in the re-creation of timbres. The form of tim-

bral representation on which we will focus does not con-

sider fundamental pitches or duration, rather an emphasis 

of specific overtones. Pitch and duration are indicated 

using common musical notation. As a catalogue of 

sounds and acoustic performance techniques, the spectro-

graphic series (see Figure 3) as a research process model 

provides some ways forward to link timbral representa-

tions to scores in a musique-mixte environment. 

 

Figure 3. Process of model development from Flute Catalogue of 

extended techniques  

According to Bhalke et al. [17], a single frame of a 

spectrograph contains information including:  

(i). Fundamental Frequency; 

(ii). Harmonic components; 

(iii). An indication of the relative amplitude of the 

harmonic components; 

(iv). Spectral Centroid. 

Can the composer say to an instrumentalist “play your 

instrument to reproduce this quality of sound,” indicating 

their musical ideas through spectrographic information? 

It is our sense that such compositional detail potentially 

denies certain instrumental ontologies. In art music, the 

instrumentalist brings many personal and musical contri-

butions to the performance outcome – what we might 

loosely define as ‘interpretation’.  

Yolande Harris argues that sound “binds people to-

gether in space in a contextual manner” [18]. This con-

cept of the score as relationship – between performer and 

notation, between composer and performer, between 

memories, communications, live sound, recorded sound, 

gesture, or cultural practices – interrogates and challenges 

our experience of performative modes and conventions. 

These are relations and ecologies that can be examined 

through concepts of heterotopia (Foucault), contexts of 

understanding (Gadamer) and correspondences (Ingold). 

Can a circle can be drawn around the score as space, and 

the spectrograph act as facilitator and activator of that 

space? In a recent study of intercultural music perfor-

mance in Malaysia
4
, heterotopia was articulated through 

the performative lens, the performance as a context for 

understanding artistic realisation of intercultural 

knowledge and experience. This space was posited as an 

ecology: a set of relationships, the music, the perfor-

mance, a symbiosis of elements of the cultures, collabora-

tions and connections that occur  [19].  

Digital media tends to handle music as encoded physi-

cal energy, while the human way of dealing with music is 

based on beliefs, intentions, interpretations, experience, 

evaluations, and significations [20], but the exploration of 

timbral notational elements and relations might activate 

questioning and re-assessment of values; the search of 

microstructures might lead to a search for sonic essences 

and deeper self understandings; new dimensions evolve, 

new ways of thinking and living (performing) result. 

These questions engage us with discovering the meaning 

of the music as new dimensions of musical practice open 

up.  

2.2.3 Two models arising from Sub-Project 2?   

Limiting the new content of notation to timbral qualities 

(and for now limiting its measurement to the ‘single 

frame’ timbre information outlined above Bhalke et al), 

the research teams are sensing that the information con-

tained in a spectrogram is useful in determining the tim-

bral quality of a sound at a given moment and dynamical-

ly over time. However, the uniform colour response of 

spectrographic software means the strongest elements of 

tone are always brightest and use fixed colour ranges. 

The spectrogram responds to relative prominence of tone 

with the same colour spectrum. To ask a performer to 

play a green or red sound on this basis is, therefore, 

meaningless. However we if (for example) ask a player to 

make a sound with the first and second harmonics (octave 

and fifth above the FO) emphasized (giving the tone a 

somewhat nasal quality), it could be indicated above 

common music notation in the form of, perhaps, a rain-

bow colour grid (i.e. red, orange, yellow, green, blue, 

indigo, and violet) related to the first seven frequencies of 

the harmonic series. Retaining common music notation, 

means that the target note  (FO) would be black. An in-

strumentalist would need to acquire knowledge of the 

possible harmonic series for their instrument, and the 

instrumental technique required to produce such combi-

nations of sound. Timbre indications could then be read 

as coloured dashes above musical phrases or individual 

                                                           
4 The Imaginary Space: Developing models for an emergent 

Malaysian/Western electroacoustic music (2012-14). Funda-

mental Research Grant Scheme, Ministry of Education, Malay-

sia. 

Representation of timbre as musical element in score 

as adjunct to common musical 
notation? 

Colour range (rainbow spectrum)  

Spectrogram of technique / sound 

Features FO and characteristics 
significant harmonic series 

highlighted  

Recorded note 

Flute Extended techniques 
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notes. This approach allows the retention of score rela-

tionships and its potential quality while providing the 

composer with a means of specifying timbral quality 

within their score.  

Adapting this approach using graphic notation could 

include the dynamic quality of the spectrogram, which 

can include indications of duration, pitch, relative ampli-

tude and the ASDR envelope. These could be incorpo-

rated into a form of notation that may resemble a colour-

ised version of, for example, Ligeti’s score of Volumina. 

The representation of music in this form might also be 

readable as a type of gestural notation, of pertinence to 

software instrumental performance, though this is a pro-

cess currently being examined in our pieces.  This ap-

proach must be considered only a starting point – a model 

for investigation.  

2.2.4 Electroacoustic Music Project  

The third sub-project is an exploration of the use of spec-

trograms to create a form of timbral notation, which 

could be used in electroacoustic compositions as a way of 

preserving the music independently of the soft-

ware/hardware used to create them. As noted earlier, 

finding a mode of preserving a score is a major concern. 

One possible approach, and which culturally locates this 

research in South East Asia, is an exploration of the po-

tential of adapting ‘Uthmani’ notation used in Qurannic 

recitation as a form of timbral or gestural notation. This 

exploration is not based around content, but is focussed 

on the context of how ‘Uthmani’ is used, written and 

recited ‘through sound’. Hasnizam Wahid from UniMAS 

– Sarawak, and one of Malaysia’s leading electroacoustic 

composers, is particularly focusing on this area. This 

project is yet to begin as the first two projects are creating 

many of the fundamental bases that must first be estab-

lished. It is anticipated that this detailed research will 

begin in July 2015, continuing until the end of the year.   

3. FUTURE PATHWAYS 

Having identified some of the possible pathways for 

finding models of spectrographic or timbral representa-

tion in a score, this section suggests directions that this 

research might follow. They are not presented in order of 

preference or significance, but remain possibilities that 

address the outcomes of the research so far, outcomes yet 

to be realised and issues and meeting challenges so far 

identified.  

If one were to wish for a software, and we will look at 

supporting software development in later research phases, 

it would be along the lines of a reverse-action of spectro-

graphic software – i.e. a program such as eAnalysis cur-

rently takes an audio file and from it creates an image: is 

it possible to take that spectrogram and create an audio 

file to ‘recreate’ the sounds of the original file. 

A simple outcome (though conceptually complex) 

would be to take some of the various software packages 

and have them sonify a spectrogram. Some simple exper-

imentation with existing software packages, using Audio 

Paint [21] have been undertaken. The results using these 

are not promising. The concept might be helpful in realiz-

ing electroacoustic scores without access to the software 

used to create it. There are many issues and concerns at 

this juncture, which make this process one for a separate 

and continuing research project, developing and evolving 

models that might be forthcoming from this project. 

Some of the problems lie in impact of the space in which 

a sound is being projected and its influence on timbre. 

For multichannel electroacoustic works there is the ques-

tion of how one will ‘record’ the original sound – as 

separate channels with individual spectrograms, which 

might then be reconstructed? Combined with the possibil-

ities of the models outlined above, and acknowledging 

the many complexities, is a worthy goal to gain the abil-

ity to recreate fixed works long after the original software 

or hardware that created it is lost.  

4. CONCLUSIONS 

Our research to date seems to allow an optimistic attitude 

that spectrograms can be used as the basis of a timbral 

notation. The cultural significance of the score as an 

artifact and the relationships it implies – from compos-

er/creator to performer to listener – must be accounted for 

in any new notation practices that develop to allow for 

specific timbral elements demanded by the composer. 

Our suggestion within instrumental contexts of a rainbow 

spectrum adds a new layer of complexity to the score, but 

we assert this enriches the various relationships estab-

lished within the score’s environs. The model of gestural 

notation appears to have the potential to provide a techni-

cally workable yet semiotically rich notational ontology, 

which will provide the basis for investigation in the elec-

troacoustic/acousmatic context. In this sub-project, it is 

predicted that what Smalley describes as the discrimina-

tion of “…the incidental from the functional” [22] will be 

major areas of consideration. In many ways, findings 

relating to this project are the posing of more questions. 

Nevertheless, some elements of what will develop into 

models of timbral notation are suggesting themselves to 

the research group.  
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ABSTRACT 

The research presented here is product of a practice-based 

process that primarily generates knowledge through col-

laboration and exchange in performance situations. This 

collaboration and exchange with various musicians over a 

period of five years that constitutes a body of practice 

that is here reflected upon. The paper focuses on non-

instructional graphic scores and presents some insights 

based on performances of works by the author. We ad-

dress how composition processes are revealed in graphic 

scores by looking at the conditions of decision making at 

the point of preparing a performance. We argue that three 

key elements are at play in the interpretation of these 

types of graphic scores: performance practice, mapping 

and musical form. By reflecting particularly on the work 

Cipher Series (Rebelo, 2010) we offer insights into the 

strategies for approaching the performance of graphic 

scores that go beyond symbolic codification.  

1. INTRODUCTION 

Composition and performance practices involving the 

development of notation that operates differently from 

common music notation go back to the 1950’s. Compos-

ers such as Mauricio Kagel, Karlheinz Stockhausen, 

Krzysztof Penderecki, John Cage, Earl Brown and Mor-

ton Feldman are commonly named as pioneers in this 

type of practice. These composers have typically engaged 

in graphic scoring during specific periods of their careers 

and have left bodies of work, which include innovative 

custom-designed notation alongside works using conven-

tional notation. One needs only to reflect on the musical 

languages associated with these composers to realize the 

diversity of the aesthetic field laid out here. Graphic score 

practices in themselves cover a wide range of notational 

strategies, from simple extensions of common music 

notation to completely new models for the use of 

graphics as a device for communicating musical struc-

tures. This paper addresses works that are characterized 

by an approach to graphic notation that bypasses the 

symbolic and focuses on communicating musical struc-

tures in graphical form. This approach minimizes, or at 

times, completely abolishes instruction in favour of a 

freer approach to sharing and interpreting musical ideas. 

A deliberate decision to develop notational elements that 

are not conveying specific or determined performative 

actions has significant impact on the compositional pro-

cess. Does it make sense to speak of a score that does not 

provide information to be read as commands for produc-

ing specific sound events? The relationship between the 

choice of notation and a composer’s wider aesthetic pro-

ject is discussed by Wadle : 

“the prescriptive notational innovations of Helmut 

Lachenmann, would reveal much about the composer’s 

conceptualization of the performance techniques he calls 

for.” [1] 

 The dynamics of determinacy and indeterminacy and 

their relation to notation are well known in the work of 

John Cage. [2] Cage arguably spent much of his career 

developing notational strategies that embody his philoso-

phy of music. Mark Applebaum’s extra-musical picto-

graphic design informs gesture and form in his Metaphys-

ics of Notation (2008) while handing over much of the 

musical decision making to the performer. 

We argue that there are qualities in music communica-

tion which go beyond the symbolic and operate at a level 

of engagement which not instruction based. Both 

Cardew’s Treatise (1962) and the iconic December 1952 

by Earl Brown, are notable examples of scores which 

raise more questions than answers and hence place the 

performer in a particular decision making situation. In 

this context, the contract between composer and perform-

er is subverted to allow for a level of autonomy for the 

performer while preserving a sense of trust. One can 

argue that decisions about how a score is going to be 

approached are at play in all types of musical documents, 

including those based on common music notation. The 

types of decisions involved and the implication of specif-

Copyright: © 2015 Pedro Rebelo. This is an open-access article distrib-

uted under the terms of the Creative Commons Attribution 

License 3.0 Unported, which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided the original author and 

source are credited. 
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ic choices to the sound result arguably come to the fore-

ground in non-instructional graphic scores. In this paper 

we are particularly concerned with the qualities and char-

acteristics of this decision making process and how they 

relate to the act of composing with graphics. In order to 

articulate this relationship we will begin not with the 

compositional process or intention but rather with a re-

flection on the dynamics of trust and engagement at the 

point when a performer decides to work with a non-

instructional graphic score. Two distinct situations can 

occur which have a significant impact on subsequent 

performance preparation. This has to do with whether 

performer and composer are in communication with each 

other or not. In the first case, it is not uncommon for 

performers to need assurance that there is indeed no in-

terpretative code behind the score. The assumption, even 

for performers who are accustomed with graphic scores, 

seems to be that the score is a mediator for a musical 

structure that pre-exists in the composer’s mind. A situa-

tion in which performer and composer are not in commu-

nication is perhaps more illustrative of the process of 

performance preparation of these kind of works, seen as 

the performer arguably gains full autonomy. We will 

address three aspects, which determine how a score is 

transformed from a static document into an enabler for 

music performance in a creative ecology evolving musi-

cians, instruments, venues, audiences etc... These three 

aspects focus on 1. cultural context and performance 

practice traditions, 2. relative connections/mappings 

between graphical and musical languages from the per-

spective of texture and gesture, and 3. the emergence of 

form as a derivation of the score’s ability to frame musi-

cal time.  

2. PERFORMANCE PRACTICE 

It is important to bear in mind the relationship between 

composers and performers when it comes to the devel-

opment of graphic scores. It doesn’t take an exhaustive 

historical survey to recognise that the majority of com-

posers interested in graphic scoring are also performers 

(John Cage, Barry Guy, John Zorn, Anthony Braxton, 

Mark Applebaum to name but a few). As such, traditional 

relationships of power and responsibility between these 

two roles begin to break down. As a composer engages in 

graphic scoring for his own performance practice, a cul-

ture of interpretation begins to emerge. In performance 

practice, the graphic score, or any type of score for that 

matter, becomes part of a broader musical experience.  

The score is part of music making just as social rela-

tionships are. This musicking [3] determines a performa-

tive context in which the score is just one of many ele-

ments and doesn’t necessarily gain the status of unques-

tioned authority it has in other musical traditions. The 

very function of a score as a symbol for ‘the work’ is in 

many instances also problematized with graphic scores. 

In her discussion of Cardew’s Treatise, Virginia Ander-

son discusses the function of a score and what it repre-

sents for Cardew in contrast to Stockhausen (to whom 

Cardew was an assistant). 

“For Stockhausen, the performance is made in his service; 

the piece remains his and the performers should divine his 

intention even when it is not written down. For Cardew, 

the score is the responsibility of the performers once it is 

composed.” [4] 

This performer responsibility is exactly what we want 

to address through reflecting on the unspoken rules that 

emerge from any kind of music making. In the case of 

Cardew, his Scratch Orchestra (1962-72), set up to per-

form his other iconic work – The Great Learning – stands 

as a group of collaborators who commit to a rather specif-

ic ideology of music making and therefore share an ap-

proach to music which no doubt determines how the 

work with graphic scores unfolds. Cardew notably lays 

out his vision of social and musical dynamics in A 

Scratch Orchestra : draft constitution : 

“A Scratch Orchestra is a large number of enthusiasts 

pooling their resources (not primarily material resources) 

and assembling for action (musicmaking, performance, 

edification).” [5] 

As with any music tradition, non-instructional graphic 

scores carry with them conventions and agency, which 

relate to how a specific performance lineage develops. As 

such, an understanding of this lineage becomes an im-

portant element in approaching graphic scores. Perfor-

mance practice itself influences how a particular score is 

used. 

3. MAPPING 

Given the absence of the code that determines how a 

symbol on a page signifies a particular sound event, non-

instructional graphic scores suggest an alternative way of 

relating graphics to sound. Returning to Cardew, the 

precision of the graphics and the importance of conscious 

decision making when preparing a score, is articulated in 

his Treatise handbook : 

"The score must govern the music. It must have authority, 

and not merely be an arbitrary jumping-off point for im-

provisation." [6] 

The role of improvisation in the context of graphic 

scores is beyond the scope of this paper but it is neverthe-

less worth reflecting on how, for Cardew, the practice of 

improvisation stands opposed to the type of music mak-

ing required when working with a score. One can howev-

er observe that most performers working with graphics 

would consider themselves improvisers, even though 
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when performing a score, free improvisation is not the 

primary mode of engagement.  

Without a code but still with the notion that the score 

governs the music, the graphic elements inevitably sug-

gest a process of mapping, a set of relationships between 

the language of the graphics and a musical language 

(which is invariably situated in a particular performance 

practice as discussed above). This mapping can take the 

form of literal association (dense graphics – dense musi-

cal texture, graphical weight – musical dynamics, quali-

ties of lines and shapes – musical gestures) or more for-

malised and codified strategies. In any case, the perform-

er is faced with deciding on how this mapping will occur; 

either for a particular performance or a deliberate codifi-

cation for a score to be repeated over multiple perfor-

mances. In contrast to the work conducted in the area of 

parameter mapping in computer systems [7], the type of 

mapping discussed here is relatively unexplored. The 

mapping processes at question here implicate both mul-

timodal perception, as explored in fields such as visual 

music [8], and musical practices and conventions, which 

range from cartoon gestural symbiosis in the music of 

Carl Stalling to mathematical translation of curves and 

textures in the work of Iannis Xenakis.  

4. EXTRACTING STRUCTURE AND MUSICAL 

FORM 

An element that is pervasive in the act of engaging with 

scores of any sort is the realisation of musical structure 

and form. This is partly to do with the relationship be-

tween music, as an ephemeral time-based phenomena and 

the physical score as an outside time artifact representing 

a sequence of events that can be seen at a glance. From 

the layout of the page to the palette of graphic elements 

employed in a score, a sense of structure is inevitably 

conveyed through framing (page layout, margins, rela-

tionship between pages) and placement of discrete ele-

ments (shape, colour, scale, repetition). It is in this do-

main that the compositional process is revealed. This 

happens as a process that shifts an understanding of a 

graphic score as a visual object to a musical one. An 

object which is made to speak the same language as all 

other elements of music making: the relativist language 

of ‘louder than’, ‘same as before’, ‘more dense’, ‘higher’, 

‘lower’, ‘slower’, ‘faster’ etc… This relativism is particu-

larly pronounced as performers face a score, which clear-

ly contains musical information but no code to produce 

instructions. All decisions are then made from the score 

and in relation to the score.  

5. REVEALING COMPOSITION 

The three aspects at play when preparing a graphic score 

for performance as discussed above gradually reveal the 

compositional process and the making of the score itself. 

This process is driven by musical thinking of varying 

degrees of determinacy (i.e. more or less precise musical 

structures). It is also guided by a relationship with nota-

tion as material, its affordances and conditions. The ways 

in which different types of notation strategies enable 

composers to operate directly on musical elements to the 

extent that to compose and to notate can be seen as the 

same action, has been discussed elsewhere [9]. In order to 

better articulate this revealing of the compositional pro-

cess we will refer to the work Cipher Series as an exam-

ple.  

“Cipher Series is a collection of graphic scores that are 

displayed to audience and performers in accordance to a 

fixed temporal structure generated for each performance. 

The performance plays on the role of notation as a media-

tor of listening, setting up a performative condition based 

on interpretative strategies based on engagement by both 

the performer and the audience. The change from one 

graphic score to the next has immediate formal implica-

tions for the music and acts as a way of articulating shifts 

in musical material or interpretation strategy.” From Ci-

pher Series’ performance notes (Rebelo, 2010) 

As can be seen in the images below, Cipher Series 

employs line drawing (created by hand on a graphics 

tablet and vector graphics software) in a black and white 

paginated format. The score is a collection of pages, to be 

played independently or in sequence. The most common 

performance format is a pre-determined timed sequence 

for seven pages. Each page has a pre-determined duration 

between 40 and 90 seconds and the transition between 

pages is cued by a 10 second countdown. In this version 

of the work, the sequence is run twice. In the first itera-

tion, the beginning 30 seconds from each page are rec-

orded and then played back during the second. The sound 

projection of this playback is intended to be placed as 

close as possible to the instrument (e.g. loudspeaker in-

side the piano body) in order to expose the ambiguity of 

what is live and what is pre-recorded. By exposing a 

specific graphics-sound relationship twice we explore the 

very nature of mapping and interpretation. The moment a 

recording is triggered projecting the sound events made 

when that same graphic score first appeared, the perform-

er is faced with the decision of whether to imitate her 

previous interpretation, complement it or indeed do 

something entirely different. The score of Cipher Series 

was conceived for audience display, which further expos-

es the decision-making process. By displaying the score 

the performer is following (without the cued countdown 

that triggers a change of page) the audience is also invited 

to derive their own mappings and musical structures. 

The layout of Cipher Series on the page follows a 

number of conventions, which are apparent without the 

need for rules on interpretation. These include the land-

scape layout with orientation determined by legend at the 
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bottom right corner. This mode of presentation suggests 

left to right reading although this is not specified. Each 

page presents a self contained musical sequence of events 

which can be played once or more times given a specific 

duration. A number of pages have relatively complex and 

detailed graphics, at times resembling eastern calligraphy. 

The density of events makes it practically impossible to 

engage in a “one-to-one” gestural mapping (i.e. one visu-

al stroke determining one musical gesture) much as in 

Applebaum’s Metaphysics of Notation. This is a deliber-

ate attempt to invite the performer to engage with the 

score in ways other than scanning though events at a 

regular pace. In fact, in my own performances of the 

score I often focus on sub-sections of the page for repeti-

tion.  

The most apparent compositional strategy employed 

here is perhaps the modular approach to the page as a 

frame for musical activity. In this context the transitions 

from page to page articulate the most striking musical 

changes. Even without a process of codification a per-

former preparing such a score will respond to the change 

of scale and texture evident in the difference between 

page 1 and page 2 below.  

 

Figure 1. Cipher Series, p. 1 (Rebelo, 2010) 

 

Figure 2. Cipher Series, p. 2 (Rebelo, 2010) 

Cipher Series was the first in a sequence of works that 

share this type of graphical language (Quando eu nasci, 

and Trio both from 2011). These later works are designed 

for ensembles and develop the language to reflect a sense 

of musical parts, which inhabit the same. In Trio a simple 

colour scheme assigns each performer to a part while all 

other elements of the score remain non-instructional. 

Compositional strategies here reveal themselves also in 

the way the three parts relate to each other. Relationships 

of accompaniment, continuation, counterpoint, synchro-

nisation can be derived from the score to inform musical 

performance. 

Figure 3. Trio, p. 1 (Rebelo, 2010) 

6. CONCLUSIONS 

By focusing on a type of graphic score practice that is 

deliberately un-codified and not based on the delivery of 

instructions for performance, this paper articulates the 

dynamics at play during the process of performance prep-

aration. We argue that the autonomy transferred to the 

performer, or to be more precise, to the performance 

condition, is an act that reveals the compositional think-

ing behind a work. By bringing meaning into a score, a 

performer is following a roadmap created by a composer 

but deciding on how the journey is to unfold. The score 

as a roadmap gains the function of a document establish-

ing musical circumstances, which within a performance 

practice become one of many elements determining the 

making of music. Composing with graphics ultimately 

reflects a desire to see the score not as the embodiment of 

“the work” but rather as a working document which only 

comes to live in the social workings of music making.  
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ABSTRACT 

In this paper we describe our approach to helping blind 

people access musical information. Guidelines of our 

approach are centered on information accessibility ac-

cording to user disability. We present the process which 

allows musical information to be coded and converted so 

that it may be read, played and analysed by a blind musi-

cian. We focus our approach on the various levels of 

description of the score done by several codes and we 

exploit and describe existing results like BMML (Braille 

Music Markup Language) defined during Contrapunctus 

European project. We describe and comment on different 

scenarios using existing free conversion modules and 

software to obtain a score in BMML that may be read and 

manipulated by blind people using BMR (Braille Music 

Reader). We recommend the tutorials created during the 

Music4VIP European project.   

1. INTRODUCTION 

Some IT solutions exist to help blind people to access 

music, but analysis of these reveals both their utility and 

their limits. As Antonio Quatraro (blind musician) says, 

there are many factors which hinder the musical educa-

tion of blind people - the lack of special needs training of 

teacher in mainstream schools and conservatoires, the 

difficulty of finding music scores in an accessible format 

and the persistent idea that music can be only learnt by 

ear.  

Compared with existing methods of converting music 

into Braille like [1] and [2] our solution is based on the 

design of BMML (Braille Music Markup Language) [3]. 

To explain the process we first describe the principles of 

Braille music, in the next part the tools and code used to 

translate a score into an accessible format and in the final 

part we recommend the use of BME2 (Braille Music 

Editor) and BMR (Braille Music Reader) [4]. 

2. BRAILLE MUSIC PRINCIPLE 

The rules used to create a Braille music score are present-

ed in the New International Manual of Braille Musical 

Notation compiled by Betty Krolick [5]. It is important to 

note that, just as with conventional musical notation, this 

is an international code and so it is possible to exchange 

Braille scores between different countries. To explain the 

challenges involved in learning Braille music we divide 

the rules into three types: the simple rules, the presenta-

tion rules and the contraction rules. In this chapter we 

also describe BMML (Braille music markup language). 

2.1 The simple rules 

These are the rules used to transform music information 

into one or more Braille characters.  

For example:  the G clef is indicated by three Braille 

characters: >/l - although this information is not so 

important in Braille because the octave signs, rather than 

clefs on a staff, indicate the register of specific pitches in 

Braille music. 

The octave sign is placed immediately before the note, 

for example the 4
th

 octave mark is _ 

The name of a note is indicated by the four upper dots 

of a Braille character : 

 

 

Table 1. The Braille Name of note. 

The duration is indicated by the two lower dots, as 

shown below. 

Whole notes and 16ths - 

Half notes and 32nds ' 

Quarter notes and 64ths , 

Eighth notes and 128ths · 

 

 

 

Copyright: © 2015 Nadine Baptiste-Jessel. This is an open-access 

article distributed under the terms of the Creative Commons 

Attribution License 3.0 Unported, which permits unre-

stricted use, distribution, and reproduction in any medium, provided 

the original author and source are credited. 
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So a short simple score will be transcribed: 

Figure 2. A simple score in Braille. 

2.2 Presentation rules 

Two presentations exist for keyboard instruments or other 

ensembles: bar over bar and section by section. 

Bar over bar presentation presents a Braille line for 

each stave and the first note of each bar appears in paral-

lel. 

Section by section presentation presents a number of 

bars for one stave followed by a number of bars from the 

other. 

These different presentation rules are available for all 

the score. 

Other presentation rules exist to add in the Braille 

score the corresponding print page number to facilitate 

collaboration with sighted musicians.  

2.3 Contraction rules 

There are two types of contraction rules, dot reduction 

and character reduction. These different rules reduce the 

reading time and the number of pages in a Braille score. 

The rules are designed to help reader with a good 

knowledge of Braille music. 

Example of dot reduction:  

 

Figure 3. Example of Braille dot reduction. 

The first note of the first double group is written with 

dots 3 and 6 but for the other note these duration dots are 

missing. The same reduction is not possible in the second 

part of the example because there would be an ambiguity 

with the last two notes. 

 

 

 

 

 

 

 

Example of character reduction : 

 

Figure 4. Example of Braille character reduction. 

When the same interval appears several times the first 

interval sign is doubled and then one interval sign is 

placed at the end. 

To store all the Braille information we created the 

BMML code during the Contrapunctus project.  

2.4 BMML 

BMML code was designed with following goals: 

 to encode Braille structure and content as de-

fined [3], 

 to facilitate conversion from and to other mu-

sic notation encoding such as MusicXML [4], 

 flexibility to support different Braille music 

dialects. 

The grammar of BMML is specified in [3] .Very brief-

ly we can say that the BMML elements are of three types: 

 a specific header in which is encoded all data 

relating to the document archiving and its 

structure, 

 container elements which require a specific 

number of “children”. A child can be another 

container or a text element, 

 text elements which represent the Braille text 

coded in Unicode. 

BMML attributes are used to encode the meaning of 

each text element. A lot of them are required. 

The following paragraph shows an very simple exam-

ple of BMML but BMML can support more complex 

notation (tuplets, ornements, …) which permits its use by 

professional musicians. 

3. A SCENARIO TO TRANSFORM A SCORE IN 

BMML 

The objective of this scenario is to prove that it is possi-

ble to transform automatically a score in pdf format to a 

score in BMML. This example uses only free tools. 

3.1 First step 

The first step consists of finding a score in pdf format. It 

is possible to find this kind of score in an online library. 

The score is Bach, Johann Sebastian, Minuet BWV 

Anh. 114 which is a public domain score found in the 

Petrucci Library site 
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http://imslp.org/wiki/Notebooks_for_An

na_Magdalena_Bach_%28Bach,_Johann_Seba

stian%29  

 

Figure 5. The Minuet in pdf. 

3.2 Second step 

We use the trial version of the Myriad-online.com prod-

uct call PDFtoMusic Pro to convert the pdf score into 

MusicXML format.  

Figure 6. The Minuet after music recognition. 

The MusicXML document generated contains layout 

information and note information as follows: 

 

Figure 7. The layout information in MusicXML code. 

In this first part of score we can see a lot of layout 

information which will not be found in the Braille score. 

The note information with pitch, duration and octave 

signs is similar to the information in Braille. 

 

Figure 8. The note code in MusicXML. 

3.3 Third step 

We use the online tool provided on the Music4VIP web-

site which converts the MusicXML score into BMML. It 

is a very simple on line tool which is accessible for blind 

people.  

 

 

Figure 9 . MusicXML to BMML conversion tool. 
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The BMML file obtained is shown below.  

 

 

Figure 10. Example of BMML code. 

The code indicates 2 parts in the head tag, a part for 

each hand for the keyboard. We can note container ele-

ments such as note_data and text elements such as 

note_type. We also see, for example, the arguments such 

as value=”4” for the octave and name=”D” for the name 

of the note.  

Note the “inknotation” indication which refers to 

graphical aspects of the original musical notation. 

3.4 Verification step and recommendation 

To check the transcription, we can use either automatic 

tools or manual tools. 

It is possible, for example, to create an automatic tool 

with the help of xquery to count the number of parts, bars 

or notes in order to establish easily whether any infor-

mation has been lost. 

Another automatic tool can compare the <step> tag in 

MusicXML with the attribute name in <note_type> in 

BMML to verify that they are the same. 

To compare code we can also do the reverse transcrip-

tion from BMML to MusicXML and compare the result-

ing graphic score with the original one. Some layout may 

be different – this is normal because the Braille code is 

not designed to store the graphical aspects of musical 

notation. 

The following figures show the reverse transcription 

from BMML to MusicXML done with the online tool 

available on the Music4VIP site. Both in Melody Assis-

tant and MuseScore there is a problem of text overlap-

ping and we can also see that the stem direction of notes 

differs – all of  which proves that the layout information 

is missing in the code.  

Figure 11. The MusicXML score in Melody assistant. 

Figure 12. The MusicXML score in MuseScore. 

If we download a MIDI File from http://www.free-

scores.com/partitions_telecharger.php?partition=239 

the graphic representation is not the same with either 

MuseScore or Melody Assistant.  

Figure 13. The MIDI score in MuseScore. 

Figure 14.The MIDI score in Melody Assistant 

The key signature is not the same in the two notation 

applications because the key signature is not explicit in 

MIDI file so the software has to interpret the information. 
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The time signature is the same in both applications but 

is not the same as the pdf file. This is an important prob-

lem because it implies a different meaning of the music. 

If we convert this file into BMML the musical infor-

mation is very different from that obtained with the con-

version of a pdf file. MIDI files have to be used with 

great care because they do not contain important infor-

mation like fingering, slurs or ties.  

In general, it will be of benefit to download digital 

scores from a reliable site like a library site. Having ob-

tained a BMML file from whichever source a blind per-

son can manage the score with a Braille reader or editor. 

We describe this process in the following section. 

4. THE READER OR EDITOR USED BY BLIND 

PEOPLE 

BMR is free software which permits blind users to read, 

learn and listen to music in a multimodal environment. 

Each piece of musical information can be accessed in 

Braille on a refreshable Braille display or by sound via 

MIDI or in a spoken form.  

For a beginner, different kinds of Braille music ele-

ments may temporarily be hidden or a brief description of 

an unknown sign can be given. 

With BMR the user can browse the score, add annota-

tions, find parts and bars and skip through the score along 

hierarchical elements. He can, like a sighted person, have 

access to all the information contained in the score. 

In the status bar of BMR we can read the musical in-

formation which corresponds to the Braille character 

which is after the cursor. 

Figure 15.The Braille score in BMR 

With BME2 [7] the same functionalities are available 

but, in addition, the user can write musical information in 

Braille. So users can create their own scores and produce 

BMML files. With the conversion module they can create 

MusicXML files and share them with sighted musicians. 

Of course, the result in graphic form will not be so well 

laid out as it would be if it had been originally produced 

in a conventional music editing application but the score 

will be immediately readable by a sighted musician and 

the minor formatting issues can be tidied up in a few 

minutes. This is enormously valuable for collaboration 

between sighted and blind musicians, whether they be 

teachers, students or members of a musical ensemble. 

The way a blind person may access and make music 

without external aid is explained and demonstrated in the 

video found at : 

http://www.music4vip.org/video_lesson_

item/7.  

5. CONCLUSION 

This paper describes how a blind user can access, con-

vert, read and write musical scores. The conversion mod-

ules plus reading and editing tools are free, accessible and 

based on the BMML code. To obtain an available score 

in Braille it is necessary to convert a score into Mu-

sicXML format produced by an official editor or library. 

To facilitate the collaboration between sighted and blind 

musicians a reader with musical notation and Braille 

windows will be designed. 
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ABSTRACT

Integrated authoring and performing of mixed music
scores, where musicians interact dynamically with com-
puter-controlled electronics, is enabled by the Antescofo
state-of-the-art software package. Composers are able to
plan computerised actions through a dedicated program-
ming language, and performances are then synchronised in
real time. AscoGraph is the dedicated graphical interface
that allows users to configure Antescofo behaviours and vi-
sualise their layout over a mixed music score. This paper
presents developments in the direction of increased clar-
ity and coherence of AscoGraph’s visualisation of com-
puterised action scores. Algorithms for efficient automatic
stacking of time-overlapping action blocks are presented,
as well as a simplified model for displaying atomic actions.
The paper presents the improvements in score readability
achieved, as well as the challenges faced towards a com-
plete representation of dynamic mixed scores in the Asco-
Graph visual environment.

1. INTRODUCTION

This paper describes a model of interactive visualisation
for composition and performance of mixed music reper-
toire. Mixed music is commonly referred to as the
live association of human musicians with interactive
software/hardware during live music performance; as well
as the authoring (composition) within this mixed medium.
Among common practices of mixed music, score follow-
ing has been an active line of research where the com-
puter is equipped with a real-time machine listener that dy-

Copyright: c©2015 Grigore Burloiu et al. This is an open-access

article distributed under the terms of the Creative Commons

Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

This project was partially funded by the French ANR INEDIT Project.

namically aligns a musician’s performance to a pre-written
music score and decodes performance parameters, which
can be used to interpret and evaluate computerised actions.
One can think of such a compositional paradigm as an ex-
tension of musical automatic accompaniment application,
where accompaniment playback is replaced by programs
acting on various aspects of sound and music computing.

Visualisation for mixed music is a challenging task for
several reasons. The score is a joint combination of two
main components: one that describes expected events from
human musicians as extensions of classical musical nota-
tion; and one that describes computerised, or electronic ac-
tions. The two components are strongly-timed and most
often aligned during authoring and synched dynamically
during performance. Computerised actions in turn have
heterogeneous time models: they can be discrete message
passing, or continuous curves, or dynamic calculations.
Their temporal ordering can be described as sequences of
delays expressed in absolute or relative time; actions can
be hooked sequentially (through delays inside a single se-
quence) or vertically (to an external event, condition or
synchronisation pivot). Composers and performers are pro-
ficient at dealing with authoring and interpreting a variety
of such parameters.

Enabling this level of expressivity in mixed music com-
position and performance is the goal of the Antescofo soft-
ware, a state-of-the-art system for mixed music compo-
sition which integrates a score following engine [1] and
a synchronous reactive programming language [2]. The
user/composer is able to plan complex dynamic electronic
actions which the system launches and controls during the
performance, in sync with the live musicians’ tempo. First
described in [3], AscoGraph is the dedicated graphic de-
velopment environment which enables visual feedback for
authoring and performing Antescofo mixed scores.

The AscoGraph workspace consists of two main sections:
the textual score editor and the graphical editor, which in
turn is split into an instrumental section and an electronic
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Figure 1. The ”classic” action block display in AscoGraph. The
musical timespans of Groups ONE, TWO and THREE are not
represented clearly because of the overlapping of group blocks.

actions section. The instrumental view and electronic view
are coupled in musical time along a common horizontal
timeline. During a performance, Antescofo’s score fol-
lower determines the position of AscoGraph’s graphical
cursor along the timeline.

This paper presents updates to AscoGraph’s electronic
action view, developed with two directions in mind: (1) a
clearer and more time-coherent visualization of Antescofo
scores, and (2) a step towards a complete, self-contained
visual notation format for mixed music scores. Section 2
presents the problem of overlapping action blocks, recast
as a subset of the two-dimensional strip packing problem.
The following section shows the three proposed algorithms
for re-arranging action blocks. Section 4 tackles the issue
of coherence between block width and musical time. We
conclude the paper with an evaluation of the present model
and future perspectives.

2. PROBLEM DEFINITION

We distinguish between physical time (measured in sec-
onds) and musical time (measured in beats). The amount
of physical time elapsed between actions depends on the
tempo detected during performance, and on the active syn-
chronisation strategies [2]. Meanwhile, Antescofo scores
are specified in musical time. Since AscoGraph was pri-
marily designed as a score visualisation tool, it employs a
musical timeline. When a physical time unit is specified in
a score (e.g. ”after 2 seconds”), in order to display it Asco-
Graph must first translate it to an ideal musical time (e.g.
”after 4 beats at 120bpm”).

Fig. 1 shows an example of the original AscoGraph ac-
tion block arrangement style. Here, each of the four notes
(drawn in red in the instrumental view’s piano roll) has one
corresponding action group block. Durations can – and of-
ten do – differ between the length of a note and that of its
associated electronic actions. While actions within a sin-
gle group (e.g. Group FOUR) are stacked consecutively
downwards, when two different action groups are partially
concurrent, the second group is drawn over of the first.
Consequently, the first group’s duration is no longer clearly
shown; things become even more confusing when overlap-

ping automation curves (e.g. the one in Group ONE) are
involved.

In order to rectify this loss of coherence and clarity, the
need arises to stack action groups in downward non-over-
lapping order, similarly to how elements within groups are
arranged. As the challenge becomes one of efficient man-
agement of 2D space, it is useful to describe it as a two-
dimensional strip packing problem. A subset of bin pack-
ing, strip packing is used in areas ranging from optimizing
cloth fabric usage to multiprocessor scheduling [4]. Algo-
rithms seek to arrange a set of rectangles within a 2D space
of fixed width and bottom base, and of infinite height. In
our present case, the width of the strip corresponds to the
total duration of the piece, and the rectangles to be placed
are the action group blocks.

A particular constraint separates our problem from the
rest of the bin packing literature. Unlike in existing bin
packing problems, all AscoGraph action blocks must retain
their X coordinate along the time axis. Since we are not
allowed to ”nudge” blocks horizontally, relying on existing
packing algorithms becomes impractical.

3. PACKING ALGORITHMS

We introduce three new algorithms for stacked action group
display in AscoGraph’s graphical editor. The user can
switch between one of them and the original display style
through the application’s View menu. The appropriate op-
tion will depend on score complexity and the user’s per-
sonal taste.

Please note: following bin packing convention, we shall
consider the rectangles as being placed on top of the strip
base. Naturally, in the AscoGraph environment the situa-
tion is mirrored and we build downwards starting from the
upper border.

3.1 First Fit (FF)

The first option is the trivial solution of placing the blocks
in the first space they will fit, starting from the base. The
benefits of this option are speed and predictability: blocks
are placed in the order in which they appear in the source
code text, which is also their scheduled temporal order.

The downside can be intuited from Fig. 2a and b. We
propose a worst-case scenario: a set of blocks with increas-
ing heights and, for simplicity, all equal widths. While FF
would stack them on top of each other (Fig. 2a), the opti-
mal method would stack them two by two (Fig. 2b), so that
the maximum height is given just by the final two elements.

3.2 First Fit Decreasing (FFD)

Note that in the previous case, the optimal configuration
can be reached by simply reordering the blocks by height.
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(a) FF

 

(b) OPT (FFD)

Figure 2. Horizontally constrained strip packing. Boxes are
numbered in temporal (horizontal) order. This layout is arranged
by FF in (a) and optimised by FFD in (b).

 

(a) FFD

 

(b) OPT (FFDT)

Figure 3. Horizontally constrained strip packing. Boxes are
numbered in temporal (horizontal) order. This layout is arranged
by FFD in (a) and optimised by FFDT in (b).

This insight lies at the root of the classic FFDH strip pack-
ing algorithm [5]. In our case, the FFD algorithm orders
the blocks by non-increasing height, after which the First
Fit process is applied. 1 Fig. 3a shows an FFD arrange-
ment, along with the optimal solution at Fig. 3b.

3.3 First Fit Decreasing Towers (FFDT)

Again, the optimal configuration in the previous example
points towards the next algorithm. We propose a greedy
heuristic that builds upon FFD while tackling AscoGraph-
specific situations like one action block sharing time with
several blocks on both sides of it. The basic goal is to
minimise gaps, such as the one between blocks 2 and 3 in
Fig. 3a.

The FFDT algorithm first orders all blocks as in FFD.
Then, action group towers are defined at the time-axis in-
tersections between two or more group blocks. Their height
is equal to the sum of the heights of their component blocks.
For instance, in Fig. 3a and d the rectangle 2 is part of four
towers: Ta{r1, r2},Tb{r2} 2 ,Tc{r2, r3} and Td{r2, r3, r4}.

The entire width being now split along these virtual ver-
tical strips (towers), we are able to refine the ordering of
the blocks. The first criterion is the decreasing maximum
height among the towers each block is a member of. If
this maximum tower height is equal for two blocks, then
the second criterion is decreasing number of towers each

1 The difference to the classic FFDH algorithm is the absence of hor-
izontal levels. New blocks are stacked at the minimum possible altitude
rather than a common level.

2 A minimal tower only contains one action block.

(a) FF - action blocks are placed as close to the baseline as
possible, in the order in which they appear in the code.

(b) FFD - blocks are ordered by height before being placed.

(c) FFDT - blocks are ordered according to a gap-
minimisation heuristic before being placed.

Figure 4. The three AscoGraph packing options.

block is a member of. If this number is equal as well, we
leave the FFD ordering (non-increasing block height) un-
touched.

By definition, the maximum tower height is a definite
lower bound of any AscoGraph strip packing configura-
tion. Therefore, in the FFDT heuristic the tallest tower will
always be placed first, in an attempt not to overshoot this
lower bound. Among its component blocks, the ones that
are shared with many other towers are dropped closer to the
base - the intention again being to maintain tower integrity
as much as possible. Lastly, as with FFD, tall blocks are
prioritised so as to fill gaps efficiently.

An AscoGraph use-case comparison of the three algo-
rithms can be seen in Fig. 4. In it, we illustrate the or-
derliness of FF and the compactness of FFDT, with FFD a
potentially useful compromise between the two.
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4. TIME COHERENCE OF ATOMIC ACTIONS

A basic element in Antescofo’s reactive language is the
atomic action. Atomic actions can be part of larger dy-
namic constructs, but often they are simple messages to
be triggered at a specific point in time. Since they are in-
stantaneous, their visual representation taking up horizon-
tal space on the action timeline is discordant. Moreover,
as figures 1 and 4 show, they often clutter the workspace
unnecessarily.

Our solution to more accurately represent action mes-
sages is to group all instances from a specific hierarchical
level and display them on a single line as small circles, or
conceptual points. When the mouse hovers over such a
point, a list of the messages it contains is shown. Fig. 5
shows the expanded list for Group THREE; the messages
are set at 3 different points in time, which is why 3 points
are present in the message line.

Our new model is fully time coherent and considerably
clearer than before. The user experience improvement over
the classic model becomes most obvious when dealing with
complex scores with many messages - see Fig. 6. With the
timeline fully zoomed out, the old model offers a less accu-
rate overview of the activity in the electronic score. Action
durations are impossible to estimate; the most egregious
problem being at the final note of the score, where, with
nothing to stop them, musically instantaneous message ac-
tions take up an inordinate amount of space in the time-
line. Meanwhile, the new model neatly groups messages
together and offers a clear view of action block distribu-
tion in time and individual durations.

5. CONCLUSIONS AND FUTURE WORK

We have shown an improved layout mechanism for elec-
tronic action groups over a musical timeline in AscoGraph.
By stacking action group blocks we ensure information in-
tegrity and coherence, while expanding the vertical real es-
tate used. The most basic stacking method, First Fit, is
also the most easily readable option for scores of mod-
erate depth. We also proposed two increasingly efficient
stacking algorithms, FFD and FFDT, for scores contain-
ing larger concentrations of actions per time unit. While
superior algorithms are technically conceivable (possibly
a metaheuristic scheme built on top of FFDT), the present

Figure 5. Time-coherent message circles display

(a) old model: blocks overlap, messages occupy horizontal
space

(b) new model: blocks are stacked, messages are grouped
in time-coherent points

Figure 6. Comparison of old and new AscoGraph models over a
complex score.

options were deemed appropriate for the practical use and
the processing overhead of the AscoGraph software.

Finally, we have introduced a method of displaying re-
lated messages on a single line which preserves group hier-
archy. The main advantages are time coherence and verti-
cal compactness. Still, this model can be seen as a compro-
mise in our quest for a completely specified, self-contained
visual notation format which we proposed in the introduc-
tion. Dynamic constructs from the Antescofo language are
in a similar situation. For instance, a Curve whose dura-
tion is a dynamic variable: in this case, AscoGraph cannot
know its exact plot over time before execution.

Therefore, one direction of future research is a perfor-
mance simulation mode, decoupled from the compositional
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display described thus far, in which all messages, Loops
and other dynamic constructs are represented as they ”hap-
pen” in an offline simulation. This function is currently in
prototype form, having been first described in [3].

However, the need remains for a graphic compositional
model that clearly describes dynamic behaviour and action
results. With the growing crystallisation of Antescofo’s
language into a mature, stable package, the path is now
open for research in this direction.
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ABSTRACT 

This paper discusses dynamic notation—a method allow-

ing, in a notation environment, instant switching between 

different staff views or notation styles, thus creating a 

common ground for practitioners of non-standard music, 

such as composers, performers, conductors and scholars. 

So far very few notation programs have explored this 

notion as much as it should have been. Therefore, we 

have implemented in the MaxScore Editor (a notation 

editor designed to run in Max or Ableton Live) a plugin 

structure for different notation styles based on a set of 

maps and queries executed during note entry and render-

ing—affecting music glyph choice and placement. We 

will give an in-depth analysis of the methods used for 

equidistant scales, non-octave tunings, music in just into-

nation as well as for instrument-specific layouts and will 

conclude with a description of a scenario in which dy-

namic notation was used for the transcription and perfor-

mance of Alexander Scriabin’s piano poem Vers la 

Flamme op. 72 by an ensemble of acoustic Bohlen-Pierce 

instruments. 

1. INTRODUCTION 

In his 2001 book The Language of New Media [1] media 

theorist Lev Manovich points out that new media objects 

need to fulfill certain criteria among which variability is 

related to dynamic delivery of content. New media ob-

jects can exist in multiple versions such as, in case of an 

audio recording, a high-definition 192kHz 64-bit file, a 

standard CD-quality file, a lossless ALAC or a lossy 

compressed mp3 file.  

Variability is key to solving the conundrum practition-

ers of non-standard music are facing when performing 

such music. The prerequisite is that the music is created 

and/or delivered by a computer-based system capable of 

switching between different views or representations in 

real time
1
.  

Rudimentary dynamic notation is common amongst 

notation environments. Most typically, a program will let 

the users switch between regular and percussion notation, 

or piano roll view. Bach [3], PWGL [4], OpenMusic [5] 

and InScore [6] as well as the lesser known Siren [7] and 

CMN [8] represent music in various measured and non-

measured ways but lack a simple plugin structure for 

adding new views dynamically, hence requiring a higher 

degree of meddling with the code to achieve results com-

parable to the MaxScore Editor.  

2. NON-STANDARD MUSIC PRACTICE 

The practice of music in non-standard tunings has been 

hampered by, besides the lack of appropriate instruments, 

a “confusion of tongues” in respect to how this kind of 

music is supposed to be notated. Notation should cater to 

the needs of the people involved: A player performs best 

if the notation is close to the layout of the instrument 

played. For that matter, guitarists have been using tabla-

ture for centuries and Harry Partch’s notations for pitched 

percussion, for instance, are most often concerned with 

the topology of the instrument rather than actual pitch [9]. 

The notations for the Bohlen-Pierce clarinets which exist 

in two sizes (soprano and tenor) as well as the modified 

Bohlen-Pierce alto recorder also use fingering notation, 

taking advantage of the learned correspondence between 

finger position and sounding pitch on a traditional in-

strument. We can thus call this approach instrumental 

notation.  

A composer or arranger works best when using a nota-

tion that represents the logic of a particular tuning. Sabat 

and von Schweinitz, for instance, have developed an 

elegant solution of representing frequency ratios in just 

intonation by designing a large set of accidentals [10]. 

Equidistant tunings in turn benefit from representing 

equal pitch distances as such. The diatonic Guidonian 

notation already poses difficulties when it comes to co-

herently representing whole-tone or atonal/12-tone music, 

                                                           
1 We need to point out that our use of the term view differs from Dan-
nenberg [2] who refers to “a data-structure that corresponds to a presen-

tation.” 
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tion, and reproduction in any medium, provided the original author and 

source are credited. 
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but fails bitterly at non-octave tunings such as the 

Bohlen-Pierce scale. Equidistant notations, such as the 

Hauer-Steffens notation [11] have the advantage that 

transpositions and transformations of tone gestalts be-

come evident, but have been rejected in history because 

of cultural and economic implications, and most likely 

also because of the cognitive mismatch between notation 

and the piano layout with its black and white keys. There 

is no reason, though, to shy away from introducing equi-

distant notation for tunings other than 12EDO (and its 

related, circle-of-fifths-based tunings). We dub this ap-

proach logical notation. 

A conductor, finally, has different concerns as he/she 

needs to grasp the meaning of the different notation styles 

used in rehearsals and performances. A conductor needs 

to hear, identify and compare the sounding events to the 

score and to an internalized template—a feat facilitated 

by years of intensive training and practice. He/she may be 

best served by the representation of music in traditional 

Guidonian notation, enriched by an extended set of acci-

dentals or indications of deviations written above the 

notes. This may also be the notation of choice for instru-

ments such as standard string or wind instruments. We 

will name this approach conventional or cognitive nota-

tion as it depends on internalized templates.  

As we are attempting to establish a taxonomy for nota-

tional approaches, we also need to concede that these 

distinctions are arbitrary to a certain extent. Instrumental 

and conventional notations have a common root originat-

ing from the logic of the music in practice when its nota-

tion was standardized.  

2.1 Scenarios 

One can conceive of the following scenarios in which 

dynamic notation may be welcome: 

All musicians are reading from computer/tablet 

screens of either isolated devices or machines in a net-

worked arrangement. Alternatively, only the person guid-

ing the rehearsals/performance uses an electronic device 

while the other members of the ensemble read from pa-

per-based print-outs. In the latter case, the responsibility 

lies in him/her to guide the communication on notational 

aspects. Finally, both scores and parts are paper-based, 

but they contain, on different staves, alternative represen-

tations of the music to be performed. Even in this case, a 

system capable of changing views in real-time can vastly 

simplify the process of creating scores and parts.    

3. IMPLEMENTATION 

A plugin structure for dynamic switching between nota-

tion styles has been implemented for the MaxScore Edi-

tor. MaxScore is a Max Java object designed and main-

tained by Nick Didkovsky since 2007 to bring music 

notation to the Max environment [12].  

Since 2010 the author is developing an editor, which 

also interfaces with Ableton Live via Max for Live. As 

opposed to the Bach notation objects, which—being 

native Max externals—provide better integration in the 

Max environment, the MaxScore Editor is based on a 

hybrid approach consisting of the core mxj object and a 

periphery made of numerous C and Java externals, Max 

abstractions and JavaScript objects (forming the editor’s 

GUI, among other functions; see Figure 1). The ad-

vantage of a hybrid system is its high degree of adaptabil-

ity and versatility. As the communication between the 

core and the periphery is based on messages, they can 

easily be intercepted and reinterpreted according to cur-

rent demand.  

The editor handles notation styles like plugins and 

loads them as Max patches dynamically from a folder in 

MaxScore package hierarchy. It is thus very straightfor-

ward to add new styles to the existing repertoire.  

Every notation style defines 5 attributes: 

 

 A name of the notation style appearing in the 

style menu of the Staff Manager. 

 The name of the Max patch containing pitch 

maps,  

 The number of staff lines employed by the style. 

 The micromap to be used for the rendering of 

accidentals. 

 The name of the clef appearing on the staff.  

 If a non-standard clef is being specified such as 

Bohlen-Pierce T-clef, an additional definition 

needs to be given in the form of clef name, 

glyph, x and y offsets as well as font name and 

size. 
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Figure 1. The nested structure of the MaxScore Editor plugin system. 

3.1 Micromaps 

Micromaps were introduced in 2011 to allow higher reso-

lution representations of divisions of the semitone. While 

MaxScore’s pitch attribute is stored, processed and 

played back in 32-bit floating-point precision, the draw-

ing messages generated by the object are limited to quar-

ter tones. Hence, MaxScore would fail to accurately rep-

resent music in eighth tones (the standard among spectral 

composers) or twelfth tones (used by composers such as 

Ivan Wyschnegradsky and Ezra Sims). Micromaps are 

Max abstractions that intercept drawing messages and 

query the pitch and accidental preferences attribute of the 

corresponding note. Based on this information and the 

notation style chosen by the user, a micromap sends new, 

more fine-grained drawing messages to the MaxScore 

canvas. Currently, the maximum precision is sixteenth 

tones in Sagittal notation, taking advantage of the enor-

mous set of accidentals in the Bravura font, just recently 

released by Steinberg [13]. 

 

 

Figure 2. 16th-tone notation with the Sagittal font. 

How is this mapping performed? This is best ex-

plained by an example: After entering a middle c a six-

teenth note sharp (pitch = 60.125) the MaxScore object 

sends out a drawing message with 9 items (accidental, x, 

y, zoom, parent object, measure, staff, track and note 

indexes) such as: 

 

“no_accidental 75.555557 81. 0.5 Note 0. 0. 0. 0.”
2
 

 

The five last items are sliced off and a “getNoteInfo 0. 

0. 0. 0.” query is sent to the core object. It returns a string 

in XML format which is being parsed and sent back to 

the micromap. Of the many note attributes, pitch and 

accidental information is being retained to calculate the 

pitch zone a particular accidental is applied to. 

The zone index Z is given by this formula (rnpc = 

floating point remainder of natural pitch class, n = divi-

sion of the semitone, sgn = -1 for ACCPREF = flat and 

sgn = 1 for ACCPREF = sharp): 

 



Z  [sgn rnpc n 
1

n 2
]     (1) 

                             

In our case, the result would be  

 

[1 ∙ 0.125 ∙ 8 + 0.0625] = 1 

 

This value is fed into a zone-to-glyph-name lookup ta-

ble (a Max coll object), which sends out accSagit-

tal5CommaUp, the name of the Sagittal accidental in the 

Standard Music Font Layout specification on which the 

Bravura font is based [13].  

This message is combined with the rest of the message 

into  

 

“accSagittal5CommaUp 75.555557 81. 0.5 Note 0. 0. 

0. 0.” 

 

of which the first four items are further processed: 

The zoom value scales the font size as well as x and y 

offsets. The accidental name is sent to another instance of 

a Max coll object which returns  

 

“  -4 0 Bravura 24” (glyph, x offset, y offset, font 

name, font size). 

                                                           
2 no_accidental messages will be ignored by the drawing engine, but are 

a prerequisite for mapping.  
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This information is then translated into three separate 

Max lcd messages: 

 

1. “font Bravura 24.” 

2. “moveto 71.555557 82.” (due to various reasons 

a y offset of 1 is applied to all glyphs) 

3. “write ” 

3.2 Notation Styles 

For the representation of music in the Extended Helm-

holtz-Ellis JI Pitch Notation created by Sabat and von 

Schweinitz we had to go a step further. A problem arises 

when the MaxScore object is no longer capable of repre-

senting the correct rnpc in case of complex harmonic 

relationships such as 75/49 (3
1 ᐧ52 ᐧ7-2

). According to the 

logic of the Helmholtz-Ellis notation the interval size of 

736.9 cents—when applied to a middle c—would have to 

be represented by an f with two accidentals, a double-

sharp with two arrows down and a raise by two septimal 

commas (see Figure 4) The diatonic pitch class is calcu-

lated by moving along the circle of fifths, which in our 

case would be moving 13 ticks in clock-wise direction, 

thus amounting to an f double-sharp. This conflicts with 

the pitch class natively assigned by MaxScore which is 

g
3
. The solution was found by creating a specific Just 

Intonation notation style. Kuuskankare and Laurson [14] 

use a similar term (notational style) denoting changes in 

notation that include not only pitch but other aspects such 

as measured/non-measured notation. 

A notation style is basically defined by two maps (map 

and inverse map) but also requires the definition of an 

additional attribute. This can be easily achieved in 

MaxScore where an unlimited number of dimensions can 

be added to notes and intervals first by applying the 

“setInstrumentDimension” message to a particular staff 

and then setting note dimensions values individually. 

Considering this, we have defined an additional original-

Pitch dimension which holds the pitch of a note regard-

less of how it is represented graphically in the score and 

is also used for playback.  

After choosing a notation style from a menu in the 

Staff Manager, all notes for a given staff are passed to the 

inverse map of the abstraction of the current notation 

style (default for new scores) to restore the originalPitch 

attribute. Then all events are routed to the map of the 

abstraction of the selected notation style
4
. Here the pitch 

attribute is set to the position of the note it is supposed to 

occupy in the given notation style.  

                                                           
3 MaxScore stops considering enharmonic spellings for ranges outside 

of double flats and sharps (maximum considered deviation = 225 cents; 

in case of 75/49 the deviation is 236.9 cents). 
4 NB.: Instead of current and selected, we could also use the terms old 

and new. 

 

Figure 3. The style menu in the MaxScore Editor Staff Manager. The 

equal divisions of the semitone on top don’t require additional pitch 

mapping and are part of the default notation style. 

Data flow in and out a plugin is controlled by a JavaS-

cript object—one instance per staff. The object also re-

ceives messages when a note is being created, in which 

case, originalPitch is calculated by sending its pitch 

through the inverse map. For instance, when a note is 

created in T clef below the bottom staff line (pitch = 59), 

originalPitch will be immediately set to 49.98. Likewise, 

the pitch attribute will automatically be updated after a 

transposition, which, conveniently, can be done across 

different notation styles. While a map, generally, only 

receives originalPitch values from the JavaScript object, 

an inverse map receives a list of 9 current note, staff and 

measure attributes. The inverse map subsequently filters 

useful attributes, hence the dollar sign arguments in the 

notation style Max patches. 

3.3 Examples 

We will now more closely examine some of the nota-

tion styles implemented in the Max Score Editor. 

3.3.1 Just Intonation 

Definition: “"Just Intonation" justintonation 5 mM-JI 

default” 

Figure 4. The Bohlen-Pierce scale in Extended Helmholtz-Ellis JI Pitch 

notation 

As pointed out above, certain ratios lead to a situation 

where the actual pitch is more then 225 cents off its natu-

ral “anchor” tone. Having introduced originalPitch as an 

attribute for correct playback, the pitch attribute can now 

be “arbitrarily” moved to a tone above or below—thus 

displaying the correct pitch/accidental combination. The 

calculations involved are fairly complex and have been 

described in [12]. 
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Figure 5. The just intonation notation style consists of nested Max 

patches illustrating the complexities of the calculations involved. 

3.3.2 19EDO 

Definition: “19EDO 19EDO 5 mM-none default” 

Russian-American musicologist Joseph Yasser argued 

in his 1932 book Theory of Evolving Tonality that 19-

tone music, in its just or equal tempered forms, consti-

tutes the next logical step in the development of music 

[14]. While we can no longer subscribe to this claim, this 

tuning remains one of the popular ones, having been 

investigated by composers such as Easley Blackwood and 

Joel Mandelbaum. Its 19 tones form a closed circle of 

fifths and,  thus, the scale possesses a diatonic subset and 

enharmonic alternatives for each black key, in addition to 

an e# and a b# between e and f and b and c, resp. The 

mapping is performed by:  

1. Calculating the 19EDO scale step index with 

µUtil.PitchToStep abstraction, which is part of 

the author’s µUtilities package bundled with 

MaxScore. 

2. Extracting octave index and pitch class by divid-

ing the index by 19 and passing the remainder 

through a lookup table yielding the 12EDO pitch 

class, accidental preference (sharp or flat) and 

enharmonic spelling for any of its 19 pitch clas-

ses. 

3. Calculating pitch by multiplying octave index by 

12 and adding the respective 12EDO pitch class 

and an offset.  

E.g. for 7136 MIDI cents, the scale step index is 

113. Divmod 19 yields 5 and 18. Feeding 18 into the 

coll returns “11 1 1“, thus setting setAccPref to sharp 

and setAltEnharmonicSpelling to true. Pitch is 12 ∙ 5 

+ 11 + 1 = 72, displayed as b#. 

Figure 6. The 19EDO notation style takes pitch, accidental and enhar-

monic spelling preference into consideration. 

3.3.3 Percussion 

Definition: “Percussion percussion 5 mM-none percus-

sion” 

Most notation programs implement the percussion no-

tation style in which MIDI notes (range 35 - 81) are 

mapped to the white keys between d4 and a5. Percussion 

notation uses certain positions redundantly, yet differen-

tiates between classes of instruments by assigning various 

notehead shapes to the notes. 

When switching to the percussion notation style the 

originalPitch attribute is sent to a Max coll (percus-

sionMap) containing:  

 The name of the instrument,  

 Its (notated) pitch in percussion notation  

 The corresponding notehead shape.  
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The map will now send three messages to the 

MaxScore core object: “setPitch value”, “noteheadTrans-

form shape” and “setAltEnharmonicSpelling false”, the 

latter message to clear double sharps or flats should they 

have been set previously. 

When switching from the percussion notation style the 

pitch and notehead attributes are evaluated and sent to 

another coll (inversePercussionMap) in order to clear 

notehead shapes and reconstruct the originalPitch attrib-

ute. The messages to MaxScore are “noteheadTransform 

NOTEHEAD_STANDARD” and “setNoteDimension 

originalPitch value”. 

Figure 7. The percussion notation style consists of lookup table setting 

pitch and notehead shape. 

3.3.4 Bohlen-Pierce T-Clef 

Definition: “"BP chromatic T clef" BP-chromatic-T 6 

mM-BP BP-T-clef” 

Clef definition: “BP-T-clef T 2 -1 "Greifswaler 

Deutsche Schrift" 28” 

 

 

Figure 8. The Bohlen-Pierce scale in T clef maps the range of the 

tritave d3-a4 onto the six lines of Müller-Hajdu notation. Note that the 

lowest and highest notes look like d and a; this is a desirable, albeit 

coincidental trait. 

We have described the design of a new notation sys-

tem for the non-octave Bohlen-Pierce scale with 13 steps 

[16]. This scale, which was independently discovered by 

three people (Heinz Bohlen [17], John Pierce and Kees 

van Prooijen) in the 1970’s to 1980’s, is probably the 

most common and best-investigated scale of its kind. A 

number of acoustic instruments have been built since 

2007 and a group devoted to the practice of this kind of 

music has been founded a year later in Northern Germa-

ny. It was shown by Pierce, Mathews et al. [18], Loui 

[18] and us [16] that this scale, substituting the octave 

(2:1) by a tritave (3:1), exhibits characteristics analogous 

to the 12-tone chromatic scale and its diatonic subsets 

and whose inherent relationships can be learned through 

repeated exposure. To allow for a new theory, we came 

up with a six-line staff, new note names, interval designa-

tions and clefs, which we call the Müller-Hajdu notation. 

There are three clefs, N, T and Z, for which we created 

corresponding chromatic notation styles (with notes ei-

ther written without accidentals on a line or between 

two)
5
.  

Figure 9. The Bohlen-Pierce T clef also allows for the microtonal 

subdivision of the BP base interval into 5 steps. It uses the mM-BP 

micromap for its single and double-shaft accidentals. 

3.3.5 Bohlen-Pierce Clarinet Fingering Notation 

Definition: “"BP Soprano Clarinet" BP-soprano-

clarinet 5 mM-none default” 

Figure 10. The Bohlen-Pierce scale in soprano clarinet fingering nota-

tion 

Music written in N, T or Z clef can easily converted 

into Bohlen-Pierce clarinet fingering notation. There are 

two sizes of clarinets built by Canadian clarinet builder 

Stephen Fox [20], a soprano clarinet and a tenor clarinet, 

the former having the same size as a Bb clarinet and the 

latter having the size and shape of a basset horn. As the 

Bohlen-Pierce scale is based on the tritave, or just 

twelfth, the interval to which members of the clarinet 

instrument family will overblow, Fox was able to simpli-

fy the mechanics and thus proposed a fingering notation 

where certain notes are omitted in comparison to the 

Böhm and German systems.  

 

                                                           
5
 In case of the T clef we have even allowed for a microtonal divi-

sion of the tempered Bohlen-Pierce scale step (146.3) into 5, virtually 

identical with the division of the octave into 41 steps (a well known 

tuning with a diatonic subset and a 24th scale degree being just the 

tiniest fraction higher than 3:2). 
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Figure 11. The soprano clarinet fingering notation style uses a lookup 

table to perform mapping. 

3.3.6 Special Applications: Bohlen-Pierce Alto Kalimba 

Definition “"BP Alto Kalimba" BP-alto-kalimba 5 mM-

none percussion” 

 

 

Figure 12. The BP Alto Kalimba notation style maps the ascending 

pitches of Bohlen-Pierce scale onto the centrifugal layout of the kalimba 

tines. 

As mentioned before, new notation styles can easily be 

added such as in the case of the Hugh Tracey alto kalim-

ba [21] whose 15 tines I tuned to the Bohlen-Pierce scale. 

For a percussionist, its pitches are best represented by 

notating the tines according to their alternating “centrifu-

gal” layout with the longest tine in the middle being rep-

resented by a note in the middle of the staff.  

This feat was accomplished by feeding originalPitch 

values through a µUtil.PitchToStep abstraction (to calcu-

late the Bohlen-Pierce scale step index) and a lookup 

table, yielding the pitch to be displayed.  

4. PRACTICAL APPLICATIONS AND FUTURE 

PLANS 

One of my recent musical activities was the arrangement 

of the piano poem Vers la Flamme op. 72 by Alexander 

Scriabin [22] for 3 Bohlen-Pierce clarinets, Bohlen-

Pierce guitar, double bass in Bohlen-Pierce scordatura, 

keyboard in Bohlen-Pierce layout, Bohlen-Pierce kalimba 

and tam-tam.  

During the arrangement I: 

1. imported a MIDI file found on 

www.kunstderfuge.com into the MaxScore Edi-

tor 

2. mapped the tracks to the Bohlen-Pierce N, T and 

Z clefs 

3. checked for motivic inconsistencies created by 

the automatic mapping and changed pitches 

where necessary 

4. mapped the voices to various instrumental nota-

tions styles 

5. extracted the parts for the musicians using the 

editor’s pdf generation capabilities. 

Melle Weijters, the Amsterdam-based guitarist in-

volved in the performance of the arrangement actually 

plays a 10-string guitar in 41EDO tuning. As the Bohlen-

Pierce scale is actually a subset of this tuning, he only 

needed to find the correct positions on the fretboard. He 

therefore requested his part in T-clef with an additional 

empty 10-line tablature staff to manually notate finger 

positions. We are planning to automate this process and 

make it generally applicable to instruments with standard 

and non-standard numbers of frets and tunings. A number 

of papers have already dealt with the intricacies of auto-

matic tablature transcription for guitar using genetic algo-

rithms, neural networks and hill-climbing algorithms [23] 

[24]. 

 

 

Figure 13. The Movinguitar is a 10-string electric guitar in 41EDO 

tuning built by Dutch luthier Lucid for Melle Weijters. 

Another interesting path to take would be exploration 

of graphical notation, such as the one employed by 

Karlheinz Stockhausen in his Elektronische Studie II 

[25]. The technological prerequisites have already been 

implemented in MaxScore, but it remains to be seen 

whether the effort of creating such a notation style or set 

of styles, for that matter, is justified in the light of the 

many individual solutions created by composers over the 

last few decades, or whether users would be best served 

by a separate specialized application. Sara Adhitya and 

Mika Kuuskankare have demonstrated a possible solution 

using macro-events in PWGL [26] for a piece by Logo-

thetis. 

Currently, our dynamic notations system is somewhat 

hampered by efficiency issues found in the Max JavaS-

cript object. An effort will be spent to streamline the code 

and to replace it with Max C externals, if necessary.  

5. CONCLUSIONS 

We have developed for the MaxScore editor a plugin 

structure for dynamic notation that greatly facilitates the 

creation and practice of microtonal music in scenarios 

where composers, conductors and performers can no 
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longer rely on a common notational reference internalized 

by years of training such as with the 12-tone system. 

Applying various styles in an arrangement for Bohlen-

Pierce instruments proved to be a viable approach for 

editing, printing and rehearsing. More notation styles will 

be added as we further develop this version of the soft-

ware, which currently is in a beta state and can be down-

loaded from http://www.computermusicnotation.com.  
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