
LEADSHEETJS: A JAVASCRIPT LIBRARY FOR ONLINE LEAD

SHEET EDITING

Daniel Martín Timotée Neullas François Pachet

Sony CSL
dmartinmartinez

@gmail.com

Sony CSL
tneullas@gmail.com

Sony CSL
pachetcsl@gmail.com

ABSTRACT

Lead sheets are music scores consisting of a melody and

a chord grid, routinely used in many genres of popular

music. With the increase of online and portable music

applications, the need for easily embeddable, adaptable

and extensible lead sheet editing tools is pressing. We

introduce LeadsheetJS, a Javascript library for

visualizing, editing and rendering lead sheets on multiple

devices. LeadsheetJS provides lead sheet editing as well

as support for extensions such as score augmentation and

peer feedback. LeadsheetJS is a client-based component

that can be embedded from arbitrary third-party websites.

We describe the main design aspects of LeadsheetJS and

some applications in online computer-aided composition

tools.

INTRODUCTION

A lead sheet is a specific type of music score consisting

of a monophonic melody with associated chord labels

(see Figure 1). Lead sheets are routinely used in many

styles of popular music such as songwriting, jazz, pop or

bossa nova.

With the rise of online music communities using

performance or pedagogical applications, there is an

increasing need for tools for manipulating music scores.

In this context, music notation takes an important role,

and in particular lead sheets, which are the main form of

score for popular music. There is also a need for web-

based tools for visualizing, playing, and editing lead

sheets collaboratively. Such tools should also work on

various devices, following the trend in using web

applications on mobiles and tablets. Finally, these tools

should intercommunicate easily with other tools, e.g. by

being embeddable in third-party websites.

The most popular score editors, Finale and Sibelius,

are designed as desktop applications. As such they cannot

be used online, even though cloud features can be added,

e.g. to share scores by exporting them to the web [9]. The

open-source desktop-based editor MuseScore
1
 provides

features for sharing scores but does not provide directly

online editing. There are many online tools to edit and

view scores, but they do not rely on web standards, and

often require the installation of a plugin on the web-

browser. Some tools, such as NoteFlight
2
, Scorio

3
 or

Flat.io
4

, do follow standards and produce machine-

readable scores, but they are not designed specifically for

lead sheets. For instance, they do not support chord

notations, an important feature of a lead sheet.

Besides offering basic score editing services, online

lead sheet tools should provide features for augmented

editing, e.g. to be tailored to pedagogical or social

contexts. The ability of adding heterogeneous graphic

objects such as colored layers, text or images, is crucial to

enable collaboration between users as a way for giving

feedback on certain parts of the score. INScore [4]

supports various graphical objects, but is not easily

embeddable in an online application and it is more

focused on real-time rendering of interactive music scores

[6] for new forms of composition and performance.

This paper presents LeadsheetJS a Javascript library

for storing, visualizing, playing, editing and making

graphical annotations on lead sheets. In the following

section we describe the main features of the library. Then

we give some hints about its implementation. We finally

describe tools built on top of this library.

LEADSHEETJS

LeadsheetJS is a Javascript library for lead sheets. It

enables the edition and visualization of lead sheets under

conventional formats, as well as rendering, playing and

storing lead sheets in a database. Figure 2 shows how

LeadsheetJS interfaces with the player, the menu for

editing and the rendered leadsheet.

LeadsheetJS provides tools for users to collaborate and

give feedback to each other by highlighting certain parts

1
http://musescore.org/

2 http://www.noteflight.com
3 http://www.scorio.com/
4 https://flat.io/

Copyright: © 2015 Daniel Martin et al. This is an open-access article

distributed under the terms of the Creative Commons

Attribution License 3.0 Unported, which permits

unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

mailto:pachetcsl@gmail.com
http://musescore.org/
http://www.noteflight.com/
http://www.scorio.com/
https://flat.io/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

of the lead sheet and commenting or suggesting

modifications. LeadsheetJS has been implemented in

Javascript, the main programming language for web

browsers. This makes LeadsheetJS web-friendly and

easily embeddable in third-party sites, as well as

adaptable to several devices.

In the next sections we describe the main features of

LeadsheetJS and we give a detailed explanation about the

main design and implementation aspects.

Figure 1. The lead sheet of Alone together by Dietz & Schwartz, as

found in a typical Fake Book.

Figure 2. Alone together by Dietz & Schwartz, rendered in a browser

with LeadsheetJS

1 Peer feedback on lead sheets

 “The one true comment on a piece of music is another

piece of music”, Stravinsky [17].

Music composition, as well as music learning, is a

domain in which feedback on pieces being composed

plays a major role. Feedback is traditionally provided by

a teacher. Nowadays, on-line learning websites provide

tools for peer-feedback in which learners can produce and

review feedback made by peers.

The possibility of giving feedback on the audio

representation of a piece of music has been addressed in

previous works, e.g. [19, 20]. However, by commenting

on pure audio, i.e. on a rendered waveform, users are

limited to commenting on given time spans, whereas by

commenting on a lead sheet, users can refer directly to

the musical elements making up lead sheets, such as

notes, chord labels, chord transitions, bars or structural

elements (see Figure 3).

Figure 3. Examples of annotations on specific parts of a lead sheet.

In LeadsheetJS, feedback can be given at three levels:

a) Musical feedback: the basic level of feedback

is musical. That is, a suggestion of a

modification of a certain part of the lead

sheet, such as changing certain notes, or

certain chord labels,

b) Text feedback: musical suggestions can be

explained with an explanation in the form of

text comment,

c) Audio feedback: sometimes a musical idea is

better expressed by being played in an

instrument. Users can record a musical

snippet, upload it and associate it to a specific

metrical location in the lead sheet.

2 Embeddability

Arbitrary websites can render lead sheets by importing

the LeadsheetJS library in the HTML source code. New

lead sheets can be created or imported and rendered and

edited from the site. As an example we show a website in

the MusicCircle platform [19], displaying the lead sheet

Blue Room by Rodgers & Hart (see Figure 4).

First, the LeadsheetJS library is imported in the HTML

page. Then, the lead sheet of Blue Room is imported from

a database (LSDB, described later) in our JSON lead

sheet format through the LSDB API, which allows

external sites to retrieve lead sheets. Finally, the JSON

text is converted to a LeadsheetJS object and displayed in

the page (see Figure 5).

Figure 4. A lead sheet view embedded in a third party site.

Figure 5. Architecture for embedding LeadsheetJS.

3 Multi-device

Web applications are not accessed only from a desktop

computer but also from tablets and mobile phones:

responsive web design has become essential for designing

web applications. To that aim, LeadsheetJS resizes

automatically scores depending on the width of the

screen. This way it can be visualized in devices with

different screen sizes such as tablets or mobile phones

(see Figure 6).

Figure 6. LeadsheetJS on a 1024x768 tablet.

4 Audio wave visualization

LeadsheetJS does not handle only symbolic information.

Recordings of the performance of a lead sheet can also be

associated to the lead sheet. LeadsheetJS provides

visualization of the recording’s waveform synchronized

with the lead sheet, so that on top of each measure, the

waveform of the recording part corresponding to that

measure is displayed (see Figure 7). This feature is useful

for musicians who record themselves performing a given

lead sheet. They can then listen to their performance and

see at the same time the lead sheet and the audio

representation.

Figure 7. LeadsheetJS visualizing Solar, by Miles Davis, and audio

recording displaying

5 Design

LeadsheetJS is a complex library that provides many

functionalities (editing, visualizing, playing, storing).

From an architectural point of view, it needs to be

maintainable, scalable and extensible. Furthermore,

modularity is required as users may need to use only

certain features of LeadsheetJS. For example, a music

blogger may want to visualize and play lead sheets in her

blog without allowing edition or audio visualization.

The design of LeadsheetJS is module-based. It is

inspired by Zakas’ architecture [21] in which every

module is an independent unit that does not need any

other module to work. Zakas’ architecture is based on the

MVC (Model-View-Controller) architecture. Every

module has its own model, view and controller classes.

Each module is composed of a set of classes. There is one

file per class. In total LeadsheetJS contains about 150

classes.

LeadsheetJS is a client-based Javascript library, i.e. it

runs in the browser. However, certain functionalities

require communication with a server or a database, such

as storing or retrieving lead sheets. Databases and servers

are not part of LeadsheetJS, yet it provides modules to

communicate with them.

The architecture scheme is shown in Figure 8. The

central module is Leadsheet Model. All modules depend

on it since they need it in order to work. Modules Viewer,

Player and Interactor provide visualization, playing and

edition functionalities respectively. The Annotation

module provides graphic annotation for peer feedback

purposes. The Format exporter/importer modules is a

converter to various formats so that the represented lead

sheet can be sent to (or received from) other applications.

The Ajax module facilitates the communication to a

server. Therefore, it is used by the modules that depend

on a server: the Data Base module, which is in charge of

storing the lead sheet to a database in a given format, and

the modules that are analysis tools which we describe in

section 3.

Figure 8. Module architecture of LeadsheetJS.

Thanks to its modular nature, LeadsheetJS can be

easily extended by adding modules that communicate

with the existing ones.

In Figure 9 we show an example of LeadsheetJS

embedded within a complete system with a client/server

database system where LeadsheetJS is the client part, and

PHP is the language on the server side that manages user

sessions and persistence (saving lead sheets into a

MongoDB database). The Ajax module is in charge to

send requests to the server. For example, in order to store

a lead sheet in a database the Database module will send

the data to the server as an HTTP request through the

Ajax Module.

The core module, Leadsheet Model, represents a lead

sheet. A lead sheet consists of a melody that is in most

cases monophonic, and a chord label grid representing the

harmony. From a structural point of view, a lead sheet is

a hierarchical structure composed by sections, which are

composed of bars, which in turn are formed by a list of

notes (a melody), and a list of chord labels. Each of these

levels defines specific attributes: at the top level, the lead

sheet has a composer, a title, a style as well as musical

attributes such as global key and time signature. Section

related information attributes are section name, number

of bars, number of repetitions and number of endings.

Bars may also have specific time or key signature

changes, as well as structure labels like coda or segno.

Finally, the lowest levels of the hierarchy are notes and

chord labels.

Figure 9. Example of a client-server database structure using

LeadsheetJS.

The example in Figure 1 shows a lead sheet as found

in a typical Fake book, with its attributes such as title,

“Alone Together”, composer “Howard Dietz and Arthur

Schwarz”, style “Medium Ballad”. This lead sheet has

two sections: the first one contains 14 bars and two

endings; the second one has 12 bars.

The Leadsheet Model module enables applications to

store and retrieve information about a lead sheet such as

its structure, a specific bar, a chord label, or a group of

notes, as well as metadata associated to it such as its title,

composer, style, time signature or key signature. Typical

queries include get the notes of the first bar, get the

number of sections, etc. The Leadsheet Model also

enables creation of new lead sheets or copies.

5.1 Viewer

The Viewer renders lead sheets on the web browser

through an HTML5 canvas API, which allows generating

graphics dynamically. The Viewer uses Vexflow
5
, a low

level score rendering Javascript library. Vexflow

addresses low level rendering of notes and staves,

whereas LeadsheetJS specifies what to draw in each bar

as well as other higher level tasks such as determining

how many bars to display per line.

5.2 Interactor

The Interactor component provides the editing part by

using the library JQuery
6

 which, among many other

things, takes care of event handling. Keyboard and mouse

events are caught by the Interactor to perform desired

transformations on an edited lead sheet. We introduce

three levels of edition: notes, chord labels and bars. Note

edition works like in any traditional score editor. Chord

label edition provides specific interaction schemes such

as completion to suggest the most relevant chord types in

a given context (see Figure 10). LeadsheetJS contains a

comprehensive database of over 300 chord types,

collected during the process of a lead sheet database

compilation described in section 3.1.

Figure 10. Chord label completion to speed up edition.

5.3 Player

LeadsheetJS provides a MIDI Player which uses the

library MidiJS
7
 to play a lead sheet, i.e. both the melody

and the chord labels. The chord labels are transformed

into MIDI chords.

The chord labels are represented by a pitch and a chord

type. E.g.: in C# maj7, C# is the pitch and maj7 the chord

type. The chord type database provides information about

the note degrees for each chord type. For instance for

maj7 the degrees are I, III, V and VII.

In order to play chords, LeadsheetJS transforms chord

labels into sets of MIDI notes by calculating the notes

5 http://www.vexflow.com
6 http://jquery.com/
7 http://mudcu.be/midi-js/

degrees of the chord type relative to the root pitch. E.g.:

for C# maj7, notes are C#-E#-G#-B#. The player plays

them arbitrarily in the 4
th

 octave, so MIDI notes are 61-

65-68-72. Other more refined MIDI players can easily be

defined by the user.

5.4 Javascript Module Management

As a client-based application, LeadsheetJS runs on the

browser, so each Javascript file needs to be imported in

the HTML source code through the script tag. This may

be an issue as we need to include explicitly each file and

there are around 150 classes, while not all classes are

always needed. For example, an instance of LeadsheetJS

could only show a lead sheet and play it: in that case

there is no need for editing, so the Interactor module does

not need to be loaded. To optimize loading time, and

ensure only needed modules are loaded, LeadsheetJS uses

RequireJS
8
, a tool to manage dependencies in Javascript.

In order to provide communication between modules

in an uncoupled way we make an intensive use of the

Mediator design pattern [12]. The Mediator pattern

encapsulates the way different modules interact. It

enables a module to subscribe to an action of another

module which publishes it.

For example, when the Leadsheet Model module

changes the pitch of a note, it publishes that action; that

is, it sends a message to a mediator telling that the note’s

pitch has changed. The mediator checks which modules

are interested in the action of note pitch changed; that is,

which modules are subscribed, and informs them. This

way, the Viewer module, which is subscribed to note

pitch changed, knows it must redraw the score.

The advantage of using this pattern is that Leadsheet

Model and Viewer do not communicate directly, which

brings to uncoupled code, thus, more scalable and

maintainable.

5.5 Javascript implementation

Javascript is a prototype-based language rather than a

class-based one like C++ or Java. In order to define

classes, there are mainly two approaches: to use Object

literals or to use prototypes. By using object literals to

define classes one can use private variables by using the

Module Pattern [12]. The Module Pattern takes

advantage of closures to simulate private variables, which

are not natively supported in Javascript. On the other

hand, using prototypes to define classes one cannot

emulate private variables, but this approach has the

advantage that it is less memory consuming, since all the

methods of all instances of a class share the same

memory. We have mainly used the Prototype approach as

8 http://requirejs.org/

http://www.vexflow.com/
http://jquery.com/
http://mudcu.be/midi-js/
http://requirejs.org/

we are using multiple instances of many classes such as

NoteModel or ChordModel.

6 JSON lead sheet format

LeadsheetJS provides a format to store lead sheet data in

a database. The most common format for representing

music scores is MusicXML [7]. LeadsheetJS does not use

MusicXML for the following reasons: first, in

MusicXML, chord labels’ information is associated to a

note, so the start beat of the chord is the same as that of

the associated note. This makes it difficult to represent

chords whose start beat does not match with the start beat

of a note. This might not be a problem for other kinds of

scores, but in lead sheets chord labels are crucial. That is

why in our lead sheet format each chord label has its start

beat information. Second, MusicXML provides exact

formatting: it saves both musical and visualization

information; e.g. for each note it saves the stem direction

and the exact position in which it will be shown.

LeadsheetJS only needs the musical information to render

the lead sheet. The visualization aspects (stem directions,

position of each element…etc.) is decided by Vexflow.

There are other human-readable music notation

formats like ABC [3] and Lilypond [11]. Both are

designed to let users create easily scores by writing text

which is compiled by a software that produces a rendered

score as an output. Therefore, they are not designed to be

used in WYSIWYG
9
 editors. The Guido Music Notation

format [5], designed to be rendered by the Guido Engine

Library [2] is similar to them, but is not only a

representation format; it also supports ‘functions’ as

instructions for transforming the score (e.g. transposing a

melody). In our case, readability is not a priority as we do

have a WYSIWYG editor. Instead, we have designed a

JSON (JavaScript Object Notation) based format [1], as

JSON is a popular lightweight format which is widely

used in web APIs. For example, the GUIDO API web-

service is based in JSON [18]. Further, a lead sheet has a

hierarchical structure which can be very well represented

by the JSON format (see Figure 11). The decision of

using JSON has distanced us from using other formats

like MEI [16], a notation encoding standard based on

XML similar to MusicXML.

However, LeadsheetJS is compatible with MusicXML

as it provides a parser to transform MusicXML to our

JSON lead sheet format, and it will eventually support

other formats too (Lilypond, Guido and ABC).

9 What You See Is What You Get

Figure 11. The lead sheet Alone together represented in JSON.

OTHER APPLICATIONS

This section describes applications using LeadsheetJS in

various ways.

1 Lead sheet Database (LSDB)

The Lead sheet Database (LSDB) [15] is a

comprehensive, on-line database of lead sheets for jazz

and Brazilian music. Currently LSDB contains over

10,000 songs from 76 different song books, and over 300

different chord types.

Songs are entered by professional musicians using

LeadsheetJS. Average time for entering songs is about 3

minutes, thanks to the availability of many short-cuts for

fast editing. An LSDB API stores/retrieves lead sheets

from the database, as described in section 2.2. This

database is used for musicological analysis and music

generation applications such as the tools described in

section 3.2

The LSDB database uses MongoDB
10

, a non-relational

database (NoSql). NoSql databases are based on

collections that contain JSON documents, which are

structures of nested arrays and objects (objects are set of

key-values). The biggest drawback of using a NoSql is

that some important features of SQL databases such as

joins or referential integrity cannot be performed at the

database level, and have to be managed from the code of

the server that produces the queries. This can be an issue

in applications with complex databases, but in our case it

is not, because the database structure is quite simple:

there is a main collection of lead sheets, and then other

related collections like sources and composers, so

integrity is not as crucial as in other more complex

systems. Joins are managed from the server language's

code. Moreover, the JSON structure on NoSql databases

is ideal to represent tree-based structures like lead sheets,

whereas representing a tree in a SQL is quite more

complex.

10
http://mongodb.com/

http://mongodb.com/

Figure 12. Part of LSDB content as shown in the web.

2 Automatic Feedback on lead sheets

Feedback can sometimes be provided automatically.

LeadsheetJS provides various tools that produce

automatic feedback to users who are trying to compose a

song. This feedback can be either in the form of an

analysis of the lead sheet, or in the form of generations

and transformations of a lead sheet.

For instance, a Chord Sequence Analyzer tries to find

which style or styles a sequence of chords expresses. A

style is defined here by a corpus of songs, corresponding

to a given composer; e.g. the style of Miles Davis [8].

The Chord Sequence Analyzer identifies the longest

subsequences that can be analyzed in the style of a given

set of key composers. This analysis is performed by

computing the similarity of the chord sequence with

several different composers' models. These models are

statistical models generated from the LSDB.

Such a tool may be used to get information about how

original or similar a lead sheet is, with regards to the

LSDB database. Figure 13 shows such an analysis for the

chord sequences Solar with a map showing a time-line of

the song and each composer (Pepper Adams, Charlie

Parker, Duke Ellington and Michel Legrand)

Another example is the Harmonic Analysis tool that

finds the local tonalities of a lead sheet given its chord

label sequence [13]. Figure 14 shows two examples of

analysis: Gm7 – C7 has been analyzed as F Major

chords, whereas Fm7 – Bb7 are analyzed as Eb Major.

These chords are part of Solar, by Miles Davis.

Other automatic feedback tools have been defined,

such as a Chord Substitution tool which, from a given

chord or chord sequence, suggests alternatives based on

chord substitution rules that are learnt from a specific

corpus.

The Harmonizer tool, given a monophonic melody,

proposes a multi-voice harmonization in a given style.

E.g.: one can harmonize the melody of Coltrane’s jazz

standard Giant Steps in the style of Wagner or Bill Evans

[14].

Figure 13. A chord sequence analyzer grafted on top of LeadsheetJS.

Figure 14. Harmonic analysis displayed on parts of Solar, by Miles

Davis.

Figure 15. LeadsheetJS architecture and the data flow of chord

sequence analyzer.

Figure 15 shows the architecture of these tools and

illustrates the process for the Chord Sequence analyzer

tool: The user clicks on a button 'Analyze chord

sequences'. LeadsheetJS catches the user action and

requests the chord sequence analysis of Solar, sent in

JSON format through the Ajax module. The request is

sent to the server where the Leadsheet Web API, which is

a server extension of LeadsheetJS, computes the chord

sequence analysis. The response is sent to the client,

where LeadsheetJS presents it in the User Interface as a

time-line map.

3 Flow Composer

In the context of the Flow Machines
11

 project about style

imitation, an online composition tool called Flow

Composer was designed, to help a composer generate a

lead sheet using different “styles”. Again, styles are

defined by corpus of songs taken from the Lead sheet

Database.

The main idea is that a composer can start to create a

song and leave some empty measures in which there will

be only silences. Then, he queries the system to fill those

blanks in a given style. Those blanks can be on the

melody, represented by silences, or on the chord grid,

represented by No Chords (NC). The system will

generate a melody or chord labels to fill them taking into

account the style chosen by the user, and also constraints

of continuity. Composers usually don’t want a whole new

random song; they rather want the system to help them

with certain parts of their composition. The composer

can accept or reject all or part of the system’s proposition.

Flow Composer tools allow composers to have at any

moment a full control on the lead sheet: there is a history

feature in which every step is saved, so they can go back

to a previous state.

Flow Composer is built on top of LeadsheetJS and

uses the same modular approach. LeadsheetJS is used in

Flow Composer to listen, view and edit lead sheets. We

show in Figure 16 how Flow Composer works. In the

first image (on the top) a user is composing a bossa-nova.

In the song there are two parts. The second part starts at

measure 7 (with note F and chord F7) and is not shown in

the figure. The second part is ok, but the composer does

not know how to finish the first part so that it transitions

well to the second part. So he leaves it empty with

silences and no chords (NC), and queries Flow Composer

to fill the empty part in the bossa-nova style. The second

image (on the bottom) shows the result proposed by Flow

Composer: it has filled the empty part by proposing a

melody and a chord grid. Interaction may then proceed by

accepting parts of the suggestions and/or querying other

solutions.

11
http://www.flow-machines.com

Figure 16. Flow Composer completion in blue.

4 Experiment on feedback in composition

PRAISE
12

 (Practice and Performance Analysis Inspiring

Social Education) is a social network for music education

with tools for giving and receiving feedback in online

communities. In the context of PRAISE we have built a

tool for feedback in composition in which composers can

compose a lead sheet and share it with other composers

who can then provide feedback. This tool is based on the

annotation module of LeadsheetJS.

In the PRAISE project, we designed an experiment to

determine the impact of feedback in lead sheet

composition [10]. We evaluate whether musical peer

feedback, just like in the example explained in section

2.1, may actually improve or not the musical quality of a

composition. In a first phase, participants are asked to

compose a short song (8 bars). In the second phase they

are invited to suggest modifications of other participants’

compositions. Then participants are asked to reconsider

their original song and try to improve it. The point is that

a group of subjects will have received feedback whereas

another group will have not. We then evaluate to which

extent the quality of the improved composition of those

subjects who received is better than that of those who did

not. The quality evaluation is estimated from a listening

panel. LeadsheetJS was used to implement this

experiment, including modules for editing and playing for

the composition phase and the Annotation module for the

feedback phase.

The composer of the lead sheet can later review

suggestions and accept them or not.

The feedback process is illustrated as follows. First,

user Bruno composes a song and edits it with

12 http://www.iiia.csic.es/praise/

http://www.flow-machines.com/
http://www.iiia.csic.es/praise/

LeadsheetJS. Later, user Silvia looks at it and plays it.

She decides to make some suggestions on certain notes.

As shown in Figure 17 once she has saved the suggestion,

she can perform other actions, shown in the contextual

menu :

- Add Comment: add an explanation of her musical

suggestion,

- Upload sound: upload a sound recording related to

the suggestion,

- Modify: she can decide to modify the suggestion she

just saved,

- Remove: remove the suggestion.

Figure 17. A user makes a suggestion on a specific part of a lead sheet.

Later on, Bruno can review all suggestions by

switching between the original elements and suggested

ones and listen to them. Figure 18 shows a lead sheet

with three suggestions. Bruno clicks on one of them to

see the associated explanation.

Figure 18. A user checks the suggestions received.

Finally, if Bruno likes the suggestion he can accept it

so that the suggestion is merged with the whole song by

right-clicking on the suggestion (see Figure 19).

CONCLUSION

We have presented LeadsheetJS, a Javascript library

for lead sheets. By design, LeadsheetJS is compatible

with multiple devices and easily embeddable.

LeadsheetJS also provides various tools for music

composition such as automatic analysis and peer

feedback. We have illustrated how LeadsheetJS is used in

several online music applications.

LeadsheetJS addresses the needs of online applications

for composing, generating, sharing or teaching music on-

line. New features are currently investigated such as

multiple voices management, lyrics, audio based player,

as well as rendering lead sheets using style-based

accompaniment generation systems.

Figure 19. The user accepts a suggestion of modification.

Acknowledgments

This work is supported by the Praise project (EU FP7

number 388770), a project funded by the European

Commission under program FP7-ICT-2011-8.

REFERENCES

[1] D. Crockford, “The json data interchange format”.

Technical report, ECMA International, October

2013.

[2] C. Daudin, D. Fober, S. Letz, Y. Orlarey, “The

guido engine a toolbox for music scores rendering.”

In Proceedings of the Linux Audio Conference,

2009, pp. 105–111.

[3] G. Dyke, P. Rosen, abcjs–Project Hosting on Google

Code, 2010.

[4] D. Fober, S. Letz, Y. Orlarey, F. Bevilacqua,

“Programming Interactive Music Scores with

INScore”. In Proceedings of the Sound and Music

Computing Conference, 2013 july, pp. 185-190.

[5] D. Fober, Y. Orlarey, S. Letz, “Scores level

composition based on the Guido Music Notation”.

Ann Arbor, MI: MPublishing, University of

Michigan Library, 2012.

[6] D. Fober, Y. Orlarey, S. Letz, “Augmented

Interactive Scores for Music Creation.” In Korean

Electro-Acoustic Music Society's 2014 Annual

Conference, 2014 october, pp. 85-91.

[7] M. Good, “MusicXML: An internet-friendly format

for sheet music.” In XML Conference and Expo,

2001, pp. 3-4.

[8] T. Hedges, P. Roy, F. Pachet, “Predicting the

Composer and Style of Jazz Chord Progressions.”

Journal of New Music Research, 43(3), 2014,

pp. 276-290.

[9] J. Kuzmich, “The two titans of music notation.”,

School Band & Orchestra magazine, 2008

september.

[10] D. Martín, B. Frantz, F. Pachet, “Assessing the

impact of feedback in the composition process: an

experiment in lead sheet composition.” In Tracking

the Creative Process in Music, Paris, 2015, October.

[11] H. W. Nienhuys, J. Nieuwenhuizen, “LilyPond, a

system for automated music engraving.” In

Proceedings of the XIV Colloquium on Musical

Informatics (XIV CIM 2003) , 2003, pp. 167-172.

[12] A. Osmani, Learning JavaScript Design Patterns.

O'Reilly Media, Inc., 2012.

[13] F. Pachet, “Surprising harmonies.”, International

Journal of Computing Anticipatory Systems 4, 1999.

[14] F. Pachet, P. Roy, “Non-conformant harmonization:

the real book in the style of take 6.” In International

Conference on Computational Creativity, Ljubljiana,

2014.

[15] F. Pachet, J. Suzda, D. Martín, “A Comprehensive

Online Database of Machine-Readable Lead-Sheets

for Jazz Standards”. In ISMIR, 2013, pp. 275-280.

[16] P. Roland, The music encoding initiative (mei). In

Proceedings of the First International Conference

on Musical Applications Using, Vol. 1060, 2002, pp.

55-59.

[17] I. Stravinsky, R. Craft, Dialogues. London: Faber

and Faber, 1982.

[18] M. Solomon, D. Fober, Y. Orlarey, S. Letz,

“Providing Music Notation Services over Internet”.

In Proceedings of the Linux Audio Conference,

2014.

[19] M. Yee-King, M. d'Inverno, P. Noriega, “Social

machines for education driven by feedback agents”,

in Proceedings First International Workshop on the

Multiagent Foundations of Social Computing,

AAMAS-2014, Paris, 2014.

[20] M. Yee-King, M. d'Inverno, “Pedagogical agents for

social music learning in Crowd-based Socio-

Cognitive Systems”, in Proceedings First

International Workshop on the Multiagent

Foundations of Social Computing, AAMAS-2014,

Paris, 2014.

[21] N. Zakas, Scalable “Javascript Application

Architecture”.

Slides: http://cern.ch/go/Cl6S.

http://goldenpages.jpehs.co.uk/2014/07/16/tracking-the-creative-process-in-music-2/
http://goldenpages.jpehs.co.uk/2014/07/16/tracking-the-creative-process-in-music-2/

