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ABSTRACT

In this paper, I describe the state of development for an
automatic music notation generator and tablet-based graph-
ical user interface. The programs currently available for the
automatic generation of music notation are focused on the
compositional and theoretical aspects of the music-making
process. denm (dynamic environmental notation for mu-
sic) is being designed to provide tools for the rehearsal
and performance of contemporary music. All of the strate-
gies underlying these tools are utilized by performers today.
These strategies traditionally involve the re-notation of as-
pects of a musical score by hand, the process of which can
be detrimentally time-consuming. Much of what perform-
ers re-notate into their parts is composed of information
latent in the musical model—the musical model which is
already being represented graphically as the musical score.
denm will provide this latent information instantaneously
to performers with a real-time music notation generator.

1. BACKGROUND

Commercial music typesetting software, such as Finale and
Sibelius, are the most common tools for creating musical
scores, which require a musician to manually enter musi-
cal information via graphical user interfaces. There are
cases, for example when compositions are algorithmically
generated, where the process of manually entering musical
information in this manner is inefficient. As such, programs
have been designed to create musical scores where the in-
put from the user is text-based, generated by algorithmic
processes, or extracted from spectral analyses.

Most Automatic Notation Generators (ANGs) [1] create a
static image, either to be read by musicians from paper, or
from a screen displaying it in a Portable Document Format
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(PDF) representation. LilyPond [2] and GUIDO [3] and
convert textual descriptions of music into musical scores.
Abjad [4] and FOMUS [5] generate musical score informa-
tion that can be graphically rendered by LilyPond. Open-
Music [6], Bach [7], PWGL [8] / ENP [9], and JMSL /
JSCORE [10] are software tools for composers that gen-
erate music notation as part of the compositional process.
Belle, Bonne, Sage [11] is a vector graphics library for
music notation that enables the drawing of advanced no-
tational concepts not offered by traditional music typeset-
ters. Music21 [12] is a music analysis program that creates
score information to be graphically rendered in LilyPond.
Spectmore [1] maps spectral analysis information onto a
musical score. A few newer ANGs, such as INScore [13]
and LiveScore [14], generate animated musical notation for
screen representation.

Thus far, ANGs generate static scores that are useful to
composers and theorists, and animated scores that are useful
for those performing in real-time (described as the imma-
nent screen score paradigm by Hope and Vickory [15]).
No ANGs specifically target the rehearsal processes of
contemporary music performers (a process described as
interpretive by Hope and Vickory).

I have found that the most critical period for the success
of my own works is the rehearsal processes with perform-
ers. Performers spend a considerable amount of time in
individual rehearsal and group rehearsal settings, and have
developed extensive strategies to comprehend, embody, and
execute the propositions of composers (see: [16], [17], [18],
[19]). Many of the cues that performers notate into their
parts are composed of information latent in the musical
model—the musical model which is already being repre-
sented graphically as the musical score.

denm is software written for iOS devices in the Swift lan-
guage using the Core Frameworks that enables performers
to reap the benefits of these rehearsal strategies without the
high cost normally associated with preparing them. Both
the musical model and graphical rendering engine are built
from scratch to best utilize the touch interfaces of tablet
computers. The initial development of denm began in the
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Javascript language to control the graphical output of Adobe
Illustrator. This first phase of development served as re-
search into the systematic organization of musical scores
and the programmatic drawing of musical symbols. The vi-
sion of this project necessitates animated graphical content,
which ultimately required the rewriting of all source code.
There are certain features that were prioritized in the initial
phase of development 1 that will ultimately be rewritten in
an animated context.

2. GRAPHICAL USER INTERFACE

More and more performers are reading music from tablet
computers. Software applications like ForScore display a
PDF representation of a musical score, allowing a performer
to turn pages with a Bluetooth footpedal, as well as to
annotate scores with handwritten or typed cues. Performers
are able to store many scores on a single device, simplifying
the logistics of performing many pieces. Because the PDF
contains no reference between graphical musical symbols
and their musical functions, the degree to which a player
is able to interact with this medium in a musical context is
limited.

Many of the cues that performers handwrite in their parts
are simplified versions of other players’ parts [20]. These
types of cues are being reentered by the performer, even
though this information is already retrievable from the data
that is being graphically represented by the score. The
primary objective of denm is to expose the structures un-
derlying the music to performers with little cost of access.

2.1 Graphic Design Priorities

The graphic design style of denm is minimalist, with as
few graphical ornaments as possible. Rather, variations in
color, opacity, line-thickness, and other graphical attributes
are used to differentiate an object from its environment. In
some cases, the variations in graphical attributes serve to
differentiate an object’s current state from its other potential
states. Basic musical symbols, such as clefs and accidentals,
have been redesigned to implement this universal design
philosophy.

Many of the design choices of standard music notation
generators are made with printing in mind. The choices
made in denm are optimized for display on a screen. The
use of thin lines and color is problematic for printers to
represent, though these techniques are quite successful with
high quality displays.

Figure 1. Design of clefs: treble, bass, alto, tenor.

2.1.1 Clef Design

Traditional clefs take up a considerable amount of horizon-
tal space. The width of traditional clefs is problematic for
the spacing of music, particularly when the preservation of
proportionate music spacing is a high priority. The minimal-
ist clefs in Fig. 1 take up very little horizontal space. Clefs
are colored specifically to enable a differentiation of the clef
from the surrounding context and subtle breaks are made
in the the staff lines to accentuate the clefs’ presence. Staff
lines are gray, rather than black, enabling the creation of a
foreground / background relationship between musical in-
formation carrying objects (notes, accidentals, articulations,
etc.) and their parent graph.

2.1.2 Accidental Design

Figure 2. Design of accidentals.

Accidentals, as can be seen in Fig. 2, are drawn program-
matically, as opposed to being instances of glyphs from a
font. The advantage to uniquely drawing each accidental is
that small vertical adjustments can be made to individual
components of the object (e.g. body, column(s), arrow) in
order to avoid collisions in a more dynamic fashion than
is usually implemented in other music notation software 2 .
Burnson’s work with collision detection of musical sym-
bols [22] serves as an example for the similar work to be
approached in continued development.

2.1.3 Rhythm Design

In cases of embedded tuplets, beams are colored by the
events’ depth in the metrical hierarchy. Ligatures, as seen
in Fig. 3, connect tuplet brackets to their events to clarify
jumps in depth.

1 Automatically generated woodwind fingering diagram, string tabla-
ture to staff pitch notation conversion, and automatically generated cues.

2 The initial development of denm in Adobe Illustrator-targeted
Javascript prioritized this dynamic accidental collision avoidance. Ex-
tending the traditional process of avoiding of accidental collisions by
stacking accidentals in multiple vertical columns [21], individual adjust-
ments are made to the graphics of the accidentals themselves. Many
accidental collisions that traditionally warrant horizontal movement of the
objects can be avoided with a single or several small adjustments to indi-
vidual components of each accidental. Avoiding unnecessary horizontal
movement of accidentals makes retaining proportionate music spacing
more feasible. More rigorous study of the effects of readability of slightly
adjusted accidental graphics is to be undertaken throughout the near-term
development of denm.



Figure 3. Design of beams and tuplet bracket ligatures

Small graphics, as seen in Fig. 4, indicate the subdivision
value that clarify the values of a tuplet. The style of the
straight beamlets in the tuplet bracket subdivision graphics
mirror the straight beams of rhythms, without the visual
noise of traditional flags. Further, the line-thicknesses of
beams in the graphics are inversely proportional to their
subdivision value, aiding in their visual differentiation. Left
edges of tuplet brackets are straight, while right edges of
tuplet brackets are angled.

Figure 4. Design of tuplet bracket label graphics

2.2 User Interaction Design Priorities

Many cues that performers notate into their scores are use-
ful at certain points of the learning and rehearsal process,
but become less useful at different points in the process.
The user interaction design style of denm enables perform-
ers to determine what musical information is displayed at
any point. Performers touch the screen score directly to
show or hide certain objects. More advanced user interface
strategies will be developed as the underlying analytical
procedures (some of them seen in Sec. 3) are implemented.

Figure 5. Screenshot of Metronome Graphic revelation.

For example, when a user decides to show a stratum of
Metronome Graphics (described further in Sec. 2.3.2), as
can be seen in Fig. 5, the entire page recalculates its dimen-
sions, to ensure that the Metronome Graphics take up only
the space that they need to. When the user decides to hide
that stratum of Metronome Graphics, the layout is recalcu-
lated once again, the Metronome Graphics are hidden, and
the space they were occupying disappears.

The layout of denm is organized as a hierarchy of em-
bedded boxes that recalculate their heights based on what
the user elects to show or hide within them. Fig. 6 shows
these vertically accumulating boxes. Each box defines its
own padding, keeping layout separation consistent for each
object.

PAGE

SYSTEM

SYSTEM

Figure 6. Layout Organization.

2.3 Rhythm Features

2.3.1 Metrical Grid

Figure 7. Screenshot of a Metrical Grid.

A performer can tap the time signature of any measure
to reveal a grid showing the beats of that measure. This
provides a quick reference for the relationship of complex
rhythmic events to a global tactus. Quickly drawing lines at
the point of each beat in a measure is often the first thing a
performer does when receiving a new piece of rhythmically
complex music [16], [20].

2.3.2 Metronome Graphics

When a user taps any point in a rhythm, graphics are dis-
played indicating the best way to subdivide a rhythm (re-
duced to sequences of duple- and triple-beats). Duple-beats



Figure 8. Screenshot of another Metrical Grid.

are represented as rectangles and triple-beats are repre-
sented as triangles. Each subdivision-level (e.g. 8th, 16th,
32nd, etc.) has its own graphic, which is a uniquely styled
version of the duple- and triple-beat primitives, making
the subdivision-level of the metronome understandable at a
glance. The process of generating these subdivision refer-
ences can be seen in Sec. 3.1

Figure 9. Screenshot of Metronome Graphics.

2.3.3 Metronome Visual Playback

Performers often create click-tracks for learning, rehearsing,
and performing rhythmically complex music. Currently, the
Metronome Graphic objects can be played-back when a
performer taps on the time signature for a measure. The
Metronome Graphics “click” by flashing a different color
in time. An animated bar progresses from left to right at the
speed prescribed by the current tempo of the music. This
process has yet to be implemented with other objects in the
system, though this will continue to be developed.

As development continues further, a performer will be
able to extract any portion of the musical part and rehearse
it with the visual click-track of the Metronome Graphics at
any tempo. Ultimately, an audio element will be integrated
into this metronome process, with sonic attributes mirror-
ing those of the visual Metronome Graphics, to represent
subdivision-level and placement in the Metrical Analysis
hierarchy (as described in Sec. 3.1).

2.4 Other Players’ Parts

Performers often notate aspects of the parts of the other
players in an ensemble context. Because this information
already exists in the musical model, it can be graphically

Figure 10. Screenshot of metronome playback.

represented immediately. This feature is currently imple-
mented at a proof-of-concept level. Fig. 11 shows the pro-
cess of verifying the automatic layout recalculation needed
when inserting new musical material. In this case, hard-
coded musical material is inserted into the layout when a
measure number is tapped by a user.

Figure 11. Screenshot of cue revelation.

3. MUSIC ANALYSIS ALGORITHMS

In order to provide performers with rehearsal tools in real-
time, robust analysis tools must be developed.

3.1 Metrical Analysis

denm analyzes rhythms of any complexity. The result of
this analysis is an optimal manner in which to subdivide the
rhythm. Information like syncopation and agogic placement
of events can be ascertained from this process. This process
can be seen in Alg. 1.

Rhythm in denm is modeled hierarchically. The base ob-
ject in this model is the DurationNode. Any DurationNode
that contains children nodes (e.g. traditional single-depth
rhythm, or any container in an embedded tuplet) can be an-
alyzed rhythmically. The result of this analysis of a single
container node is a MetricalAnalysisNode (a DurationNode
itself with leaves strictly containing only duple- or triple-
beat durations). MetricalAnalysisNodes are the model used



by the Metronome Graphics, the graphical representation
of which is described in Sec. 2.3.2.

Algorithm 1 Metrical Analysis

1: durNodes←DurationNode.children
2: parent←Root MetricalAnalysisNode
3: function ANALYZE(durNodes, parent)
4: s← durNodes.sum()

5: if s = 1 then
6: child←MANode(beats: 2)
7: . subdivision level ∗ = 2

8: . add child to parent

9: else if s <= 3 then
10: child←MANode(beats: s)
11: . add child to parent

12: else if 4 <= s <= 7 then
13: p← prototypeWithLeastSyncopation

14: for pp in p do
15: child←MANode(beats: pp)
16: . add child to parent

17: end for
18: else if 8 <= s <= 9 then
19: p← prototypeWithLeastSyncopation

20: if p contains values > 3 then
21: for pp in p do
22: part← durNodes partitioned at pp
23: newParent←MANode(beats: cc)
24: analyze(part, newParent)
25: end for
26: end if
27: else
28: . create array of all combinations
29: . of values 4 <= v <= 7 with sum of s
30: c← combinationWithLeastSyncopation

31: for cc in c do
32: part← durNodes partitioned at cc
33: newParent←MANode(beats: cc)
34: analyze(part, newParent)
35: end for
36: end if
37: end function

A MetricalAnalysisPrototype is a sequence of two or three
elements, each of which having a duple- or triple-beat dura-
tion. Values between and including 4 and 7 have a dedicated
list of prototypes 3 , each of which can be compared against

3 List of prototype sequences by relative durational sum:
4 : (2, 2)
5 : (3, 2), (2, 3)
6 : (2, 2, 2), (3, 3)
7 : (2, 2, 3), (3, 2, 2), (2, 3, 2)
8 : (4, 4), (3, 3, 2), (2, 3, 3), (3, 2, 3) ∗
9 : (3, 3, 3), (4, 5), (5, 4) ∗
∗ Rhythms with relative durational sums of 8 and 9 are compared against

any rhythm with a relative durational sum of the same value,
the process of which can be seen in Alg. 2.

Algorithm 2 Syncopation

1: d← durationNodes.cumulative()

2: . e.g. [4, 5, 7]← [4, 1, 2].cumulative()

3: p← prototype.cumulative()

4: . e.g. [2, 4, 7]← [2, 2, 3].cumulative()

5: syncopation← 0

6: function GETSYNCOPATION(d, p)
7: if d[0] = p[0] then
8: . Rhythm beat falls on prototype beat
9: . No syncopation penalty added

10: . Adjust d and s accordingly
11: getSyncopation(d, s)

12: else if d[0] < p[0] then
13: . Rhythm beat falls before prototype beat
14: . Check if next duration falls on prototype beat
15: if delayedMatch then
16: . No syncopation penalty added
17: else
18: syncopation← syncopation+ penalty

19: end if
20: . Adjust d and s accordingly
21: getSyncopation(d, s)

22: else
23: . Rhythm beat falls after prototype beat
24: . Check if next prototype value falls on duration
25: if delayedMatch then
26: . No syncopation penalty added
27: else
28: syncopation← syncopation+ penalty

29: end if
30: . Adjust d and s accordingly
31: getSyncopation(d, s)

32: end if
33: end function

Cuthbert and Ariza [12] apply their Metrical Analysis pro-
cess to beaming in the score representation of rhythms. This
strategy will be the model for continued development in
denm, extending to cases of arbitrarily-deep nested-tuplet
rhythms.

all of these combinations shown here. If the combination with least
syncopation contains only values of 2 or 3, a MetricalAnalysisPrototype is
generated with children containing Durations of duple- and triple-values.
In the case that the combination with least syncopation contains values > 3,
internal MetricalAnalysisNodes are created with the Durations of these
values. The original DurationNode array is partitioned at points determined
by the combination. The MetricalAnalysis process is then applied for each
partition, and MetricalAnalysisNode leaves with duple- and triple-value
Durations are added to each of these internal MetricalAnalysisNodes.



3.2 Pitch Spelling

Effective pitch spelling is critical in the process of generat-
ing staff notation for music that is algorithmically composed
or extracted from spectral analyses. Algorithms for pitch
spelling within tonal musical contexts have been compared
by Meredith [23] and Kilian [24]. The musical contexts
that denm is most immediately supporting are rarely tonal.
More often these musical contexts are microtonal. The
preferences in the current tonally-based pitch spelling algo-
rithms, however, are defined by establishing tonal center.

The benefits of tonal-center-based pitch spelling are lost
in atonal musical contexts. Rather, primitive intervallic re-
lationships are preserved objectively, rather than being sub-
jected to the requirements of a tonal center. When spelling
pitches in microtonal contexts, other pragmatics arise that
influence the decision-making process.

The short-term goal of the pitch spelling process in denm
is to spell microtonal polyphonic music up to the resolu-
tion of an 1/8-tone (48 equal divisions of the octave). In
time, this process may be extended to accommodate other
tuning systems. The development of this microtonal pitch
spelling procedure is in process. Currently, dyads of any
combination of resolutions (1/2-tone, 1/4-tone, 1/8-tone)
are spelled correctly, though more rigorous testing is un-
derway to verify this. Further development of this pitch
spelling algorithm into homophonic and polyphonic micro-
tonal contexts will incorporate aspects of Cambouropoulos’
shifting overlapping windowing technique [25].

4. INPUT FORMATS

At this point in development, there is a working prototype
input text format. All figures in this paper have been cre-
ated with this input text format. A long-term priority for
development is to build conversion from common music
interchange formats, such as musicXML [26], into the na-
tive denm text input format. This conversion will enable
composers to generate and input music in the style that best
serves them, while they benefit from a performer-facing
interactive graphical user interface.

#
9,16 FL
    2 --
        4 p 74.5 d pp a -
        2 p 79.75
        1 p 83 d p a >
        2 p 69.25 a .
        4 p 85.5 a >
    2 p 84 d o a -
    3 --
        3 --
            1 p 84.5 a .
            2 p 88 d p a .
            1 p 67 a >
            2 p 82.25 a .
            1 p 85 a >
        2 p 61 d o a -

create a new measure
create a new rhythmic group
relative duration of event

create an embedded tuplet 
simply by indenting the next 

events.

Embedding can occur to any 
depth.

 

Figure 12. Demonstration of text input syntax.

5. FUTURE WORK

The current development of denm is focused on building
robust musical operations within the musical model. The
extension of the microtonal pitch spelling procedure into
homophonic and polyphonic contexts is in development
now. Once the pitch spelling procedure is completed and
tested, the accidental collision avoidance procedure will
be of primary focus. In the longer-term, development will
center around the extension of the musical model into multi-
voiced and multi-part musical contexts. When these steps
are completed, this more fully-featured musical model will
be hooked into the graphical realm. User interface strategies
will be developed in accordance with the advancement in
the musical model and graphical capabilities.
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