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ABSTRACT

This paper introduces Thema, a custom music notation soft-
ware environment designed to automatically and transpar-
ently capture quantitative data into a relational database.
The majority of research into musical creativity is quali-
tative in nature, and this software addresses several areas,
such as search and improvisational data, which are diffi-
cult to study with current qualitative methods. Thema’s
database provides advantages over ad hoc file collection
mechanisms by providing integrated search; the software
also is able to consistently identify musical material via au-
tomatically assigned identification codes, and this provides
a useful supplement to content-based search. In 2013, a
study was conducted of ten graduate-level composers us-
ing Thema, and the dataset from this study was used to
develop new analytical tools for examining compositional
data.

1. INTRODUCTION

Until recently, most research into the compositional pro-
cess of adult composers has been conducted using qualita-
tive methodologies. Creativity is complex and researchers
have rightly appreciated the role that composers play in il-
luminating their creative process. A variety of techniques
have been used by researchers and composers including
interviews, verbal protocol, sketch studies, and journals.
With the commodification of recording technology, so-
called real-time studies of compositional process have be-
come more common. These typically involve audio or
video recordings of the composer. To provide insight into
the composer’s thought process, verbal protocol techniques
are often used, either concurrently with composition or
retrospectively. This data may then be triangulated with
versioned musical sketches or computer files and supple-
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mented by journals and other documentation. While com-
bining multiple sources gives relatively good coverage of
activity, utilizes the composers’ personal insights, and al-
lows composers to work with familiar tools, it also re-
quires effort on the part of the composer and the researcher
to collect and organize data. [1, p. 246-7]. In the short
run, this is certainly manageable, but it is difficult to scale
these techniques up to larger studies, and, as might be ex-
pected, longitudinal studies are rare in the qualitative liter-
ature concerning adult composers, as are studies featuring
large sample sizes. 1

Musical informatics have proved useful for addressing
questions that concern a large amount of music, and it
stands to reason that they could be of some aid in the study
of compositional process. While computerized analysis
is unlikely to bring the same type of insight that a qual-
itative study can, it has strengths in complementary ar-
eas: namely, it can be pursued over time and at scale be-
cause the data can be automatically analyzed. Anecdotal
accounts from composers in the process literature suggest
that composers benefit from participating in these studies
but most composers will never have the opportunity to do
so. Quantitative analytical tools could allow composers to
systematically examine their own music and behavior on
an ongoing basis without a dedicated researcher.

It is increasingly common for composers to use software
in the act of composing music rather than purely for type-
setting. Though the impacts of this trend are subject to
debate, it seems unlikely to change in the near future. The
software that composers use to create music is uniquely
suited to observing quantitative data about the creative pro-
cess since it can see not only the document, but also the
composer’s interactions with the document. Several stud-
ies in the literature have used dedicated software to ob-
serve compositional behavior [4–6]; these have not, how-
ever, utilized Common Music Notation. Other studies have
observed composers at work via automatic screen captures
or screen recording [7–9]. Peterson’s 2008 study presents
quantitative results, but the data was acquired through the
manual analysis of automatically collected screen captures.

1 Collins [2] and Donin [3] provide useful reviews of the literature.
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2. PREVIOUS AND RELATED WORK

A few projects have used custom software to study compo-
sitional process. Otto Laske and Barry Truax used the Ob-
server I program to observe children making music with a
synthesizer [4]. Maude Hickey wrote a program to study
creativity in children [5]. The QSketcher research project
at IBM developed an environment for film music compo-
sition that automatically recorded and organized impro-
visational material, and maintained a persistent view of
its environment. [10]. Recently, Chris Nash created re-
ViSiT, a free “tracker”-style audio plugin that captured us-
age data [6]. He used the software to collect data from
over 1,000 musicians; his is by far the largest sample size
in this area, but his data set does not include the music that
his subjects created.

In considering the use of quantitative data for studying
compositional process, it is helpful to consider existing in-
frastructure for storing data. Standardized open file for-
mats have been a boon to music informatics researchers
as they allow musical data to be examined independently
of the program that created the data. This is helpful since
designing music notation software is a time-intensive task,
and standard file formats provide some degree of interop-
erability between programs. At present, however, there is
no standard for how a music notation program should op-
erate, and that also means that standard music file formats
such as MusicXML include very little, if any, information
outside that already present in the score such as how the
composer is using the program or improvisational MIDI
data. Additionally, our ability to understand how multiple
versions of a score are related depends on effective com-
parison algorithms. Though comparison works for simple
additions and deletions, it becomes less useful as the com-
poser’s actions become more dispersed across time.

As an alternative to an ad hoc approach to data collection
which combines multiple data formats such as MusicXML
and SMF and exists separately from the music software,
there is a good argument to be made for an integrated data
collection system which operates from within the software
used to create the music. Such a system would have a
greater understanding of how its constituent elements re-
late and would be able to integrate the information it col-
lects into its operation. This capability could also be ma-
terially useful to composers, particularly in its ability to
bridge the gap between improvisational development and
transcription. There are certainly drawbacks to such a sys-
tem, most notably, in that it ties the composer’s work to a
particular software. Nevertheless, it allows access to data
which is not well-served by existing methods; this data
may provide insight outside of that available in score and
MIDI data.

3. THEMA

Thema is a music notation software environment, written
using the Java Music Specification Language’s JScore pack-
age [11], that has been purpose-built for automatic data
collection. On the surface, Thema is designed to operate in
a manner similar to existing music notation software. Note
entry occurs in step-entry mode, optionally with MIDI in-
put, and most functions in the interface are available via
keyboard shortcuts, including score playback. Selections
may be made with the mouse, and a variety of commands
such as transposition and clipboard operations are avail-
able. Thema has two different playback modes: cursor
and selection; cursor mode plays the score from the cur-
rent cursor location, while selection mode plays back only
the selected material. Like ENP [12], Thema can make
use of non-contiguous selections in the score, and this in-
cludes playback operations. Thema’s musical representa-
tion is relatively limited relative to other software in the
field such as Bach [13] and ENP. It cannot, for instance,
represent nested tuplets, and it does not support breakpoint
function notation or proportional notation in editing.

Thema, like JScore, allows the user to operate on rhythm
in relative units via doubling and halving operations, and
this works for both selections as well as for setting the cur-
sor’s duration. This latter aspect is useful in that it does not
require the composer to remember specific key mappings
for durations, though those are also available. In step-entry
mode, the user may also select a rhythmic motive and then
use its durations and ties as a source sequence for a new
stream of notes, as shown in figure 1. This simplifies the
entry of repetitive figures such as dotted eighth and six-
teenth note pairs. Additionally, the composer may advance
to an arbitrary position within the sequence or reset to the
beginning, and this allows for greater flexibility in apply-
ing the current sequence without requiring changes to its
content; this can be useful, for example, in creating rhyth-
mic ostinato figures in fluctuating meters.

Figure 1. Step entry with rhythmic sequence



3.1 Storage

By design, Thema focuses on automatically and transpar-
ently capturing low-level data at a fine time granularity.
Where possible, data is stored as it is captured, and all
entries are stored with time stamps at millisecond resolu-
tion. In order to enable frequent storage, Thema models the
score, as well as the state of the program, as a collection of
tables within a relational database, and only stores mate-
rial that has changed over subsequent states. The database
maintains previous versions of edited items so that all past
states of an item are reachable. In order to easily iden-
tify multiple versions of an item across time, each item
is tagged with a unique, automatically generated perma-
nent identifier which is consistent across all versions of the
item.

Storage in Thema is tightly integrated into to the work-
ings of the program, and it occurs as the result of actions
by the composer, instead of at an arbitrary time interval.
This makes it easier to discern the composer’s actions in
the data stream, since any entry in the database is present
as the direct result of the composer’s actions; it also pre-
vents multiple actions from being condensed into a single
entry, as might occur when saving at a particular time inter-
val. A command identifies elements which may have been
intentionally changed, and the program proceeds to discern
whether those elements were actually changed, as well as
any changes to surrounding elements which may have oc-
curred as a result. For example, changing the duration of
the first note in the measure has the effect of changing the
starting times of subsequent notes within the measure.

3.2 Data Representation

Thema represents the structure of the score in a straight-
forward, hierarchical fashion: a score contains measures,
measures contain staves, staves contain tracks, and tracks
contain notes. Following normalized database practices,
objects within that hierarchy only reference the class of
objects immediately above them in the hierarchy, with the
exception that all objects maintain a reference to their con-
taining score. 2 For example, when storing a note in the
database, a reference is stored to its track’s identifier, but
not to its containing staff or measure. This insulates lower
level objects from being affected by changes in higher-
level objects such as the insertion of a measure earlier in
the piece.

With a score changing over time, the amount of data that
could be stored is potentially large. It would be inefficient
to store the entire document for a small change, so Thema
stores only objects that have changed. On load, it reassem-

2 A database can contain multiple scores, and by explicitly filtering
based on the score, queries run an order of magnitude faster.

bles the score from the desired version. This is different
than a diff-based approach because the state of the en-
tire score across time is visible to search functions without
the need for derivation. Accessing earlier versions of a
score is as efficient as loading the current score, and it is
simple to make comparisons across versions. When undo-
ing commands or reverting to a previous state of the score,
the state of the score at the desired moment is loaded from
the database and then made current. A detailed description
of this mechanism is provided in [14, p.85-109]; one in-
teresting feature of this design is that though it appears to
operate like a conventional undo-redo stack, all past states
are accessible.

3.3 Processes

Processes are the primary unit of work within Thema. Any
action that the composer initiates within the program cre-
ates a timestamped entry in the process table, and each en-
try represents a state in the score or the environment, with
the exception of MIDI data, which is stored independently
of process information. This distinction is made because
the volume of MIDI data is considerable, and may happen
in parallel with other actions. MIDI data is recorded with
a time stamp, and may be combined with the process table
data via an SQL join.

Thema separates processes into two categories: score and
environment. Score processes alter the content of the score
whereas environment actions, such as adjusting the view-
able area, playing back the score, and making drag selec-
tions with the mouse, do not. With score processes, the
program also records whether or not a command had any
effect, e.g., the user attempting to transpose a rest or make
a deletion when the cursor is in a blank measure. This al-
lows the program to skip over commands which had no im-
pact when undoing, and also makes it possible to remove
empty operations from consideration for analysis.

3.4 Separation of Identity from State

Whether using qualitative or quantitative data, working with
multiple versions of a single score often can lead to refer-
ence problems. The score is not static over time in these
situations, but most of our musical terminology for label-
ing material depends on it being so. For example, a label
such as “the first A5 in measure 7” is tied inextricably to
its current state. If the note is transformed, or measures
are added in front of it, it is no longer an accurate descrip-
tor. Adding timing information makes it easier to find the
particular material as it existed at the moment, but it does
not provide a sense of its identity across time. Labeling
systems may be used where the software supports it, but
these depend on the composer or the researcher to main-



tain consistency, as indicated by David Collins notes in his
long-term study of compositional process [1].

Rather than identifying material in the score based on
mutable state, it is a better approach to use a permanent
identifier that is decoupled from state, e.g., “note #1273”.
In relational database design, synthetic keys are preferred
over natural keys for this same reason in that they preserve
the unique identity of a row even when its values change.
By using a synthetic key to identify notes and other ob-
jects, continuity across time is preserved. It also makes it
simple to compare different versions of the same passage
which are separated by a large amount of time. This does
not preclude searches based on content or comparison, but
it reduces dependency on comparison. It is worth noting,
however, that this approach is only practical in a situation
where the program automatically manages this informa-
tion.

Thema identifies material by using unique identification
numbers. Each object in the score has a unique, permanent
identifier as well as a version number. The first value is
static and identifies an object across time; it is also guar-
anteed to be unique across object classes, e.g., for a note
with the identifier #1273, no other objects in the database
will share the same identifier, even across scores. The sec-
ond value indicates the specific version of the object within
the database table; each version occupies a row in the ta-
ble. The permanent identifier decouples an object’s iden-
tity from its state which allows searches to be conducted
on the basis of identity rather than musical content. Search
based on comparison is certainly still possible, but it is not
necessary in order to locate material across time. This is
useful because identity-based searches will typically run
several orders of magnitude more rapidly than comparison-
based ones; for example, it is much simpler to find the his-
tory of a particular group of notes by searching for rows
with corresponding identifiers than it is to compare thou-
sands of iterations of a score.

3.5 Attribution and Context

When storing data, it is useful not only to be able to iden-
tify changed material but also to know how the changes
were effected. For example, a “cut” operation is identical
to a “clear” operation in terms of the difference between
successive states in the score; in the case of a “cut” com-
mand, however, it is likely that the material may reemerge
as the result of a “paste” command, and it is helpful to
identify this relationship as it indicates a larger cognitive
process. In this example, Thema will not only indicate the
command type during storage, but it will also store a set of
parent-child relationships between the source and destina-
tion materials so that the link between the two states of the
score—however distant—is maintained. The software also

records the context of the program, including the location
of the cursor, any selections in the score, the current state
of playback, and so forth.

Additionally, in storing objects, Thema makes a distinc-
tion between directly edited objects and objects that have
changed state as a result of edits to other objects. For ex-
ample, a change in the duration of a note appearing at the
beginning of the measure would affect the state of subse-
quent notes; the first note would be considered to be di-
rectly edited, while the other notes would be marked as in-
directly edited in the database. Similarly, deleting a mea-
sure causes the measure numbers of all subsequent mea-
sures to be decremented. By indicating the target of the
operation, Thema reduces ripple effects in the data and pro-
vides a more accurate picture of the composer’s actions.

3.6 Model Objects

Latency can be a challenge for object-oriented applications
which use databases for storage. If an object changes be-
fore it is correctly stored, the values in the database could
become inconsistent with the program values. At the same
time, it is important that the user interface for the program
is responsive to its user, so it is also impractical to delay
processing user input while storage is occuring. To ad-
dress this problem, Thema uses immutable data objects
between the application logic and the database. For ob-
ject in the score or the environment, the program maintains
an immutable data model of each object’s current state,
e.g., a Note object contains a reference to a NoteModel
object. 3 When an object may have changed as the re-
sult of a command, a new model is constructed and com-
pared against the previous state; if different, the new model
is added to the storage queue and replaces the previous
model. Though the construction of models increases mem-
ory requirements, it also allows storage to safely proceed
in a separate thread from the user interface, ensuring re-
sponsiveness while maintaining data integrity. Because the
model objects cannot change once created, they may also
be safely cached in memory in order to accelerate loading
when undoing or redoing actions in the score. Each model
has two fields titled process and kill process. These
fields serve to mark the lifespan of the specific model. Fig-
ure 3 and table 1 show an example of the lifecycle of mod-
els in Thema.

4. DATASET

In order to establish a dataset for studying compositional
process data collected in Thema, a study was conducted
at New York University with ten graduate-level composers
creating piano pieces using the software. Subjects were

3 For a useful discussion of the virtues of immutability, see [15].



Figure 2. Entities, models, and the database
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introduced to the software via a tutorial session, and were
then asked to notate a brief excerpt from Bartok’s Mikrokos-
mos; the excerpt was selected because it would require
users to perform a variety of tasks, handling time-signature
changes, articulations, and multiple voices within a staff.
Following this, the remainder of the four-hour session was
spent composing a short piano piece for an intermediate-
level performer in a style of the composer’s choosing. This
controlled setting ensured that participants had access to
a full-size MIDI keyboard and were able to receive techni-
cal support if they had questions about the software. While
this arrangement is not ideal from the standpoint of natural-
ism, it ensured that the data was captured reliably and that
composers were able to use the program, and the knowl-
edge gained will allow for future, less-restrictive studies to
proceed. Though the composers had relatively little time
to work with the software, all of the composers were able
to complete the study. At the end of the session, the com-
posers provided a segmentation of the work, indicating ma-
jor sections, as well as any smaller subdivisions. The com-
posers were compensated for their time and agreed to re-
lease their work and data under a Creative Commons li-
cense with the option of being attributed for their work or
remaining anonymous. 4

In addition to capturing quantitative data, Thema also
recorded screen captures for every entry in the process ta-
ble. The bounding-box coordinates for currently visible
notes, dynamics, and articulations were also stored into
a table in the database. This makes it possible to create
graphical overlays on the score images without having to
use the program itself, and provides a simple means of
rapidly browsing through past states of the score. Non-
linear browsing and montaging can be realized via database
queries, e.g., “select all activity within a two-minute win-

4 The terms of the license are available at https:
//creativecommons.org/licenses/by-nc-sa/4.0/

entity id process kill process
127 439 239 245
133 440 239 247
127 441 245 253
145 442 245 null
133 443 247 250
127 444 253 null

Table 1. Entity states from fig. 3 as represented in the database.

dow of a clipboard operation” or “show all versions of the
selected passage.”

5. VISUALIZATIONS

Thema contains a suite of visualizations in a variety of
formats for examining compositional data. These visual-
izations can be synchronized together via a central time
slider. For example, one window might contain the score
at the time indicated by the slider, while another window
displays the structure of the score over the course of a two
hour sliding window, and a third window contains a score
which displays incoming pitches from the MIDI keyboard
in a two minute window. Each window can also contain
multiple graphical overlays, such as, for example, show-
ing the location in the score and duration of playback su-
perimposed on the long-term structural view. Thema also
features an API for developing user-defined graphical over-
lays.

The score overlay section of the API allows programmers
to access the drawing subroutines for notes in the score.
Figure 4 shows a heat map of the composer’s edit activity
superimposed on the score.

Figure 4. Heatmap Overlay

In figure 5, the arrows between pairs of notes indicate
pairs of notes that were edited in close time proximity to
each other. The weight of the line is proportional to the
number of times they were edited as well as how closely in
time they were edited, with simultaneous edits producing
thicker lines. As can be seen, the notes in the first two
measures are densely connected to each other; they are also
connected to the previous (unseen) measure. The notes in
the last measure, however, are not connected to the notes in
the prior measures, indicating that they were never edited
in close time proximity to the notes in the second measure.
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This location is also one of the major boundaries in the
score indicated by the composer.

Figure 5. Edit Time Connections Overlay

Observations such as this inspired the development of
a novel pitch-agnostic boundary detection algorithm, de-
scribed in [14, p.183-190]. The algorithm operates on the
premise that low-level musical boundaries parallel bound-
aries in the composer’s process as represented by edit times;
similarly, areas of musical continuity in the score are more
likely to be closely related in terms of editing time. While
the premise is naive, when tested against the boundaries
indicated by the composers, the algorithm achieved sur-
prisingly respectable results. Future work will address the
algorithm and its parameters in depth, and compare the
segments found via this method against those found by
content-based algorithms.

6. CONCLUSIONS AND FUTURE WORK

The sample size from the NYU study is small, but it demon-
strates that Thema can be an effective tool for research.
More data in this area is needed, particularly in tandem
with current qualitative methods. The planned public re-
lease of the software in the Fall of 2015 will allow com-
posers to experiment with the program over time and in
a naturalistic setting, with the option of sharing their data
with researchers. Development is also underway on a wrap-
per written in Python to convert Thema’s data into Music21
streams and this will provide access for other researchers
in computational musicology.

Low-level musical behavior has not as yet received much
attention in the compositional process literature, and it is
hoped that this tool will provide a new means for studying
it and, in so doing, allow compositional process research to
connect to existing research in computational musicology.
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