
NON-OVERLAPPING, TIME-COHERENT VISUALISATION OF ACTION
COMMANDS IN THE ASCOGRAPH INTERACTIVE MUSIC USER

INTERFACE

Grigore Burloiu
University Politehnica of Bucharest

Faculty of Electronics, Telecommunications
and Information Technology
gburloiu@gmail.com

Arshia Cont
MuTant Team-Project

IRCAM STMS UMR, CNRS, INRIA, UPMC
cont@ircam.fr

ABSTRACT

Integrated authoring and performing of mixed music
scores, where musicians interact dynamically with com-
puter-controlled electronics, is enabled by the Antescofo
state-of-the-art software package. Composers are able to
plan computerised actions through a dedicated program-
ming language, and performances are then synchronised in
real time. AscoGraph is the dedicated graphical interface
that allows users to configure Antescofo behaviours and vi-
sualise their layout over a mixed music score. This paper
presents developments in the direction of increased clar-
ity and coherence of AscoGraph’s visualisation of com-
puterised action scores. Algorithms for efficient automatic
stacking of time-overlapping action blocks are presented,
as well as a simplified model for displaying atomic actions.
The paper presents the improvements in score readability
achieved, as well as the challenges faced towards a com-
plete representation of dynamic mixed scores in the Asco-
Graph visual environment.

1. INTRODUCTION

This paper describes a model of interactive visualisation
for composition and performance of mixed music reper-
toire. Mixed music is commonly referred to as the
live association of human musicians with interactive
software/hardware during live music performance; as well
as the authoring (composition) within this mixed medium.
Among common practices of mixed music, score follow-
ing has been an active line of research where the com-
puter is equipped with a real-time machine listener that dy-

Copyright: c©2015 Grigore Burloiu et al. This is an open-access

article distributed under the terms of the Creative Commons

Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

This project was partially funded by the French ANR INEDIT Project.

namically aligns a musician’s performance to a pre-written
music score and decodes performance parameters, which
can be used to interpret and evaluate computerised actions.
One can think of such a compositional paradigm as an ex-
tension of musical automatic accompaniment application,
where accompaniment playback is replaced by programs
acting on various aspects of sound and music computing.

Visualisation for mixed music is a challenging task for
several reasons. The score is a joint combination of two
main components: one that describes expected events from
human musicians as extensions of classical musical nota-
tion; and one that describes computerised, or electronic ac-
tions. The two components are strongly-timed and most
often aligned during authoring and synched dynamically
during performance. Computerised actions in turn have
heterogeneous time models: they can be discrete message
passing, or continuous curves, or dynamic calculations.
Their temporal ordering can be described as sequences of
delays expressed in absolute or relative time; actions can
be hooked sequentially (through delays inside a single se-
quence) or vertically (to an external event, condition or
synchronisation pivot). Composers and performers are pro-
ficient at dealing with authoring and interpreting a variety
of such parameters.

Enabling this level of expressivity in mixed music com-
position and performance is the goal of the Antescofo soft-
ware, a state-of-the-art system for mixed music compo-
sition which integrates a score following engine [1] and
a synchronous reactive programming language [2]. The
user/composer is able to plan complex dynamic electronic
actions which the system launches and controls during the
performance, in sync with the live musicians’ tempo. First
described in [3], AscoGraph is the dedicated graphic de-
velopment environment which enables visual feedback for
authoring and performing Antescofo mixed scores.

The AscoGraph workspace consists of two main sections:
the textual score editor and the graphical editor, which in
turn is split into an instrumental section and an electronic

mailto:gburloiu@gmail.com
mailto:cont@ircam.fr
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Figure 1. The ”classic” action block display in AscoGraph. The
musical timespans of Groups ONE, TWO and THREE are not
represented clearly because of the overlapping of group blocks.

actions section. The instrumental view and electronic view
are coupled in musical time along a common horizontal
timeline. During a performance, Antescofo’s score fol-
lower determines the position of AscoGraph’s graphical
cursor along the timeline.

This paper presents updates to AscoGraph’s electronic
action view, developed with two directions in mind: (1) a
clearer and more time-coherent visualization of Antescofo
scores, and (2) a step towards a complete, self-contained
visual notation format for mixed music scores. Section 2
presents the problem of overlapping action blocks, recast
as a subset of the two-dimensional strip packing problem.
The following section shows the three proposed algorithms
for re-arranging action blocks. Section 4 tackles the issue
of coherence between block width and musical time. We
conclude the paper with an evaluation of the present model
and future perspectives.

2. PROBLEM DEFINITION

We distinguish between physical time (measured in sec-
onds) and musical time (measured in beats). The amount
of physical time elapsed between actions depends on the
tempo detected during performance, and on the active syn-
chronisation strategies [2]. Meanwhile, Antescofo scores
are specified in musical time. Since AscoGraph was pri-
marily designed as a score visualisation tool, it employs a
musical timeline. When a physical time unit is specified in
a score (e.g. ”after 2 seconds”), in order to display it Asco-
Graph must first translate it to an ideal musical time (e.g.
”after 4 beats at 120bpm”).

Fig. 1 shows an example of the original AscoGraph ac-
tion block arrangement style. Here, each of the four notes
(drawn in red in the instrumental view’s piano roll) has one
corresponding action group block. Durations can – and of-
ten do – differ between the length of a note and that of its
associated electronic actions. While actions within a sin-
gle group (e.g. Group FOUR) are stacked consecutively
downwards, when two different action groups are partially
concurrent, the second group is drawn over of the first.
Consequently, the first group’s duration is no longer clearly
shown; things become even more confusing when overlap-

ping automation curves (e.g. the one in Group ONE) are
involved.

In order to rectify this loss of coherence and clarity, the
need arises to stack action groups in downward non-over-
lapping order, similarly to how elements within groups are
arranged. As the challenge becomes one of efficient man-
agement of 2D space, it is useful to describe it as a two-
dimensional strip packing problem. A subset of bin pack-
ing, strip packing is used in areas ranging from optimizing
cloth fabric usage to multiprocessor scheduling [4]. Algo-
rithms seek to arrange a set of rectangles within a 2D space
of fixed width and bottom base, and of infinite height. In
our present case, the width of the strip corresponds to the
total duration of the piece, and the rectangles to be placed
are the action group blocks.

A particular constraint separates our problem from the
rest of the bin packing literature. Unlike in existing bin
packing problems, all AscoGraph action blocks must retain
their X coordinate along the time axis. Since we are not
allowed to ”nudge” blocks horizontally, relying on existing
packing algorithms becomes impractical.

3. PACKING ALGORITHMS

We introduce three new algorithms for stacked action group
display in AscoGraph’s graphical editor. The user can
switch between one of them and the original display style
through the application’s View menu. The appropriate op-
tion will depend on score complexity and the user’s per-
sonal taste.

Please note: following bin packing convention, we shall
consider the rectangles as being placed on top of the strip
base. Naturally, in the AscoGraph environment the situa-
tion is mirrored and we build downwards starting from the
upper border.

3.1 First Fit (FF)

The first option is the trivial solution of placing the blocks
in the first space they will fit, starting from the base. The
benefits of this option are speed and predictability: blocks
are placed in the order in which they appear in the source
code text, which is also their scheduled temporal order.

The downside can be intuited from Fig. 2a and b. We
propose a worst-case scenario: a set of blocks with increas-
ing heights and, for simplicity, all equal widths. While FF
would stack them on top of each other (Fig. 2a), the opti-
mal method would stack them two by two (Fig. 2b), so that
the maximum height is given just by the final two elements.

3.2 First Fit Decreasing (FFD)

Note that in the previous case, the optimal configuration
can be reached by simply reordering the blocks by height.



 

(a) FF

 

(b) OPT (FFD)

Figure 2. Horizontally constrained strip packing. Boxes are
numbered in temporal (horizontal) order. This layout is arranged
by FF in (a) and optimised by FFD in (b).

 

(a) FFD

 

(b) OPT (FFDT)

Figure 3. Horizontally constrained strip packing. Boxes are
numbered in temporal (horizontal) order. This layout is arranged
by FFD in (a) and optimised by FFDT in (b).

This insight lies at the root of the classic FFDH strip pack-
ing algorithm [5]. In our case, the FFD algorithm orders
the blocks by non-increasing height, after which the First
Fit process is applied. 1 Fig. 3a shows an FFD arrange-
ment, along with the optimal solution at Fig. 3b.

3.3 First Fit Decreasing Towers (FFDT)

Again, the optimal configuration in the previous example
points towards the next algorithm. We propose a greedy
heuristic that builds upon FFD while tackling AscoGraph-
specific situations like one action block sharing time with
several blocks on both sides of it. The basic goal is to
minimise gaps, such as the one between blocks 2 and 3 in
Fig. 3a.

The FFDT algorithm first orders all blocks as in FFD.
Then, action group towers are defined at the time-axis in-
tersections between two or more group blocks. Their height
is equal to the sum of the heights of their component blocks.
For instance, in Fig. 3a and d the rectangle 2 is part of four
towers: Ta{r1, r2},Tb{r2} 2 ,Tc{r2, r3} and Td{r2, r3, r4}.

The entire width being now split along these virtual ver-
tical strips (towers), we are able to refine the ordering of
the blocks. The first criterion is the decreasing maximum
height among the towers each block is a member of. If
this maximum tower height is equal for two blocks, then
the second criterion is decreasing number of towers each

1 The difference to the classic FFDH algorithm is the absence of hor-
izontal levels. New blocks are stacked at the minimum possible altitude
rather than a common level.

2 A minimal tower only contains one action block.

(a) FF - action blocks are placed as close to the baseline as
possible, in the order in which they appear in the code.

(b) FFD - blocks are ordered by height before being placed.

(c) FFDT - blocks are ordered according to a gap-
minimisation heuristic before being placed.

Figure 4. The three AscoGraph packing options.

block is a member of. If this number is equal as well, we
leave the FFD ordering (non-increasing block height) un-
touched.

By definition, the maximum tower height is a definite
lower bound of any AscoGraph strip packing configura-
tion. Therefore, in the FFDT heuristic the tallest tower will
always be placed first, in an attempt not to overshoot this
lower bound. Among its component blocks, the ones that
are shared with many other towers are dropped closer to the
base - the intention again being to maintain tower integrity
as much as possible. Lastly, as with FFD, tall blocks are
prioritised so as to fill gaps efficiently.

An AscoGraph use-case comparison of the three algo-
rithms can be seen in Fig. 4. In it, we illustrate the or-
derliness of FF and the compactness of FFDT, with FFD a
potentially useful compromise between the two.



4. TIME COHERENCE OF ATOMIC ACTIONS

A basic element in Antescofo’s reactive language is the
atomic action. Atomic actions can be part of larger dy-
namic constructs, but often they are simple messages to
be triggered at a specific point in time. Since they are in-
stantaneous, their visual representation taking up horizon-
tal space on the action timeline is discordant. Moreover,
as figures 1 and 4 show, they often clutter the workspace
unnecessarily.

Our solution to more accurately represent action mes-
sages is to group all instances from a specific hierarchical
level and display them on a single line as small circles, or
conceptual points. When the mouse hovers over such a
point, a list of the messages it contains is shown. Fig. 5
shows the expanded list for Group THREE; the messages
are set at 3 different points in time, which is why 3 points
are present in the message line.

Our new model is fully time coherent and considerably
clearer than before. The user experience improvement over
the classic model becomes most obvious when dealing with
complex scores with many messages - see Fig. 6. With the
timeline fully zoomed out, the old model offers a less accu-
rate overview of the activity in the electronic score. Action
durations are impossible to estimate; the most egregious
problem being at the final note of the score, where, with
nothing to stop them, musically instantaneous message ac-
tions take up an inordinate amount of space in the time-
line. Meanwhile, the new model neatly groups messages
together and offers a clear view of action block distribu-
tion in time and individual durations.

5. CONCLUSIONS AND FUTURE WORK

We have shown an improved layout mechanism for elec-
tronic action groups over a musical timeline in AscoGraph.
By stacking action group blocks we ensure information in-
tegrity and coherence, while expanding the vertical real es-
tate used. The most basic stacking method, First Fit, is
also the most easily readable option for scores of mod-
erate depth. We also proposed two increasingly efficient
stacking algorithms, FFD and FFDT, for scores contain-
ing larger concentrations of actions per time unit. While
superior algorithms are technically conceivable (possibly
a metaheuristic scheme built on top of FFDT), the present

Figure 5. Time-coherent message circles display

(a) old model: blocks overlap, messages occupy horizontal
space

(b) new model: blocks are stacked, messages are grouped
in time-coherent points

Figure 6. Comparison of old and new AscoGraph models over a
complex score.

options were deemed appropriate for the practical use and
the processing overhead of the AscoGraph software.

Finally, we have introduced a method of displaying re-
lated messages on a single line which preserves group hier-
archy. The main advantages are time coherence and verti-
cal compactness. Still, this model can be seen as a compro-
mise in our quest for a completely specified, self-contained
visual notation format which we proposed in the introduc-
tion. Dynamic constructs from the Antescofo language are
in a similar situation. For instance, a Curve whose dura-
tion is a dynamic variable: in this case, AscoGraph cannot
know its exact plot over time before execution.

Therefore, one direction of future research is a perfor-
mance simulation mode, decoupled from the compositional



display described thus far, in which all messages, Loops
and other dynamic constructs are represented as they ”hap-
pen” in an offline simulation. This function is currently in
prototype form, having been first described in [3].

However, the need remains for a graphic compositional
model that clearly describes dynamic behaviour and action
results. With the growing crystallisation of Antescofo’s
language into a mature, stable package, the path is now
open for research in this direction.

6. REFERENCES

[1] A. Cont, “Antescofo: Anticipatory Synchronization
and Control of Interactive Parameters in Computer
Music.” in International Computer Music Conference
(ICMC), Belfast, Ireland, Aug. 2008, pp. 33–40.
[Online]. Available: http://hal.inria.fr/hal-00694803

[2] J. Echeveste, A. Cont, J.-L. Giavitto, and F. Jacque-
mard, “Operational semantics of a domain specific
language for real time musician-computer interac-
tion,” Discrete Event Dynamic Systems, vol. 23,
no. 4, pp. 343–383, Aug. 2013. [Online]. Available:
http://hal.inria.fr/hal-00854719

[3] T. Coffy, J.-L. Giavitto, and A. Cont, “AscoGraph: A
User Interface for Sequencing and Score Following
for Interactive Music,” in ICMC 2014 - 40th
International Computer Music Conference, Athens,
Greece, Sep. 2014. [Online]. Available: https:
//hal.inria.fr/hal-01024865

[4] R. Thöle, “Approximation algorithms for packing and
scheduling problems,” Ph.D. dissertation, Christian-
Albrechts-Universität zu Kiel, 2008.

[5] J. Coffman, E. G., M. R. Garey, D. S. Johnson, and
R. E. Tarjan, “Performance bounds for level-oriented
two-dimensional packing algorithms,” SIAM J. Com-
put., no. 9, pp. 808–826, 1980.

[6] J.-L. Giavitto, A. Cont, and J. Echeveste. An-
tescofo a not-so-short introduction to version 0.
x. [Online]. Available: http://support.ircam.fr/docs/
Antescofo/AntescofoReference.pdf

http://hal.inria.fr/hal-00694803
http://hal.inria.fr/hal-00854719
https://hal.inria.fr/hal-01024865
https://hal.inria.fr/hal-01024865
http://support.ircam.fr/docs/Antescofo/AntescofoReference.pdf
http://support.ircam.fr/docs/Antescofo/AntescofoReference.pdf

	 1. Introduction
	 2. Problem Definition
	 3. Packing algorithms
	3.1 First Fit (FF)
	3.2 First Fit Decreasing (FFD)
	3.3 First Fit Decreasing Towers (FFDT)

	 4. Time Coherence of Atomic Actions
	 5. Conclusions and Future Work
	 6. References

