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ABSTRACT

In this paper, we present an automatic method for visualiz-
ing a music audio file from its beginning to end, especially
for classical music. Our goal is developing an easy-to-use
visualization method that is helpful for listeners and can be
used for various kinds of classical music, even for complex
orchestral music. To represent musical characteristics, the
method uses audio features such as volume, onset density,
and auditory roughness, which describe loudness, tempo,
and dissonance, respectively. These features are visually
mapped into static two-dimensional graph, so that users
can see how the music changes by time at a look. We im-
plemented the method with Web Audio API so that users
can access to the visualization system on their web browser
and make visualizations from their own music audio files.
Two types of user tests were conducted to verify the effects
and usefulness of the visualization for classical music lis-
teners. The result shows that it helps listeners to memorize
and understand a structure of music, and to easily find a
specific part of the music.

1. INTRODUCTION

Music visualization is widely used in various music ac-
tivities for many purposes. Because music is an auditory
art, its visual representations can contain information that
cannot be transferred or preserved accurately with sound.
Music notation is a typical example of the visualized music
representations. It is designed for communication between
composers and performers. The notation systems thus have
been evolved to represent and deliver a composer’s inten-
tion as precise as possible.

For listeners, however, music notation has some limita-
tions. It contains too much information for listeners to in-
terpret and so only a small part can be understood while
following the music. Especially, in the case of orchestral
music, the score following task is quite difficult unless the
listeners are musically trained. Another problem is that the
notation does not show the entire structure of a piece of
music. The time scope of a music score that can be read
in a sight is limited to a few measures. The notation is
focused on delivering information about what is happen-
ing in a specific time. To understand the global structure,
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one needs to read through the score for a while, having a
certain level of musical knowledge.

As a way of making up the shortcomings of music no-
tation, audio-synchronized music scores have been devel-
oped [1]. Synchronized scores automatically follow music
on the score so that listeners can easily track where the
currently playing measure is or select the measure on the
score to play the music from the position. However, such
systems require a synchronization process between audio
and score. Manual synchronization is too laborious to pro-
cess a large set of pieces, whereas automatic one, an active
research topic in the area of music information retrieval
(MIR), is not accurate enough particularly for large orches-
tral music. Above all, these solutions still cannot show the
entire structure of a piece.

In the case of classical music, particularly for long in-
strumental pieces, visualizing information about the entire
structure can be helpful to music listeners in that they do
not contain lyrics or clear storytelling to follow. So addi-
tional information about the music is required to help lis-
teners to understand the music. A traditional way of pro-
viding the information is giving a lecture or writing a pro-
gram note. But these requires professionals who can ex-
plain the music. Many researchers instead have suggested
a content-based approach to visualize the entire structure
of music from audio. Most of automatic music structure
visualization methods are based on self-similarity between
each part of a piece [2, 3, 4]. These methods show a repeti-
tive structure of the music based on the self-similarity. Fur-
ther information about the research is introduced in Sec-
tion 2. In general, it is not easy to interpret the meaning of
the visualizations. Finding the repetitive structure can help
music structure analysis, but its usefulness on listeners has
been not verified yet.

To address this problem, we present an automatic music
visualization method named music flowgram, which aims
to visualize an entire piece as an easy-to-understand im-
age. It extracts audio features from audio files and visual-
izes them on a static two-dimensional graph. In our pre-
vious research, we found that a simple static graph show-
ing the change of volume of a music piece can help lis-
teners to concentrate more on classical music, compared
to spectrum-based real-time visualization [5, 6]. We have
improved this concept by adding additional features that
can represent other important characteristics of music, and
conducted user test to verify its effect on listening to clas-
sical music.

The later part of this paper is organized as follows. First,
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related work on visualizing music structure is briefly re-
viewed. Then, we present our visualization method in two
sections: concept of the visualization and audio features in
Section 3, and its implementation in Section 4. The de-
tailed information about user tests are described in Section
5, and results with discussion in Section 6. The last sec-
tion concludes the paper with a summary and our plan for
future work.

2. RELATED WORK

There has been some research on visualizing the structure
of a music piece, both in data visualization and MIR ar-
eas. The majority of them exploited the repetitive struc-
ture of music using self-similarity within a piece. Wat-
tenberg visualized it using an arc diagram that connects
each repetitive part with an edge being drawn as a semi-
circle [2]. Foote visualized the self-similarity as a two-
dimensional matrix where each element is calculated from
similarity between two audio frames [3]. Müller and Jiang
extended it to a scape plot representation that visualizes
the repetitive structure with varying segment size. Other
researchers combined this self-similarity information with
volume transitions over time [7]. There has been also re-
search that applies this structural information to music lis-
tening interfaces [8, 9].

Other than those based on repetitions in music, some work
visualized the structure using tonality such as key change
over multiscale segments [10]. Malt and Jourdan presented
a visualization method using statistical characteristics of
spectral information, including spectral centroid and stan-
dard deviation of the audio spectrum [11]. They illus-
trated the change of those information over time on a two-
dimensional graph, adding amplitude information as a color
of the graph. However, the most of the mentioned research
have not released an end-user application so that general
users can render their own visualization. Furthermore, this
research lacks user test or human side experiments that ver-
ify its effect and usefulness for listeners.

Besides the automatic visualization methods using au-
dio files or MIDI files, visualization of semantic structure
of music is also proposed [12]. This method contains a
lot more information than repetitive structure, for exam-
ple, traditional structure analysis of sonata form, motif de-
velopment, and how the role of each instrument changes
through the piece. But all of the information used in vi-
sualization is manually extracted from written explanation
of the music, and cannot be automatically computed from
audio files.

There is also music psychological research about visual-
izing whole music [13]. This research tested how people
describe short music with graphical representations. Par-
ticipants are asked to “make any marks” to describe five
short orchestral works after listening to the music. The re-
sult showed that musically trained participants more tended
to describe music with abstract representations such as sym-
bols and lines. Most frequently used mapping was X-axis
as time and Y-axis as pitch. The other type was pictorial
representations, which were mostly drawn by untrained
participants. Among 30 musically trained participants, 24

used an abstract representation and 21 of them were in con-
tinuous mode. This result indicates that a two-dimensional
graph is natural in human sense for representing whole mu-
sic piece.

3. MUSIC FLOWGRAM

The idea of music flowgram for music visualization is based
on dramatic structure of storytelling. Freytag explained
the structure of each story with two-dimensional graph vi-
sualization of tension progress [14]. Our idea is apply-
ing a similar concept to music: drawing continuous two-
dimensional graph that shows the change of music by time.
If listeners can see a dramatic structure of music, they could
feel more comfortable to concentrate on the music because
they can clearly see when the tension will increase or de-
crease. This is similar to watching an opera, for which
people are encouraged to know dramatic structure before
watching. The visualization will also help the listeners to
recall the sequence of the music, as people remember the
order of opera story based on the order of important events.

A similar type of visualization is waveform visualization
or volume graph. It shows the volume progress of the mu-
sic so that users can see which part is loud or quiet. This
type of visualization is used in SoundCloud 1 . Though vol-
ume is a highly important factor in deciding characteristic
of music, there are other quantitative parameters to explain
the music. Spectrogram is another way to show the vari-
ance of music as a two-dimensional image. However, it
contains too much details to deliver meaningful musical
information. Thus, more compact representations, which
effectively extract musical elements, is needed.

Considering that emotion is the most influential high-level
concept on listeners, we focus on musical elements that are
associated with the emotional aspects of music. Among
many suggested elements in this regard [15], we choose
loudness, tempo and harmony. For visualization, we repre-
sent them with volume, onset density and auditory rough-
ness, respectively, as below.

3.1 Volume

Unlike other genres of music, classical music consists with
many different sub-parts, each of which has a different
loudness characteristic. Therefore, temporal differences of
loudness can explain the structural information of music
effectively. We represent the loudness with volume which
is simply calculated as frame-level energy. Though more
complex measures of loudness could be adopted, we as-
sume that the volume is sufficiently effective in complex
musical sound.

3.2 Onset Density

Emotion of music is highly dependent on the tempo char-
acteristic of music, i.e, whether the music is fast or slow.
Beats per minute (BPM) is a typical way of representing
it. However, the single speed measure is not sufficient to
describe the tempo characteristic of music because note

1 www.soundcloud.com



passages can vary dramatically in the same tempo. For
example, a long note and multiple short notes can be lo-
cated in a single beat but they produce a different nuance.
For this reason, we represent the tempo characteristic with
the number of notes per second. Since we need to have
overall trend of local note population rather than the exact
number of notes for visualization, we use a simple onset
detection algorithm which counts note onsets in a selected
frame based on amplitude information.

3.3 Auditory Roughness

Quantifying the harmonic feature of music from audio is
typically carried out by chord recognition. However, recent
work pointed out the limitation of automatic chord recog-
nition [16]. Identifying chords can be arguable even for
musicologists, especially for complex classical music. The
research shows that the maximum agreement ratio between
two chord annotations among four annotations on “I Saw
Her Standing There” by The Beatles was only 65%. Also,
classical music includes atonal music or late-romantic mu-
sic like Wagner’s “Tristan und Isolde”. This makes hard to
employ automatic chord recognition for classical music.

Instead, we use auditory roughness which can represent
the tonality with a single value. It is a term used in the
acoustics and psychoacoustics literature to describe buzzing
sound quality that is produced by two sounds with differ-
ent pitch that is distinguishable but close to each other like
minor seconds interval. This feature is strongly associated
with harmonic dissonance. For example, major seconds or
minor thirds in a low register, which are usually avoided as
dissonant intervals in the western musical tradition, makes
high roughness. There are various models to calculate the
auditory roughness quantitatively. Among others, we em-
ploy a model presented by Vassilakis [17] that uses two
sinusoidal components with frequency f1 and f2 and am-
plitude A1 and A2:

R = X0.1 × 0.5Y 3.11 × Z

X = Amin ×Amax

Y =
2Amin

Amin +Amax

Z = e−b1s(fmax−fmin) − e−b2s(fmax−fmin)

s =
0.24

(s1fmin + s2)

(1)

where Amin = min(A1, A2), Amax = max(A1, A2), fmin

= min(f1, f2), fmax = max(f1, f2), b1 = 3.5, b2 = 5.7,
, s1 = 0.0207, s2 = 18.96. The term X represents the
dependence of roughness on intensity. For better under-
standing of this equation, we illustrate how the term Y
and Z change over the A1 and the frequency difference
fmax − fmin, and fmin, respectively, in Figure 1 and Fig-
ure 2. They show that roughness is higher when the am-
plitude of two sin wave is similar, and the minimum fre-
quency is lower. The roughness of complex sound can be
calculated by summing the roughness of each combination
of two sinusoidal components in the sound.

Figure 1. Change of roughness term Y by amplitude dif-
ference between two sinusoidal wave, where one ampli-
tude is fixed to 1 and the other varies

Figure 2. Change of roughness term Z by frequency dif-
ference between two sinusoidal wave. The frequency dif-
ference is represented as fmax/fmin

3.4 Visualization Scheme

As we mentioned above, representing music using a 2-D
graph with x-axis in time is widely used mapping. Among
three features, volume is the most accurate feature to cal-
culate from audio data. Also it is the most dynamic fea-
ture. Therefore, we use the volume as a Y value in our
visualization. For the other two features, a graph color
and a background color are used as mapping targets. Since
the auditory roughness is often correlated with the volume,
mapping it to the graph color can be somewhat redundant.
We thus map the onset density to a graph color and the
auditory roughness to a background color.

4. IMPLEMENTATION

Our purpose is building an automatic music visualization
system that can be easily utilized by general users. Pre-
vious visualization systems use symbolic data such as a
MIDI file or pre-analyzed text data, which are not readily
obtainable by listeners. Also, many of them ask users to
install a stand-alone application, which might have some
compatibility issue on user side or require some extra ef-
forts. Considering these problems, we design our system
such that, if users can access to audio content on a web
browser, the visualization is immediately rendered from
the audio file. We used web audio API which was devel-
oped for various audio applications under HTML5 specifi-
cation. Therefore, our visualization system can be run on
many web browsers such as Google Chrome and Mozilla



Firefox 2 .

4.1 Feature Extraction

When a user loads an audio file on the system, the file
is decoded to linear PCM data and saved as a buffer on
the browser memory. Then, samples are segmented by a
Hann window. The volume is calculated using root mean
square of audio samples for each window. The algorithm
for counting onsets uses local maxima of the calculated
volume sequence. Specifically, it compares each volume
value in the array with the next value. If it increases, the
increased amount is saved. This is accumulated if the vol-
ume keeps increasing. If the volume decreases, the algo-
rithm compares the accumulated amount and a threshold.
If the accumulated amount is larger than the threshold, it
is counted as an onset and the accumulated value is reset.
Otherwise, only the accumulated amount is reset. Though
it is not very sensitive for detecting note onsets in legato
passages, it is sufficient for detecting overall onsets in the
music.

To calculate the auditory roughness, we use a DSP library
for fast offline FFT processing 3 and detect 50 peaks from
the local maxima of the magnitude response. We then cal-
culate the auditory roughness from every pair of the peaks
and add them all.

The result of these three features are all normalized and
scaled to the size of HTML canvas. Since the auditory
roughness tends to be somewhat correlated with the vol-
ume, we make it up by dividing the auditory roughness by
the volume with a constant value. This compensation can
emphasize the dissonance in quiet passages.

4.2 Visual Mapping

We visualize the features using a 2-D graph with a single
continuous curve on an HTML canvas. The x-axis repre-
sents time and its width is fixed regardless of the length of
input files. The y-axis represents the volume curve along
with two color mappings. We downsample the features
such that a set of values are mapped to a pixel by averag-
ing. Onset density is mapped to the color of vertical lines
below the volume curve. Lines with high onset density are
colored with high saturated red on HSV scale. Auditory
roughness is mapped to the color of vertical lines above
the volume curve. Lines with high auditory roughness are
colored with bright clear blue on RGB scale and so those
with low auditory roughness is with dark dim blue.

4.3 Output

Once the visualization is generated and shown on the screen,
users can freely navigate the music through clicking on the
visualization. It takes a mouse input and changes the play-
ing offset of the music immediately. A progress bar shows
the current playing position. Users can make a music flow-
gram of a very complicate contemporary orchestral work,
for example, Salonens Violin Concerto, which is about 29
minutes long as shown in Figure 3.

2 http://jdasam.github.io/visualization/main.html
3 https://github.com/corbanbrook/dsp.js/

Figure 3. Music flowgram of Salonen’s Violin Concerto

Figure 4. Music flowgram of Sibelius Finlandia

5. EVALUATION

To evaluate the effectiveness of music flowgram, we set up
a user test for classical music listeners. The test consists
of two scenarios that imitate situations where they listen
to music on YouTube. The first case is listening to music
without any video, which contain a static image or slide
show of images such as an album cover or a picture of com-
poser on YouTube. The second case is searching a specific
part of a video when a short extracted audio clip is given.

The participants were 15 undergraduate students from Ko-
rea Advanced Institute of Science and Technology. All of
them were a member of amateur orchestra, with a regu-
lar experience of listening to orchestral music. We divided
them into two groups.

5.1 User Test A: Listening and Recall

In our previous research [5], we found that those who listen
to the music with a volume graph can identify an extracted
audio clip better than those who listened to the same music
without it. In this test, we extend it to a more active recall
task. That is, we evaluate how much music flowgram will
help a listener to concentrate on and memorize the music.
After listening to a movement from a symphony, partici-
pants are asked to describe how music changed over time
in an objective expression. This task requires much more
accurate musical memory compared to previous research
experiment, because participants need to recall the music
without any audio cue.

To design the test environment to be more realistic, we
used YouTube as a listening interface. We uploaded two
videos for each music, one with a music flowgram and the
other with an image of album cover 4 .

Participants listened to three music pieces and described
them in three different situations: with an album cover, a
music flowgram only while listening, and a music flow-
gram while listening and writing. Writing a note during
the listening was not allowed. That is, participants had to
describe music only with their memory or the music flow-
gram. The music for the tests were selected from rarely

4 https://www.youtube.com/playlist?list=
PLq7cRTjnYEi6fvwS3fSY1PsEDpNQdVRXA

http://jdasam.github.io/visualization/main.html
https://github.com/corbanbrook/dsp.js/
https://www.youtube.com/playlist?list=PLq7cRTjnYEi6fvwS3fSY1PsEDpNQdVRXA
https://www.youtube.com/playlist?list=PLq7cRTjnYEi6fvwS3fSY1PsEDpNQdVRXA


Song
(length)

RK1-1
(9:04)

RK1-4
(6:46)

B1-4
(7:18)

Group A Album cover Music flowgram (MF)
MF, maintained

after the listening

Group B Music flowgram
MF, maintained

after the listening Album cover

Table 1. The setting of the user test A

performed repertoire so that none of the participants had
possibly listened to the piece before. In addition, we se-
lected music with similar style to reduce the effect of dif-
ference between the music materials. Selected materials
are Rimsky-Korsakovs Symphony No. 1, first movement
(RK1-1) and fourth movement (RK1-4), and Borodins Sym-
phony No. 1, fourth movement (B1-4). The detailed set-
ting is shown in the Table 1.

To properly guide participants response, we provided an
example paragraph like below:

The piece starts with fanfare of trumpets. Then, cello
plays quiet and smooth theme. Some variations of the theme
are followed, and the dynamics get stronger. Then orches-
tra tutti play the main theme in faster tempo. Flute plays
fast and virtuosic solo passages. The same orchestra tutti
is followed. The key is transposed from major to minor,
and woodwinds play march-like melody. This melody de-
veloped further by brass and violin in fortissimo. The fan-
fare from the beginning reappears in a more splendid way.
Main theme is played again by cello. The orchestra tutti
in the middle appears again with additional coda, which
finishes the music. (Dvořák Symphony No. 8, fourth move-
ment, translated into English by the first author)

After the listening and recall test, participants are asked
to score each visually represented feature, based on how
well it represents the musical characteristics. Also, partic-
ipants were asked about how the listening experience with
the music flowgram was different from that without it.

5.2 User Test B: Searching an Excerpt

The second test was searching an excerpt of the music in
the YouTube video for the purpose of validating that a mu-
sic flowgram can help a listener to find a specific part more
quickly.

We rendered a music flowgram from downloaded You-
Tube videos, and attached it below the YouTube player, as
shown in Figure 5. The music flowgram image is linked to
YouTube video so that users can select the playing position
by clicking a specific position on the graph. We compared
this setting to a YouTube player only page that contains the
same video. Since the difficulty of searching task is largely
influenced by a characteristic of the excerpt, we chose ex-
cerpts from movie scenes, rather than choosing arbitrarily.
The selected movie is Lorenzos Oil and Birdman, which
used a short clip from the third movement of Mahlers sym-
phony No. 5 (M5-3), and the second movement of Rach-
maninovs symphony No. 2 (R2-2), respectively.

Each participant watched the movie clips and searched
the excerpted music parts on the YouTube video. There
were two movies and a corresponding web page including
YouTube videos of the music used in the movie clips. One

Figure 5. An example of the proposed system

Song
(length)

M5-3
(18:05)

R2-2
(10:11)

Group A YouTube with MF YouTube only
Group B YouTube only YouTube with MF

Table 2. The setting of user test B

of the web page included a YouTube player with a music
flowgram of the audio of the selected video, and the other
page only included a YouTube player. We arranged a dif-
ferent setting for each group, as described in the Table 2.

6. RESULT AND DISCUSSION

6.1 A. Listening and Recall

We checked the descriptions written by participants and
ma-tched the description to the corresponding part in the
music. Any phrase or sub-phrase that can specify a re-
hearsal letter from music was counted as a correct answer.
Considering the participants are all non-professional musi-
cian and the description was written after only one listen-
ing attempt, we allowed a certain level of wrong descrip-
tions, for example, incorrect instrument and melody iden-
tification. Many participants had confusions whether the
melody was reoccurred or newly introduced, and whether
the solo instrument was flute or oboe. But the confusion
between string and wind instrument was not allowed. The
paragraph below is an example of participants’ answer,
which is translated into English by the first author. Be-
cause Korean does not usually use a definite or indefinite
article, melody is translated without an article. A letter in
a parenthesis is annotation made by authors, which means
a rehearsal letter of corresponding part in the score.

Music starts with brass and bass( A). Main theme starts
with bass and cellos, violas, violins takes over the theme
and the pitch register goes higher(B). All the instruments
play main theme in fortissimo(C). Clarinet plays melody
and string plays melody(F). Then, the brass section is added
and play majestic chord(G). The same pattern is repeated
(Repetition). The flute plays melody and similar pattern is
played(I). At the last part, flute and oboe appear(T). After
majestic brass, timpani finish music (U).



Song RK1-1 RK1-4 B1-4
Group A

(n=8)
6.75

(SD: 1.49)
6.88

(SD: 2.23)
8.38

(SD:2.45)
Group B

(n=7)
9.14

(SD: 1.07)
6.86

(SD: 1.68)
6.71

SD: 1.98)

Table 3. Average score and standard deviation of correct
description in user test A

By this criteria, we scored how many parts of the music
is described in each description. The rehearsal letters are
referenced from an edition of Muzgiz, Soviet State music
publishing house, for both symphonies. The data analysis
was in blinded name to avoid bias.

The result on the Table 3 shows that the group with the
music flowgram recalled more parts of the music than group
with the album cover image, regardless of whether the mu-
sic flowgram was provided until the end of the writing step.
This result shows that the music flowgram can help a lis-
tener to memorize music more precisely as we expected.

There was almost no difference between two groups in
the case of fourth movement of Rimsky-Korsakovs sym-
phony, for which the only difference was the presence of
the music flowgram during the writing step. From this re-
sult, we infer that the music flowgram was easy to remem-
ber and recall, so that there was almost no disadvantage of
not watching it again while writing the description.

During the analysis, we found that the ratio of partici-
pants who mentioned the repetition of the piece was higher
in the group with the music flowgram. Both the first move-
ment of Rimsky-Korsakovs Symphony No. 1 and the last
movement of Borodins Symphony No. 1 are in sonata-
allegro form that includes a repetition of the exposition.
Four out of seven participants of group B mentioned the
repetition of the first movement of Rimsky-Korsakovs sym-
phony, while only one out of eight participants mentioned
in the other group. In the case of Borodins symphony, six
out eight participants mentioned it in the group A, while
two out of seven in the group B mentioned it.

Recognizing the repetition is important for understand-
ing a structure of music. Most of musical forms in clas-
sical music include repetition of main part. This is one of
the reasons why the former research about music structure
focused on repetitive structure. The repetition of exposi-
tion is an important characteristic of a sonata-allegro form.
This result also shows that our music flowgram is helpful
for listening and understanding classical music.

Comments from participants, which is shown in the Ta-
ble 4, also support the previous results. Many participants
answered that the music flowgram was helpful for under-
standing the entire structure of music. There was only one
participant who wrote negative comments only. Some of
the comments contradicted each other; some participants
answered that the listening was more interesting because
he can anticipate, but the other answered that it was less
interesting because it was easy to anticipate. Three out of
fifteen participants answered that they preferred audio only
listening environment. But they also commented that just
taking a look at the visualization was helpful for under-

Positive
comments

It was helpful for...
understanding an entire structure of music.
anticipating when will music get excited or relaxed.
knowing length of each section.
recognizing which part is repeating.
memorizing change of dynamic.
concentrating on music by comparing my own

anticipation and the actual music

Negative
comments

It was disturbing to concentrate on listening to the music.
It made listening less interesting because

it was easy to anticipate music.
It made me keep thinking about how much the graph

is accurate.

Table 4. Examples of comments on listening with music
flowgram

Parameter Average score (1 to 5)
Volume 4.6 (SD: 0.51)
Onset Density 3.4 (SD: 0.74)
Auditory roughness 1.9 (SD: 0.74)

Table 5. Evaluation for individual features by participants

standing the entire structure of the music.
Participants evaluation on each visual parameter is shown

in the Table 5. Most of the participants gave the highest
rate to loudness. The evaluation of the auditory roughness
was not positive. This is partially because of its visual
mapping to background color. Some of the participants
pointed out that the change of background color was not
easily recognizable.

6.2 B. Searching an Excerpt

The result of user test B is on Table 6. Because the task
is largely dependent on participants pre-knowledge about
the music material, we put answers from participants who
know the material well separately in Table 7.

For both pieces, it took less time for the group with music
flowgram to find the target part as we expected. In the case
of Mahlers symphony, the excerpt was in the very last part
of the music, which contains a loud brass section. So it was
a tough task to find it by navigating from the beginning of
the music. But when the music flowgram was provided, the
participants could only concentrate on the loud part. This
advantage greatly reduced the searching time, especially
for the participants who do not know the piece very well.

On the other hand, the excerpt form Rachmaninovs sym-
phony is in an early part of the music. So many partici-
pants can easily find the part by navigating without music
flowgram. This is the reason why the difference between
the two group is slight. But it is worth mentioning that
the shortest record was only 6 seconds, which included the

Song M5-3 R2-2
Group A

(n=6)
170 seconds
(SD: 138)

59 seconds
(SD: 32.9)

Group B
(n=6)

377 seconds
(SD: 153)

40 seconds
(SD: 29.6)

Table 6. Results of user test B (average of consumed time)



Song M5-3 R2-2
Group A

(n=2)
14 seconds
43 seconds

15 seconds
21 seconds

Group B
(n=1) 85 seconds 6 seconds

Table 7. Results of user test B with participants who know
well the material

loading time for the YouTube player. One of the partici-
pants found the excerpted part with a single click on the
music flowgram. Since the excerpt contains legato passage
of strings, the participant could easily find it by searching
a part with low onset density.

7. CONCLUSION

In this paper, we have presented an automatic visualiza-
tion method for representing music in its entirety. The
goal of our visualization is showing how the music changes
from beginning to end. The method visualizes music with
three audio features like volume, onset density, and audi-
tory roughness, which are highly associated with loudness,
tempo, and dissonance, respectively, in musical character-
istics. These features are visualized as a two-dimensional
graph. We implemented the method on a web page us-
ing Web Audio API and conducted user test for verifying
the usefulness of our method in the listening and searching
task. The results showed that listening to music with a mu-
sic flowgram helps listeners to memorize the music more
precisely. A music flowgram was also helpful for search-
ing a specific excerpt from music.

Despite of the overall positive results, there is still a large
margin for improvement. Auditory roughness, which is in-
tended for representing the harmonic characteristic of mu-
sic, was not satisfactory for many participants. For the fu-
ture work, we are planning to improve our algorithm for
detecting onset and calculating audio roughness. We are
also considering other audio features that can replace au-
ditory roughness such as tonal complexity [18]. Another
important challenge will be finding more intuitive and vi-
sually pleasing mappings for each parameter.
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cient algorithm for automatic score-to-audio synchro-
nization.” in Proceedings of the 5th International Con-
ference on Music Information Retrieval (ISMIR), 2004.

[2] M. Wattenberg, “Arc diagrams: Visualizing structure
in strings,” in Information Visualization, 2002. INFO-
VIS 2002. IEEE Symposium on. IEEE, 2002, pp. 110–
116.

[3] J. Foote, “Visualizing music and audio using self-
similarity,” in Proceedings of the seventh ACM inter-
national conference on Multimedia (Part 1). ACM,
1999, pp. 77–80.

[4] M. Müller and N. Jiang, “A scape plot representation
for visualizing repetitive structures of music record-
ings.” in Proceedings of the 13th International Society
for Music Information Retrieval Conference (ISMIR).
Citeseer, 2012, pp. 97–102.

[5] D. Jeong and Y. Noh, “Music visualization using vol-
ume graph and its effect on classical music lstening,”
2014.

[6] D. Jeong, “Music visualization using flow graph and its
effect on listening to classical music,” Master’s thesis,
Korea Advanced Institute of Science and Technology,
2015.

[7] N. Kosugi, “Misual: music visualization based on
acoustic data,” in Proceedings of the 12th International
Conference on Information Integration and Web-based
Applications & Services. ACM, 2010, pp. 609–616.

[8] M. Goto, “Smartmusickiosk: Music listening station
with chorus-search function,” in Proceedings of the
16th annual ACM symposium on User interface soft-
ware and technology. ACM, 2003, pp. 31–40.

[9] M. Goto, K. Yoshii, H. Fujihara, M. Mauch, and
T. Nakano, “Songle: A web service for active music
listening improved by user contributions.” in Proceed-
ings of the 12th International Society for Music Infor-
mation Retrieval Conference (ISMIR). Citeseer, 2011,
pp. 311–316.

[10] C. S. Sapp, “Harmonic visualizations of tonal music,”
in Proceedings of the International Computer Music
Conference, vol. 1001. Citeseer, 2001, pp. 423–430.

[11] M. Malt and E. Jourdan, “Le �bstd�–une representa-
tion graphique de la brillance et de lecart type spectral,
comme possible representation de levolution du tim-
bre sonore.” in Proceedings of L’analyse musicale au-
jourd’hui. Crise ou (r)/’evolution ?, 2009.

[12] W.-Y. Chan, H. Qu, and W.-H. Mak, “Visualizing the
semantic structure in classical music works,” Visualiza-
tion and Computer Graphics, IEEE Transactions on,
vol. 16, no. 1, pp. 161–173, 2010.

[13] S.-L. Tan and M. E. Kelly, “Graphic representations
of short musical compositions,” Psychology of Music,
vol. 32, no. 2, pp. 191–212, 2004.

[14] G. Freytag, Die Technik des Dramas. Hirzel, 1872.

[15] A. Gabrielsson and E. Lindström, “The role of struc-
ture in the musical expression of emotions,” Handbook
of music and emotion: Theory, research, applications,
pp. 367–400, 2010.

[16] E. J. Humphrey and J. P. Bello, “Four timely insights
on automatic chord estimation,” in Proceedings of the
16th International Society for Music Information Re-
trieval Conference (ISMIR), 2015.



[17] P. N. Vassilakis and K. Fitz, “Sra: A web-based re-
search tool for spectral and roughness analysis of
sound signals,” in Proceedings of the 4th Sound and
Music Computing (SMC) Conference, 2007, pp. 319–
325.

[18] C. Weiss and M. Muller, “Tonal complexity features
for style classification of classical music,” in Acoustics,
Speech and Signal Processing (ICASSP), 2015 IEEE
International Conference on. IEEE, 2015, pp. 688–
692.


	 1. Introduction
	 2. Related Work
	 3. Music Flowgram
	3.1 Volume
	3.2 Onset Density
	3.3 Auditory Roughness
	3.4 Visualization Scheme

	 4. Implementation
	4.1 Feature Extraction
	4.2 Visual Mapping
	4.3 Output

	 5. Evaluation
	5.1 User Test A: Listening and Recall
	5.2 User Test B: Searching an Excerpt

	 6. Result and Discussion
	6.1 A. Listening and Recall
	6.2 B. Searching an Excerpt

	 7. Conclusion
	 8. References

