
NETSCORE: AN IMAGE SERVER/CLIENT PACK-
AGE FOR TRANSMITTING NOTATED MUSIC TO

BROWSER AND VIRTUAL REALITY INTERFACES
Benedict Carey Georg Hajdu

Hochschule für Musik und Theater Hamburg
benedict_carey@icloud.com

Hochschule für Musik und Theater Hamburg
georghajdu@mac.com

ABSTRACT
NetScore is an extension of the existing MaxScore pack-
age (Hajdu, Didkovsky) which adds new functionality for
the rapid transmission and display of music notation on
remote devices through standard modern browsers with
WebSocket support. This was seen as a necessary devel-
opment for MaxScore due to the ubiquity of tablets and
other mobile devices, among other advantages for the
user, and future applications of the software. We chose a
server based solution executed in Java using the Jetty
library for both portability between different platforms,
and scalability. Novel applications facilitated by
NetScore include transmitting scores generated in
Max/MSP into virtual reality interfaces and more conven-
ient performance/ rehearsal of real-time generated music,
whereby devices commonly on hand such as
smartphones, tablets and laptops are used as e-scores
without requiring the installation of additional software.

1. INTRODUCTION
At the time of the emergence of Real-time composition as
a trend in the 1980s, proponents of the approach had to
have extensive knowledge of computer systems, or have
access to a technician that could assist them realise their
compositional ideas. Of the systems that did not require
knowledge of command line scripting and other advanced
techniques, few of them were designed for notation gen-
eration and the concept of real-time composition was to
be a difficult to realise goal until much later with the
advent of OpenMusic and PWGL [2]. In contrast, with
recent developments such as the Bach library of
Max/MSP/Jitter objects [1], MaxScore [2] and Abjad [3]
and interfaces that can work with web browsers to dis-
play score data such as INScore [4] and Scribe JS
(https://cruncher.ch/blog/scribe/), real-time musicians
have experienced a veritable explosion of devices with
which to perform from and produce complex symbolic
notation in real-time. These tools are certainly far more
accessible today to the average computer literate compos-
er than those that came before them. Yet this technique
remains in part highly technical, and while not prohibi-
tively so, the associated configuration, installation and
customisation of new compositions in addition to recon-
figuring those compositions for ever changing platforms
consumes much time for the composer. It may be the
downfall of rehearsals and in worst case scenarios, actual

concert performances should performers feel uncomfort-
able with the technologies they are asked to use.

A desirable outcome of the NetScore project was
to create a score viewer that required no advanced
knowledge on behalf of the person expected to operate
and read the score. When considering developing a solu-
tion for MaxScore that supports mobile devices, we
therefore considered it essential to develop a solution that
did not require any extra installation or configuration on
the users part, was platform independent and did not
consume significant amounts of system resources.
MaxScore, long associated with one of the authors’ other
similar projects Quintet.net [6], is at the heart of
NetScore. MaxScore is a Max object, which accepts mes-
sages that can create a musical score, add notes to it,
transform the notes, perform, save, and load the score,
and export the score to popular formats for professional
publishable results (for further info see
www.computermusicnotation.com). In addition we chose
a browser-based solution due to the ubiquity of mobile
devices such as tablets and mobile phones, since many
mobile devices available today contain a web browser of
some sort. According to gsmaintelligence.com at the time
of writing this paper there were as many as 3,763,381,520
unique mobile subscribers using a browser of some kind
to interact with web content. It is fair to say then that
these devices have indeed become ubiquitous; this num-
ber will no doubt continue to grow. The advantage of
using mobile devices to display real-time notation is not
just to do with how wide spread these devices have be-
come.

The WebSocket Protocol (Fette and Melnikov,
2011) allows two-way communication in browser-based
applications across a single HTTP connection. This pro-
tocol allows for the smooth interactions between server
and client required for musical performance and reduces
network overhead when compared with prior methods
such as polling. According to StatCounter the most used
browsers between October 2014 and October 2015 were
Chrome, Safari, Internet Explorer and Firefox respective-
ly (Figure 1), interestingly all of these browsers offer
support for WebSockets making this choice of protocol a
relatively safe one in terms of future developments of
NetScore.

The music community is not without existing so-
lutions to the problem of interacting with real-time nota-
tion through browser interfaces however. Flight, Melodi-
us, Scorio and Flat, are all commercial solutions that
offer in browser score viewing functionality. The GUIDO
HTTP server exposes much of the GUIDO API

Copyright: © 2016 Benedict Carey and Georg Hajdu. This is an open-
access article distributed under the terms of the Creative Commons
Attribution License 3.0 Unported, which permits unrestricted use, distri-
bution, and reproduction in any medium, provided the original author
and source are credited.

making it possible to create scores online using only
open source software [7]. Scribe
(https://cruncher.ch/blog/scribe/) a JS Library that al-
lows the user to render music notation directly within
web pages. LeadSheet JS performs a similar function
but leans towards Jazz Leadsheet production [8]. IN-
score now offers WebSocket support and even in-
browser interaction directly with the score material
itself [9]. These solutions are highly customisable but
they remain specific to the software packages that they
are a part of and are therefore restricted to their own
intended scope. The MaxScore package was already

designed to work over networks due to its close rela-
tionship to the development of Quintet.net. In a tech-
nical sense, its separation of the graphical and symbolic
representations of scores, meaning that the score files
can be efficiently rendered to disk as PNG files, is very
useful for network music applications. As the scores
can be quickly rendered as graphics files directly from
the LCD object in Max/MSP, adding this functionality
to the MaxScore package does not increase processor
overheads significantly on the host machine.

Figure 2. An example setup with NetScore, making use of its
modular architecture to enable multiple users to interact re-
motely across a range of software and hardware platforms
with minimal setup

2. NETSCORE IMPLEMENTATION

2.1 Four Separate Modules

NetScore operates using four separate components: a
MaxScore Client, NetScore Server, MaxScore NetCan-
vas, and MaxScore VR-Client. Communication be-
tween these components is facilitated via FTP and
WebSocket connections (Figure 2). With scalability a
key focus of this project already, NetScore is based
around a similar modular architecture, which allows for
a high level of customisability. This lets users to ex-
plore a wide variety of composition and performance
scenarios found in real-time and non-real-time composi-
tion such as live solo or group performance with e-
scores, network music rehearsal and performance and
VR collaboration. In fact a dedicated server terminal is
not required, and one can even run all four components
on the same workstation simultaneously if desired. This
kind of setup is useful for testing a composition envi-
ronment in its early development phase for example, as

Figure 1. Browser usage statistics between October 2014 and October 2015, these popular browsers all support WebSockets a
useful development for composers of real-time generated scores.

one can easily transport the various score data to wher-
ever it is required using the server.

As platform independence is an important con-
sideration in Max/MSP, MaxScore and Quintet.net, the
NetScore Server application itself is executed in Java,
much like JMSL [10], which MaxScore relies on for
data processing and storage. The NetScore helpfile is a
typical Max/MSP helpfile. It provides an example of
how to generate a MaxScore NetCanvas file though
automated editing of HTML and JavaScript files, creat-

ing a small webpage. This webpage is customised with
the websocket address of the host server. The resulting
html file can be transferred to the potential client via
whichever method they choose. Users are encouraged to
create their own implementation, so as to take ad-
vantage of the flexibility offered within the Max/MSP
and MaxScore environment. The VR client was created
using Unity 5 and currently supports the Oculus Rift
DK2.

(https://www.oculus.com/en-us/) with front
mounted or tabletop mounted Leap Motion camera on
OSX, and Google Cardboard on Android, with a view
to create a Windows and iOS version down the track. It
relies on the C# WebSocket implementation WebSocket
Sharp, which provides bi-directional communication
over a single TCP Port as is needed for use with the
NetScore server. (https://github.com/sta/WebSocket-
sharp). The user must manually select the IP of the
WebSocket server in order to achieve a connection.

2.2 WebSocket Image Server Implementation with
Jetty 7

The advantage of running a separate application as our
WebSocket server is that multiple remote connections
are possible, allowing for scenarios where different
MaxScore users are concurrently creating scores and
uploading them to the appropriate locations on the serv-
er, which are being continuously scanned for changes.
The user is still free to run the app locally of course,
which could be useful as in a situation where local per-
formance is to be the outcome and the networking func-
tionality is less important. We explored the potential for
using node.js from within Max, as well as other Java
WebSocket libraries, which were supported with the
older JVM. In the end we adapted source code devel-
oped by Desmond Shaw as the basis for the server ap-
plication (http://www.codepool.biz/how-to-implement-
a-java-WebSocket-server-for-image-transmission-with-
jetty.html), which we then modified to suit our purposes
adding functionality for handling the folder scanning
operations and our own filename referencing system for
requesting scores from the client side. After the hand-
shake is completed the client transmits a part number
request (user definable through the client interface) and
the desired part is delivered. The server understands any
integer as an instruction starting a part request, where a
“0” stops the server from scanning the folder for chang-
es for that particular client. Each WebSocket connection
is handled in a separate worker thread. In the console
window messages are displayed indicating the network
activity of all connected clients, and notifies the user of
any file changes. Only one copy of the server applica-
tion may be running locally at any one time per ma-
chine.

2.3 Image Handling

The PNG files generated by MaxScore can be forward-
ed via FTP or locally copied to a specific folder hierar-
chy on the terminal running NetScore Server with a
filename corresponding to which part they represent.
The server in turn creates WebSocket connections to
clients who have successfully completed the handshake
and reports their IP to a console window, and sends the
requested score whenever it changes. These PNG scores
are “pushed” to the clients as byte arrays from the serv-
er, where they are converted into images, and are either
applied as a texture in VR via a C# Unity script or dis-
played in a browser window. Graphic scores, with their
larger file sizes are better supported by this method than
if the page was to constantly refresh itself in the off
chance that the score file on the server had changed.

Currently PNG and JPEG formats are support-
ed by the Server application, and the user can choose to
manually transmit these file types to all connected cli-
ents using the Load and Send buttons in the server GUI,
for testing purposes (Figure 3). Images are translated
into byte arrays, transmitted and then converted back on
the other end by the client into graphics as with other
connections. A separate thread is run per connected
NetCanvas Client or VR client instance instead of it
restricting an IP address to a single connection, mean-
ing that a client can open multiple browser windows
and simultaneously stream different parts. On the client
side, in the MaxScore NetCanvas for example, the byte
arrays are reloaded into the page as images.

2.4 Client and Server Graphical User Interfaces

Figure 3. Running multiple browser windows
displaying different parts.

2.4.1 Max/MSP Help File

The Max/MSP help file illustrates the execution of a
real-time composition using MaxScore and NetScore to
customise a website to send to clients, and generate a
composition. The user can follow the steps outlined to
obtain the current external or local network IP address,
which can be used to build a small webpage that is sent
to users via email or other methods such as Apple’s
AirDrop or local file transfer. The file path where the
score files are to be saved must be specified here, but
alternatively the user can opt to send their image files to
the MaxScore Server via FTP. An example is given
whereby the user can generate a random real-time piece
of music with the help file.

2.4.2 Server Side

The MaxScore Server has a simple interface consisting
of a load and send button mainly for testing if a connec-
tion has been achieved. On launch, the user is prompted
to select a location for the score files. This is the folder
that will be scanned for changes in files with the appro-
priate file names and extensions. The main window
displays messages regarding the connection status of
clients and folder activity. It also reports every time it
forwards an image to a client and when a text message
or file request is received from a client. Any errors
associated with the connection are also reported here.

Figure 3. The Server interface, with its manual load
and send buttons, displaying a score file about to be
sent across a network.

Figure 4. Running multiple browser windows dis-
playing different parts.

Figure 5. MaxScore NetCanvas. This browser based
image client makes it possible to view realtime gener-
ated scores (or any picture file for that matter) on
iPads, iPhones, Android mobiles, Laptops - basically
anything that can run a modern browser.

2.4.3 MaxScore NetCanvas

The MaxScore NetCanvas (Figure 5) consists of a num-
ber of buttons for requesting scores from the server, a
score title and the contents of the most recently deliv-
ered PNG file. Since it is created based on a simple
HTML and JS webpage, the user is free to customise
this interface through text editing of the original re-
sources, located in the installation folder. Currently the

demo interface supports selection of separate parts and
a stop refresh button (figure 4). These can easily be
pinched to enlarge or flipped to rotate the orientation on
iOS and Android devices as is typical of a normal
webpage, if it is supported by the device.

2.4.4 Virtual Reality Client

The Virtual Reality client is built in Unity 5 as a col-
laboartive environment reminiscent of the stage layout
of past Quintet.net performances (Figure 5). Although
the MaxScore Server is required to serve scores to the
environment, (in the same fashion as scores are served
to browser clients), the actual multiplayer functionality
is handled by Photon server
(https://www.photonengine.com/en/PUN). This free
service supports up to 20 simultaneous player connec-
tions and delivers a high performance low latency inter-
action. Upon launching the application, each player
spawns into the next available spawn spot, set up in
front of a virtual score. It is currently possible to track
the users hands if they are using a leap motion control-
ler to facilitate conducting or performance of virtual
reality instruments designed in Max/MSP. Each VR
score in the environment has an attached C# script
which handles both the websocket connection and ap-
plies the incoming byte array as a texture to the object
to which it is attached (Figure 5). This means that for
each connected player, the scores in their own local
version of the client will change in time, even if latency
has affected the synchronization of a fellow player’s
avatar. A Leap motion controller can be connected in
the case of the OS X client, whose movements are
mapped directly onto the avatars skeleton, creating
convincing interactions appropriate for a convincing
VR performance. Players are able to select virtual in-
struments running in Max/MSP, communication is
facilitated with a customised version of the Max/Unity
Interoperability Toolkit [10].

Figure 5. – Above, C# script to receive texture data
via WebSocket and apply to surface, below, Virtual
reality client with notation texture applied to music
stand.

3. FUTURE DIRECTIONS
Although the NetScore package itself offers some new
possibilities for MaxScore users, it is still in its earliest
phases of development. Firstly, there is a great deal of
functionality we could still implement. Interactive ele-
ments from within the browser based canvas as well as
the VR interface could take the project even further in
the direction of the Quintet.net package. Even during
the development phase we have already seen changes to
how iOS handles HTML files via email for security
reasons and have had to alter the way the customised
MaxScore NetCanvas files are served to them. Keeping
abreast with developments across multiple platforms
presents additional challenges that will hopefully be
made easier through our deliberate reliance on Java and
Unity, which facilitate fairly rapid development across
platforms. The VR client also has potential in the future
to be used as a basis for further experiments and artistic
work, and could hopefully become better integrated
with the existing Quintet.net software, where it could
act as an input device in addition to handling score
display.

On the other hand using libwebsockets
(https://libwebsockets.org/index.html) it may be possi-
ble to create a MaxObject that acts as a WebSocket
Server but so far no implementation has been attempt-
ed. Another version of the server relying on MassMo-
bile may be another way to achieve this [12]. If such a
solution were possible, the NetScore package could be
significantly simplified, without a loss of functionality.

It remains to be seen how NetScore will perform in
performance scenarios, and benchmarking is planned
for the future. The primary purpose of this proposed
research would be to reduce latency to the point where
scores can be delivered at a much higher rate than is
possible with the current system, which utilises a 500
ms refresh rate, far to slow to facilitate animation for
example, but certainly suffient for the puposes of ex-
treme sight reading [11]. It is without a doubt a very
exciting prospect to be able to control Ableton Live in
LiveScore, a package of Live devices built with
MaxScore, with our VR interface, so as to free the real-
time composer from the distraction of a laptop screen,
mouse and keyboard interaction system. Additional
efforts to embed the fonts used for symbolic representa-
tion within MaxScore in SVG files using the Apache
Batik SVG toolkit
(https://xmlgraphics.apache.org/batik/) could potentially
introduce client-side control over the resolution of
scores. Using the ol.wsserver
(http://olilarkin.blogspot.de/2014/01/olwsserver.html)
object from Oliver Larkin or similar could handle reso-
lution or other rendering specific requests to Max/MSP
using the current system however and would be some-
what easier to implement.

4. CONCLUSION
By extending MaxScore to mobile devices and a virtual
reality interface, the authors have achieved a welcome
upgrade to an already feature rich software package
with over a decade of previous development behind it.
The ability to integrate notation into virtual reality envi-
ronments is a novel development, and opens up a pleth-
ora of creative and technical possibilities to the
Max/MSP/Jitter and Ableton Live communities.

Acknowledgments

The authors would like to thank he city of Hamburg for
its financial assistance via its Landesforschungsförder-
ung program and Desmond Shaw from Dynamsoft for
contributing his source code.

5. REFERENCES
[1] A. Agostini and D. Ghisi, "A Max Library for

Musical Notation and Computer-Aided Composi-
tion," Computer Music Journal, 2015.

[2] N. Didkovsky and G. Hajdu, "Maxscore: Music

notation in max/msp," in Proceedings of the Inter-
national Computer Music Conference, 2008, pp.
483-486.

[3] J. Freeman and A. Colella, "Tools for real-time

music notation," Contemporary Music Review,
vol. 29, pp. 101-113, 2010.

[4] D. Fober, G. Gouilloux, Y. Orlarey, and S. Letz,

"Distributing Music Scores to Mobile Platforms
and to the Internet using INScore," 2015.

[5] J. Freeman and A. Colella, "Tools for real-time

music notation," Contemporary Music Review,
vol. 29, pp. 101-113, 2010.

[6] G. Hajdu, "Quintet. net: An environment for com-

posing and performing music on the Internet," Le-
onardo, vol. 38, pp. 23-30, 2005.

[7] K. Renz and H. H. Hoos, "A WEB-based Ap-

proach to Music Notation using GUIDO," in Proc.
of, 1998, p. 98.

[8] D. Martín, T. Neullas, and F. Pachet, "LEAD-

SHEETJS: A JAVASCRIPT LIBRARY FOR
ONLINE LEAD SHEET EDITING."
(https://csl.sony.fr/downloads/papers/2015/dani-
15a.pdf)

[9] N. Didkovsky and P. Burk, "Java Music Specifica-

tion Language, an introduction and overview," in
Proceedings of the International Computer Music
Conference, 2001, pp. 123-126.

[10] I. I. Bukvic, Μ Max-Unity3D Interoperability

Toolkit: Ann Arbor, MI: MPublishing, University
of Michigan Library, 2009.

[11] J. Freeman, "Extreme sight-reading, mediated

expression, and audience participation: Real-time
music notation in live performance," Computer
Music Journal, vol. 32, pp. 25-41, 2008.

[12] N. Weitzner, J. Freeman, S. Garrett, and Y. Chen,

"massMobile–an audience participation frame-
work," in Proceedings of the New Interfaces For
Musical Expression Conference, 2012.

