
RESURRECTING A DINOSAUR -
THE ADAPTATION OF CLARENCE BARLOW'S

LEGACY SOFTWARE AUTOBUSK

ABSTRACT
This paper aims at describing efforts to conserve and
further develop the legacy real-time generative music
program AUTOBUSK by Clarence Barlow. We present a
case study demonstrating that a simple port of 30+ year
old code may not suffice to infuse new life into a project
that suffered from the abandonment of the hardware it
was developed on/for. In the process of resurrecting this
“dinosaur,” AUTOBUSK was entirely redesigned for the
popular music software environments Max and Ableton
Live (via Max for Live) and renamed DJster. It comes in
several incarnations, the most recent ones being DJster
Autobus for Ableton Live, a device for real-time event
generation and DJster Autobus Scorepion, a plugin for
the MaxScore Editor. These incarnations take advantage
of being embedded in current environments running on
modern operating systems and have since acquired some
new and useful features. As AUTOBUSK/DJster is based
on universal musical principles, which Barlow formalized
during the 1970’s while working on his generative piano
piece Çoǧluotobüsişletmesi, its algorithms are of general
applicability for composers and performers working in
diverse fields such as microtonality, interactive installa-
tions and/or film music. It has therefore inspired me to
lay the foundations of a shorthand notation, which we
will discuss in the last section.

1. INTRODUCTION
AUTOBUSK is a real-time generative program developed
by Clarence Barlow, which “took 272 days to write,
spread between 18 August 1986 and 30 October 2000.”
[1] It is one of the first ones of its genre, which includes
applications such as M by David Zicarelli, Joel Chadabe,
John Offenhartz, and Antony Widoff (launched in 1987)
[2], the Lexikon Sonate by Karlheinz Essl (development
starting in 1992) [3], George Lewis’ Voyager system
(development starting in 1993) [4] as well as Koan (re-

leased by SSEYO in 1995), which Brian Eno used exten-
sively for his generative pieces [5]. AUTOBUSK uses a
probabilistic approach and is based on universal1 musical
principles which Barlow formalized while working on
Çoǧluotobüsişletmesi (completed in 1979). It was written
in Pascal for the Atari ST computer platform, which be-
came immensely popular amongst European musicians in
the mid to late 1980’s—mainly due to its low price and
built-in MIDI ports. The first piece realized with this
system was Barlow’s performance art piece Variazioni e
un pianoforte meccanico in which a performer plays the
opening bars of the Arietta from Beethoven’s piano so-
nata op. 111 on a Disklavier, with the performance
gradually being taken over by AUTOBUSK controlling
the piano via MIDI. The performer eventually leaves the
piano to play by itself, only to return at the very end in
order to conclude the piece. Another piece of his, Pan-
dora (1989) took advantage of AUTOBUSK’s ability to
save generated scores as MIDI files. Cologne-based
American pianist Kristi Becker took the 3-part Finale
printout and arranged it for piano. Barlow composed a
few more pieces on the Atari but was eventually forced to
resort to a Windows emulator called Steem after Atari
stopped building computers in 1993.

2. AUTOBUSK - A CASE STUDY FOR
THE PRESERVATION OF A DIGITAL

MEDIA ART WORK
The issue AUTOBUSK users are facing are typical for
legacy software products. These are (1) decay of physical

1 I always appreciated the fact that Barlow’s algorithms aimed

at capturing universal musical principles such as tonal and
metric hierarchies, independent from personal style and bias.
While the existence of universals in music is still under much
debate, we are inclined to assume that distinct cultural efforts
manifest themselves as distortions of universals (which
would be much easier to formalize) rather than as unrelated
particulars. Hence, using AUTOBUSK/DJster as a universal
music machine justifies, the continued effort I have poured
into further developing this environment and exposing my
students to it, who repeatedly have raised, using someone
else’s brainchild to compose music, interesting questions
about ownership and intellectual property.

Georg Hajdu
Center for Microtonal Music and Multimedia

Hamburg University of Music and Theater (HfMT)
Harvestehuder Weg 12

20148 Hamburg

georg.hajdu@hfmt-hamburg.de

Copyright: © 2016 Georg Hajdu. This is an open-access article
distributed under the terms of the Creative Commons Attribution
License 3.0 Unported, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original author and
source are credited.

media and/or (2) abandonment of media types, formats
software, OS’s and hardware.

Efforts to save digital works and thus to contribute to
their longevity require pro-active preservation which
comes in the form of migrating files to current media,
using emulators to run old software or porting the code to
more recent platforms. The most radical approach is to
re-design the software, either by transcribing the algo-
rithms or re-creating them entirely. Fortunately, in case of
DJster I was able to fall back on several of Barlow’s
publications as well as his personal input. The most use-
ful resource was the website maintained by the University
of Mainz department of music informatics. It contains
links to a zip archive with the Atari files and a 54-page
user manual called "AUTOBUSK: A real-time pitch and
rhythm generator" [1].
The AUTOBUSK GUI has several panes (Figure 1) of
which the one on the left is most relevant. It features, for
three individual “streams”, a number of GUI items which
serve to control the generative process. Its algorithms
have been described by Barlow in his book Bus Journey
to Parametron [6]. An excellent introduction to the un-
derlying theory including an explanation of the terms
indispensability, indigestibility and harmonicity is given
in Barlow’s textbook On Musiquantics [7].

The panes on the right pertain to real-time MIDI control
as well as the creation and editing of parameter scores via
additional “helper” programs.

Figure 1: The GUI of Barlow’s legacy program AUTO-
BUSK, written in Pascal for the Atari ST platform.

For its input, AUTOBUSK reads three different file
types—some of which in binary format to save valuable
hard-disk space (mind that a floppy disk in the early
1990’s could only hold 1.4 MB). All three file types rely
on the conversion of human-readable precursor files in
text format:

• .mtr files, holding the stratifications of meters
such as “2 2 3” (for a multiplicative meter with
12 pulses), to be converted into .idp files, spell-
ing out the indispensability values for the given
meters.

• .cts files holding the cent values for the chosen
scales such as “0 200 400 500 700 900 1100
1200.” Upon conversion into .hrm files, these
values are expanded to the range from -9600 to
9600 cents, 0 cents being tonic pitch. In the
process, for each scale step, various tuning alter-
natives are taken into consideration of which the
one contributing to the best overall harmonicity
(Barlow’s term for tonal consonance) is chosen
and prioritized according to its individual har-
monicity value. This rationalization of the inter-
val set is a lengthy process, as large numbers of
combinations may need to be assessed.

• .prm files, to be converted into binary .prk files,
consist of the temporal sequence of control mes-
sages such “5 900 L 9 40,” denoting “set pitch
centre for player 1 (left) to 40 at 5.9 seconds.”

3. DJSTER - A RESURRECTION?
In 1992 while working as graduate student instructor at
CNMAT/UC Berkeley under David Wessel, I oversaw a
student project aiming at implementing the concept of
indispensability in Max 2.0. The resulting abstraction was
called dispenser and was used by me (and others) in vari-
ous projects. It later added support for additive meters as
well as user-defined arbitrary meters, which deliberately
work against the grain of Barlow’s “natural metric order”
which conceptualizes syncopations in terms of low “met-
riclarity” or phase-shifted outset pulses (see Figure 1) in
respect to a reference meter. It also became the basis for
the first version of DJster, completed in early 2008. Its
name is a reference to DJing as well as Barlow’s notion
of the indigestibility of a number, a concept central to his
notion of tonality [8].

Figure 2: The Max dispenser abstraction accepts vari-
ous meters in its right input. An arbitrary meter such as
Habanera requires the meter to first be appended to dis-
penser’s internal table with a message consisting of the
message name append-meter, a symbolic value and the
corresponding list of indipensabilities.

3.1 The Original Max Implementation

DJster was programmed in MaxMSP 4.6, preserving as
much as possible the original layout of the left pane,
while forgoing the implementation of MIDI control and
helper applications (Figure 3). Instead, all parameters are

exposed via the Max pattr system and controllable via
OSC messages. For backwards compatibility it can also
read and play AUTOBUSK input files. Translation of .cts
into .hrm files is achieved on the fly by table look-up of
“harmonic energy values,” thus no longer requiring the
time-consuming rationalization of the scales’ interval set.

Figure 3 shows the GUI of the 2008 version of DJster,
based on the generative music part of AUTOBUSK and
implemented in MaxMSP.

3.2 Version for Quintet.net

A second Max implementation exists for the networked
multimedia performance environment Quintet.net (Figure
4) [9]. It separates the streams into individual instances
and is capable of dealing with microtonality. Scale files
use key and value pairs, of which the key (a symbol such
Pentatonic) will appears in the scale menu (instead of just
an index). Since indispensability values are (as with har-
monicity) calculated on the fly, the conversion of .mtr to
.idp files is no longer necessary either. Pulse length and
event length are no longer limited to the original ranges
and all parameters dealing with pitch use cent resolution
for display and microtonal playback. Real-time control
can be exerted by sending OSC messages between vari-
ous Quintet.net components. In my classes, it has been
used as the target of Brain-Computer Music Interfaces or
gestural interfaces such as the LeapMotion (via a few-to-
many mapping performed by an artificial neural net-
work).

3.3 Ableton Live Device

The third incarnation represents the biggest leap (Figure
5): By creating a Ableton Live device via the Max for
Live API, DJster needed to be adapted to the philosophy
of its host, a DAW driven by beat and loop-oriented elec-
tronica. Pulse length and meter had to be reconsidered
and reworked into two parameters owned by the host
(song tempo and time signature) in addition to subdivi-
sion of the beat—settable in DJster device.

Figure 4: The GUI of the Quintet.net version of
DJster. It contains a few additional parameters on
the bottom added for the performance of Just Her
– Jester – Gesture.

Internally, in the DJster Autobus device, pulse length is
thus re-calculated by dividing 240000 by the product of
tempo, time signature denominator and the number of
pulses subdividing a beat:

€

Pulse_ length[msec] =
240000

tempo⋅ ts_ denom⋅ num _ psub
(1)

In turn, meter is derived by concatenating the prime fac-
torization of the time signature numerator with the strati-
fication divisors of the subdivision of the beat. E.g. for a
12/4 time signature with a quintuple subdivision of the
beat we get 2x2x3x5 as meter.

Figure 5: The GUI for the Ableton Live incarnation of
DJster.

As all of DJster’s parameters are automatable, .prm/.prk
score files are no longer supported. Interpolations be-
tween parameter values will now be performed automati-
cally by the host. Ableton’s arrangement view allows
continuous tempo changes as well as time signature
changes from one measure to another. The repertoire of
scales can easily be expanded simply by dropping files

from Manuel op de Coul’s Scala archive [10] onto the
Scale menu.

3.4 MaxScore Plugin

The last incarnation of DJster is a MaxScore Editor
Scorepion plugin, which shares Ableton’s tempo/time
signature/subdivision concept and is able to exchange
presets with the latter (Figure 7). MaxScore is a Max Java
notation object programmed by Nick Didkovsky [11]. A
visual editor for it was created by the author. It also pos-
sesses a plugin structure called Scorepion, which extends
MaxScore core functionality through the use of Max
patches invoked from a particular folder in the MaxScore
folder hierarchy. The DJster Autobus Scorepion fills
selected measures of a MaxScore staff with notes (Figure
6) and—with its non-real-time approach—brings back to
life AUTOBUSK’s ability to write its output to a MIDI
file readable by Finale, Sibelius and co. In DJster,
though, this intermediary step is no longer necessary as
this all happens in one environment. Therefore, work is
more intuitive and combines the manual approach of
traditional composition with the generative approach of
computer composers who prefer to tweak code rather
than music2.

Figure 6: Two measures of music in Carlos Alpha tun-
ing created after adding a scale file from the Scala ar-
chive to Djster’s scale repertoire. See Figure 7 for the
settings used in this example.

In order to fill the selected measures in MaxScore with
music, the user first requests information about their time
signature and tempo attributes by clicking on the “Gather
Info” button (Figure 7).

Figure 7: The GUI of the DJster Autobus Scorepion
plugin for the MaxScore Editor. Note the three bottom

2 I have elaborated this relationship in a presentation given at

the 2012 Ligeti symposium in which I compared György Li-
geti’s and Clarence Barlow’s approaches to generative music
(http://quintetnet.hfmt-hamburg.de/Ligeti-
Symposium/?page_id=90)—the former composer character-
ized by his non-computer PPP approach (paper, pencil,
pocket-calculator).

rows of presets, allowing users to exchange settings
with the Ableton Live device.

After creating any number of presets consisting of DJster
parameters and interpolation modes, he/she can use the
info pane to change the default subdivisions manually
and assign preset numbers to each measure. Depending
on the interpolation mode, parameter changes between
measures will be either abrupt or gradual. Upon clicking
on “Apply Process” the generative process will be trig-
gered and the resulting events transcribed into notation.

4. EXAMPLES OF RECENT WORKS
After using the dispenser abstraction for real-time com-
position in the Intermezzo of my opera Der Sprung –
Beschreibung einer Oper (1996) [12], I have employed
DJster in the interactive composition Just Her – Jester –
Gesture and focused on the non-realtime application of
the Scorepion in my works In ein anderes Blau (2012)
(Figure 8) and No, I won’t (2014) [13]. Dispenser was
used for real-time composition/notation in the percussion
and multimedia piece Slices by Jacob Sello [14] while the
Ableton Live version of DJster was employed in the real-
time interactive dance performance Mond in Wogen by
Xiao Fu [15].

Figure 8: A page from Georg Hajdu’s composition In
ein anderes Blau in which the transcription of impro-
vised music (blue frame) is combined with music gen-
erated with the DJster Scorepion. For this, meter and
scale definitions were created to match the pitch set of
the improvisation as well as the underlying 2/3/5 po-
lymeter.

5. TOWARDS A NOTATION OF DJSTER
In Just Her – Jester – Gesture MaxScore sends out, in
sync with the performer, messages to several instances of
the Quintet.net version of DJster. The notation consists of
single notes to which lists of parameter values have been
attached via the MaxScore Editor note-slot feature
(Figure 10). Since there is no way of guessing those val-
ues from the appearance of a note, a specific DJster
shorthand notation could be handy while serving two
purposes: Firstly, it could symbolically represent the
parameter constellations to be sent as sequenced message
to the real-time version of DJster, or, secondly, the nota-
tion could serve as a control track for a non-real-time
composition in which the DJster Scorepion actually spells
out the notes, which bears some resembles to figured
bass.

Figure 9 shows a mockup of this shorthand notation. It
consists of a regular note (denoting tonic pitch) and two
smaller notes denoting pitch center (diamond) and mel-
ody scope (in terms of the interval between the diamond
and the circle). On top of the note, there is a slider box
with five sliders and a symbol referring to the scale cur-
rently in use. Table 1 delineates the relationship between
DJster parameters and their symbolic representation in
shorthand notation.

Figure 9. DJster shorthand notation. Refer to Table 1 for
a detailed explanation of the parameters involved.

Parameter Representation
Scale String above slider box
Meter/Subdivision Ratio between Denominator and note

value (MaxScore duration property)
Eventfulness 1. element of slider box
Event Length MaxScore hold property
Metriclarity 2. element of slider box
Harmoniclarity 3. element of slider box
Melody Scope Interval between pitch center and round

notehead
Tonic Pitch Regular notehead (MaxScore pitch prop-

erty)
Pitch Center Diamond notehead
Pitch Range Brackets extending from pitch center
Chordal weight 4. element of slider box
Dynamics Dynamics symbol (MaxScore amplitude

property)
Attenuation 5. element of slider box

Table 1: List of parameters represented by DJster’s
shorthand notation.

The DJster notation editor will be implemented as a
MaxScore slot-editor module (Figure 10). Upon click-

ing on Slot in the Note Attributes palette, the pitch, dura-
tion, amplitude, hold and tuplet attributes of the selected
note will set the corresponding DJster parameters as de-
faults. The other 9 parameters will then have to be spe-
cifically set in the GUI. Once all values are set, Max-
Score generates two types of data:

• A list of data to be output by the playback en-
gine

• A Picster graphic [11] to be embedded in the
score

Figure 10. Example for a MaxScore Editor slot module.
The DJster slot module will inherit its controls from the
DJster Scorepion.

6. CONCLUSIONS

In this paper I gave an account of how a legacy computer
music program can be revived by adapting its algorithms
to modern environments. Similar attempts have success-
fully been accomplished by David Zicarelli who in 1997
resumed maintaining his “Intelligent Composing and
Performing System” M and most recently by Gottfried
Michael Koenig whose Projekt 1 from 1964 was just
recently translated into SuperCollider by Rainer We-
hinger. In case of DJster we went through a evolutionary
process leading to several versions of the original system.
The last one, a non-real-time plugin for MaxScore, allows
users to intuitively combine traditional and generative
approaches to music composition. As the DJster project
has implications that touch on the unabating issues of
real-time music generation, microtonality, man-machine
interaction as well as symbolic data representation and
mapping, development will continue with a strong focus
on documentation, user friendliness and flexibility. Cur-
rently, its usability for music generation within hospital
environments is being studied within the Healing Envi-
ronment project, jointly organized between two depart-
ment at the HfMT Hamburg departments and the univer-
sity hospital Hamburg-Eppendorf (UKE).

DJster in its various incarnations can be downloaded
from http://djster.georghajdu.de.

Acknowledgment

I would like to thank the Behörde für Forschung und
Wissenschaft Hamburg for supporting our research in the
framework of its Landesforschungsförderung.

7. REFERENCES

[1] Clarence Barlow's AUTOBUSK user manual
“AUTOBUSK: A real-time pitch and rhythm
generator” for the Atari ST version is available as
report no. 44 (2001) in the series “Musikinformatik
& Medientechnik” or as download from
http://www.musikwissenschaft.uni-
mainz.de/Autobusk/.

[2] D.Zicarelli, “M and Jam Factory,” Computer Music
Journal, vol. 11, no. 4, pp. 13-29, 1987.

[3] K. Essl: “Lexikon-Sonate. An Interactive Realtime
Composition for Computer-Controlled Piano”
Proceedings of the II. Brazilian Symposium on
Computer Music, 1995. Also available online at
http://www.essl.at/works/Lexikon-Sonate.html.

[4] G. E. Lewis, “Too Many Notes: Computers,
Complexity and Culture in Voyager,” Leonardo
Music Journal, vol. 10, pp. 33-39, 2000.

[5] N. Collins, “The Analysis of Generative Music Pro-
grams,” Organised Sound, vol. 13 , no. 3, pp. 237
248, 2008.

[6] C. Barlow, “Bus journey to parametron,” Feedback
Papers, vol. 21–23, 1980.

[7] C. Barlow, On Musiquantics – English translation of
Von der Musiquantenlehre (2008). Issue 51 of
Musikinformatik & Medientechnik, University of
Mainz, 2012.

[8] C. Barlow, “Two Essays on Theory,” Computer
Music Journal, vol. 11, no. 1, pp. 44-60, 1987.

[9] G. Hajdu, “Quintet.net: An Environment for
Composing and Performing Music on the Internet,”
LEONARDO, vol. 38, no. 1, pp. 23-30, 2005.

[10] http://www.huygens-fokker.org/scala/

[11] G. Hajdu, and N. Didkovsky, “MaxScore – Current
State of the Art,” in Proceedings of the International
Computer Music Conference, Ljubljana, 2012 pp.
156-162.

[12] G. Hajdu, “Research and Technology in the Opera
Der Sprung”. In Nova Acta Leopoldina, vol. 92, no.
341, pp. 63-89, 2005.

[13] http://georghajdu.de/compositions/

[14] http://zkm.de/media/video/jacob-sello-slices

[15] http://quintetnet.hfmt-
hamburg.de/fuxiao/?page_id=206

Webpages all accessed on November 15, 2015.

