
EXPRESSION MARKS FOR PROGRAMMING INTERACTIVE MUSIC

Juan Carlos Martinez Nieto
Georgia Tech Center for Music Technology

jcm7@gatech.edu

Jason Freeman
Georgia Tech Center for Music Technology

jason.freeman@gatech.edu

ABSTRACT

The present work uses common Western music notation to
represent logical and systematic behaviours of computer
music processes in the context of score-oriented interac-
tive music. The algorithmic representation is described
by adding programming annotations in a controlled nat-
ural language to a musical staff as expression marks in
the score. We implemented a computational environment
that is able to translate these expression marks into cod-
ing instructions and execute them in real-time during a live
performance of an interactive-music piece. A collection
of short interactive music exercises for MIDI-controlled
piano based on the proposed notation was composed and
edited using music engraving software. During the compi-
lation stage, an encoded version of the score in MusicXML
format is translated into scripting code, and during live
performance the computational environment executes the
code in real time in sync with the human-performed parts.
This paper introduces the syntax of expression marks for
programming interactive music through a classic “Hello
World” example in the context of interactive music and ex-
plains the technical details behind the implementation of
the computational environment. The main motivation be-
hind this work was to evaluate the viability of creating a
cohesive symbolic representation of interactive music that
is independent of specific software and hardware frame-
works, and is strongly connected with the western music
tradition.

1. INTRODUCTION

In the context of score-oriented interactive music, creating
and preserving repertoire is not straightforward. One rea-
son is that performance information regarding an interac-
tive piece is not entirely represented in a musical score, so
an important part of the information resides inside the com-
putational framework on which the piece runs. This issue
creates strong dependencies with a particular technology, a
factor that has made some composers move away from the
computer music genre [1].

In this paper, we propose to create a cohesive represen-
tation of an interactive music piece by keeping both per-
formance instructions for human/acoustic musicians and

Copyright: c©2017 Juan Carlos Martinez Nieto et al. This

is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

performance instructions for a computational process in a
single music score. Logical descriptors are added as ex-
pression marks in a musical staff (see section 4) and inter-
preted in real time by a programming engine during a live
performance. This work presents a novel approach that
fuses algorithmic thinking and traditional Western music
notation. This approach is particularly well suited for mod-
eling incremental music processes that usually are present
in minimalist aesthetics [2].

This work is a first step in extending the technology in-
dependent representation of music, a common ground for
pure instrumental music, into the field of interactive mu-
sic. Selfridge-Field asserts that “since the representation
of music is entirely independent of the use of comput-
ers, there is every reason to expect that codes designed for
the representation of music in computer applications will
eventually be entirely independent of both hardware con-
figurations and software processes” [3].

Expression marks in common Western music notation ha-
ve been used in musical scores since the eighteenth cen-
tury to represent variations of tempo, intensity, and artic-
ulation [4]. The term is misleading as the scope goes be-
yond expressiveness in music performance [5]. In connec-
tion with the extensibility of expression marks, it is use-
ful to bring the definition of the Harvard Dictionary of
Music “Symbols and words or phrases and their abbrevi-
ations employed along with musical notation to guide the
performance of a work in matters other than pitches and
rhythms” [6]. The multi-purpose implicit characteristic of
expressive marks, along with the fact that they are text-
based signs, makes expression marks well suited for the
purpose of extending a musical score with an algorithmic
descriptor.

In regards to score-oriented interactive music, sometimes
referred as score-driven interactive music [7], temporal re-
lationships between human-performed musical events and
automatic music processes play a fundamental role when
creating interactive music [8]. In musical scores represent-
ing time-relationships among discrete-time events is sim-
ple and accurate. This fact motivates us to employ common
Western music notation to represent systematic behaviors
in interactive music. From this perspective, the score acts
as a symbolic source code where the composer abstracts
and clearly records structural relationships in time among
the different musical entities (human performed instruments
or automatic computer processes).

In summary, we propose to extend common Western mu-
sic notation to describe systematic procedures by adding
programming annotations as expression marks. The pro-
posed approach allows representation of both the instru-

mailto:jcm7@gatech.edu
mailto:jason.freeman@gatech.edu
http://creativecommons.org/licenses/by/3.0/

Figure 1. Score of the interactive exercise ‘Hola Mundo’.

mental music and the algorithmic process in a single and
well-understood standardized document such that the mu-
sic is readily readable by a human, processable by a ma-
chine, and recreatable in other systems into the distant fu-
ture. In the following sections we first discuss some related
work, then walk through a simple example to introduce
the basic concepts behind programming-expression marks,
and finally the software implementation and a case study
will be detailed in section 6.

2. BACKGROUND

The present work is loosely related to score languages,
which have a long tradition in the field of computer mu-
sic [9]. Score language refers to a text-based list of ac-
tions arranged in absolute or symbolic time. In that sense
Score language is more related to a data structure with ba-
sic programming functionality. Max Mathews developed
at Bell Labs a series of score languages known as MUSIC-
N in the field of audio-synthesis; the first one of those
languages appeared in 1957, and the last one MUSIC-V
around 1969 [10]. MUSIC-V became popular in the aca-
demic and scientific world and was extensively used in the
computer music field during the second half of the twenti-
eth century.

The Score Language pattern paradigm has been used in
many music programming languages since then; mainly
in the field of audio-synthesis. Common Lisp Music [11]
and Csound [12] are direct descendants of MUSIC-V lan-
guages. Nowadays, Antescofo [13], one of the most popu-
lar environments for interactive music that runs embedded
on Max/Msp and Pure-data environments [14], provides a
text-based Score Language for describing customized ac-
tions.

Score Languages are essentially sequences of events in
their core conception, so modeling high level interactions
among music entities can only be done at a very basic
level. Dannenberg in his survey of Music Representation
Systems states that:“This approach is straightforward, but
it makes it difficult to encode structural relationships be-
tween notes” [15]. Modern Score languages address this
issue by embedding custom-language programming scripts.
For example, RTCmix, a score language started by Lan-
sky, includes MinC, a C-style scripting language [16] and
Antescofo enables the combination of score based instruc-
tions with data structures and control-flow logic all within
a single script, but with a score-following paradigm [13].

However, from the symbolic representation perspective,

these approaches create two different and simultaneous mod-
els of the same music that is represented. One is the score-
representation for performance and the other one is the
logic-representation for the computational framework. Our
work addresses the representation of music interaction in a
different way, by keeping the representation of the music
in a unique and cohesive symbolic source and taking ad-
vantage of the multiple semantic connotations of common
Western music notation for modeling structural relation-
ships among musical entities.

This work provides a written representation that models
automatic music processes in interactive music as an ex-
tension of common Western music notation. From the ma-
chine perspective, it implies building a programming en-
gine that is able to interpret the programming-expression
marks notated in the score.

Thanks to open standards for encoding a musical score,
such as MusicXML [17] or MEI [18], an encoded file ver-
sion of a musical score can be understood by a machine.
For the purpose of this research, the composer can model
and record an interactive process directly in the score by
adding programming-expression marks during the editing
phase using a third-party notation software, and the en-
coded version of the score is interpreted by a specific pur-
pose programming engine.

3. HELLO WORLD

This section presents the basics of expression marks for
programming interactive music using the classic “Hello
World” approach as a walk-through example. Figure 1
shows the score of Hola Mundo, a very short interactive
exercise for MIDI-controlled piano and synthesized voice.
The bottom staff represents the synthesized voice part that
is played automatically in Supercollider [19], and the top
staff shows the human-performed part that is played on the
piano. The score uses square shaped note-heads only to
emphasize visually the algorithmic character, and they do
not have semantic meaning.

Figure 2 shows the script library that is imported by the
interpreter engine at the compilation stage. The techni-
cal details about how all different levels of information are
connected to be able to synchronize and execute the in-
structions during a live performance will be explained later
in section 6. Here we will present the underlying concepts.

v a r words = [] ;
words [0] = ’h ’ ;
words [1] = ’o ’ ;
words [2] = ’ l ’ ;
words [3] = ’ a ’ ;
words [4] = ’m’ ;
words [5] = ’u ’ ;
words [6] = ’n ’ ;
words [7] = ’d ’ ;
words [8] = ’d ’ ;
words [9] = ’o ’ ;

Figure 2. JavaScript code for ‘Hola Mundo’

3.1 Roles in Interaction

Note that each part plays a different role in the interac-
tion (see Figure 1). The piano part acts as control signal
(input) used by the programming engine to estimate the
current symbolic time-position in the score (i.e. measure
and subdivisions) during a live performance. In this paper,
we label this interaction type as control role, as the input
controls the pace at which the instructions are executed.
Furthermore, the human-performed part acts as an exter-
nal synchronization clock that adjusts the internal clock of
the programming engine every time that a control signal is
received.

The second staff plays two simultaneous and different
roles in the Hola Mundo exercise. First, it increments a
variable in steps of one. In other words, it defines a system-
atic behavior, which in this Hello World exercise is con-
strained to increment the variable n every time a quarter
note appears on the bottom staff. We named this interac-
tion type as logic role. The second role of the bottom part
is derived from the ‘sent’ expression mark text. This mark
is translated in sending a message to the speech machine
(synthesized voice) every time a quarter note is notated.
This type of interaction represents the input parameters of
an external computer music process (Supercollider in this
case). We labeled this interactive role as process role.

3.2 Programming-Expression Marks

The programming-expression marks in the bottom staff of
Hola Mundo are entered in a controlled natural language.
As an example, take the expression “send nth word to speech
machine”. When the encoded version file (e.g. MusicXML)
of the music score is compiled (i.e. transpiled is the proper
term for describing a translation among different source
codes), the compiler looks for the following syntactic text
structure: action [expression] to [output], then a text dis-
ambiguation operation is applied to the string literal to get
each part of the text. Next, the compiler checks if the ex-
pression is a key that maps to a stored script literal and if so
replaces the original expression by the mapped script ver-
sion. In this Hello World exercise, the string “nth word” is
mapped to the script variable words[n].

This text-to-code mapping mechanism strongly contributes
to the ease of building and preserving interactive music

repertoire for the following reasons. First, the symbolic
representation (staff notation) acts as a descriptor of an
algorithmic behavior at a higher level, allowing the com-
poser to abstract and record the logic of the interaction,
which along with the instrumental parts should be suffi-
cient to recreate the piece in the future without the partici-
pation of the original performers and technicians. Second,
an ambiguity is introduced in the symbolic representation
as the technical implementation details are not recorded
in the musical score. Thus, the music can be adapted to
technological and aesthetic changes in the future, avoiding
that the piece being frozen in time, in a similar way as ex-
pression marks work in the context of instrumental music
performance.

4. THE MEANING OF
PROGRAMMING-EXPRESSION MARKS

In a general sense, a programming-expression mark is a
text-based descriptor of an algorithmic function that is ap-
plied only to the specific score-part where it is defined. It
is executed every time that a note appears, and it is not ex-
ecuted on rests. This approach enables building a parallel
environment where the algorithmic functions could run at
different rates as each score-part could potentially evolve
independently over time.

The programming-expression marks scope can be defined
to cover the whole section or to be restricted to a single
note. In the first case, usually the commands are repeated
until it reaches the double-bar which enables reducing the
information in the score. In the second case, the command
is executed just one time in that specific note which is very
useful for initializations. The following paragraphs will
provide more details about the syntax and semantics of
programming-expression marks.

In the Hello World exercise, the expression mark “send
nth word to speech machine” appears in the first measure.
After making the text disambiguation by the parser in the
compilation stage, the text is split as follows: ’send’ (ac-
tion), ’nth word’ (identifier), ’to’ (connector) and ’speech
machine’ (identifier). The action send is interpreted dur-
ing live performance as sending an OSC message [20] ev-
ery time a note appears. The compiler searches internally
for the identifier value (nth word), if this entry exists, the
compiler replaces the identifier with the stored coding ex-
pression associated with this entry. In the Hola Mundo
score, the identifier “nth word” is mapped to the script ex-
pression “words[n]”. Using a similar approach, the iden-
tifier “speech machine” is mapped to a pre-defined OSC
message template. Additionally, the send action in Hola
Mundo associates the variable “words[n]” to the content of
the OSC message. Before the compilation stage, a map-
ping table that associates each identifier with its equivalent
is added.

All actions are assumed by the compiler to be repeated
every time a note appears until the music section ends (sep-
arated by double barline) except when the modifier ‘once’
is present. The ‘once’ modifier constrains the scope of the
action only to the current note (in contrast to the whole sec-
tion). Table 1 shows a complete list of actions for the ex-

ACTION MEANING
send send expression-message to port
increment var = var + 1
compute execute expression
assign var = expr
jump to goto measure
print print(expression) in console
stop clear all actions on the current section

Table 1. List of actions

Figure 3. Implementation block diagram.

amples in this paper. The second column shows an equiv-
alent pseudo-code of how the action is translated to the
language engine during the compilation phase.

5. IMPLEMENTATION

Dynamic Programming Languages such as JavaScript are
well suited for live environments as they enable interpret-
ing and executing code in real-time. This programming
approach is often referred as to Just-In-Time compilation
or dynamic compilation [21]. Our implementation of the
computational environment that interprets programming ex-
pression marks was written in C/C++ and has an embedded
JavaScript engine to perform the Just-In-Time compilation
of scripting code during live performance.

Figure 3 shows the block diagram of the actual imple-
mentation of the real-time environment based on the pro-
posed notation for music interactive systems. The core of
the implementation is the programming engine that inter-
prets the programming expression marks in the score dur-
ing a live performance. We use the music notation editor
software MuseScore 1 for creating, editing, and exporting
the score to MusicXML format.

The first step is to compile (transpile) the encoded version
of the musical score. This step involves text disambigua-
tion of the programming-expression marks in the score and
translation of these commands into machine instructions.
During this compilation stage, an encoded version of the
score in MusicXML format is mapped to an intermediate

1 https://musescore.org/.

scripting version in JavaScript that is stored in the pro-
gramming engine, and it contains the symbolic-music-time
locations where the instructions should be executed. Now
the environment is ready for execution.

The programming engine has an internal clock that esti-
mates the current symbolic music time, and based on that
time, the corresponding scripting instructions are executed.
As shown in the block diagram, an external signal with
the current symbolic time feeds the programming engine to
update the internal music-symbolic-time clock. Based on
this update the internal music-time is estimated. This ex-
ternal input signal is derived from the live performance of
the control-role parts(i.e. the human performed parts). In
our implementation the external control signal is received
via OSC. Furthermore, as shown on the block diagram, the
output of the system consists of OSC messages that are
sent to an external computational music framework.

6. CASE STUDY

A collection of short interactive exercises for MIDI con-
trolled piano were composed to evaluate the viability of
the proposed notation. Figure 4 shows the architecture
of the implemented environment. In this setup, a human
performed digital piano sends MIDI messages to a sim-
ple score following system implemented in Objective C
that essentially detects chords events. The score follow-
ing system estimates the current symbolic time position in
the score, and sends the value to the programming engine
via OSC.

Figure 4. Implementation diagram.

As shown in Figure 4, the interactions in these piano exer-
cises are focused on enhancing the human performance by
adding an automatic counter-part played by the MIDI-Host
application. The interactions are in essence minimalistic
but in the variety of process music [22], meaning that one
of the parameters of a music entity is gradually changed,
and it is the process itself which determines the overall
form of the piece [2]. Furthermore, this minimalistic ap-
proach to music composition is well-suited for evaluating
a symbolic representation of logical behaviors.

Figure 5. Score of ‘Cencerro Deslizante’.

Figure 6. Process description for ‘interpolate gliss at nth’.

During a live performance, OSC string messages are sent
from the programming engine to a MIDI Host applica-
tion developed in Objective C. The messages are strings
in JSON format, and they contain the chord notes to be
played by the MIDI Host Application. Note that the MIDI
Host does not add any logical layer to the interaction envi-
ronment. The JSON messages are mapped to MIDI mes-
sages in the MIDI Host controller application and played
back in the Digital Piano. In this context the digital piano
behaves as a hyper-instrument.

Figure 5 shows the first three measures of Cencerro
Deslizante, one of the exercises of the collection, and
Figure 6 shows a segment of the performance notes of this
interactive exercise. In this exercise, the automatic piano
part plays off-beat chords computed from an incremen-
tal process that interpolates between two chords. Each
incremental process runs over a complete section (dou-
ble barline) of the piece. It is explained in the perfor-
mance notes and notated in the score by the programing-
expression mark ‘interpolate gliss at nth’.

7. CONCLUSIONS

This research shows that it is possible to implement a pro-
gramming engine that understands a cohesive score repre-

sentation of interactive music that is independent of any
computational framework by extending music notation to
an algorithmic context. The present work proposes a new
compositional approach that does not intend to be appli-
cable in all cases of scored interactive music. Instead, it
introduces a new compositional mechanism for interactive
music which is strongly connected with traditional prac-
tices of writing music through notation and takes advan-
tage of the multi-functional semantic scope of expression
marks. We will focus our future research on developing a
cohesive representation of interactive music by defining a
formal syntax of programming-expression marks and cre-
ating a broad set of pieces to explore and enrich the differ-
ent dimensions of the introduced compositional practice.
This approach is well summarized by the following state-
ment of Roger Dannenberg: “Music evolves with every
new composition. There can be no ’true’ representation
just as there can be no closed definition of music” [15].

8. REFERENCES

[1] J. C. Risset, “Composing in real-time?” Contemporary
Music Review, vol. 18, no. 3, pp. 31–39, 1999.

[2] S. Reich, “Music as a gradual process,” in Writings on
Music, 1965-2000. Oxford University Press, 2002.

[3] E. Selfridge-Field, Beyond MIDI: the handbook of mu-
sical codes. MIT press, 1997.

[4] R. Rastall, The Notation of Western Music: An Intro-
duction. JM Dent and Sons, 1983.

[5] L. Treitler, Reflections on musical meaning and its rep-
resentations. Indiana University Press, 2011.

[6] D. M. Randel, The Harvard dictionary of music. Har-
vard University Press, 2003, vol. 16.

[7] J. Drummond, “Understanding interactive systems,”
Organised Sound, vol. 14, no. 2, pp. 124–133, 2009.

[8] M. Stroppa, “Live electronics or live music? towards a
critique of interactio,” Organised Sound, vol. 18, no. 3,
pp. 41–77, 1999.

[9] G. Wang, “A history of programming and music,”
in The Cambridge Companion to Electronic Music.
Cambridge University Press, 2007.

[10] M. V. Mathews, J. E. Miller, F. R. Moore, J. R. Pierce,
and J. Risset, The technology of computer music. MIT
press, 1969, vol. 9.

[11] H. Taube, “Common music: A music composition
language in common lisp and clos,” Computer Music
Journal, vol. 15, no. 2, pp. 21–32, 1991.

[12] B. Vercoe and D. Ellis, “Real-time csound: Software
synthesis with sensing and control,” in Proc. of the Int.
Conf. on Computer Music ICMC 1990, Scotland, 1990,
pp. 209–211.

[13] A. Cont, “Antescofo: Anticipatory synchronization
and control of interactive parameters in computer mu-
sic,” in Proc. of the Int. Conf. on Computer Music
ICMC 2008, Belfast, 2008, pp. 33–40.

[14] M. Puckette, “Pure data: another integrated computer
music environment,” in Proc. of the Int. Conf. on Inter-
college Computer Music Concerts, Tachikawa, 1996,
pp. 37–41.

[15] R. Dannenberg, “Music representation issues, tech-
niques, and systems,” Computer Music Journal,
vol. 17, no. 3, pp. 20–30, 1993.

[16] D. Topper, “Rtcmix for linux (part 1),” Linux Journal,
vol. 78, no. 1, p. 5, 2000.

[17] M. Good and G. Actor, “Using musicxml for file inter-
change,” in Proc. of the Int. Conf. on Web Delivering
of Music, IEEE WEDELMUSIC-2003, Leeds, 2003, p.
153.

[18] R. Perry, “The music encoding initiative (mei),” in
Proc. of the Int. Conf. on on Musical Applications Us-
ing XML - MAX 2002, Milan, 2002, pp. 55–59.

[19] J. McCartney, “Rethinking the computer music lan-
guage: Supercollider,” Computer Music Journal,
vol. 26, no. 4, pp. 61–68, 2002.

[20] M. Wright and A. Freed, “Open sound control: A new
protocol for communicating with sound synthesizers,”
in Proc. of the Int. Conf. on Computer Music -ICMC
1997, Thessaloniki, 1997, p. 10.

[21] J. Aycock, “A brief history of just-in-time,” ACM Com-
puting Surveys (CSUR), vol. 35, no. 2, pp. 97–113,
2003.

[22] I. Quinn, “Minimal challenges: Process music and the
uses of formalist analysis,” Contemporary Music Re-
view, vol. 25, no. 3, pp. 283–294, 2006.

	 1. Introduction
	 2. BACKGROUND
	 3. HELLO WORLD
	3.1 Roles in Interaction
	3.2 Programming-Expression Marks

	 4. The Meaning of Programming-Expression Marks
	 5. Implementation
	 6. Case Study
	 7. Conclusions
	 8. References

