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ABSTRACT

Large-scale analysis of expressive performance—with fo-
cus on how a performer responds to score markings—has
been limited by a lack of big datasets of recordings with ac-
curate beat and loudness information with score markings.
To bridge this gap, we created the MazurkaBL dataset,
a collection of score-beat positions and loudness values,
with corresponding score dynamic and tempo markings for
2000 recordings of forty-four Chopin Mazurkas. Mazurk-
aBL forms the largest annotated expressive performance
dataset to date. This paper describes how the dataset was
created, and variations found in the dataset. For each
Mazurka, the recordings were first aligned to the score
and one to another to facilitate the transfer of meticulously
created manual beat annotations from one reference to all
other recordings. We propose a multi-recording alignment
heuristic that optimises the reference audio choice for best
average alignment results. Loudness values in sones are
extracted and analysed; we also provide the score posi-
tion of dynamic and tempo markings. The result is a rich
repository of score-aligned loudness, beat, and expressive
marking data for studying expressive variations. We fur-
ther discuss recent and future applications of MazurkaBL
and future directions for database development.

1. INTRODUCTION

The musical score provides an incomplete representation
of a composer’s intended expressions for the rendering of
a piece. How a performer responds to these instructions
can vary widely, and has increasingly become an important
area of study in recent years. However, systematic analy-
ses of score-informed performance data has been beset by
a lack of large datasets with appropriate information, such
as synchronisation between performance and score infor-
mation, and between performances, essential for compar-
ing audio features and prosodic decisions along with score
representation. Synchronisation is often done through beat
alignment. This is particularly problematic for music with
large tempo and timing deviations as current automatic beat
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tracking methods perform poorly for such music. Align-
ment between highly expressive music audio and symbolic
score information is also fraught with error, requiring man-
ual intervention. The problems are typically circumvented
by manual annotation, which does not scale well to large
datasets.

As a result, only a limited number of datasets exist for
highly expressive music that is score-aligned and synchro-
nised with expressive features; of these, few have large
numbers of recordings of the same pieces or do so with
only a handful of pieces. Table 1 shows a representative
sample of such datasets, together with the expressive in-
formation layers they provide. As can be seen, there is a
lack of a systematic collection of annotations for a large
number of recordings that represented a range of interpre-
tations of the same music pieces.

To bridge this gap, we created the MazurkaBL dataset,
which augments 2000 recordings from the CHARM 1

Chopin Mazurka Project database with expressive infor-
mation layers containing score-beat positions, loudness val-
ues, and locations and labels of score-based dynamic and
tempo markings. The Mazurka Project database has been
the subject and object of a few previous studies. For ex-
ample, Sapp [6] created hierarchical scape plots for vi-
sual analysis of tempo and loudness similarity at multiple
timescales. The dataset also provided material for testing
beat tracking algorithms (eg. [7] and [8]) and for creat-
ing robust tempo-based novelty detection functions by har-
nessing simultaneous analyses of multiple recordings of
the same piece [9].

The rationale for focusing on Chopin’s Mazurkas is not
only because the Mazurka dataset exists. For the majority
of pianists, and indeed other instrumentalists as well, the
Romantic repertoire presents a wealth of expressive pos-
sibilities [10]. The reason for indexing the recordings by
score beat information and expressive markings is because
the score encapsulates the composer’s intentions while the
recording reflects the performer’s interpretation of the no-
tated score. Each symbol—be it a note, dynamic marking,
indication of articulation, or phrase grouping—can have a
variety of possible interpretations. In performance studies,
the original score is considered to be refracted through the
performer [11, p.59], who can choose to render the sym-
bols in unique ways. In order to understand expressivity, it
is important to be able to have recordings, and hence au-

1 http://www.charm.rhul.ac.uk/index.html
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Dataset Description No. Expression annotations
MazurkaBL Forty-four Chopin Mazurkas (audio) 2000 beat, loudness, expr marks
Mazurka-CS [1] Five Chopin Mazurkas (audio) 239 beat, loudness, phrase, expr marks
Magaloff Project [2] Complete works of Chopin (Bösendorfer) 155 Midi-score alignment
Saarland Music Dataset [3] Selected piano pieces (Disklavier, audio) 50 Midi-audio alignment, pedal
EEP Dataset [4] String quartet movements w mocap 23 bowings
QUARTET Dataset [5] Intonation, dynamics, phrasing exercises 95 bowings

(audio, mocap, video)

Table 1: Datasets annotated with expression markings and parameters.

dio features, aligned to the score so that comparisons can
be drawn between the performer’s choices and the com-
poser’s notations.

The choice of annotating beats, from which one can in-
fer tempo and timing information, and providing loudness
values synchronised with notated expressive markings fol-
lows that of [1]. 2 In order to obtain reliable measure-
ments and scalable analyses, we rely on computational au-
dio analysis tools, which despite their imperfections are
becoming standard tools for empirical musicologists [12,
p. 225–233]. The large scale in which we were able to
deploy the beat annotation and calculation of tempo and
loudness values was made possible by a state-of-the-art
audio-to-audio alignment technique [13]. Only one record-
ing was painstakingly annotated with beat information, and
that annotation transferred to all other recordings. A multi-
alignment heuristic, described later in this paper, optimised
the choice of reference recording for the alignment proce-
dure.

A large dataset facilitates systematic and empirical stud-
ies aimed at understanding the range of expressive possi-
bilities proffered by a score. It also enables the design of
robust statistical models that can capture the range of pos-
sible expressive variations. A big dataset will allow schol-
ars to discern what constitutes a typical style for the per-
formance of a piece. Knowledge of this performance style
can, in turn, constrain parameters in models of expressive
performance. It also allows researchers to identify what
constitutes an outlier in performance style.

The paper is organised as follows: Section 2 gives an in-
troduction to the development of expressive notation and
its use in Chopin’s works, Section 3 describes the Mazurka-
BL dataset, Section 4 presents the method created for ob-
taining score beat positions from audio recordings, Sec-
tion 5 presents the method used to extract loudness infor-
mation from the audio, Section 6 describes studies that
have used the MazurkaBL dataset, and Section 7 offers
some future directions.

2. DEVELOPMENT OF EXPRESSIVE NOTATION
AND CHOPIN’S WORKS

This section gives a brief introduction to the concept of
music notation, the symbolic representation of music in
written form, so that it can be reproduced, as it developed

2 See also http://mazurka.org.uk/info/excel/beat/
and http://mazurka.org.uk/info/excel/dyn/gbdyn/ for
beat and dynamic information on the Mazurka project.

in European classical music, and the development of ex-
pressive notation in Chopin’s works.

The neumatic notation—from the Greek word “neuma”
meaning “gesture” or “sigh”—was the system of musical
notation used from the 7th to 14th century. It evolved from
grave and accute accents to a system of precise indications
of pitch for singing [14]. Referring to a study by Sam Bar-
rett [15], which posits that neumatic notation is more than
a memory aid, being a “reflexive tool for disciplined know-
ing”, Cook [16, pg.11] concludes that music is “conceived
platonically, as an abstract and enduring entity that is re-
flected in notation”.

Developments to music notation as we know it today
mainly involved changes on the representation of the du-
ration and pitch of the notes that are sounded. Innovations
included the development of notational symbols for dif-
ferent playing techniques and performance actions. Gio-
vanni Gabrieli (1554-1612) was the first composer to spec-
ify dynamics in a score, in the Sonata pian e forte from the
Sacrae symphoniae (1597) [17, pg. 28–29]. Annotation
of dynamics, such as p for piano, “has remained relatively
constant, although contemporary composers have explored
its extremes.” [14]

Next we consider the use of expressive notation in
Chopin’s works. Chopin’s compositions can be best un-
derstood through his core inspirations, the prime one be-
ing traditional Polish music. Even in solo piano works, the
dance impulse can be found in his Mazurka or Polonaise
pieces [18, p.150]. [19] suggests that Chopin was influ-
enced by late baroque and pre-classical composers; how-
ever, J. S. Bach’s imprint can be found in his later works.

Searching for the characteristics that make a performance
‘musical’, Shaffer in [20] analyses recordings of Chopin’s
Prelude Op. 28 No. 8 in F# minor, examining the structural
tension and the variations in tempo and dynamics to decide
whether a performance “conveys an insight into the musi-
cal meaning” [20, p.184]. The combination of melodic,
harmonic and rhythmic processes identify structure, while
operating on different levels, interacting within and per-
haps across the levels. The results of the study show the
use of a phrasing gesture where there is an acceleration
and increase in dynamics into a musical unit (such as a
phrase) and the respective deceleration and decrease to-
wards its boundary. Focusing on the expressive intentions
that go beyond simply conveying phrase grouping, we see
that related features include chord progressions, melody al-
terations among the phrases, and even a repeat of the same
harmonisation in positions where ff and p markings appear,
which helps emphasise the dynamic contrast.
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In terms of dynamics, Thomas [18] refers to accents and
dynamic contrasts in Mazurka pieces as emphasising the
“foot-stamp or heel-clicking leap”: if they are located on
the first beat they may emphasise a long-breathed four-bar
phrase or a short-breathed two-bar phrase. If they are lo-
cated on the second bar they are usually combined with
expressive harmonic or melodic stresses or with the case
of having accompaniment rests on the first beat. Finally
if they are located on the third bar they may either give a
quiet understatement of the third movement—an example
being the accompaniment rests on the first and second beat
followed by a chord on the third one in Mazurka Op. 63
No.1—or emphasising the opening of a new section.

With regard to Chopin’s own performed dynamics, Chopin
himself preferred pianos capable for depicting refined nu-
ances rather than ones constructed based on providing acous-
tic sharpness and high intensity sounds [21]. Although
markings such as ff and fff appear in his works, “all his
contemporaries agree in reporting that his dynamics did
not exceed the degree of forte, without however losing a
single bit of shading” [22, p.215].

Other aspects of articulation have to do with pedaling and
timing. A feature found in many of the Mazurka pieces is
the use of one pedal-point joining usually four-bar chord
progressions which produced a “dominant fanfare” [18].
In the case of features related to timing, a characteristic of
Chopin’s music is that it draws inspiration from singing,
which translates to a bel canto style of piano playing [23,
p.216]. This style offers a strong sense of rubato by keep-
ing a more steady rhythm with the left hand while freeing
the other to push forward or hold back. Carl Mikuli, one of
his pupils, “complimented Chopin’s rubato for its natural-
ness and its ‘unshakeable emotional logic’” ([24, p.91]).

3. SYNOPSIS OF THE DATASET

The MazurkaBL dataset 3 was created from 2000 selected
recordings from the CHARM Mazurka dataset. The au-
dio recordings cover a total of forty-four different Chopin
Mazurkas. Table 3 shows the Chopin Mazurkas and the
number of recordings of each Mazurka included in the
dataset. MazurkaBL contains a table for each Mazurka in
.csv (comma separated value) text format that includes
the score beat positions (details in Section 4) in seconds
per recording. Also, it contains a separate table for each
Mazurka that includes the loudness information (details in
Section 5) per score beat per recording. In both table for-
mats, the rows represent the number of score beats and the
columns represent the index of the recordings of the par-
ticular Mazurka. The recordings have been labeled using
the same pianist-ID as in the Mazurka dataset. For each
Mazurka another table has been created that includes the
name of an expressive marking annotation found in the
score and the number of score beat position where it is lo-
cated. The score markings extracted are listed in Table 2.

We have included recordings in which the performer fol-
lowed the repetitions designated in the score, and excluded

3 The dataset is publicly available and it can be found at: https:
//github.com/katkost/MazurkaBL. For copyright reasons, it
does not include the audio files.

Dynamics
Markings: p, pp, mf, f, ff, sf, fz, accent (>), crescendo,
decrescendo
Text: sotto voce, dolce, dolcissimo, con anima, con forza,
calando, espressivo, risoluto, leggiero, perdendosi, maestoso,
gajo, smorzando
Tempo
Marking: fermata
Text: ritenuto, a tempo, Tempo I., lento, vivo, Allegro ma
non troppo, Allegro, legato, legato assai, legatissimo,
moderato, animato, rubato, scherzando, stretto, agitato,
rallentando, tenuto

Table 2: Score markings having to do with dynamics and
tempo or timing.

ones that do not. We also excluded noisy recordings. By
noisy recordings, we mean recordings with distortion ar-
tifacts (some old recordings) or live recordings with au-
dience sounds that could not be removed. Following this
cleanup process, the remaining Mazurkas and recordings
were not included if the total number of recordings did not
exceed twenty.

The recordings date from 1902 to the early 2000s. There
is no information available on the score edition used by
each performer. Tracing the actual score used in the prepa-
ration of each performance is an impossible task. Multiple
editions of Chopin’s Mazurkas exist; as noted in [25, p.56],
“since most of [Chopin’s] works were published in simul-
taneous ‘first’ editions in France, Germany and England,
and since he also made alterations in the scores of various
pupils, there are inevitably many discrepancies.” Even the
(arguably) most widely used editions of Peters, Schirmer,
and Augener bear the marks of later edits.

For the purposes of obtaining score-based tempo and dy-
namic markings, we used the Paderewski, Bronarski and
Turczynski edition as it is one of the most popular and
readily available editions. A comparison of dynamic mark-
ings across different score editions reveals a few differ-
ences. The most common reason for a difference between
editions arises from a slight displacement in marking po-
sition of usually only one or two beats. Less commonly,
if a location typically does not have any dynamic marking,
an outlying edition may have one there, presented directly
or inside parentheses. On a rare occasion, a marking that
appears in most editions may be replaced by a completely
different one in a maverick edition.

We encode each Chopin Mazurka score in XML format
using Musescore 4 and we extract the location of each
tempo and dynamic marking using the Music21 software
package [26], the result of which was verified manually.
A long ‘>’ appears in the score edition mentioned above,
which serves as an indication of an “agogic” accent: “an
emphasis created by a slight lengthening rather than dy-
namic emphasis on a note or chord” [25, p.53]. However
this marking could not be included in our XML edition as
it is not supported by the Music21 software.

Figure 1 graphs the score-aligned loudness and inter-beat-
interval (IBI) values for all 48 recordings of Mazurka Op. 68

4 http://www.musescore.org
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Mazurka index M06-1 M06-2 M06-3 M07-1 M07-2 M07-3 M17-1 M17-2 M17-3 M17-4 M24-1
# recordings 34 42 42 41 35 58 45 50 36 67 46
Mazurka index M24-2 M24-3 M24-4 M30-1 M30-2 M30-3 M30-4 M33-1 M33-2 M33-3 M33-4
# recordings 56 39 54 45 50 54 55 48 50 23 63
Mazurka index M41-1 M41-2 M41-3 M41-4 M50-1 M50-2 M50-3 M56-1 M56-2 M56-3 M59-1
# recordings 35 42 39 33 45 40 67 34 48 51 41
Mazurka index M59-2 M59-3 M63-1 M63-3 M67-1 M67-2 M67-3 M67-4 M68-1 M68-2 M68-3
# recordings 56 56 42 62 35 31 40 42 38 48 42

Table 3: Chopin Mazurkas used in this study and the number of recordings for each one. Mazurkas are indexed as
“M<opus>-<number>.”
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Figure 1: Raw time-series representation of the MazurkaBL dataset for Mazurka Op. 68 No. 2. (a) shows a plot of
the dynamic values in sones and (b) the Inter-Beat-Interval (IBI) per score beat for all 48 recordings, each presented as a
separate curve. Expressive markings show on the x-axis at their corresponding locations in the score.

No. 2 from the MazurkaBL dataset. Each recording’s loud-
ness and IBI values were re-scaled to the range [0, 1]. Each
recording is represented as an individual time-series curve
of either the sone values for dynamics (a) or the IBI val-

ues for timing (b). By inspection, regions of agreement
and parts where greater variation occurs are immediately
apparent, as are the regions where certain outliers can be
found. Similar interactive plots for all Mazurkas are avail-
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able online 5 where it is possible to include or exclude par-
ticular curves separately, provide details of the exact values
as well as the name of the pianist per curve, and zoom in
to regions of interest.

In the next section we explain how we dealt with the prob-
lem of linking the beat positions in the score to their corre-
sponding positions in each recording.

4. SCORE BEAT INFORMATION

The position of score markings can be specified using the
musical time axis of beats and measures. To study how a
specific pianist realises a given marking in a performance,
we need to locate its corresponding position in the record-
ing in seconds. A common way to do this is to manually
annotate the position of each musical beat in each available
recording by tapping while listening to the music [1] and
using specialised tools such as Sonic Visualiser 6 to check
and correct the results. While manual annotations are typ-
ically quite reliable and accurate, creating them is highly
time consuming and labour intensive. For example, for
this research, the manual annotation and correction by in-
specting the spectrogram of a single recording of Mazurka
Op. 6 No. 2, which is approximately three minutes long,
took 35 minutes on average.

To automate much of this annotation process, one can
employ computational music alignment methods. Given
a beat position in one rendition of a music piece, such syn-
chronisation methods automatically locate the correspond-
ing position in another version. In this way, for each piece,
we only need to annotate a single recording, as we can use
the automatically computed alignments to find, for each
beat position in the annotated recording, the correspond-
ing position in another recording. We call this annotated
recording the reference audio. Its beat positions are trans-
ferred automatically to all the remaining recordings using
a multiple recording alignment heuristic described in the
next sections.

The approach to use a reference recording in an alignment
procedure is not new—see, for example, [7] and [8]—and
it has been shown to provide a significant stabilising effect
on alignment accuracy. In this study, the multiple align-
ment heuristic calls the pairwise alignment algorithm by
Ewert et al. [13], which applies Dynamic Time Warping
(DTW) to chroma features. This pairwise alignment tech-
nique extends previous synchronization methods by incor-
porating features that indicate onset positions for each
chroma. The authors report a significant increase in align-
ment accuracy resulting from the use of these chroma-onset
features and an average onset error of 44 ms for piano
recordings.

While alignment errors and corresponding inaccuracies
in the derived annotations cannot be completely avoided,
the synchronization enables the re-use of manually created
annotations for a relatively small number of recordings to
efficiently mass-annotate large databases. The choice of
reference audio directly impacts the accuracy of the align-
ment. Intuitively, if an audio is an outlier, highly different

5 https://goo.gl/xC5LcY
6 http://sonicvisualiser.org/

from all the others in the set, it is a poor choice as a refer-
ence audio for accurate alignment to all other recordings.
In order to determine the best choice of a reference audio,
we created a ground truth dataset, which consisted of all
forty-two recordings of Mazurka Op. 6 No. 2, each manu-
ally annotated with score beat positions. We computed the
optimal reference audio, then determined its properties and
designed a heuristic to automatically select this reference
audio for other Mazurkas.

The goal of the multiple recording alignment heuristic is
to optimise the choice of a reference audio with which we
can obtain better alignment accuracies than with another
audio file. In order to understand the characteristics of such
an audio, in Section 4.1 we present an analysis of the ref-
erence audio properties, and in Section 4.2 we present a
heuristic to detect the optimal reference audio.

4.1 Optimal reference audio choice

For this section, we use as ground truth our manual anno-
tations of score-beat positions in all forty-two recordings
of Mazurka Op. 6 No. 2. As a rule, in our manual an-
notations, we have chosen to follow the melody line so as
to capture the lyricism of the rubato in the piano playing.
Here, our goal is to determine the audio file (reference au-
dio) that, when aligned and its beat annotations transferred
to other audio recordings in the set, predicts most accu-
rately the score-beat positions of the other recordings.

For this experiment, we removed silences in the begin-
nings and ends of all recordings by discarding any audio at
the beginning and end in which the loudness value was <
0.002 sones (more information about the extraction of the
sone values is given in Section 5). There are a total of 288
beats; no notes were struck on 11 of these beats. The align-
ment procedure calls the algorithm described in [13] for
audio-to-audio alignment and the annotations (beat posi-
tions) from each candidate reference audio recording were
transferred to all other recordings in a pairwise fashion.

Let n be the number of recordings. We thus obtain a to-
tal of n ⇥ (n � 1) new sets of annotations generated from
all the candidate reference audio files. To determine the
audio that performed best in providing the alignments with
the lowest beat prediction error, we compared the predicted
beat positions to the annotated beat positions, the ground
truth. The Jarque-Bera test showed that not all sets of pre-
diction errors followed the normal distribution, hence ev-
ery alignment result is described by the median error for
each alignment pair. For each recording, we thus arrive at
n � 1 median error values. For the sets of median values,
we implemented the non-parametric Friedman test, where
the small p-value (p = 3.1546 ⇥ 10�31) indicates that at
least one column’s sample median is significantly different
from the others. The multiple comparison test shows the
audio with the lowest median error value, which we inter-
pret to be the best reference audio, to be Sztompka (1959),
highlighted in bold in Figure 2, followed closely by the
median error value of Kiepura’s (1999) recording. Note
that the y-axis is oriented so that the lowest values are at
the top.
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Figure 2: Error bars for the median beat prediction error when each of the 42 recordings of Mazurka Op. 6 No. 2 served,
in turn, as the reference audio. x-axis shows pianist and recording year. The Friedmann correlation rank test showed
Sztompka (1959) to be the recording with the lowest correlation rank and it is identified as the optimal reference audio,
followed closely by Klepura (1999). Dotted horizontal lines mark the error bar limits of Sztompka (1959).

4.2 Reference audio selection heuristic

We first set up a fitness measure for a reference audio choice.
The pairwise alignment algorithm [13] produces a match
between two audio files, say i and j, using dynamic time
warping. The alignment result is presented in the form of
two column vectors pi and qj , each with m entries, where
m depends on the two recordings chosen, i and j. Each
vector presents a nonlinear warping of the chroma features
for the corresponding audio file, and represents the timing
difference between the two recordings. A pair of entries
from the two vectors gives the indices of the matching time
frames from the two audio files. We compute the Euclidean
distance between each pair of the dynamic time warped au-
dio files as follows:

di,j =

vuut
mX

k=1

(qj,k � pi,k)2, 8i 6= j, (1)

where m 2 N is the size of the vectors. In this way, each
audio has a profile corresponding to its alignment to all
other audio recordings, di = [di,j ]. The average value of
all the alignment accuracies for the ith recording in relation
to the remaining ones is di.

We consider the best reference file to be one with the min-
imum average distance to other audio files, which, at the
same time, does not exhibit extreme differences to more
than two other audio recordings as measured by the norm
distance. In this way, after exploring alternative values of
outliers, a test on Mazurka Op. 6 No. 2 identified the same
reference audio as that found using the exact method of
Section 4.1. Mathematically, the problem of finding the
reference audio can be expressed as one of solving the fol-
lowing problem:

min
i

di

s.t. # {j : |di,j | > q3(di) + 1.5[q3(di)� q1(di)]}  2,

where q`(di) is the `-th quantile of di, and the left hand
side of the inequality uses an interquartile-based represen-
tation of an outlier. The reference audio is then given by
argmini di.

We evaluate the method using the ground truth created
using Mazurka Op. 6 No. 2. For each candidate reference
audio, we compared the reference audio-derived beat po-
sitions with the manually annotated beat positions for the
remaining forty-one recordings of the Mazurka. The aver-
age error was found to be 30.7 ms.

4.3 Evaluation of score beat positions

Several approaches for evaluating alignment procedures
exist—see, for example, [27] and references therein. For
alignment procedures that do not follow a reference record-
ing, such as in [28], the number of beats that are created
may not be the same as the number of beats in the ground
truth; thus, evaluation metrics different from that in this
study may be employed.

For this study, in order to evaluate the beat positions of
the MazurkaBL dataset, we compare them with the manual
annotations provided by the Mazurka project. The Mazurka
project provides publicly available manual annotations for
63 recordings of Mazurka Op. 17 No. 4, 64 recordings of
Mazurka Op. 24 No. 2, 34 recordings of Mazurka Op. 30
No. 2, 95 recordings of Mazurka Op. 63 No. 3, and 50
recordings of Mazurka Op. 68 No. 3. The intersection of
these with the recordings in MazurkaBL provides pairs of
aligned positions for 48, 54, 30, 62, and 42 recordings of
the respective Mazurkas mentioned for comparison. The
results of the comparison in terms of mean and standard
deviation of the beat difference (in milliseconds) are pre-
sented in Table 4.

The average beat difference between our manual beat an-
notations in the reference audio and the manual beat anno-
tations of the corresponding recording from the Mazurka
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Piece (# beats) Diff mean (ms) Diff std (ms)
M17-4 (395) 85 150
M24-2 (360) 69 119
M30-2 (193) 66 41
M63-3 (229) 71 61
M68-3 (180) 80 69

Table 4: Summary statistics for the difference be-
tween MazurkaBL (alignment-based beat transfer from
manually-annotated reference audio) and Mazurka project
(all manual) beat annotations.

Piece (# beats) Diff mean (ms) Diff std (ms)
M17-4 (395) 65.7 86.6
M24-2 (360) 64.2 21.9
M63-3 (229) 63.8 21.7
M68-3 (180) 57.5 33.7

Table 5: Summary statistics for the difference between
the manual beat annotations of the MazurkaBL reference
audio and the manual annotations of the corresponding
recording from the Mazurka project.

Project is given in Table 5. Beat annotations of the Mazurka
recording of Op. 30 No. 2 corresponding to the reference
audio for that Mazurka in MazurkaBL was not available.

Table 4 shows that the beat annotations of the reference
audio and of the annotations transferred from the reference
audio for Mazurka Op. 17 No. 4 differ most from the
corresponding manual annotations of the Mazurka project.
The information provided in Table 5 shows how much man-
ual annotations may differ from one annotator to the next;
this may reflect a difference in the chosen criteria for mark-
ing beats.

5. LOUDNESS INFORMATION

In the MazurkaBL dataset, the loudness time series is ex-
tracted from each recording using the ma sone function in
Pampalk’s Music Analysis toolbox 7 . The loudness time
series is expressed in sones. There are two reasons we
choose the sone values as a measure of dynamics. The
sone scale is psycho-acoustically linear, so we can more
readily and accurately normalise the values across differ-
ent recorded environments. Furthermore, without having
to apply any audio compression or modification, the sone
calculations automatically pre-processes the audio inten-
sity values based on the psychoacoustic concept of equal
loudness curves.

The specific loudness sensation in sones per critical band
is calculated by following the process explained in [29].
Using this procedure, we calculate the power spectrum of
the audio signal using a Fast Fourier Transform. We then
use a window size of 256 samples, a hopsize of 128, and
a Hanning window with 50% overlap. The frequencies are
bundled into 20 critical bands and these frequency bands

7 www.pampalk.at/ma/documentation.html

“reflect characteristics of the human auditory system, in
particular of the cochlea in the inner ear.” [29] We also cal-
culate the spectral masking effects, based on the research
presented in [30]. Then we calculate the loudness in dB-
SPL units, and from these values we calculate the equal
loudness levels in phons via stored curves of equal loud-
ness level. Next, from the phon values, we detect the val-
ues in sones, following the calculation described in [31],
according to which the loudness level S in sones can be
calculated from the loudness levels L in phons using the
formula:

S =

(
2(L�40)/10, L � 40

(L/40)2.642, L < 40,
(2)

the rationale being that “in this way the threshold of hear-
ing and the nonlinear and frequency-dependent response of
the ear to intensity differences are taken into account.” [31]

The sone values are smoothed by local regression using a
weighted linear least squares and a 2nd degree polynomial
model (the “loess” method of MATLAB’s smooth func-
tion 8 ). The loudness time series for each recording is nor-
malised to [0, 1] by dividing the values of a recording by
the maximum loudness value of that particular recording.

6. RECENT APPLICATIONS OF MazurkaBL

This section presents some studies that have used the
MazurkaBL dataset and briefly describes their findings.

The set of markings {pp, p, mf, f, ff} were studied in [32],
which explored the absolute meanings of the dynamic mark-
ings change as a function of the intended (score defined)
and projected (recorded) dynamic levels, and that of the
surrounding musical context. The analysis revealed a (some-
times) wide range of realisations of the same dynamic mark-
ings throughout a recording of a piece. Reasons for this
counter-intuitive phenomenon include the score location
of the markings, such as the beginning of a piece, and the
marking’s location in relation to that of previous ones. The
analysis showed that, transitions from a louder to a softer
marking, between markings of high intensity, and between
markings of high contrast, tend to be more consistent. For
markings that appear in the score more than once, most of-
ten than not, there was significant variation in the ways the
markings were interpreted.

Offering a different perspective, [33] addressed the ques-
tion of whether changes in dynamics, as automatically iden-
tified by statistical change-point algorithms, corresponded
to dynamic markings. The assumption was that a dynamic
marking indicated a point of change, and thus served as
ground truth on which to evaluate the change-point algo-
rithms. The results show that significant dynamic score
markings do indeed correspond to change points, and evi-
dence suggests that change points in score positions with-
out dynamic markings serve to bring prominence to struc-
turally salient events or to events the introduce a change in
tempo.

A subset of the MazurkaBL dataset was used in [34] to
investigate the bi-directional mapping between dynamic

8 http://uk.mathworks.com/help/curvefit/smooth.
html?refresh=true
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markings in the score and performed loudness. The study
applied machine-learning techniques to the prediction of
loudness levels corresponding to dynamic markings, and
to the classification of dynamic markings given loudness
values. The results show that loudness values and mark-
ings can be predicted relatively well when trained on dif-
ferent recordings of the same piece, but fail dismally when
trained on the pianist’s recordings of other pieces, demon-
strating that score features may trump individual style when
modeling loudness choices. The evidence suggested that
all the features chosen for the prediction and classifica-
tion tasks—current/previous/next dynamic markings, dis-
tance between markings, and proximity of dynamic-related
and non-dynamic markings —were relevant. Furthermore,
analysis of the results reveal the forms (such as the return
of the theme) and structures (such as dynamic marking rep-
etitions) influence the predictability of loudness levels and
dynamic markings.

Finally, [35] describes another study that applied machine
learning techniques to a subset of the MazurkaBL dataset.
The goal of this study was to examine tempo-loudness in-
teractions at specific score markings over a set of record-
ings, and to investigate how including information about
one parameter impacted prediction of the other. The au-
thors considered score markings indicating loudness or
tempo change, and the model included score, tempo, and
loudness-related features. When considering recordings
of the same Mazurka, experiments showed that consider-
ing loudness-related features did not improve prediction
of tempo change. However, adding tempo-related features
did result in marginal improvement in predicting loudness
change. As before, the predictions failed when the model
was trained on loudness or tempo change information from
recordings of multiple Mazurkas performed by the same
pianist.

7. FUTURE DIRECTIONS

We have presented MazurkaBL, a new dataset for expres-
sive music performance studies, comprising of 2000 beat-
aligned recordings of forty-four Chopin Mazurkas overlaid
with loudness information and score markings pertaining
to tempo/timing and dynamics.

We provide material to quantitatively investigate what the
score notation represents from a performer’s perspective.
Future tools providing different ways of visualising the
dataset can bring insights that lead to a new notation sys-
tem that represents changes in expression. Once important
changes have been identified, symbols can be chosen to
signify these changes and the representation can serve as a
tool for comparing and analysing performances.

Much research has focused on proposing and establish-
ing the relationship between dynamics and timing varia-
tions (see, for example [36] and references therein.) These
studies range from establishing simple rules such as louder
passages tend to be faster [37] to audio-synchronised ani-
mations of expressive parameters in tempo-loudness space
[38]. Musical timing and amplitude has also been linked
to subjective ratings of emotionality, for example in [39].
Timing and loudness variations in a music performance

form critical cues for the identification of core music fea-
tures such as phrase boundaries—see, for example, [40],
[41], and [42]). The MazurkaBL dataset opens up many
more avenues for explorations of this kind, and on a much
larger scale.

Some future directions include expanding the list of score
markings such as pedaling, and including audio features
such as timbre. Further analytical studies could investi-
gate gradual changes such as the analysis of crescendo or
diminuendo. Also the same approach of large-scale an-
notation of score-beat information can be applied to other
audio recordings of music by other composers, for other
instruments, and of other genres.
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