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ABSTRACT

Traditionally, most computer-aided composition environ-
ments represent a pitch via a number (typically a MIDI
note number or its value in midicents), flattening the en-
harmonic information onto a single real-valued parameter.
Although this choice is convenient in many applications, it
can be very limiting in any context where diatonicism, to
some degree, matters.

The latest release of bach, a library for Max dedicated to
musical representation and computer-aided composition,
introduces a new ‘pitch’ data type, designed to overcome
this limitation by representing both diatonic pitches and
intervals and supporting standard arithmetic operations. In
this article we motivate and detail its implementation and
its syntax.

As an application, we introduce a new respelling algo-
rithm, also implemented in bach, designed to provide an
easy-to-read spelling of notes. Differently from most ex-
isting pitch spelling algorithms, tailored on the tonal reper-
toire, our algorithm is targeted to produce a musician-
friendly representation of non-tonal music.

1. INTRODUCTION

1.1 The problem

Virtually every software system capable of dealing with
symbolic musical information has some kind of represen-
tation of pitch. Some tools for computer-aided composi-
tion, including OpenMusic 1 and PWGL 2 , as well as ver-
sions of bach 3 prior to 0.8, employ MIDI note numbers or
midicents, thus not providing a direct way to express en-
harmonic information: of course, even in these cases it is
always possible to set up custom representations, but ma-
nipulating them would require the effort of constructing all
the necessary tools. On the other hand, other software sys-
tems, such as Abjad 4 and Music21 5 , embed enharmonic
information in their basic representation of pitches.

1 http://repmus.ircam.fr/openmusic/home
2 http://www2.siba.fi/PWGL/
3 www.bachproject.net
4 http://abjad.mbrsi.org
5 http://web.mit.edu/music21/
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Both choices have their own advantages and disadvan-
tages. Reducing pitch to a basic numeric type by eschew-
ing enharmonic information simplifies the system: at the
very least, it avoids the need for specific constructors and
methods. In some regards, it can also make life easier for
users, who do not need to become acquainted with a spe-
cific syntax and set of operations.

On the other hand, it is a very limiting choice, for a num-
ber of reasons. For one thing, the tuning of pitches de-
pends on the chosen temperament—yet, we shall consider,
in this article, only the case of equal temperaments. Even
in this case, the choice of dropping enharmonic informa-
tion is still inadequate, from at least two points of view: a
technical one, because there may be good reasons (such as
readability) for preferring one kind of enharmonic spelling
to another; and a more strictly musical one, because such a
representation is strongly connected to a non-hierarchical
conception of musical pitches and the networks of signif-
icance they form within the musical discourse. After all,
in a typical piece of music by Pierre Boulez, Franco Dona-
toni or even Anton von Webern, the choice of representing
a given musical pitch as an F] rather than a G[ is mostly
irrelevant, to the point that several composers, Donatoni
included, have made very limited use of accidentals other
than the sharp. It is not by chance that the three afore-
mentioned composers have a strong relationship with do-
decaphony and serialism. On the contrary, a page by Bach
or Mozart would be substantially wrong if typeset with all
the F]’s and G[’s swapped. Moreover, although in most
cases this information can be reconstructed, there are in-
stances in which the enharmonic spelling chosen by the
composer carries meaning useful to shed light on how a
particular chord or passage should be interpreted [1]. A no-
table example is Richard Wagner’s famous Tristan chord,
which has been the subject of debate since more than a
century: the analytical tools involved are meaningful only
if they take enharmonic spelling into account, and the in-
sight they provide is highly relevant to the understanding
of late-19th century and early-20th century tonal music.

Several works and sub-genres of contemporary music fall
somewhere between these two categories. Whereas music
strictly adhering to the tonal system, as found in works by
composers from the 18th and early 19th centuries, is now
almost solely composed in the context of school exercises,
the same cannot be said for music closer, or belonging, to
the harmonic traditions of jazz, rock and pop [2]. On the
other hand, the tonal syntax of concert music from the 19th
and early 20th centuries still forms the harmonic basis for
a wide array of contemporary, non-strictly-concert music,
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Figure 1. Display of MIDI notes corresponding to perfect
fifths in some of the most common computer-aided compo-
sition environments (from left to right, OpenMusic, PWGL
and bach). Each environment has somehow its own ‘wolf
fifth’.

most notably—but not exclusively—film music. More-
over, although self-described ‘art music’, roughly over the
last century, has distanced itself from the received, histor-
ically connoted syntax of tonal language, by no means it
has consistently renounced all forms of hierarchical syn-
tax of pitches. This observation refers, in the first place,
to various branches of so-called ‘neomodal’ music, a cat-
egory that may be applied to works by composers as di-
verse as Terry Riley, Arvo Pärt and Louis Andriessen, or—
more recently—Yannis Kyriakydes, Andrew Hamilton and
Nico Mulhy. On the other hand, other sub-genres and in-
dividual works in the field of contemporary art music may
be described as featuring hierarchical (albeit not modal)
pitch structures, including works by composers influenced
to various degrees by spectralism, such as Gérard Grisey
and Kaija Saariaho, or works explicitly referencing other
musical idioms, be they popular, folkloric or historical,
such as Sinfonia by Luciano Berio, Professor Bad Trip by
Fausto Romitelli or Cognitive Consonance by Christopher
Trapani. In all these contexts, the question “Is this an F]
or a G[?” is not an idle one, because it alludes to the func-
tional roles that pitches carry within the musical discourse.
And anyway, even in more strictly serial or post-serial con-
texts, there is some sort of consensus on the ‘correct’ rep-
resentation of intervals: for instance, it is uncommon to
come across diminished sixths where perfect fifths could
be used—something composers working with computer-
aided composition tools have unfortunately been trained to
tolerate (see Figure 1). Effective software tools for musical
formalization should take all this into account. Therefore,
our aim is to provide a formalization and an arithmetic of
pitches in equal temperaments, and implement it in bach.

1.2 A proposed solution for Max and bach

Max has a very limited focus on symbolic musical repre-
sentation, and objects that need to represent pitch do it ac-
cording to the MIDI standard. The bach package for Max,
conceived specifically to augment Max with advanced ca-
pabilities of representation and treatment of musical data [3]
has been using midicents as its native way of represent-

ing pitches, too, coherently with its main original refer-
ences (namely, OpenMusic and PWGL). This was also a
convenient choice for easing the communication between
bach objects and native Max objects, as the only conver-
sion tool required was a division or a multiplication by 100,
respectively for converting midicents into MIDI pitches, or
viceversa. In the latest major version of bach (0.8), on the
other hand, we felt that this simplistic representation was
not adequate to the scope we envisioned. For this reason,
we decided to implement in the bach system a new data
type, aptly called a pitch, representing musical pitches and
meant to be operated upon through both standard mathe-
matical operators and new, specific tools.

2. REPRESENTATION OF PITCHES

The mathematics of pitch representation is a well-studied
field, especially in the context of equal temperament. Al-
though most techniques, influenced by the musical set the-
ory, tend to flatten pitches onto their MIDI note numbers
(to the point that nowadays the term ‘pitch-class’ com-
monly refers to MIDI note classes rather than diatonic pitch
classes), there exist at least two families of approaches that
preserve enharmonic information. Models in the the first
family represent pitches as belonging to geometrical struc-
tures in space (such as the line of fifths, the Tonnetz [4],
or the spiral array 6 [6]). Models in the the second family
essentially represent pitches as couples (c, d) 2 Q ⇥ Z,
where c is the number of chromatic steps or semitones
from a reference note, such as middle C, and d is the num-
ber of diatonic steps from the same reference note [7, 8].
As an example, the F] just above middle C would be rep-
resented as (6, 3), while its enharmonic equivalent, G[,
would be (6, 4). Several variants of this representation ex-
ist (e.g. using midicents instead of semitones, or choosing
C0 as reference note); we will refer to similar encodings as
‘chromatic-diatonic couples’.

Both these families of representations have the advantage
to make standard operations such as transposition or en-
harmonic respelling arithmetically trivial—at the expense
of making other properties less readable. For example, it is
not straightforward to infer the accidental of a pitch from
either a spatial position inside a geometrical structure or a
chromatic-diatonic couple.

The bach library takes advantage of both of these rep-
resentations (the first one is used, for instance, in pitch
respelling algorithms, whereas the second one is used to
facilitate some arithmetic operations). However, we have
decided to use internally a container whose fields mirror
more directly the way we usually think of notes, that is, a
degree, an alteration and an octave.

Several models for tridimensional representations of
pitches have been proposed. Most of them involve quo-
tienting by an operation of octave transposition, hence dis-
entangling the octave number from a two-dimensional rep-
resentation of a diatonic pitch-class.

Brinkman’s ‘binomial representation’ [9], represents such
diatonic pitch-classes as a combination of a ‘MIDI pitch-

6 The spiral array should not be confused with Shepard’s helix [5],
which does not distinguish enharmonic pitches.
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class’ (0 to 11) and ‘letter-class’ (0 to 6). Brinkman’s rep-
resentation is however not equivalent to chromatic-diatonic
couples; namely, as the author recognizes, it has the in-
elegant disadvantage of allowing ambiguities when more
than five accidentals are involved: a MIDI pitch-class of 6
together with a letter-class of 0 may correspond both to C
sextuple sharp and to C sextuple flat.

Clement lays in [10] important groundwork concerning
the relationship between pitches and intervals, namely as-
serting that all intervals, and hence all pitches, can be gen-
erated via combinations of a chromatic half-step and a di-
atonic half-step. However, Clement chooses to eventu-
ally flatten the pitch parameter onto a single integer, man-
aging to distinguish quite well the most common enhar-
monic representations, yet still leaving room for ambigu-
ities when larger alterations are involved. Also, Clement
uses different names and grammars for pitches and inter-
vals — a distinction that trained musicians usually take for
granted but which, in our own view, is unnecessary (as the
next section will detail).

Drawing from all these researches and considerations, we
have decided to implement our own encoding of pitches in
bach, as we explain in section 4.

3. ARITHMETIC

3.1 Pitches and intervals

When we say something seemingly trivial like “this is an
E[ at octave 4”, we are superposing two kinds of reason-
ing: on the one hand, the general concept of ‘E[’ is a
shared, albeit slippery, one, and there is at least partial
consensus about what ‘octave 4’ means. 7 On the other
hand, without a reference pitch and tuning system, it is in
principle impossible to assign an exact frequency (that is,
an exact meaning with respect to sound) to ‘E[ at octave
4’. In this sense, we can say that the name of any musical
pitch represents, strictly speaking, an interval with respect
to a fixed reference within a certain tuning system. So,
according to one of the most widespread practices, ‘E[ at
octave 4’ means “a tempered augmented fourth below the
A4, the frequency of the latter being 440 Hz”. In a context
of purely symbolic computation, the relation to the exact
frequency of a reference pitch may be irrelevant, but the
substantial identification of absolute pitches and intervals
is an elegant conceptual tool for simplifying the expression
of transpositions and other operations.

7 There are many possible specific definitions and interpretations of
‘E[’, both formal (for example, the set of all the notes that can be ob-
tained by stacking three descending fifths starting from a C) and informal
(for example, a referral to the embodied cognition of the production of a
generic E[ on a musical instrument, sometimes coinciding with its enhar-
monic D]), but most of them share enough common traits to allow both
musicians and non-musician to talk practically about E[’s without worry-
ing about substantial misunderstandings. Octave numbering is usually a
more technical matter, and in fact there are several conventions for dis-
tinguishing between different E[’s in the audible range (and, potentially,
beyond it). The arabic numeral after the note name is especially used in
electronic instruments and music software. The most widespread con-
vention appears to be the one setting C4 as the middle C, written with
one ledger line below a treble clef staff and typically corresponding to
a frequency of roughly 261.5 Hz (the case with transposing instruments
requiring further specification). As we shall discuss below, we chose to
adopt a different convention in this regard.

Another way to see this possibly confusing identification
is that, on the one hand, we see the musical interval as an
essentially spatial measure, and, as such, we typically use
it in a relative way (we cannot say that Montreal is located
at 3000 km, but rather that it is 3000 km away from Al-
buquerque). On the other hand, we are somehow used to
treat the nomenclature of pitches as just a set of names,
not unlike what we do with colors, albeit a very formally
defined one. What we are proposing here is that, consider-
ing the unambiguousness of pitch names and the trivial and
biunivocal relation between absolute pitches and the inter-
val of each pitch from C0, we can actually merge the two
concepts and use a single naming scheme for both. This
is not too different from what we do when we use Celsius
degrees for both measuring the temperature difference be-
tween two bodies and expressing absolute temperatures as
the distance between a body’s temperature and the arbitrar-
ily chosen reference of the water’s melting point.

These considerations have informed two fundamental
choices at the basis of the pitch representation system in
bach: first, as hinted above, the same format and data type
used for expressing pitches is also used for intervals with
respect to a reference pitch of C0. Thus, E[0 denotes both
a very low E flat and an ascending minor third, whereas
-F0 (and the equivalent form G-1) denotes a descending
perfect fourth. A possibly more rigorous way to see this is
considering the system from the point of view of intervals:
E[0 has “minor third” as its first meaning, and we can use
it to denote an absolute pitch located a minor third above
the C0 reference. This also explains the -F0 = G-1 iden-
tity: -F0, considered as an interval, denotes a downward
perfect fourth; and a perfect fourth below the C0 reference
is G-1. As a side note, bach accepts the two representa-
tions indifferently, but (since very low values are more of-
ten used to express intervals than absolute pitches) returns
the ‘interval’ format, the one with an optional leading mi-
nus sign but only non-negative octaves, as the preferred
format for textual representation; two objects, bach.write
and bach.textout, provide options for returning the other
format, potentially with negative octaves. The fact that C0
is the reference for absolute pitches as well as for intervals
leads to the second consideration: because we want our
system to retain backwards compatibility with bach’s pre-
vious, midicent-based system of representation of pitches,
we now need transposition of pitches to behave consis-
tently with transposition of midicents. This means that
transposing a pitch by a minor third must be compatible
with summing 300 midicents, which implies that E[0 must
be 300 midicents, C0 (the perfect unison, and the identity
element for transposition) be 0 midicents, and C5 be 6000
midicents (that is, middle C). This is a different standard
from the two most widely used (placing middle C at the
beginning of octave 3 or 4), but there is at least one prece-
dent in Cakewalk Sonar, and there used to be an additional
one in older versions of Reaper.

The simplicity and elegance of this architecture have been
the two important factors leading to our choice of C5 as
middle C in bach. On the other hand, it is always possible
to express pitch literals according to a different standard,
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Figure 2. Pitch arithmetic addresses a whole area of dia-
tonic, modal and tonal musical processes.

and applying to them a transposition of one or two octaves.
We will hence assume throughout the rest of the article that
C0 is MIDI note 0 (and hence C5 is middle C).

3.2 Operations

Algebraic sums and multiplications are meaningful on in-
tervals: for example, a minor third plus a major third is a
perfect fifth, and a perfect fifth minus a minor third (that is,
plus a descending minor third) is a major third. Within our
convention, we may write E[0 + E0 = G0. This amounts
to transposing any of the two pitches by the interval repre-
sented by the other one; for instance, summing any pitch
to E[0 will result in a transposition by a minor third (see
Figure 2). C0 (unison) is the identity element for the sum.

We have not been able to assign a musical meaning to the
multiplication of two intervals in the pitch domain. 8 How-
ever, there is a natural external multiplication of an interval
by an integer, which can simply be seen as a sequence of
sums, with a sign depending on the signs of the factors. As
an example, 12 · G0 = B]6. A multiplication by -1 in-
verts the interval; as previously stated, pitches lower than
C0 can be expressed either with a negative octave or with a
negative interval (for example, �1 · E[0 = �E[0 = A-1).

All the above operations are unambiguous with respect
to enharmonicity. Partitive division of an interval by an
integer, on the other hand, is generally problematic: what
does it mean to divide an augmented fourth by two? The
difficulty here arises from the fact that we wish our opera-
tions to be meaningful with respect to enharmonic spelling.
So, although an augmented fourth is 6 semitones wide, and
as such dividing it by two would result in 3 semitones,
there are theoretically infinite intervals spanning 3 semi-
tones (minor third, augmented second, doubly diminished
fourth, etc.), but none of those, if multiplied by two, will
return an augmented fourth. For example, a minor third
times two is a diminished fifth, and an augmented second

8 For the sake of clarity, it may be worth recalling that multiplying a
frequency by an interval as defined in the frequency domain (that is, the
ratio between two frequencies) is perfectly meaningful and corresponds
to an equal temperament transposition in the frequency domain. This
operation is completely distinct from the meaningless multiplication of
two intervals in the pitch domain.

times two is a doubly augmented third. On the other hand,
by performing an integer division on the 0-based degree
and the integer, and subsequently adjusting correctly the
accidental and/or alteration, it is possible to obtain a pitch
quotient spanning the correct amount of semitones, or frac-
tion thereof. This pitch quotient, if multiplied back by
the original divisor, is an interval possibly different from
the original dividend, but enharmonic to it. The differ-
ence between the divisor and the product of the dividend
and the quotient is the remainder of the division, and it al-
ways spans 0 semitones—that is, it is always enharmonic
to a perfect unison. So, an augmented fourth divided by
two is an augmented second, with a remainder of a dimin-
ished second (because an augmented second times two is
a doubly augmented third, and an augmented fourth mi-
nus a doubly augmented third is just a diminished second).
In our pitch syntax: F]0/2 = D]0 with the remainder of
D[[0, because 2 · D]0 + D[[0 = F]0.

Quotative division of an interval by an interval is also
possible. It involves promotion of the two terms to midi-
cents, and returns an integer or a rational number. If the
second term is C0, the division is indeterminate. The re-
mainder of the quotative division is simply defined as the
difference between the divisor and the product of the div-
idend and the quotient: since the dividend is a pitch and
the quotient is an integer, their product is also a pitch and
the aforementioned difference is also a pitch. For instance,
A1/G0 = 3 with no remainder, while E]2/G0 = 4 with a
remainder of C]0.

3.3 Comparisons

Comparisons among pitches can also be expressed: given
two pitches A and B, we say that A = B iff their de-
grees, alterations and octaves are the same. Thus, C]5 is
different from D[5, even if their midicents are the same.
In this sense, and differently from what happens (not con-
sidering the limitations of numerical representation) when
promoting an integer to a float, promoting pitches to ra-
tionals may change the result of an equality comparison
performed upon them. Moreover, the ‘less than’ compar-
ison operates lexicographically: A < B if the octave of
A is less than the octave of B, or, in case they coincide,
if the degree of A is less than the degree of B, or, in case
they also coincide, if the alteration of A is less than the al-
teration of B. Again, an inequality comparison performed
on pitches can lead to the opposite result of the same in-
equality performed upon the midicents of those pitches:
for example, B]4 < C[5 and E]5 < F[5.

These choices have been the subject of careful consider-
ation, and have not been taken lightly. The main reason
to choose these seemingly incoherent behaviors as the de-
fault is to preserve the richness of the pitch semantics (us-
ing the midicents ordering as ‘less than or equal to’ crite-
rion would imply that all enharmonic spellings are equal).
After all, it is straightforward to implement the ‘other’ be-
havior (the one according to which B]4 > C[5 and E]5 >
F[5) when needed: all it takes is forcing the conversion
to midicents, something bach provides various simple op-
tions for. All this being said, we are well aware that the
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answer most musicians would give to the question “Which
is higher, B]4 or C[5?” would probably be the opposite of
what our system gives.

3.4 Chromatic-diatonic representation

All the aforementioned choices are expressed more con-
cisely using the chromatic-diatonic representation of
pitches. Let A = (cA, dA) and B = (cB , dB) be two
pitches such that ci and di are respectively the number
of semitones and the number of diatonic steps from the
reference point C0 (with midicents 0). Then A + B :=
(cA + cB , dA + dB) is the transposition operation, �A :=
(�cA,�dA) is the inversion operation, n · A := (n ·
cA, n · dA) is the multiplication of a pitch by a number
n 2 Z (the set of pitches is thus a Z-module). Parti-
tive division is A/n := (cA/n, bdA/nc) with remainder
of (0, dA � nbdA/nc), enharmonic to C0; quotitive divi-
sion is A/B := (bcA/cBc, bdA/dBc) with remainder of
(cA � cBbcA/cBc, dA � dBbdA/dBc).

The standard lexicographical order is defined on pitches:
A  B , dA < dB _ (dA = dB ^ cA  cB). Any
(cA, dA + k), 8k 2 Z is an enharmonic respelling of A.

4. THE BACH IMPLEMENTATION

A pitch in bach is a triplet (g, a, o), where g 2 Z/7Z is the
degree, a 2 Q is the alteration (in fraction of tone) and o 2
Z is the octave. In the internal representation, the degree
is a number from 0 to 6, representing white keys names
from C to B; the alteration is a rational number 9 ; and the
octave is an integer, with octave 5 starting with middle C
(corresponding to the MIDI pitch 60), and subsequently
octave 0 starting with MIDI pitch 0.

Conversions between this chromatic-diatonic representa-
tion (c, d) and bach’s encoding of pitches as triplets (g, a, o)
of degree, alteration and octave are straightforward:

⇢
c = deg2chr(g) + 2a+ 12o
d = g + 7o

and 8
><

>:

g = [d]7
o = bd/7c

a =
c� 12o� deg2chr([d]7)

2

with deg2chr : Z/7Z ! Z mapping [0]7 7! 0, [1]7 7!
2, [2]7 7! 4, [3]7 7! 5, [4]7 7! 7, [5]7 7! 9, [6]7 7! 11.

A pitch, according to the above definition, is stored in
a double word, according to the computer architecture in
use. Under a 32-bit architecture, a pitch is stored in 8
bytes (64 bits): 2 bytes for the degree (which of course
is overkill, since its value is limited to the 0-6 range), 2
bytes for the octave (hence limited to the enormous range
-32768 to 32767), and 4 bytes for the alteration (2 bytes for
the numerator and 2 for the denominator, allowing for an
extremely precise representation). Under a 64-bit architec-
ture, a pitch is stored in 16 bytes (128 bits), thus doubling
the size of all its fields with respect to the above.

9 Rational numbers and arithmetic operations upon them are intro-
duced in Max by bach.

Figure 3. Some examples of pitch syntax in bach.

There is no explicit concept of a ‘pitch constructor’ in
bach: the simplest way to construct a pitch is just typing its
textual representation into a message object and passing it
to a bach object. The textual syntax of a pitch is structured
as follows (brackets delimit optional elements):
�
±
�
hdegreei

⇥
haccidentali

⇤
hoctavei

⇥
± halterationit

⇤

where the degree is a letter corresponding to an Anglo-
saxon note name (from A to G); the accidental is a combi-
nation of the characters # (sharp), b (flat), x (double sharp),
q (quartertone sharp), d (quartertone flat), ˆ (eighth-tone
sharp), v (eighth-tone flat), whose values are summed to-
gether; the octave is a positive or negative integer; and the
alteration is a signed integer or rational number expressing
a deviation in tones (or a fraction thereof) from the pitch as
defined by the degree / accidental / octave representation.
Both the accidental and the alteration are optional, but the
degree and the octave must always be present (for instance
C is not a pitch). The leading unary minus or plus is also
optional: the plus sign has no effect, whereas the meaning
of the unary minus flips the interval direction, as explained
above. Examples of properly formatted pitches, as typed
into a message box, are: C0, D#3, E-1, Fbbb6 (an F triple-
flat at octave 6), Abv5 (an A flat minus an eighth tone at
octave 5), B5-1/2t (a B minus a half tone, equivalent to a
B[5), C]4+1/10t (a C sharp plus one tenth of a tone). Also
see Figure 3 for an illustration.

The same representation is essentially used when a pitch
is returned as text. As hinted at above, the same pitch can
be represented through several representations: for exam-
ple, B5-1/2t and Bb5 represent the same pitch, and the same
goes for C#v3 and Cqˆ3. It is also possible to invent ‘ab-
surd’ representations, such as C#b#b2 for C2, or Dvvvv4
for Db4. In principle, for each pitch there are infinite rep-
resentations. Among those, each pitch has a ‘normal form’,
that is, the representation with the shortest combination of
same-direction accidental signs and the alteration with the
smallest absolute value (or, if possible, no alteration at all:
accidentals are preferred over alteration).

The musical notation editors of bach (namely, the bach.roll
and bach.score objects) are now capable to accept pitches
as their input. 10 Mathematical expression among pitches

10 This is not completely new, as in previous versions of bach there was
a way to assign a specific enharmonic spelling to a note, but it was a
cumbersome one: besides entering the pitch in midicents, it was (and, for
backwards compatibility sake, still is) possible to specify that the graphi-
cal representation of the note was composed by a given ‘white key’ pitch
and a given alteration. There was even a sort of ‘shortcut’ for this, in that,
by entering, say, ‘Db4’, the appropriate pitch and graphical information
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can be evaluated via the usual bach arithmetic modules 11 :
the bach evaluator can now perform operations on pitches,
just like it does with regular numerical types, following
the explanation provided in section 3.2. In order to han-
dle results of indeterminate operations (such as divisions
by C0), a special NaP (‘not a pitch’) value is returned.
In addition to the set of functions explicitly supporting
pitches, any mathematical operator and function can accept
pitches, which are implicitly promoted to integer, rational
or floating-point midicents and operated upon as such: for
instance, calculating the square root of E8, corresponding
to 10000 midicents, returns the floating point value 100., as
the sqrt function only operates upon floats, and promotes
to a float all the other number types.

5. PITCH SPELLING ALGORITHMS

Finding the best possible spelling for sequences of notes
and chords is far from a trivial issue, requiring knowledge
of the musical context as well as computation time—which
is why essentially all computer-aided composition environ-
ments tolerate default awkward spellings such as the ones
in Figure 1. A certain number of pitch spelling algorithms
have been proposed in the last few decades [11], aiming at
finding, to some respect, the ‘best’ spelling of notes, given
their MIDI numbers, onsets and durations.

In the new bach release, both bach.roll and bach.score
feature three pitch spelling algorithms, triggered via a ‘re-
spell’ message:

• a trivial algorithm, providing automatic note-by-note
respelling, without any context or memory. For each
step in the semitonal (or microtonal) scale, a ‘stan-
dard’ enharmonic representation is used. Either such
representation is provided by the user (via an enhar-
monic spelling table), or a hard-coded choice, de-
pending on the current key signature, is used;

• the algorithm proposed by Chew and Chen 12 in [12],
based on Chew’s spiral representation of pitches [6];

• a new ‘atonal’ algorithm, described in section 5.1.

Each of these algorithms can operate either voice by voice
(so as to provide consistent readability for single, specific
voices) or globally (so as to provide diatonic consistence
across different voices). They can also limit their scope to
subsets of the line of fifths (see Figure 4), by defining a
‘sharpest’ and/or a ‘flattest’ representable pitch (Figure 6).

5.1 General outline of the atonal algorithm

Although it is true that pitch spelling is imperative in tonal
music (as stated in the introduction, an F] might be sub-
stantially wrong inside a piece in G[ major), it also plays a

was automatically set. On the other hand, this kind of representation did
not allow to perform arithmetic operations on pitches, and the extra infor-
mation made the structure of the score more complex and less readable.

11 In the actual implementation, integer division is performed towards
zero and the remainder has the sign of the dividend, mirroring the behav-
ior of the corresponding C functions.

12 The algorithm was chosen based on [11], also considering the fact
that Meredith’s pitch spelling algorithms are subjected to patents.

crucial role in the portion of non-tonal music where di-
atonicism has some importance. And yet, all the pitch
spelling algorithms compared in [11] are essentially de-
signed to work with tonal musical data, and they are hence
only compared on historic tonal works. An important part
of their workings deal with detecting harmonic modula-
tions as precisely as possible.

The algorithm we propose is not tailored for this
purpose—which is also why any comparison with the
existing algorithms would be meaningless—but is rather
meant to make general, non-tonal sequences of notes and
chords ‘as readable as possible’ for musicians. In this con-
text, detecting the precise position of a modulation is not a
concern, whereas it is decisive to provide the players with
a simple-to-read spelling for sequences of notes. We have
developed our ‘atonal’ pitch spelling algorithm with these
considerations in mind. As a side note, it should be re-
marked that the atonal algorithm can of course be applied
to portions of modal and tonal music—which is why key
signatures are also accounted for.

The idea at the basis of the atonal respelling algorithm is
that notes that are close in time should be transcribed with
pitches as close as possible on the line of fifths. 13 There-
fore, the general outline of the algorithm is the following:

1. The notes belonging to the voice to be respelled (or
to the entire score, depending on the chosen oper-
ation mode) are rearranged in a tree data structure,
so as to reveal the proximity of notes in time. More
specifically, the tree is structured so as to allow be-
ing traversed as follows: the couple of notes that are
closest in time in the original voice or score (let us
call them A and B) is encountered and evaluated
first, thus forming a “core couple”; then the note
closest to the previous pair is encountered, thus al-
lowing it to be evaluated alongside A and B; and so
on. In this way, increasingly large temporal windows
of the original voice or score are taken into account.
If, at any point, two notes not having been consid-
ered yet are closer to each other than either of them
is closer to the current window, then the current win-
dow is put aside and the two new notes are consid-
ered as a new core couple, and the process moves
forward from there. Further on, the new window
may grow large enough to enclose the previous one,
and in any case at the end of the process a single
window containing the whole voice or score will be
formed.

2. The rearranged tree is traversed according to the pat-
tern described above, and over each step of the traver-
sal the line-of-fifths distance of the pitches contained
in the currently evaluated window is minimized, by
searching for the combination of enharmonic rep-
resentations with the smallest line-of-fifths standard
deviation while respecting some ancillary constraints.
If such standard deviation is within a given range,
then the new enharmonic spelling is accepted, other-
wise the algorithm settles upon the previously found

13 Following [12], a version with a spiral array representation had also
been tested, to replace the line of fifths, with no significant improvement.
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Figure 4. The line of fifths.

Figure 5. Voicewise versus non-voicewise respelling.

one and the traversal skips to the next core couple.
The process goes on until there are core couples to
be found.

A more detailed description of the algorithm, providing
all the details needed for reimplementing it, and a practical
example, are given below.

5.2 Detailed description of the atonal algorithm

A detailed description of the atonal respelling algorithm
follows:

1. Respell the notes one by one via the aforementioned
‘trivial’ algorithm, providing a first rough spelling to
be refined. This guarantees stability, since the rough
spelling does not depend in any way from the origi-
nal enharmonies, but only on the MIDI numbers. For
instance, in a context with no key signature, spelling
of portions of melodies in A] major, or in C[[ major,
would be all equally respelled in B[ major.

2. Build a list with all the notes of the voice, if the algo-
rithm operates in a voice-wise fashion, or of the en-
tire score otherwise. Chords are unpacked into notes
with the same onset. At this stage, the list is flat; the
next steps will reshape it into a tree, adding hierar-
chical levels (parens levels in bach lllls). Each node
of the list contains some metadata, namely a ‘start-
ing time’ s, an ‘ending time’ e (which at this stage
both coincide with the onset of each specific note 14 )
and a ‘number of notes’ n (at this stage n = 1).

3. Reshape the list constructed at point 2 into a tree, in
the following way:

3a. If the root level has a single node, then jump to
step 4; otherwise find the closest nodes in the root
level of the note list, i.e., find the two nodes such
that the ending time of the first is closest to the
starting time of the second. If there is a tie, take
the first couple in temporal order.

14 Notice that we call ‘ending time’ the largest note onset inside the
hierarchical level, hence not accounting for note durations.

3b. Wrap the two nodes found in 3a in a new level
(i.e., add a hierarchical node). If (sL, eL, nL) and
(sR, eR, nR) are the metadata, respectively, of the
earliest (left) and latest (right) node, then set the
metadata of the new node to (sL, eR, nL + nR).

3c. Go to step 3a.

4. Perform the actual respelling. Obtain the list of nodes
of the constructed tree via reversed breadth-first search
and traverse it (deepest nodes are processed first).
Process each node in the following way:

4a. Let n be the number of notes of the node and
M = (m1, . . . ,mn) be the list of MIDI numbers
of the notes of the node. Also let K = (k1, . . . , kn)
be the key signatures of the voices to which the
notes belong, and let µK be the average of such
signatures. Each ki 2 Z represents the number of
sharps (if positive) or flats (if negative) of the key.
If a node has a single note (n = 1), do nothing
and jump to processing the next node. Otherwise
continue to 4b.

4b. Obtain the list of enharmonic possibilities for each
mi 2 M, in the form of an integer number (the
position on the line of fifths, Figure 4) accounting
for the ‘sharpest’ and ‘flattest’ parameters. Sup-
pose that mi has pi enharmonic possibilities: let
Ci = {ci,1, . . . , ci,pi} be the set of such numbers,
ci,j 2 Z. Let

C =
[

i

Ci = {c1,1, . . . , c1,p1 , c2,1, . . . ,
c2,p2 , . . . , cn,1, . . . , cn,pn}

be the collection of the enharmonic possibilities
for each note.

4b1. Consider each one of ci,j 2 C as a candidate
‘center of effect’ on the line of fifth, and respell
each element of M so that its position on the
line of fifths is as close as possible to ci,j . Let

Sci,j = (sci,j ,1, . . . , sci,j ,n)

be the array of respelled positions, sci,j ,k 2 Z.
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Figure 6. Defining ‘sharpest’ or ‘flattest’ notes has a global influence on the spelling algorithm.

4b2. Get the average µci,j and the standard devia-
tion �ci,j of the sci,j ,k’s. Normalize µci,j by
subtracting the average of the key signatures
µK and add an additional bias, by default set
to �2, accounting for the fact that first flat note
appears at �2 on the line of fifths, while the first
sharp note appears at 6 (flat and sharp notes are
hence equally distant from the origin).

4b3. Determine whether the respelling Sci,j is ac-
ceptable. Only three conditions would make a
respelling not acceptable:

- if any note is sharpest than the ‘sharpest’ ac-
ceptable or flattest than the ‘flattest’ acceptable;

- if altered repetitions (such as the sequence E[-
E\) appear in Sci,j — but only in case a specific
parameter to discard altered repetitions of the
same pitch is set.

- if the standard deviation �ci,j is above a certain
threshold e� (the threshold is a user-definable
formula, defaulting to e� = 21

n+1 ). In other words,
by default the threshold decreases as the num-
ber of notes of the set M increases.
If the Sci,j is not acceptable move to 4b5.

4b4. Determine if Sci,j is the ‘best spelling’ so far,
i.e., the one having the smallest �ci,j . In a tie,
the spelling with the smallest |µci,j | is retained.
If Sci,j is the best spelling, keep it as candidate.

4b5. Test the next possible candidate ‘center of ef-
fect’, i.e., go back to point 4b1 and move to
testing ci,j+1, or, if j+1 > pi then move to the
element ci+1,1; if i+1 > n, i.e., if all ci’s have
been tried, move to 4c.

4c Once all ci,j’s have been tested, there may or may
not be a candidate for the respelling.
If there is no candidate, the node cannot be re-
spelled, and all nodes containing it in the list of
point 4 are dropped from the search.
If there is a candidate Sci,j , perform the respell of
all notes according to it.

4d Jump back to point 4a and continue with the next
node, until all nodes are completed.

This algorithm roughly provides a natural-to-read re-
spelling of group of notes.

Figure 7. A simple example as a test for the algorithm.

5.3 An example case

To follow the behavior of the algorithm in a simple,
concrete case, consider the score in Figure 7 and let
N1, . . . , N7 be the notes to be respelled. As per step
1, we respell each note with standard enharmonic tables.
Then, as per step 2, we obtain the list of individual notes
Ni, and via step 3. we arrange it in tree form accord-
ing to their distances. Since the two notes forming a
chord are the nearest ones (according to their onsets),
they will be the first to be wrapped in a level, yielding
N1N2N3(N4N5)N6N7. Then, the two nearest nodes are
the note N3 and the node (N4N5), hence we wrap them
yielding N1N2(N3(N4N5))N6. We repeat the process,
until we have a single node at the root level of the list,
yielding the list displayed in Figure 8.

Once the tree is constructed, we apply step 4 and build
the list of nodes to be visited, in reversed breadth-first
search. This list is (due to 4a, we can drop the fi-
nal nodes having a single note): (N4N5), (N3(N4N5)),
((N3(N4N5))N6), (N1N2), ((N1N2)((N3(N4N5))N6)),
(((N1N2)((N3(N4N5))N6))N7).

We start with (N4N5). The set of possible positions on
the line of fifths for each note is C = {7,�5}, representing
a C] and a D[. No other options are possible, given our
choice of ‘sharpest’ and ‘flattest’ pitches. Since N4 and N5

are the same note, �7 = ��5 = 0, while µ7 = 7 � 2 = 5
and µ�5 = �5 � 2 = �7, given a bias of 2. We accept
c1 = 7 as center of effect, and spell both notes as C].

We move to (N3(N4N5)). The set of possible positions
on the line of fifths is C = {7,�5, 5}, corresponding to
C], D[ and B (no other enharmonic option is possible for
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Figure 8. Tree of notes obtained after step 3.

B, given our choice of ‘sharpest’ and ‘flattest’ pitches).
Again: �7 = 0.94, ��5 = 4.71, �5 = 0.94, hence we
choose c1 = 7 as center of effect (since �7 = 0.94 <
21/(3 + 1) = 5.25 the solution is acceptable), and spell
N4 as B and both N4, N5 as C].

We move to ((N3(N4N5))N6), with C = {7,�5, 5, 0},
corresponding to C], D[, B and C. Using ci = 7 would
respell the consecutive notes N5 as C] and N6 as C\, which
is unacceptable if (as is by default) we choose to discard
altered repetitions. The best acceptable scenario is hence
ci = �5, ��5 = 4.15 < 21/(4 + 1) = 4.2. We hence
respell N3 as B, both N4 and N5 as D[ and N6 as C.

We move to (N1N2), with C = {9,�3, 1}, correspond-
ing to D], E[ and G. The best solution is c2 = �3, with
�2 = 2 < 21/(2 + 1) yielding N1 as E[ and N2 as G.

We move to ((N1N2)((N3(N4N5))N6)), with C =
{9,�3, 1, 7,�5, 5, 0}, which on the other hand has no
acceptable solutions, either because of the altered repe-
titions, or because the standard deviations being greater
than 21/(6 + 1) = 3. We do not respell this node, and
we also delete from the list all nodes containing this one,
i.e., the node (((N1N2)((N3(N4N5))N6))N7). This con-
cludes our process (the final result is displayed in Figure 9).

Figure 9. Final result.

5.4 Final considerations

The algorithm works for both bach.roll and bach.score and
depends on the standard deviation threshold e�. Such thresh-
old can be set by the user, as shown in Figure 10. Higher
values (or equations yielding higher values) for e� will al-
low respelling of larger temporal windows, at the expense
of the quality of the transcription on smaller temporal win-
dows (and at the expense of computation time).

Parameters for the e� function are ‘numnotes’ (the number
of notes in the node to be respelled) and ‘extension’ (the
temporal extension of the node in milliseconds). Among

other things, one can fix spelling of chords only (as the
ones in Figure 1) by providing a sufficiently high value for
e� when the extension is 0, and a 0 value otherwise, e.g.
e� = 1000000 ⇤ (extension == 0).

Figure 10. Different thresholds for e� affect the outcome.

Although the described algorithm provides a roughly nat-
ural respelling of general diatonic material, it also has two
important shortcomings. For one thing, it is computation-
ally expensive; notice, for instance, how respelling is per-
formed multiple times on the notes N4 and N5 in the ex-
ample above. The algorithm has been tailored for small
portions of raw material and for short scores; as a conse-
quences, for medium or large scores, the algorithm is es-
sentially unusable in real time. To mitigate this issue, one
can, however, adapt the equation for e� to only account for
time extensions up to a certain threshold. In addition, given
that the algorithm is based on a representation of diatoni-
cism related to the line of fifths, it extends poorly on mi-
crotonal scenarios. The extension to microtonal music is of
little concern for algorithms tailored on tonal music, such
as the one by Chew and Chen; however, in our case, the
possibility to improve the readability of microtones may
constitute an important topic for future research.

6. CONCLUSION

We have presented a new framework for pitch representa-
tion in the bach library for Max, whose defining features
are the ability to represent pitches with full enharmonic in-
formation, and the identification of pitches and intervals,
meant to simplify and generalise the expression of arith-
metic operations upon them. We also have described a
novel algorithm for pitch respelling in the context of non-
tonal music. We are aware of the fact that some aspects
of this new system (in particular, the representation of in-
tervals) might appear somehow confusing at first sight, but
we hope that the simplification and generalisation they af-
ford will outweight the initial difficulty, and that, overall,
they will prove useful for implementing meaningful mu-
sical processes in a more straightforward and correct way
than what the previous versions of bach, as well as other
software tools, allow.
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