
DADA: NON-STANDARD USER INTERFACES FOR COMPUTER-AIDED
COMPOSITION IN MAX

Daniele Ghisi
STMS Lab (IRCAM, CNRS, UPMC)

Conservatory of Genoa
danieleghisi@bachproject.net

Carlos Agon
STMS Lab (IRCAM, CNRS, UPMC)

carlos.agon@ircam.fr

ABSTRACT

This article introduces the dada library, providing Max
with the ability to organize, select and generate musical
content via a set of graphical interfaces manifesting an
interactive, explorative approach. Its modules address a
range of scenarios, including, but not limited to, database
visualization, score segmentation and analysis, concatena-
tive synthesis, music generation via physical or geometri-
cal modelling, wave terrain synthesis, graph exploration,
cellular automata, swarm intelligence, and videogames.
The library is open-source and extendable; similarly to
bach, it fosters a performative approach to computer-
aided composition (as opposed to traditional off-line tech-
niques): the outcome of all its interfaces can be recorded
in scores, or used in real time to drive, among other things,
digital signal processes, score transformations, video treat-
ments, or physical actuators.

1. INTRODUCTION

Real-time computer-aided composition is a relatively re-
cent and promising field of study. In particular, the devel-
opment of the bach library [1] for Max [2] has made possi-
ble to operate on symbolic scores scores as interactively as
on sound buffers. Although bach features a certain num-
ber of interactive, graphical objects, all of them essentially
implement established representations of music, be they
traditional scores or alternative but widespread representa-
tions such as the clock diagram or the Tonnetz [3]. This is
both a strength and a limitation: it is a strength, inasmuch
as it allows bach to be a general-purpose, highly adaptable
tool; it is a limitation, inasmuch as it limits the scope of
bach as a toolbox for experimental, non-standard musical
practices and research.

This article introduces a new library, dada, based on the
bach public API, meant to fill this gap, focusing on real-
time, non-standard graphical user interfaces for computer-
aided composition. Hence, most of the modules in dada
are interactive user interfaces; nonetheless the library also
features a small number of non-UI modules designed to
complement the operation of some of the interfaces in the
library. The dada library is the third library in the “bach

Copyright: c� 2018 Daniele Ghisi and Carlos Agon. This is an open-access article

distributed under the terms of the Creative Commons Attribution 3.0 Unported Li-

cense, which permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

family” [4] (the cage library being the second [5]). It is
part of the PhD thesis of one of the authors, and although it
has been widely used in his recent musical production, for
lack of space, this article will not describe such examples
of usages (while the full PhD thesis does [6]).

2. MOTIVATION AND RATIONALE

The philosophy behind dada is profoundly different from
the one which informed bach: dada is to bach what a lab-
oratory is to a library. Under the umbrella of non-standard,
strictly two-dimensional graphic user interfaces, all of its
components participate of a ludic, explorative approach to
music; most of its components also refer to the fields of
plane geometry, physical modelling or recreational mathe-
matics.

A preliminary alpha version of dada (0.1) is available on
its official website 1 . The modules included in the dada li-
brary can be roughly divided into three categories: tools
for corpus-based composition (including database inter-
faces and score analysis mechanisms), tools for physical or
geometrical modelling of music (including gravity-based
models, pinballs, kaleidoscopes and wave terrain synthe-
sis), and tools to handle rule-based systems and games (in-
cluding cellular automata, swarm intelligence models and
platform videogames). Before providing, in the next few
sections, a detailed overview of the modules, we would
like to motivate our development choices.

Differently from bach and cage, dada is a personal li-
brary, tailored on the compositional needs of one of the
authors. Essentially all implementation choices have been
taken with this consideration in mind, a fact that is most
notable in some specific modules (such as dada.bodies or
dada.music⇠). In other words, the choice of what to de-
velop has not been influenced by the needs of the computer
music community, but rather by a very personal effort to
experiment with geometry-based musical ideas.

That being said, dada is by design an open box: it is open-
source 2 , and we hope that other interested musicians and
developers will contribute with new modules. Such addi-
tions will be facilitated by the dada API, implementing a
set of common operations (to provide, among other things,
support for graphic display, selection handling and undo
mechanisms).

1 http://www.bachproject.net/dada
2 https://github.com/bachfamily/dada

TENOR'18 Proceedings of the 4th International Conference on Technologies for Music Notation and Representation

147

mailto:danieleghisi@bachproject.net
mailto:carlos.agon@ircam.fr
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.bachproject.net/dada
https://github.com/bachfamily/dada


It should be remarked that most processes in dada are
not new—some of them have also been implemented and
distributed as third-party Max externals. In particular: the
portion of the library dealing with database visualization
has been inspired by the CataRT library for concatenative
synthesis [7] (which has two different Max implementa-
tions [8]); the swarm intelligence module relates to the
Boids library 3 ; the wave terrain synthesis module relates
to WAVE 4 and to Stuart James’s work [9]; and there is
a large number of implementations of cellular automata
in Max, including Bill Vorn’s Life Tools 5 . There are,
however, two good reasons for our choice to re-implement
these tools inside dada.

Firstly, all dada modules follow the bach paradigm of
real-time computer-aided composition [4]. The contribu-
tion of dada is hence novel, inasmuch as it builds on top of
the rich hierarchical representation and algorithmic manip-
ulation afforded by bach and cage, integrating its processes
within a single, unified, coherent system. As an example,
all dada modules are designed to be easily used in combi-
nation with bach.ezmidiplay, to obtain a quick MIDI ren-
dering of the musical outcome, and with bach.transcribe,
to record the outcome in proportional notation in a bach.roll.

Secondly, the dada implementation is more general, more
customizable or has a different scope. As an example,
the dada.catart module, a two-dimensional interfaces of
datasets, differently from CataRT is not limited to audio
datasets; on the contrary, it is able to organize on the carte-
sian plane entries of a generic SQLite database—and its fo-
cus is, most notably (but not uniquely), on score datasets,
providing mechanisms to segment and analyze symbolic
scores. As another example, the dada.boids object, differ-
ently from the Boids library, allows for customized rules
to be set via snippets of C code, compiled on-the-fly. The
same is true for dada.life, dealing with cellular automata.

3. TOOLS FOR CORPUS-BASED COMPOSITION

The tools in this category are primarily designed to handle
scores databases, but can be more generally applied to the
creation and visualization of general datasets. Some of the
modules in this category were already introduced in [10],
and have been, since then, improved and extended.

The overall system relies on four different modules:
dada.segment, performing score segmentation and feature
extraction; dada.base, implementing the actual database
engine; dada.catart and dada.distances, two-dimensional
graphic user interfaces capable of organizing and interact-
ing with the extracted grains.

3.1 Segmentation

The dada.segment module performs the segmentation of a
score, contained in a bach.roll (as proportionally notated
musical data) or a bach.score (as classically notated musi-
cal data, see Figure 1), in one of the following manners: us-
ing the markers in the original score as slice points; defin-

3 http://s373.net/code/
4 http://www.noisemaker.academy/blog/
5 http://billvorn.concordia.ca/research/

software/lifetools.html

Figure 1. Segmentation of a bach.score into grains having
length equal to half of the beat (i.e. an eighth note).

ing an equation for the size of each grain; using labels as-
signed to notes and chords (outputting one grain for each
label).

The segmentation can be carried on with overlapping win-
dows, both on proportional and classically notated scores,
and standard windowing techniques can be applied to MIDI
velocities, if desired.

3.2 Analysis

Grain analysis is performed during the segmentation pro-
cess. On one side, dada.segment is capable of adding some
straightforward metadata to the segmented grains, such as
their duration, onset, index, label (if segmentation is car-
ried out via label families) and notation object type (either
‘roll’ for bach.roll or ‘score’ for bach.score); in case the
grain comes from a bach.score, tempo, beat phase, sym-
bolic duration and bar number can also be added.

On the other hand, dada.segment allows the definition
of custom features via a loopback patching configuration
named “lambda loop” [11]: grains to be analyzed are out-
put one by one from the rightmost outlet, preceded by the
custom feature name; the user should provide a subpatch to
extract the requested feature, and then plug the result back
into dada.segment’s rightmost inlet. Feature names, de-
fined in an attribute, are hence empty skeletons which will
be “filled” by the analysis implementation, via patching.
This programming pattern is widely used throughout the
bach library (one can compare the described mechanism,
for instance, with bach.constraints’s way of implementing
custom constraints [1]), and allows users to implement vir-
tually any type of analysis on the incoming data.

Some ready-to-use abstractions are provided for quick
prototyping, whose terminologies are mostly borrowed from
the audio domain, even if they are applied to symbolic data;
hence dada.analysis.centroid will output an average pitch,
dada.analysis.spread will output the standard deviation of
the pitches, and so on. The reason behind this choice is
to underline the duality between this symbolic framework
and the digital signal processing approach. Moreover, since
analysis modules are standard Max patchers, it is easy for
users to inspect and adapt them to different behaviors.

Analyzed features are collected for each grain, and output
as metadata from the middle outlet of dada.segment.

TENOR'18 Proceedings of the 4th International Conference on Technologies for Music Notation and Representation

148

http://s373.net/code/
http://www.noisemaker.academy/blog/
http://billvorn.concordia.ca/research/software/lifetools.html
http://billvorn.concordia.ca/research/software/lifetools.html


3.3 Database

Once the score grains have been produced and analyzed,
they are stored in a SQLite database, whose engine is im-
plemented by the dada.base object. Data coming from
dada.segment are properly formatted and fed to dada.base,
on which standard SQLite queries can be performed.

Some higher-level messages are provided to perform ba-
sic operation and to handle distance tables (i.e. tables con-
taining distances between elements in another table, use-
ful, for instance, in conjunction with the dada.distances
module, as explained below).

Databases can be saved to disk and loaded from disk.

3.4 Interfaces

Two objects provide graphic interfaces for the database:
dada.catart and dada.distances.

Figure 2. The dada.catart object displaying a database
of score fragments. Each element of the database (grain)
is represented by a circle. On the horizontal axis grains
are sorted according to the spread, while on the vertical
axis grains are organized according to their centroid. The
colors scale is mapped on the grain onsets in the original
file, while the circle size represents the grain loudness.

The dada.catart module provides a two-dimensional Carte-
sian graphic interface for the database content. Its name is
an explicit acknowledgment to the piece of software which
inspired it [7]. Grains are by default represented by small
circles in a two dimensional plane. Two features can be
assigned to the horizontal and vertical axis respectively;
two more features can be mapped on the color and size of
the circles. Finally, one additional integer valued feature
can be mapped on the grain shape (circle, triangle, square,
pentagon, and so forth), adding up to a total number of five
features being displayable at once (see Figure 2).

The dada.distances module provides a distance-based rep-
resentation of the database content. Points are the entries
of a table, characterized via their mutual distances, con-
tained in a different table. They are represented in a two-
dimensional plane via the multidimensional scaling algo-
rithm provided by [12]. Edges are drawn only if the corre-

Figure 3. The dada.distances object displaying a database
of score fragments. As for the dada.catart case (Figure 2),
each element is represented by a circle. Grains are only po-
sitioned only according to a certain defined distance func-
tion (in this case, the distance of their centroids, spreads
and loudnesses, as tridimensional vectors), the positioning
in the plane is carried out via multidimensional scaling.

sponding distance is below a certain threshold (see Figure
3). The resulting graph is navigable in a Markov-chain
fashion, where distances are interpreted as inverse prob-
abilities. As for dada.catart, features can be mapped to
colors, sizes and shapes.

Both in dada.catart and in dada.distances each grain is
associated with a “content” field, which is output either on
mouse hovering or on mouse clicking. The content is usu-
ally assigned to the bach list representing the score. The
sequencing can also be beat-synchronous, provided that a
tempo and a beat phase fields are assigned: in this case
the sequencing of each grain is postponed in order for it
to align with the following beat, according to the current
tempo (obtained from the previously played grains).

A knn message allows to retrieve the k nearest samples
for any given (x, y) position. A system of messages in-
spired by turtle-graphics is also implemented, in order to
be able to move programmatically across the grains: the
setturtle message sets the turtle (displayed with an hexagon)
on the nearest grain with respect to a given (x, y) position;
then the turtle message moves the turtle of some (�x,�y),
choosing the nearest grain with respect to the new position
(disregarding the original grain).

The database elements can be sieved by setting a where
attribute, implementing a standard SQLite ‘WHERE’ clause.
The vast majority of the display features can be customized,
such as colors, text fonts, zoom and so on. In combina-
tion with standard patching techniques, these features also
allow the real-time display, sequencing and recording of
grains.

TENOR'18 Proceedings of the 4th International Conference on Technologies for Music Notation and Representation

149



Figure 4. Two dada.bounce objects producing respec-
tively a polyrhythm (left) and a more complex pattern
(right). Each edge is mapped on a note which can be played
or recorded as soon as the the edge is hit.

4. TOOLS FOR PHYSICAL OR GEOMETRICAL
MODELLING OF MUSIC

The interfaces in this group share the idea that objects in
space can lead to music generation by means of geometry
and motion.

4.1 Pinball-like bouncing

The dada.bounce module suggests a pinball-like scenario,
where a certain number of balls move inside a space de-
limited by a user defined graph, called “room”. The ball
movement is uniform (constant speed 6 , no gravity), ex-
cept when a ball bounces off an edge. Each edge contains
metadata either as a couple of MIDI pitch and velocity, or
as a complex score; such metadata will be output whenever
a ball hits the corresponding edge. Information about the
collision (identifying the point, the edge and the ball) can
be retrieved. Ball and room properties and metadata can be
changed dynamically.

Simple room configurations may lead to loops or
polyrhythmic patterns; more complex results are achiev-
able by modifying the geometry of the room and the num-
ber of balls (see Figure 4), or by using feedback loops as
programming patterns—e.g., by adding edges at each hit.

4.2 Gravitation

A different paradigm is enforced by the dada.bodies mod-
ule, modelling a two-dimensional universe with gravity,
containing two types of objects: “stars”, fixed circles, from
which a certain number of radii stand out, each represent-
ing a note (see Figure 5); and “planets”, which orbit around
the stars according to a customizable gravitational law, trig-
gering the playback of radial notes whenever they orbit
“close enough” to a star. The MIDI velocities are scaled
according to the distances between planets and stars. As

6 In order to avoid confusion with MIDI velocities, the term “speed” is
used in this context also to refer to the velocity vector, and not just to its
scalar intensity.

Figure 5. Configuration of dada.bodies gradually distort-
ing the loops of Gerard Grisey’s Vortex temporum. At
right: a zoomed version of one of the stars (correspond-
ing to the flute’s notes).

a metaphor, one could imagine “stars” as being “radial ae-
olian harps”, played by the planets whenever they circle
around them.

This model is a convenient representation to handle con-
tinuous modification of loops. In a situation with a single
star and a single planet, one could set the distances and
speeds so that the planet motion around the star is circu-
larly uniform (convenience methods are provided), result-
ing in a perfectly looping pattern. Modifying the planet
position or speed, ever so slightly, results in a time warp-
ing operation on the loop. Adding more stars will trigger
complex scenarios. Chaotic loops and attractor-like situa-
tions can be achieved via this system.

4.3 Kaleidoscopes

The dada.kaleido module traces the disposition and move-
ment of a certain number of polygons in a kaleidoscope-
like container. A certain number of shapes (polygon or el-
lipses) are positioned inside a 2- or 3-mirror chamber. The
2-mirror chamber has a couple of mirrors of equal length
hinged at the origin, producing circular “snowflake”-like
patterns. The angle between the mirrors is set by the user
via the count attribute, an integer number n � 2 relating
to the mirror angle ↵ in the following way: ↵ = ⇡/n: for
n = 2 mirrors are at right angles, for n = 3 they are two
sides of an equilateral triangle, and so on (see Figure 6).
For n = 2 and n = 3, a third mirror can be introduced [13,
p. 210], closing the triangle formed by the other two, hence
extending the tiling to the whole plane.

The shapes inside the chamber can be modified either via
the interface or via a set of messages, such as ‘move’, ‘ro-
tate’, ‘scale’ and ‘shake’. A combination of rotation with a
certain amount of shaking will result in an elementary yet
effective modelling of a hand rotating the body of a kalei-
doscope.

Users can assign test points on the plane, so that the ob-
ject may report whenever any of the polygons, during a
movement, hits a point (i.e. when the point enters a poly-
gon or any of its kaleidoscopic reflections) or releases a
point (i.e. when the point is no longer on the polygon, or
on any of its kaleidoscopic reflections). Information about
the distances between test points and polygons can also be
retrieved, and can be used as control for symbolic or DSP
processes. As an example of application, one might asso-
ciate each shape with a portion of audio file, which, like a

TENOR'18 Proceedings of the 4th International Conference on Technologies for Music Notation and Representation

150



Figure 6. Same shapes reflected into different chambers
of a dada.kaleido object, for increasing values of the count
attributes. Last row shows the 3-mirror version of the pat-
terns, only available for n = 2 and n = 3.

vinyl, is only read, with variable speed, when a certain test
point (the “stylus”) is positioned over the shape.

4.4 Wave terrain synthesis

The dada.terrain⇠ module implements wave terrain syn-
thesis [14, pp. 163–167]: a function z = f(x, y) yields the
“height” of the terrain for each point of a plane. Evaluating
the function f on a specific path p : x = x(t), y = y(t)
produces a one-dimensional function z = g(t) = f � p(t),
which represents the wave terrain synthesis along the path
p. Wave terrain synthesis essentially constitutes an exten-
sion of the ordinary wavetable synthesis to bidimensional
lookup tables, and it is traditionally implemented in this
way, in order to lower computational costs. A typical sce-
nario is when the surface f is a direct product of sinusoids,
such as f(x, y) = sin(n⇡x)cos(m⇡y): in this case, by
sampling the terrain on circular or elliptic orbits p, one ob-
tains FM-like timbres.

In the dada.terrain⇠ module, the function f(x, y) is how-
ever not defined via a wave table, and is set via an ex-
plicit portion of C code compiled on-the-fly (see Figure
7). The wave terrain is displayed so that black corresponds
to z = �1, white corresponds to z = 1, and 50% grey
corresponds to z = 0.

Figure 7. Two wave terrains displayed in dada.terrain⇠.

Four auxiliary modules help producing specific paths,
namely: segments, rectangles, ellipses and spirals; such
modules produce coordinates at sample rate, to be used as
input for the wave terrain module.

The dada.terrain⇠ module also supports the a “buffer
wheel” mode, where the terrain is the result of a morphing
between radially arranged buffers. Such morphing could
be additive (result being a simple crossfade) or multiplica-
tive; the equation for the contribution of each buffer can
be set as a portion of C code compiled on-the-fly. As an
example, consider Figure 8, where four instruments play-
ing the same notes are arranged radially, and a spiral path
samples the wave terrain, yielding a morphing between the
four sounds.

Figure 8. Four buffers, each containing an instrument
playing an A3 in pianissimo, are arranged radially on a
dada.terrain⇠. The terrain is then sampled via a spiral
path, yielding a morphing between the four sounds.

5. RULE-BASED SYSTEMS, GRAPHS, AND
MUSIC AS A GAME

A certain number of tools explore the relationship between
music, mathematics and games, and how this relationship
ramifies towards combinatorics, algebra, topology and com-
puter science (the link between canonical processes and
topology being of course well known [15], further interest-
ing examples can be found in tools such as origami [16] or
juggling patterns [17] 7 ).

7 See for instance Tom Johnson: Three notes for 3 jugglers (2012).

TENOR'18 Proceedings of the 4th International Conference on Technologies for Music Notation and Representation

151



The modules in this family share two important ideas.
The first one is that interesting emergent behaviors may
arise from dynamical systems even when their agents ad-
here to sets of extremely simple rules; this is well known,
for instance, in the study of cellular automata, swarm in-
telligence and in Chaos Theory. The second idea is that
digital scores may somehow be harbringers of a form of
“gamification”, i.e. the usage of game design elements in
non-game scenarios.

After all, there are fundamental similarities between mu-
sical scores (in any form) and digital games [18]. Playing
videogames often resolves in following a (graphically no-
tated) rhythmical score, not dissimilar to a percussionist
playing his or her own part in an orchestra: in both cases,
the ability to stay within an acceptable level of precision
affects the outcome. If the score is hard-coded, gamers can
progressively learn the precise timing for their actions; if
the score is open, gamers are obliged to play a prima vista.

5.1 Cellular automata

The first module in this family is dada.life: a graphical in-
terface for two-dimensional cellular automata, on square
or triangular grids. Cellular automata are rule-based sys-
tems, consisting of a regular grid of cells, each in one of a
finite number of states (such as “alive” and “dead”). A set
of cells called “neighborhood” is defined relative to each
specific cell. Given a configuration of states, a new gen-
eration can be created according to a given rule, usually a
mathematical function, determining the new state of a cell
depending on the current states of the cells in its neigh-
borhood. The most famous cellular automaton is arguably
Conway’s Game of Life. Extremely complex patterns can
arise in cellular automata, even from simple rules.

A Max module handling two-dimensional cellular au-
tomata was already included in cage [5]; nevertheless the
dada.life object improves the approach, by making it inter-
active, more customizable and faster. The customization
possibilities are not limited to colors and sizes: rules them-
selves can be defined either via attribute combinations (for
simple scenarios similar to Conway’s Game of Life) or via
a portion of C code, compiled on-the-fly—a more agile ap-
proach than cage.life’s Max patchers. 8

Automata in dada.life can live on square or triangular lat-
tices, such as the Tonnetz [3]. One can use the Tonnetz
grid as basis for a two-states cellular automaton (see Fig-
ure 9): cells can be ‘on’ (playing) or ‘off’ (silent). Pattern
hence result in musical sequences; for instance, oscillators
(patterns that repeat after a finite number of steps) yield
harmonic or melodic loops.

5.2 Swarm intelligence

The dada.boids module investigates swarm intelligence
models. The object contains a certain number of “swarms”
or “flocks”, each containing a certain number of “birds” or
“particles”, singularly represented on the screen as points
or arrows. The movement of each particle is dictated by a

8 On the other hand, the fact that cage.life is an abstraction is consistent
with the design of the whole cage project.

Figure 9. The harmonic cycle for the third movement in
Come un lasciapassare, by one of the authors, as an oscil-
lator of a two-dimensional cellular automata played on the
Tonnetz.

sequence of higher-level rules, usually in the form of dif-
ferential equations, accounting for the global behavior of
the flock. Particles are traditionally called “boids” [19], a
shortened version of “bird-oid objects”.

In the traditional boids scenario, three rules apply: sepa-
ration (particles steer to avoid crowding local flockmates),
alignment (particles steer towards the average heading of
local flockmates) and cohesion (particles steer to move
toward the average position of local flockmates). The
dada.boids module is able to account for such rules, as well
as a for the presence of external barriers (obstacle avoid-
ance) and winds. Moreover, each user can define his or
her own set of rules, by compiling on-the-fly a portion of
C code. Rules can have parameters, defining their posi-
tion (such as the location of an obstacle), their orientation
(such as the wind direction), their intensity (such as the
wind speed, or the strength of a barrier), or, more gener-
ally, their behavior (such as a threshold for particle separa-
tion). Some of these parameters can also be associated to
editable graphical user interface elements, such as points,
vectors or lines—for instance, users can modify the direc-
tion of the wind by dragging the tip of the corresponding
arrow, or the position of a barrier by dragging the corre-
sponding horizontal or vertical line (see Figure 10).

In addition to their position and speed, particles can have
a scalar intensity value, and custom rules can be set to mod-
ify intensities along with speeds. In practice, both built-
in and user-defined rules are compiled functions that, for
each particle, take as input its state, together with the state
of the entire flock (coordinates, speeds and intensities of
each particle), and yield as output, according to the current

TENOR'18 Proceedings of the 4th International Conference on Technologies for Music Notation and Representation

152



Figure 10. A dada.boids object where the vertical position
of each boid is mapped on the frequency of a sinusoidal
oscillator.

value of their parameters, a speed vector, to be added to the
current particle speed (a “steering” vector), and possibly a
value to be added to its intensity. By summing the contri-
butions of all rules, one gets the discrete derivative of the
particle speed (and intensity).

5.3 Graphs

The dada.graph module (see Figure 11) is a simple
graph interface and editor, also featuring two automatic
node placement algorithms provided by the Boost li-
brary [20]: the Fruchterman-Reingold force-directed lay-
out [21] and the Kamada-Kawai spring layout [22]. Sim-
ilarly to dada.distances, the graph can be also navigated
in a Markov-chain fashion, starting at a given point, and
then choosing each following steps according to the edge
probability distribution (weights) and to a desired memory
length.

A variation on dada.graph is the dada.machines module
(see Figure 12), essentially a graph where each node repre-
sents some “machine”, i.e. a simple, prototypal operation
to be performed on one or more inputs. By default these
operations are elementary symbolic score transformations,
such as transposition, retrogradation, circular shift, split-
ting, merging, and so on; user-defined operations are also
supported. In a way, dada.machines represents a patch in-
side a patch, taking a score as input, processing it via the
transformation graph, and outputting the result; however
its spirit is more peculiar, and it was designed to be used
with randomly generated graphs (the ‘random’ message
produces graphs where the number of machines of each
type matches a desired distribution). Via dada.machines
one can apply a performative, exploratory paradigm to mu-
sic, somehow reversing the functional and ergonomic rela-
tionship between algorithm and data.

Figure 11. A simple patch displaying, via dada.graph, the
lattice of divisors for an incoming natural number.

We are used to operate on data via carefully designed
functions, and to modify them if the output result on a cer-
tain input is different from what we desire. As an exam-
ple, to create a symbolic distorted granulation of a given
Mozart sonata, one would spend quite some time design-
ing the way the symbolic granulation should be achieved
and the type of distorsion modelling needed. Nonethe-
less, one might reverse the principle, taking a random al-
gorithm for granted, and carefully exploring input data in
order to see if the results are interesting. If the algorithm is
“complex enough”, one might attempt to detect simple pat-
terns (such as scales or counting-like patterns) along with
more complex ones. (Of course, operatively, it makes little
sense to search for a counting machine by tweaking inputs
of a complex, random algorithm—which would categorize
dada.machines module more as a mental experiment than
a practical tool.)

5.4 Videogames

Developing a game engine in Max might seem awkward;
and indeed there is a large number of environments specifi-
cally dedicated to the task (Unity probably being one of the
most popular 9 ). Max is neither designed nor optimized for
such scenarios.

It can however be interesting to have a (crude, primitive)
game engine natively coded in a Max external, since Max
is a general purpose environment, and its visual paradigm
can be applied to a large number of scenarios (digital au-
dio, video, lighting, actuators...), making it easier to com-
municate between different media and techniques.

9 https://unity3d.com

TENOR'18 Proceedings of the 4th International Conference on Technologies for Music Notation and Representation

153

https://unity3d.com


Figure 12. A patch featuring a dada.machines interface,
generating network graphs containing 100 machines ac-
cording to a distribution of some “atomic” score operations
(transposition, circular shift, splitting and joining). The
incoming score is processed via the randomly generated
graph, and the result is output.

The dada.platform module, allowing the design of graph-
ical interactions inspired by platform videogames, has been
imagined and developed with these considerations in mind.
Due to the complexity of designing a usable game engine,
the module is currently in a prototypal phase, slightly more
than a “proof of concept”. Nevertheless dada.platform al-
ready supports four categories of objects:

Blocks: fixed objects which can possibly be broken;

Coins: fixed objects which can possibly be taken;

Game characters: moving elements which can interact with
any other element in a more complex way. Game
characters’ motion is governed by a crude physical
modelling: characters may possess the ability to jump,
run, fly, swim, fire, glide, break elements, kill other
characters, be killed by other characters. Game char-
acters, in turns, belong to one of the following cate-
gories: ‘usercontrol’ (currently at most one charac-
ter can be controlled by the user, also called ‘hero’);
‘idle’ (do-nothing characters); ‘food’ (characters feed-
ing the hero); ‘enemy’ (characters with the ability
to harm or kill the hero); ‘bullet’ (projectiles poten-
tially killing the hero);

Portals: objects which can dislocate the ‘hero’ to a new
position in the same level, or to a brand new level.

All the properties of each object (such as its position,
dimension, speed, abilities, image or sequence of images
used to display it, and so on) can be set or fine-tuned via a
dedicated inspector (see, for instance, Figure 13).

Linking game actions to musical events can be done in
two ways. On one side, some of the objects’ properties are

musical scores (in bach.roll or bach.score syntax), output
from a dedicated outlet whenever coins are taken, blocks
are broke, and so on. More powerfully, any user action
and any game interaction is notified via a dedicated outlet,
so that any musical process can be triggered from them,
such as sound synthesis, score production, video genera-
tion, and so on.

As it is not infrequent for objects in each level to share
the same properties (just like identical blocks, coins or en-
emies), prototypes can be created, in order to easily handle
multiple instances of indistinguishable objects.

Some of the properties of an object can be sequences of
instructions, wrapped in levels of parentheses, written in a
dedicated scripting language, designed to modify the con-
figuration of the object itself, or of other objects. Instruc-
tion sequences are provided whenever a character dies, a
block is hit, or a portal is entered, and so on. Script com-
mands allows a wide range of actions, including: breaking
blocks, assigning points or victory points, generating new
objects, adding or removing abilities to characters, chang-
ing the state of objects, notifying some action, changing
level or position in the level, pausing the game, preventing
the hero from dying, winning, losing (“game over”).

As a simple example, the script

(add hero ability fly)
(goto level mynewlevel.txt at PipeRev
with (keephero 1)),

assigned to a given portal, provides the current hero with
the ability to fly, and then loads the level contained in the
file mynewlevel.txt, at the position of the portal named
PipeRev, keeping the current hero state (including its
properties, points and victory points).

Each game character has a script sequence for its death
(the “death sequence”); as another example, among many
others, if one needs to turn a character named ‘Juan’, when-
ever he eats a certain fruit, into a character named ‘Su-
perJuan’, who, in turns, when killed returns to be a sim-
ple ‘Juan’ (like for the Mario/SuperMario classic Nintendo
duality), one might want to assign to the fruit a death se-
quence along these lines:

(add hero ability break)
(change hero (name SuperJuan)
(idlesprite superjuanidle)
(walksprite superjuanwalk)
(jumpsprite superjuanjump)
(flysprite superjuanswim)
(height 1.625)
(ext 0.35 0.35 0.825 0.825)
(deathseq (dontdie) (remove hero ability
die during 2000) (change hero (name
Juan) (idlesprite juanidle) (walksprite
juanwalk) (jumpsprite juanjump) (height
1) (ext 0.4 0.4 0.5 0.5) (deathseq))
(remove hero ability break))).

Specific information about keywords and syntax can be
found in the dada.platform’s help file and reference sheet.
I shall just underline, in particular, how the last example
is based on the fact that the fruit’s death sequence changes
the hero’s death sequence, which in turns contain an in-
struction to clear its own death sequence, when triggered.

TENOR'18 Proceedings of the 4th International Conference on Technologies for Music Notation and Representation

154



Figure 13. A screenshot of a dada.platform editor; the properties of the selected coin are displayed in the inspector.

6. COMPARISON WITH OTHER SOFTWARE

We have already emphasized the relationship of dada with
project such CataRT, WAVE, Stuart James’s objects, the
Boids library, and Bill Vorn’s Life Tools.

There is some correspondence between dada’s geomet-
ric approach and graphical sequencers such as Iannix [23]
(as a matter of fact, a partial, two-dimensional porting of
Iannix into dada might be a good addition to the library).
On the other hand, the sequencing capabilities of Iannix
largely outperform dada’s, whose purpose is not sequenc-
ing per se, but rather a seamless integration with the bach
and Max environment, allowing, among many other things,
live recording of scores.

The dada library shares with InScore [24] the interest
in designing interactive non-standard symbolic represen-
tation. The idea of using games to interactively structure
musical content resonates with Paul Turowski’s researches
and works, such as Frontier [18]. The dada.life module
shares with Louis Bigo’s HexaChord [25] the possibility
of visualizing trajectories on musical lattices such as the
Tonnetz—although the former focuses on the generation
of cellular automata, while the latter is tailored for analy-
sis purposes.

One should also remark the relationship of dada with mu-
sic applications such as Björk’s Biophilia, or Brian Eno’s
generative apps, or with interactive web tools such as some
of the Chrome Experiments 10 or of the A.I. Experiments 11

(e.g., The Infinite Drum Machine); all these cases share
with dada an interest for a tight, creative connection be-
tween visuals, gestures and music, and for exploring the
grey area between interfaces and musical objects—however,
if at least in Björk’s case the musical apps are themselves
art objects, dada modules are designed as simple instru-
ments for composition 12 .

10 https://www.chromeexperiments.com/
11 https://aiexperiments.withgoogle.com/

drum-machine
12 This has possibly one notable exception: the dada.music⇠ module,

included in the library, organizing and representing on a segment all mu-
sic tracks, might be considered both as a conceptual work and as a piece
of evidence for an exploratory approach to music.

7. FUTURE WORK

The dada library is still in its infancy, and a certain number
of additions and improvements are needed to complete it
and to make it more usable.

First of all, thorough testing and optimization are nec-
essary to make the library more stable and the user expe-
rience more comfortable. Besides, a Windows porting is
also needed (currently the library only works on MacOS).

One of the most important lines of development would be
porting the interfaces on mobile operative systems (tablets,
smartphones), where they might take advantage of multi-
touch support. The most convenient way would be to ex-
ploit the Miraweb package 13 , developed by Cycling ’74,
which allows mirroring on web browsers specific interface
elements contained in a patch; the possibility to add Mi-
raweb support to third party externals should be explored.

As far as the documentation is concerned, comprehen-
sive help files and complete reference sheets are already
provided for each module. However, some video tutori-
als would be a valuable addition for users who need to get
used to the dada environment.

The set of tools for corpus-based composition can be im-
proved in a number of ways.

• The number of analysis modules should be in-
creased, by attempting to bring into the symbolic do-
main important audio descriptors such as roughness,
inharmonicity, temporal centroid, and so on.

• dada.catart and dada.distances should be provided
with the capability to modify column values by drag-
ging points on the display.

The tools for physical or geometrical modelling are prob-
ably the modules in dada whose development is most ad-
vanced; nonetheless the dada.terrain⇠ module should be
provided with anti-aliasing capabilities.

Finally, a certain number of improvements can affect the
subset of tools dealing with rule-based systems and graphs:

• dada.graph is already capable of displaying graphs
where the vertices are notes; it might also be pro-

13 https://cycling74.com/articles/
content-you-need-miraweb

TENOR'18 Proceedings of the 4th International Conference on Technologies for Music Notation and Representation

155

https://www.chromeexperiments.com/
https://aiexperiments.withgoogle.com/drum-machine
https://aiexperiments.withgoogle.com/drum-machine
https://cycling74.com/articles/content-you-need-miraweb
https://cycling74.com/articles/content-you-need-miraweb


vided with the possibility of displaying vertices as
complex scores, which would open the way for po-
tentially interesting applications.

• The dada.graph object should compute minimum
spanning trees and shortest paths. It also should
be provided with dedicated algorithms for special
classes of graphs (such as trees or partially ordered
sets). Automatic graph type detection, triggering the
corresponding placement algorithm, might be a nice
feature to have.

• The dada.platform object is currently little more
than a “proof of concept”. It would be interesting to
issue something akin to a “call for scores” for pieces
of interactive music based on it; this would proba-
bly also help detecting the bugs and the flaws of the
system.

8. REFERENCES

[1] A. Agostini and D. Ghisi, “A Max Library for Musical
Notation and Computer-Aided Composition,” Com-
puter Music Journal, vol. 39, no. 2, pp. 11–27, 2015.

[2] M. Puckette, “Max at Seventeen,” Computer Music
Journal, vol. 26, no. 4, pp. 31–43, 2002.

[3] R. Cohn, “Introduction to neo-riemannian theory: a
survey and a historical perspective,” Journal of Music
Theory, vol. 42, no. 2, pp. 167–180, 1998.

[4] D. Ghisi and A. Agostini, “Extending bach: A Fam-
ily of Libraries for Real-time Computer-assisted Com-
position in Max,” Journal of New Music Research,
vol. 46, no. 1, pp. 34–53, 2017.

[5] A. Agostini, E. Daubresse, and D. Ghisi, “cage: a
High-Level Library for Real-Time Computer-Aided
Composition,” in Proceedings of the International
Computer Music Conference, Athens, Greece, 2014.

[6] D. Ghisi, “Music Across Music: Towards a Corpus-
Based, Interactive Computer-Aided Composition,”
Ph.D. dissertation, Université Pierre et Marie Curie /
Sorbonne Université, IRCAM, France, 2017.

[7] D. Schwarz, G. Beller, B. Verbrugghe, and S. Brit-
ton, “Real-Time Corpus-Based Concatenative Syn-
thesis with CataRT,” in Proceedings of the Interna-
tional Conference on Digital Audio Effects, Montreal,
Canada, 2006.

[8] D. Schwartz, “Interacting with a Corpus of Sounds,”
in Symposium on Sound and Interactivity, Singapore,
2013.

[9] S. G. James, “Developing a flexible and expressive re-
altime polyphonic wave terrain synthesis instrument
based on a visual and multidimensional methodology,”
Ph.D. dissertation, Edith Cowan University, Australia,
2005.

[10] D. Ghisi and C. Agon, “Real-time corpus-based con-
catenative synthesis for symbolic notation,” in Pro-
ceedings of the International Conference on Tech-
nologies for Music Notation and Representation
(TENOR’16), Cambridge, United Kingdom, 2016.

[11] A. Einbond, C. Trapani, A. Agostini, D. Ghisi, and
D. Schwarz, “Fine-tuned Control of Concatenative
Synthesis with CataRT Using the bach Library for
Max,” in Proceedings of the International Computer
Music Conference, Athens, Greece, 2014.

[12] Q. Wang and K. L. Boyer, “Feature learning by mul-
tidimensional scaling and its applications in object
recognition,” in SIBGRAPI Conference on Graphics,
Patterns and Images, Arequipa, Peru, 2013.

[13] D. Gay, Geometry by Discovery. Wiley, 1997.

[14] C. Roads, The Computer Music Tutorial. MIT press,
1996.

[15] D. R. Hofstadter, Gödel, Escher, Bach. Basic Books,
1999.

[16] E. Andersen, “Origami and math,” http://www.
paperfolding.com/math/, 2012, accessed: 2015-13-12.

[17] M. Macauley, “Braids and juggling patterns,” Harvey
Mudd College thesis, USA, 2003.

[18] P. Turowski, “Digital game as musical notation,” Ph.D.
dissertation, University of Virginia, USA, 2016.

[19] C. W. Reynolds, “Flocks, herds and schools: A dis-
tributed behavioral model,” ACM SIGGRAPH Com-
puter Graphics, vol. 21, no. 4, pp. 25–34, 1987.

[20] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, Art and
Agency: An Anthropological Theory. Addison-
Wesley Professional, 2001.

[21] T. M. Fruchterman and E. M. Reingold, “Graph draw-
ing by force-directed placement,” Software: Practice
and Experience, vol. 21, no. 11, pp. 1129–1164, 1991.

[22] T. Kamada and S. Kawai, “An algorithm for draw-
ing general undirected graphs,” Information Process-
ing Letters, vol. 31, no. 1, pp. 7–15, 1989.

[23] T. Coduys and G. Ferry, “Iannix-aesthetical/symbolic
visualisations for hypermedia composition,” in Pro-
ceedings of the Sound and Music Computing Confer-
ence, Paris, France, 2004.

[24] Y. Fober, Y. Orlarey, and S. Letz, “An Environment for
the Design of Live Music Scores,” in Proceedings of
the Linux Audio Conference, CCRMA/Stanford Uni-
versity, USA, 2012.

[25] L. Bigo, D. Ghisi, S. Antoine, and A. Moreno, “Repre-
sentation of musical structures and processes in simpli-
cial chord spaces,” Computer Music Journal, vol. 39,
no. 3, pp. 11–27, 2015.

TENOR'18 Proceedings of the 4th International Conference on Technologies for Music Notation and Representation

156

http://www.paperfolding.com/math/
http://www.paperfolding.com/math/

	01-TENOR2018_8_Skold
	 1. Introduction
	 2. Background
	 3. The Notation System
	 4. Case Study
	4.1 Introduction
	4.2 Participants
	4.3 Method
	4.4 First Notation Assignment and Feedback
	4.5 Modifications
	4.6 Second Assignment and Feedback
	4.7 Case Study Conclusions

	 5. Future Work
	 6. References

	02-TENOR2018_6_Couprie
	 1. Introduction
	1.1 Schaeffer and the transcription of acousmatic music
	1.2 Why would we trancribe?

	 2. The analytical framework
	2.1 Representations
	2.2 Transcriptions
	2.3 The transcription space
	2.3.1 The graphical plane axis
	2.3.2 Background

	2.4 Annotations
	2.4.1 Semiotic correspondences
	2.4.2 Links between sound and visual
	2.4.3 Synoptic transcriptions


	 3. Software
	3.1 Available technologies
	3.2 An example: EAnalysis
	3.2.1 From ideas to software
	3.2.2 The architecture of EAnalysis
	3.2.3 Modes and markers
	3.2.4 From events to filter


	 4. Conclusion
	 5. References

	03-TENOR2018_31_Bell
	 1. Introduction
	 2. Major updates
	2.1 Go web
	2.2 Algorithmic composition/open form
	2.3 Client-side synchronization

	 3. Challenges in Production
	3.1 And the Sea
	3.2 SmartVox, the piece
	3.3 Le temps des nuages

	 4. Technical considerations
	4.1 Description of frequently faced problems
	4.1.1 Standby/sleep mode
	4.1.2 Other Breakdown factors

	4.2 Measurements of timing accuracy
	4.2.1 Drift
	4.2.2 Local server
	4.2.3 Distant server
	4.2.4 Distant server – different networks (3G, 4G, Wifi...)
	4.2.5 Sync Module

	4.3 Synchronization update

	 5. Going further
	5.1 Dialoghi Spezzati
	5.2 Pedagogy in Classroom
	5.3 Smartphones used as an instrument

	 6. Conclusion
	 7. References

	04-TENOR2018_5_Bhagwati
	05-TENOR2018_27_Santini
	 1. Introduction
	 2. Background
	2.1 Graphic notation on paper
	2.2 Real-time scores and animated notation
	2.3 3-D and VR scores
	2.4 Augmented Reality
	2.5 AR and music

	 3. LINEAR
	3.1 Introduction
	3.2 Technical framework
	3.3 The AR app on iPhone
	3.3.1 Startup
	3.3.2 Creation of virtual objects - first three categories
	3.3.3 Creation of virtual objects - fourth category
	3.3.4 VR mode
	3.3.5 OSC communication with Max/MSP

	3.4 Production of sound in Max/MSP
	3.5 The laptop player
	3.6 The perspective of the iPhone performer: graphic gestural 3D notation and virtual tangible scores
	3.7 The perspective of the other players
	3.7.1 Graphic animated notation
	3.7.2 Notational feedback

	3.8 Compositional ecosystem
	3.9 Relation of the score with the audience and with the environment.

	 4. ISSUES AND LIMITATIONS
	 5. Conclusions and future work
	 6. References

	06-TENOR2018_26_Goudard
	07-TENOR2018_24_Gironnay
	08-TENOR2018_9_Louzeiro
	 1. Introduction
	 2. Background
	 3. Development
	3.1 Notation Type
	3.2 Notation Interface Design
	3.2.1 Synchronized Attacks
	3.2.2 Motivic Exploration
	3.2.3 Standard Rhythmic Notation

	3.3 Practice Tool

	 4. A Possible New Direction
	 5. Method
	 6. Results and discussion
	 7. Future Work and Conclusions
	 8. References

	09-TENOR2018_23_Zagorac
	 1. Introduction
	 2. Distributed Music Composition and Performance Model
	2.1 Message-Oriented Middleware
	2.2 Reliable UDP Multicast
	2.3 Precise Network Time Synchronization
	2.4 SVG-based Score Representation
	2.5 Dynamic Notation View Design
	2.6 Alternating Pane Layout
	2.6.1 Time restrictions and allowances


	 3. ZScore Current State
	3.1 Time-space mapping and synchronization
	3.2 Score Authoring
	3.2.1 Hierarchical Layer Structure
	3.2.2 SVG Symbol library
	3.2.3 ZScore Tools JavaScript plugin

	3.3 Distribution and scheduling engine
	3.4 Dynamic notation rendering
	3.5 User trials

	 4. Conclusions and Future Work
	 5. References

	10-TENOR2018_16_OConnor
	11-TENOR2018_12_Foscarin
	 1. Introduction
	1.1 Evaluating a score
	1.2 Defining and measuring quality
	1.3 Our approach

	 2. the GioQoSo online interface
	2.1 Importing and displaying the score
	2.2 Showing/hiding quality annotations
	2.3 Interactions

	 3. Modeling Digitized Scores Quality
	3.1 The score content model
	3.2 The score engraving model
	3.3 Metadata

	 4. The taxonomy
	4.1 Score content issues
	4.1.1 Structural issues
	4.1.2 Music notation issues

	4.2 Score engraving issues
	4.2.1 Staff parameter issues
	4.2.2 Staff layout issues


	 5. Conclusion
	 6. References

	12-TENOR2018_20_Kosta
	 1. Introduction
	 2. Development of Expressive notation and Chopin's works
	 3. Synopsis of the Dataset
	 4. Score beat information
	4.1 Optimal reference audio choice
	4.2 Reference audio selection heuristic
	4.3 Evaluation of score beat positions

	 5. Loudness information
	 6. Recent applications of MazurkaBL
	 7. Future directions
	 8. References

	13-TENOR2018_22_Asmar
	14-TENOR2018_18_Giraud
	 1. Introduction
	1.1 Music Annotation and Web Scores
	1.2 Who Needs to Annotate Music?
	1.3 Motivation and Contents

	 2. User perspective
	 3. Underlying technology
	3.1 Dezrann Components
	3.2 Corpus and Analysis Web Service

	 4. Availability and Roadmap
	4.1 Platform Availability and Roadmap
	4.2 Corpus Availability and Roadmap

	 5. Conclusion
	 6. References

	15-TENOR2018_15_Gottfried
	 1. Introduction
	 2. Foundations
	 3. Working in Symbolist
	 4. Time and score performance
	 5. host environments
	 6. Discussion: Towards Embedded Scores
	 7. Conclusion and Perspectives
	 8. References

	16-TENOR2018_25_Hunt
	 1. Introduction
	 2. Cognitive Dimensions Framework
	 3. Introduction to IGME
	 4. Dimensions of Music Notation
	 5. Visibility
	 6. Juxtaposability
	 7. Hard mental operations
	 8. Progressive Evaluation
	 9. Hidden dependencies
	 10. Conciseness / Diffuseness
	 11. Provisionality
	 12. Secondary notation
	 13. Consistency
	 14. Viscosity
	 15. Role Expressiveness
	 16. Premature Commitment
	 17. Error Proneness
	 18. Closeness of Mapping
	 19. Abstraction Management
	 20. Conclusion
	 21. References

	17-TENOR2018_33_Agostini
	 1. Introduction
	1.1 The problem
	1.2 A proposed solution for Max and bach

	 2. Representation of pitches
	 3. Arithmetic
	3.1 Pitches and intervals
	3.2 Operations
	3.3 Comparisons
	3.4 Chromatic-diatonic representation

	 4. The bach implementation
	 5. Pitch spelling algorithms
	5.1 General outline of the atonal algorithm
	5.2 Detailed description of the atonal algorithm
	5.3 An example case
	5.4 Final considerations

	 6. Conclusion
	 7. References

	18-TENOR2018_29_Hajdu
	19-TENOR2018_6_Ghisi
	 1. Introduction
	 2. Motivation and rationale
	 3. Tools for corpus-based composition
	3.1 Segmentation
	3.2 Analysis
	3.3 Database
	3.4 Interfaces

	 4. Tools for physical or geometrical modelling of music
	4.1 Pinball-like bouncing
	4.2 Gravitation
	4.3 Kaleidoscopes
	4.4 Wave terrain synthesis

	 5. Rule-based systems, graphs, and music as a game
	5.1 Cellular automata
	5.2 Swarm intelligence
	5.3 Graphs
	5.4 Videogames

	 6. Comparison with other software
	 7. Future work
	 8. References

	20-TENOR2018_11_Merlier
	21-TENOR2018_17_Vickery
	22-TENOR2018_39_Noble
	23-TENOR2018_7_Kim-Boyle
	24-TENOR2018_3_Klinkenberg
	25-TENOR2018_28_Hope
	26-TENOR2018_13_Finbloom

