
DRAWSOCKET: A BROWSER BASED SYSTEM FOR NETWORKED
SCORE DISPLAY

Rama Gottfried
Hochschule für Musik und Theater

Hamburg, Germany
rama.gottfried@hfmt-hamburg.de

Georg Hajdu
Hochschule für Musik und Theater

Hamburg, Germany
georg.hajdu@hfmt-hamburg.de

ABSTRACT

We present DRAWSOCKET, a new platform for generating
synchronized, browser-based displays across an array of
networked devices developed at the Hochschule für Musik
und Theater, Hamburg. Conceived as a system for dis-
tributed notation display with applications in music and
spatial performance contexts, DRAWSOCKET provides a uni-
fied interface for controlling diverse media features of web-
browsers which can be utilized in many ways. By provid-
ing access to browser mouse and multitouch gesture data,
and the ability to dynamically create user-defined callback
methods, the DRAWSOCKET system aims to provide a flex-
ible tool for creating graphical user interfaces. Included is
a discussion of the architecture design and development
process, followed by an overview of the features, and syn-
tax considerations for the DRAWSOCKET API.

1. DRAWSOCKET

The DRAWSOCKET design approach is based on the “o.io”
paradigm developed at the University of California, Berke-
ley’s Center for New Music and Technology (CNMAT),
which uses the OpenSoundControl (OSC) encoding [1] to
create a uniform user application programing interface
(API) by “wrapping” vendor- and protocol-specific details
in an interoperable API syntax [2, 3]. In this way, the
DRAWSOCKET system is an “o.io” wrapper for web browser
display and interaction, aiming to provide a homogenous
OSC API for manipulating the graphic building blocks of
Scalable Vector Graphics (SVG), 1 Cascading Style Sheets
(CSS), 2 HyperText Markup Language (HTML), 3 and a
curated collection of client-based JavaScript libraries for
animation and sound production.

1.1 Architecture Overview

The DRAWSOCKET architecture is structured as a server-
client system, using Max 4 as the primary controller inter-
face. From Max, control messages are sent to specified

1 https://www.w3.org/TR/SVG11/
2 https://www.w3.org/Style/CSS/specs.en.html
3 https://www.w3.org/TR/html52/
4 https://cycling74.com

Copyright: c© 2019 Rama Gottfried and Georg Hajdu. This is an open-access

article distributed under the terms of the Creative Commons Attribution 3.0 Un-

ported License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original author and source are credited.

client browsers via a Node.js 5 server, which routes the
messages by a given client addresses. The messages are
then parsed and executed in the client-browser, to generate
content or perform other actions.

The choice of Node.js for the server backend was partic-
ularly helpful due to the Node Package Manager (NPM),
which is bundled with Node.js, allowing DRAWSOCKET
to leverage the active community of Javascript library de-
velopment of tools for browser-based display and inter-
computer communication [4]. Further, NPM provides a
practical method for managing libraries dependancies, via
the package.json system.

In an effort to scale to larger groups of clients running off
of the same server, a loosely defined model-view-controller
[5] pattern is used to separate the processes. The server is
used primarily to relay and cache the drawing commands,
while the drawing implementation is offloaded to the client
browsers, which have become quite efficient with recent
developments in mobile computing. [6]. See figure 1 for
an overview schematic of the system.

1.2 Controller

Max. Currently the primary targeted user server control
platform is Max, which provides many algorithmic and in-
terprocess communications tools. Since the release of Max
8, Max now includes the Node For Max (N4M) 6 frame-
work, which embeds the Node.js server engine within the
Max programming environment, accessible through a set
of Max objects.

The first versions of the DRAWSOCKET system used an
independent Node.js application running from the com-
mand prompt and a User Datagram Protocol (UDP) 7 socket
to send and receive OSC bundles to and from Max, which
were then broadcast to subscribed clients. However, after
comparing benchmarks measuring the roundtrip messag-
ing time between Max and node.js, the N4M system was
found to be faster, and so we adopted this platform as the
primary use case. However, the DRAWSOCKET system is
well compartmentalized, and so could still easily be recon-
figured for use with other control applications.

Within Max, the core Node.js server script, drawsocket-
server.js, is run within Max’s node.script object. For con-
venience, the node.script object is wrapped in Max abstrac-
tion called hfmt.drawsocket which aids in managing server

5 https://nodejs.org
6 https://docs.cycling74.com/nodeformax/api/
7 https://tools.ietf.org/html/rfc768

mailto:rama.gottfried@hfmt-hamburg.de
mailto:georg.hajdu@hfmt-hamburg.de
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Figure 1. DRAWSOCKET Server/Client Architecture.



asset paths, and handles user interaction messages return-
ing from the client (see section 2 for more details).

OSC-JSON representation. The DRAWSOCKET data is
formatted as a key-value tree, which in Max can be repre-
sented as either OSC, or in Max Dictionary format, both
of which can be easily transformed to JavaScript Object
Notation (JSON). 8 See section 3 below for an in-depth
description of the DRAWSOCKET messaging syntax.

1.3 Server

Node.js. The Node.js server consists of four main pro-
cesses: (1) an Express HTTP server, 9 (2) a WebSocket 10

connection manager, (3) state caching, and (4) handling
messages from the client (either forwarding them to the
Max host environment or responding back to client, as in
the case of clock synchronization and on-load initializa-
tion).

Express. The Express JS library is used to create the web
server and handle HyperText Transfer Protocol (HTTP) 11

requests from client browsers. By default, the server re-
sponds to all page requests with a default HTML file which
contain the basic setup necessary for most uses of the DRAW-
SOCKET system, with links to dependency JS libraries, fonts,
and a default CSS stylesheet.

If a custom HTML page is desired, users can send the
html template message from the Max interface, to set a
new default HTML file.

The Express server uses a static public root folder, which
exposes a selected folder path that client browsers may
load files from. To set the root public folder, users can
set the html root folder path as an initialization argument
to the hfmt.drawsocket abstraction.

User configuration of the system is described further in
section 2.

WebSockets. WebSockets are used as the primary server-
client communication exchange protocol. The server ac-
cepts WebSocket requests from client browsers, and sub-
scribes clients to receive messages addressed to their
browser’s URL (Uniform Resource Locator).

Control messages composed in Max as an OSC bundle or
Max Dictionary are received in JSON format by the server,
and routed to the clients identified by their corresponding
URL web-address. 12

URL state caching. Upon receiving control messages ad-
dressed to a new URL, the server first forwards the mes-
sages via WebSocket to the specified URL address, and
then sends a copy of the message to the state cache system.

On connection to a new WebSocket, the client requests
the current state of its URL from the server cache. This
provides a mechanism for preloading a set of drawing com-
mands to a given URL, so that when a user first loads the
page, or hits refresh, the current drawing state of the page
will be loaded.

8 https://www.json.org/
9 https://expressjs.com/

10 https://www.npmjs.com/package/ws
11 https://www.w3.org/Protocols/
12 https://www.w3.org/Addressing/URL/url-spec.txt

Client return messages. WebSocket connection is bidi-
rectional, and is used to handle messages from the client:
responding to clock synchronization requests, initialization
requests, and forwarding user interaction information to
Max.

Connection Port. On startup, the server provides its IP ad-
dress and connection port to the Max environment.
Clients may connect remotely via network IP address, or
if on the same computer, use the localhost identifier, fol-
lowed by the port number (currently 3002 by default), sep-
arated by a colon (e.g. http://localhost:3002).

1.4 Client

Running inside a web browser, the client-side component
of the DRAWSOCKET system handles the drawing and sound
generating commands, clock synchronization, and user in-
terface event watchers.

Web browser. Currently the system targets Safari and
Chrome. At the current time of writing, Firefox SVG 2
feature support is behind the above two. Other browsers
may also work, but are not currently being tested.

Layout. The central browser display layout consists of one
HTML <div> node, which contains an <svg> element,
and an SVG <g> group node.
<div id=‘‘main−div’’>

<svg>
<defs id=‘‘defs’’></defs>
<g id=‘‘main−svg’’></g>

</svg>
</div>

The default formatting for the basic page elements is setup
in the drawsocket-defaults.css. When users add SVG ele-
ments, they are added to the “main-svg” group. Users may
also create new SVG groups and add elements to these new
groups, to control stacking order, described below in more
detail.

Libraries. DRAWSOCKET currently makes use of the fol-
lowing client-side Javascript libraries, all available from
NPM:

D3.js, 13 a library for SVG information visualization. 14

PDF.js, 15 a PDF viewer library developed by Mozilla,
providing support for PDF file reading, viewing and page
turning.

Tone.js, 16 a web-audio library by Yotam Mann. Cur-
rently, DRAWSOCKET uses Tone.js to provide basic sound-
file playback functionality, this may be expanded in the
future.

Timesync.js, 17 a clock synchronization library, used in
DRAWSOCKET to synchronize animations, and provide a
mechanism for timed commands.

13 https://d3js.org/
14 We are now mainly using d3.js for DOM node creation and manipu-

lation. So, eventually it is likely that we will remove the d3.js dependency
to streamline the codebase. However for the time being d3’s utility func-
tions are convenient for rapid development, and appear to be performant
enough.

15 https://mozilla.github.io/pdf.js/
16 https://tonejs.github.io
17 https://www.npmjs.com/package/timesync



TweenMax and TimelineMax, from the GreenSock An-
imation Platform (GSAP), 18 a high-performance system
for JS and CSS animation.

Client-side Script. The client-side script running in the
browser is called drawsocket-client.js, which handles the
command processing logic of the system and its execution
in the browser.

On load, the script first requests a new WebSocket con-
nection to the server using the browser’s URL address, sent
to the server via the the WebSocket URL identifier (e.g.
ws://localhost:3002/violin). On successful WebSocket con-
nection, the script begins the clock synchronization pro-
cess which runs in the background on the client system,
requesting new clock readings from the server at regular
intervals 19 . Once the initial clock synchronization is com-
pleted, the script sends a state initialization request to the
server, to which the server responds with a sequence of
commands corresponding to the current state of the given
client OSC address.

The central command processing is performed in the func-
tion drawsocket, which parses an array of time-tagged com-
mand objects, and executes the corresponding graphic and
sound manipulations in the browser. The drawsocket func-
tion expects one or more objects with a key, val, and timetag
key-value pairs:

{
timetag: current time (supplied by server),
key: command string
val: command arguments

}

Generally, these objects are formatted in the Node.js server
from the API command messages received via Max, how-
ever they may also be created by user scripts called from
event watchers.

2. DRAWSOCKET USER SETUP

The interface for DRAWSOCKET is designed for use in Max,
and is distributed as a Max Package, currently hosted on
GitHub at the following url:

https://github.com/HfMT-ZM4/drawsocket
To install, users download the repository and place it in

Max’s Packages folder. Once installed, users can instanti-
ate the DRAWSOCKET system by creating a hfmt.drawsocket
object in a Max patch.

The dependency NPM libraries are not distributed with
the package, so on first loading hfmt.drawsocket, you need
to send the object the “script npm install” message, which
asks NPM to download all of the dependencies listed in the
node project’s packages.json file. 20

Setting the public folder. As mentioned above, by default
the DRAWSOCKET server responds to HTTP URL page re-
quests with a default HTML page. Custom HTML pages,
and/or other types of assets can also be served to the client
from a static root public folder.

18 https://greensock.com/gsap
19 Currently, the script is configured to check every 5 seconds, but this

may change depending on performance on a larger scale system
20 The node project is located in the package’s /code/node folder, and

includes all scripts, and configuration files.

The public root folder is a method commonly used to con-
trol client access to server folders, and can be set in Max
by supplying the relative path to the user’s Max patch as
an argument to the hfmt.drawsocket object. This system
allows users to organize their project in a mobile way, eas-
ily moved or installed on a new system.

Within the hfmt.drawsocket abstraction there is a helper
script called startscript.js which retrieves the user patcher’s
folder path, and passes the path information as an argu-
ment to the node.script object on startup. 21 By default
the folder containing the user’s patch is used as the root
public folder, however, users may wish to choose a differ-
ent folder. For example, by setting the path “public html”,
DRAWSOCKET will expect a folder called “public html” to
be located in the same folder as the Max patch running
the hfmt.drawsocket abstraction, and if found will use this
folder as the public root folder.

In larger projects it is often convenient to sort assets into
separate folders for images, sound files, etc. For example
if the user wishes to load an image file called “foo.jpg” lo-
cated in a /public html/images subfolder, they would refer
to their file at the address /images/foo.jpg.

3. DRAWSOCKET API

The DRAWSOCKET API has developed organically as fea-
tures are gradually added to the system, and has been rewrit-
ten several times as new use contexts have arisen.

The API was initially designed in keeping with the con-
ventional “message” format used in the Max environment,
so that drawing commands could be easily adapted from
commands used for other Max drawing objects such as
LCD, or jit.gl.sketch.

A Max message is structured as an array, beginning with
a selector string, followed by a list of values, which is in-
terpreted by the receiver based on a preexisting schema.
However, as more features were added, some complica-
tions arose in regard to the sequence ordering, and as a
result an alternative object-oriented API was developed,
which makes use of a key-value approach that has proven
more extendable for the DRAWSOCKET system (discussed
below in section 3.2).

Note that in the discussion below, we use the term mes-
sage as a general purpose term for communication via mes-
sage events, which could be in different formats (OSC mes-
sages, Max messages, JSON objects sent as messages, etc.).

URL address routing. All messages sent to the server are
addressed to a URL, which is used by the server to route
messages to the appropriate clients. Multiple clients may
be logged into the same URL, in which case they would all
receive the same drawing commands. For example if you
had a group of violins all playing the same part you could
have them log into the URL:

http://server.ip.address:port/violin1
Then to send messages to the violin 1 section, you would

use the URL address /violin1, in the same way you wold
use an OSC address.

21 Note that this requires the user patcher to be saved to disk first, so
that it has a valid folder location.



To send to all clients, regardless of URL address, DRAW-
SOCKET provides usage of the OSC /* wildcard address.

Note that in OSC, /* matches one single address level,
whereas the DRAWSOCKET server uses the wildcard ad-
dress to match any URL, which may include multiple slashes.
To avoid confusion with OSC convention, it is strongly rec-
ommended to use single level addresses (i.e. use /violin1,
not /violin/1 in cases of indexed sub-groupings).

Object references. DRAWSOCKET uses the Document Ob-
ject Model (DOM)[7] id attribute as the primary mech-
anism for referencing individual client objects from the
server. On creation, the client-side script logs a reference
to new objects with their unique ID, in a set of associative
arrays which can be used for fast object lookup by name.
Through this method, objects may be referred to by ID,
modified, styled, transformed, or removed.

SVG and HTML nodes use the provided unique identi-
fier as the node’s id attribute, as per the DOM standard,
while other objects such as GSAP animation or Tone.js
sound objects are not in the DOM, but logged in the DRAW-
SOCKET’s internal object model.

3.1 List-oriented API

The original “Max style” list-oriented DRAWSOCKET API
design used a bundle of individual OSC messages, each of
which performed an action on the client system. The list-
oriented API has now been replaced, however a discussion
of this approach is valuable, since it illustrates a structural
limitation that we encountered with this syntax approach.

In the list-oriented API, the OSC message address was
used as a way to specify several functional layers at once,
through concatenating together multiple values separated
by slashes. The general address syntax was made of three
main levels: (1) the client URL address, (2) a unique ob-
ject ID, followed by (3) a command string specifying the
process to execute on the client system.

The commands provided a streamlined way to create and
modify elements on the client browser, using a curated set
of parameters.

For example the following OSC bundle:

{
/violin/foo/draw/rect : [100, 100, 25, 25],
/violin/foo/style/stroke−width : 1

}

contains two messages prefixed by /violin which indicates
that the server should send these commands to all clients
logged into the /violin URL.

Once received on the client system, the script would parse
the OSC address, separating the ID from the command
string. Here, the ID is “foo” and the command string is
“draw/rect”.

For each OSC message, the value attached to address was
parsed by the client script based on schema defined in the
documentation. In the case of “draw/rect”, the message’s
value would be interpreted as defining an SVG rectangle’s
x, y, width, and height values. The second message works
in a similar way, except that rather than creating a new ob-
ject, it adds an inline SVG/CSS style attribute to the object
node, setting the stroke-width parameter to a value of 1.

Grouping. Things start to get a little more complex with
the list-oriented approach when attempting to define SVG
group objects and object definitions. In these cases child
objects can be grouped together and manipulated as a sin-
gle graphic object, while not requiring each child object to
have a unique ID.

The first problem we encountered was when trying to in-
clude two objects of the same type within the object. In
the first implementation, a sub-bundle of OSC messages
was used to group elements together, however since no IDs
were required, the following example fails:

/∗/groupex/draw/group : {
/text : [210, 210, ‘‘hi’’],
/text : [310, 210, ‘‘bye’’]

}

It fails because in OSC you are allowed to have multiple
messages with the same address, however in Max the OSC
messages need to be first converted to Max Dictionary for-
mat to be passed to the node.script object, and Max Dictio-
naries do not allow duplicate addresses.

Another complication arose when trying to style individ-
ual objects within a group, since there is no unique iden-
tifier to reference for adding inline style tags, and this is
not accessible from the list-oriented API syntax. To ad-
dress these two issues, the list-oriented grouping syntax
was adapted to use an array of objects (aka sub-bundles in
OSC). For example:

/∗/groupex/draw/group : [{
/path : ‘‘M200,200a30,90,0,0,0,0−60a30,30,0,0,0,0,60’’,
/style : ‘‘fill: black’’

}, {
/text : [210, 210, ‘‘hi’’],
/style : ‘‘fill: red’’

}]

In this case, the style message is bound to the path mes-
sage by wrapping them together in an object. This solution
led to a reevaluation of the DRAWSOCKET API syntax, and
resulted in the development of the object-oriented based
API.

3.2 Object-oriented API

While the list-oriented approach provides a compact, one-
line syntax, the list format is also limited, in that the list
requires a predefined schema for how the list can be inter-
preted, and which types of operations the list values may
address. The list-based approach is thus less easily extend-
able, since adding a new value to the list requires adding
a new step in the interpreting script. The main benefit of
the list syntax is that its compactness makes it sometimes
faster for rapid prototyping, however the object-oriented
approach can be more easily expanded as we will show be-
low, and additionally, the object-oriented approach is help-
ful since it is self-describing, emphasizing legibility by as-
sociating a parameter name with each value.

For example, whereas above we drew a rectangle with a
list, such as:

/violin/foo/draw/rect : [100, 100, 25, 25]

The same rectangle could be drawn with the object-based
API using the “svg” key, and an val containing one or more



objects to process. The “new” keyword notifies the client
that it should create a new SVG element:

/violin : {
/key : ‘‘svg’’,
/val : {

/new : ‘‘rect’’,
/id : ‘‘foo’’,
/x : 100,
/y : 100,
/width : 25,
/height: 25
}

}

In the object-based approach each variable now has a name
associated with its value, telling us what the variable rep-
resents. The list-approach is a more concise, requiring less
typing, however, when we consider further what the mes-
sages are representing in the context of the DRAWSOCKET
system, the benefit of the object approach becomes clearer.

SVG is based on the Extensible Markup Language (XML)
format, 22 and is designed as tree of nodes, each with a
set of attributes which are defined as key-value pairs. By
using the same attribute names within the DRAWSOCKET
object API, the client script can then simply insert as few
or many of the attributes as it receives, rather than needing
a specific set of attributes, as with the list-based approach.
Also, by staying close to the original SVG API, the user
can refer to the SVG specification directly to figure out
which attributes they can use, rather than needing to limit
their control parameters to those setup in the list parsing
schema. 23

For example, extending the above example, here we cre-
ate two new objects, a rectangle and a circle, by defining
them in an array, and additionally assign a CSS class ref-
erence for each:

/violin : {
/key : ‘‘svg’’,
/val : [{

/new : ‘‘rect’’,
/id : ‘‘foo’’,
/x : 100,
/y : 100,
/width : 25,
/height: 25,
/class : ‘‘room’’
}, {

/new : ‘‘circle’’,
/id : ‘‘bar’’,
/cx : 112,
/cy : 112,
/r : 5,
/class : ‘‘source’
}]
}

Keywords. There are currently four reserved keywords
used with svg objects: new, style, parent, and child.

On receiving an svg object (or array of objects), the client-
side script iterates each element of the array, and checks if
there is an already existing object with that id tag; if so, it
selects that element from the DOM lookup table. Next, the
script checks if there is a new message in the object; if so,
it creates a new node, either replacing the element at the
existing id, or creating a new node if not already existing,

22 https://www.w3.org/TR/xml/
23 That said, we have not yet fully tested the entire SVG specification.

We believe the object API provides access to everything, but there maybe
some unaddressed aspects.

and then processes the rest of the object messages.

If the object already exists, and no new is found, DRAW-
SOCKET will use the values in the object to update the ob-
ject attributes. For example:

/violin : {
/key : ‘‘svg’’,
/val : {

/id : ‘‘foo’’,
/width : 100
}

}

will change the width attribute of the node “foo” without
modifying any other attributes that may have already been
set.

3.3 Parent and child elements

Appending child nodes to parent SVG element can be ac-
complished via the parent and child keywords.

The child keyword, is a high-level API helper function
that assists the user in specifying one or more child nodes
in a tree syntax. The value attached to this address will be
inserted as a child of the parent node, for example the inner
text of a <text>element, or a new node within a <g>the
SVG grouping element tag.

Here is an example of a circle and line contained in new
SVG group, called “noteline”:

/violin : {
/key : ‘‘svg’’,
/val : {

/new : ‘‘g’’,
/id : ‘‘noteline’’,
/x : 100,
/y : 100,
/child : [{

/new : ‘‘line’’,
/id : ‘‘liney’’,
/x1 : 10,
/y1 : 5,
/x2 : 100,
/y2 : 5,
/style : {

/stroke−width : 1
}

}, {
/new : ‘‘circle’’,
/id : ‘‘circley’’,
/cx : 5,
/cy : 5,
/r : 5,
/style : {

/stroke−width : 2,
/fill : ‘‘none’’,
/stroke : ‘‘black’’

}
}]

}
}

Nodes with a parent attribute are inserted as children of
the node with the id specified by the parent, as long as
the parent element is already existing in the DOM. If no
parent element is specified, the node is inserted into the
default SVG group “main-svg”.



For example, the above tree syntax could also be written
this way:

/violin : {
/key : ‘‘svg’’,
/val : [{

/new : ‘‘g’’,
/id : ‘‘noteline’’,
/x : 100,
/y : 100

}, {
/new : ‘‘line’’,
/id : ‘‘liney’’,
/parent : ‘‘noteline’’,
/x1 : 10,
/y1 : 5,
/x2 : 100,
/y2 : 5,
/style : {

/stroke−width : 1
}

}, {
/new : ‘‘circle’’,
/id : ‘‘circley’’,
/parent : ‘‘noteline’’,
/cx : 5,
/cy : 5,
/r : 5,
/style : {

/stroke−width : 2,
/fill : ‘‘none’’,
/stroke : ‘‘black’’

}
}]

}

3.4 SVG layer drawing contexts

In an SVG file, each object element is drawn in the same
order as they are written in the file, from top to bottom,
with the last element being drawn last, “on top” of any
objects that may have been drawn in the same location.
In the DRAWSOCKET system, the drawing sequence is set
through the order of the object creation (using the new key-
word).

Using the parent and child keywords, new nodes can be
created and inserted as children of existing nodes. The or-
der in which the child nodes are created, sets the drawing
order of the nodes. Importantly, editing nodes (i.e. set-
ting values without the use of the new keyword), does not
change the drawing order. Similarly, inserting nodes does
not change the drawing order of the parent nodes. This rule
makes it possible to use SVG groups as drawing layer con-
texts, which maintain stacking order relative to each other.

As an illustration, let’s say you would like to have three
layers, a background, middle and overlay. You could cre-
ate three new groups within the main SVG node, called
“back”, “main”, and “overlay”, in a specific drawing or-
der, like this:

/violin : {
/key : ‘‘svg’’,
/val : [{

/new : ‘‘g’’,
/id : ‘‘back’’
}, {

/new : ‘‘g’’,
/id : ‘‘main’’

} , {
/new : ‘‘g’’,
/id : ‘‘overlay’’

}]
}

You could then use the parent keyword to append nodes
to the newly created groups. New nodes are draw above
older nodes, but since the groups maintain their drawing
order, you can use them as layers. In this example, the
“overlay” layer, will always be drawn after the “back” and
“main” layer-groups.

/∗ : {
/key : ‘‘svg’’,
/val : [{

/parent : ‘‘main’’,
/id : ‘‘clef’’,
/new : ‘‘text’’,
/child : ‘‘&#xE050’’,
/class : ‘‘bravura text’’,
/x : 40,
/y : 50

}, {
/parent : ‘‘back’’,
/new : ‘‘rect’’,
/id : ‘‘rect’’,
/x : 5,
/y : 5,
/width : 100,
/height : 100,
/fill : ‘‘red’’

}, {
/parent : ‘‘overlay’’,
/new : ‘‘circle’’,
/id : ‘‘circle’’,
/cx : 50,
/cy : 50,
/r : 10,
/fill : ‘‘blue’’

}]
}

Using this approach, multiple layers of SVG elements
can be grouped together and manipulated (with some lim-
itations as described in the SVG specification).

3.5 SVG CSS Styling.

The ability to dynamically apply CSS styling operations on
SVG elements provides the user with an extremely flexible
mechanism for composing, and manipulating the graphic
layout. For most common DRAWSOCKET usages, a set of
default layout properties are defined in the file drawsocket-
default.css, which is loaded with the default HTML file
(drawsocket-page.html). The linked stylesheet sets some
defaults for SVG element types, for example lines have a
default stroke width value so that they are visible by de-
fault. 24

DRAWSOCKET also provides dynamic access to CSS rules,
for which it is useful to understand the hierarchy of SVG
style properties.

There are three levels of inheritance with SVG CSS styling:
(1) presentation attributes, set within the element, e.g.:
<rect fill=“red” >;
(2) stylesheet definitions, loaded via an attached CSS

stylesheet document, or within a <style> element in the
HTML document; and

(3) inline styling, a snippet of CSS wrapped in a string
and set in an elements’s style attribute, e.g.:
<rect style=“fill: red; stroke: 2” >.

24 Note that this is not always desirable, for example when importing
SVG files exported by a program like Adobe Illustrator, which assumes
that there are no pre-exiting CSS rules in place. For these cases, DRAW-
SOCKET users can either override the defaults via a new CSS definition,
or change the .css file by hand.



Each is overridden by the next: stylesheets override pre-
sentation attributes, and inline styles override all the oth-
ers. 25

Using CSS class selector syntax opens up many possibil-
ities. For example, here is an example using the object-
array syntax to set create two CSS classes: (1) “.notehead”
which sets defaults for fill and stroke properties, as well as
the radius value, r ; and (2) “.notehead.open”, a sub-class
of “.notehead” which overrides the fill property.

Following the css definitions, a new SVG circle object is
created and configured with the “notehead open” class.

/violin : [{
/key : ‘‘css’’,
/val : [{

/selector : ‘‘.notehead’’,
/props : {

/stroke : ‘‘black’’,
/stroke−width : 2,
/fill : ‘‘black’’,
/r : 5

}
}, {

/selector : ‘‘.notehead.open’’,
/props : {

/fill : ‘‘none’’
}
}],
}, {

/key : ‘‘svg’’,
/val : {

/new : ‘‘circle’’,
/id : ‘‘foo’’,
/class : ‘‘notehead open’’,
/cx : 20,
/cy : 20
}
}]

3.6 SVG import and library definitions

DRAWSOCKET provides access to several methods for im-
porting and reusing fragments of SVG. This is a useful ap-
proach for reducing the amount of data that needs to be sent
over the network, and can greatly simplify the construction
of more complex notation situations.

Referencing SVG definitions. There are two node types
in the SVG specification which allow the user to create pro-
totypes of graphic elements, defs and symbol, which can be
applied like a stamp via the use tag.

Within the DRAWSOCKET main SVG element there is an
element group called defs which is not directly drawn to
the screen, but is visible by using the browser’s HTML el-
ement viewer tool. DRAWSOCKET uses the same drawing
context syntax for the defs node, as it does for the other
drawing layers.

For example, the following snippet makes a new SVG
group object in the defs, called “noteline”, which contains
a line and a circle:

25 With one exception, stylesheet definitions with the !important tag
will override inline styles.

/violin : {
/key : ‘‘svg’’,
/val : {

/parent : ‘‘defs’’,
/new : ‘‘g’’,
/id : ‘‘noteline’’,
/child : [{

/new : ‘‘line’’,
/x1 : 10,
/y1 : 10,
/x2 : 100,
/y2 : 10

}, {
/new : ‘‘circle’,
/cx : 5,
/cy : 5,
/r : 5
}]
}
}

Typically the user would send a library of definitions at
the beginning of the piece, and then refer to the set of defi-
nitions as needed via the use SVG element and its href at-
tribute, creating an internal reference to a given definition
selected through its id attribute. 26

For example, the following new SVG object “foo”, refer-
ences the “noteline” definition above, offset to x, y position
{100, 100}:

/violin : {
/key : ‘‘svg’’,
/val : {

/new : ‘‘use’’,
/id : ‘‘foo’’,
/href : ‘‘#noteline’’,
/x : 100,
/y : 100

}
}

Importing fragments. The use-href syntax approach can
also be used to import elements from external SVG files
stored in the public HTML folder, by adding the target ob-
ject’s id to the external file path. For example, to refer-
ence an object with the ID “boo” in an external file called
“other.svg” that is located in the public subfolder called
“media” you could use the following snippet:

/violin : {
/key : ‘‘svg’’,
/val : {

/new : ‘‘use’’,
/id : ‘‘foo’’,
/href : ‘‘/media/other.svg#boo’’

}
}

If x or y attributes are set in the use node, the referenced
object will be offset by the amount specified by the use
attributes.

DRAWSOCKET also provides an additional option with
the href attribute. If the href value is a list, the second
value is non-zero, the script will find the original object’s
bounding box and offset so that it lies at the origin {0, 0},
and then applies the x, y values as a second operation. The
benefit of this feature is that it allows you to coordinate
positions of objects without needing to know their original
position in the reference file.

26 Note that for all selections we are using the HTML/CSS # sign to
specify that the following string is an id.



3.7 PDF import

PDF files may be imported into DRAWSOCKET. For ex-
ample, to load a PDF, storing it at the DRAWSOCKET ID
“foo”, setting its x position, width and setting it to display
page 2:

/∗ : {
/key : ‘‘pdf’’,
/val : {
/id : ‘‘newpdf’’,
/href : ‘‘/media/flint piccolo excerpt.pdf’’,
/width : 600,
/x : 100,
/page : 2
}
}

3.8 Animation

While DRAWSOCKET objects may be animated using na-
tive CSS transitions and keyframes, the GSAP TweenMax
and TimlineMax libraries were introduced to provide a much
more convenient and cross-browser supported method. With
the TweenMax library users can create a “tween” transi-
tion between the object’s current position and current CSS
property values, to another set of values over a given amount
of time, using the TweenMax.to function via the tween
DRAWSOCKET key. For example:

/violin : {
/key : ‘‘tween’’,
/val : {

/id : ‘‘aaa’’,
/target : ‘‘#note’’,
/dur : 10,
/vars : {

/x : 100,
/y : 100,
/opacity : 0
}
}
}

moves the SVG object “note” to the xy position {100, 100},
and fades the opacity to zero over a course of 10 seconds.
The tween is stored as object in the DRAWSOCKET script
at the given ID (here “aaa”), and may be recalled at will
(see the online documentation for more details). The CSS
selector target, dur and vars are plugged directly into the
argument fields for the TweenMax.to function. 27

More complex animations can be implemented with the
TimelineMax function, via the DRAWSOCKET timeline com-
mand, which is comprised of an array of tweens (which
can also have different targets). As with the TweenMax.to
function, an effort was made to make the encoding syntax
as close to the native GSAP Timeline function as possi-
ble so users can refer to the GSAP documentation for full
reference.

27 https://greensock.com/docs/TweenMax/TweenMax()

/violin : {
/key : ‘‘timeline’’,
/val : {

/id : ‘‘foo line’’,
/init : {

/paused : ‘‘true’’,
/yoyo : ‘‘true’’,
/repeat : 20

},
/tweens : [{

/target : ‘‘#bar’’,
/dur : 1,
/vars : {

/y : 270,
/x : 100,
/scaleX : ‘‘200%’’,
/opacity : 1,
/ease : ‘‘linear’’

}
}, {

/target : ‘‘#bar’’,
/dur : 2,
/vars : {

/y : 10,
/x : 0,
/scale : ‘‘100%’’,
/opacity : 1,
/ease : ‘‘linear’’

}
}]
}

}

DRAWSOCKET provides the cmd keyword for tweens (and
timelines of tweens) to start, stop, reset, reverse, etc.

Synchronization. All commands sent from the server are
timestamped, which provides DRAWSOCKET with a mech-
anism to synchronize animations. Using the Timesync.js
library, the client periodically asks the server for its cur-
rent clock time and logs an offset value between the two
clocks. [8] Then, whenever a new animation start request
is received, the client checks the message’s timestamp rel-
ative to the current client clock time minus the logged dif-
ference from the server time to get the corrected anima-
tion start time in terms of the server clock. The client then
checks the duration of the animation (tween or timeline)
to make sure it hasn’t already missed the end time for the
animation, if not, the client script starts the animation, fast-
forwarding if necessary to compensate for network lag.

3.9 Sound

In addition to providing access to browser-based drawing
tools, DRAWSOCKET also makes use of the Tone.js [9] We-
bAudio 28 Framework for browser-based sound production.

The Tone support library also adds a new keyword, call
which expects an object containing a method and optional
args. Additionally, a the call object may also contain a
then object which can be used as a sequential call, applied
to the return value form the parent method call.

For example, he we create a new Tone.Player, load an
mp3 file, tell it to start looping playback, and call the toMas-
ter() Tone.Player method:

28 https://www.w3.org/TR/webaudio/



/∗ : {
/key : ‘‘sound’’,
/val : {

/new : ‘‘Player’’,
/id : ‘‘kick’’,
/vars : {

/url : ‘‘/media/808 mp3/kick1.mp3’’,
/autostart : ‘‘true’’,
/loop : ‘‘true’’

},
/call : {

/method : ‘‘toMaster’’
}
}
}

3.10 HTML5

DRAWSOCKET provides access to HTML nodes via the
html tag.

For example, this loads a video:

/∗ : {
/key : ‘‘html’’,
/val : {

/new : ‘‘video’’,
/id : ‘‘foo’’,
/child : {

/new : ‘‘source’’,
/type : ‘‘video/mp4’’,
/src : ‘‘somerandommovie.mp4’’

}
}
}

Some HTML5 JS objects also support the call keyword.
For example, this starts playing the above video:

/∗ : {
/key : ‘‘html’’,
/val : {

/id : ‘‘foo’’,
/call : {

/method : ‘‘play’’
}
}
}

3.11 User Interaction

Lastly, DRAWSOCKET also sends user interaction informa-
tion back to the server, outputting the data into Max where
it can be used to control other processes, through mouse
and multi-touch event listeners, and via HTML textfield
input forms. When the user’s mouse or fingers move over
the screen DRAWSOCKET reports the x, y position and the
top-most graphic object under the fingers or cursor, and
bound with the URL address. 29

DRAWSOCKET also provides access to HTML text input
fields. To create a text field, users first create a form with a
default text prompt and then position the form by applying
a CSS transform, or tween. When a client enters text into
the text input field and hits enter or clicks outside of the
form, the text is sent back to the server and output in Max
in a similar fashion to mouse and multi-touch data.

User defined event callbacks. The main client-side pro-
cessing function can also be invoked from a callback for

29 Currently there is no unique client identifier, i.e. all users on the
same URL will send their user interaction data identified by the same
URL address. A unique tagging system will likely be implemented at
some point.

handling user interaction, exposed to the global JS names-
pace as drawsocket.input. For example, the following snip-
pet, which creates an SVG path object, and assigns an
onclick callback function which triggers a sample playback
when the client user clicks on the path object:

/∗ : {
/key : ‘‘svg’’,
/val : {

/new : ‘‘path’’,
/id : ‘‘wow’’,
/style : {

/fill : ‘‘red’’
},
/d : ‘‘M100,100a30,30,0,0,0,0−60a30,30,0,0,0,0,60’’,
/onclick : ‘‘drawsocket.input({

key: ‘sound’,
val: {

id: ‘kick’,
call: {

method: ‘restart’
}

}
})’’
}
}

4. FUTURE WORK

DRAWSOCKET currently still considered “in development”,
that said, the system has already been used in several live
performances, and appears to be fairly robust. As we pre-
pare for the large-scale extension of the system to the St.
Pauli Elbtunnel [10] we will have a good opportunity to
fully stress-test the system.

One potential issue that we imagine could arise is with
the caching system. Currently the caching routine is pro-
cessed within the callback function that gets called when
a new dictionary arrives from Max. On receiving a new
dictionary, the server routes the data, sending packets to
the appropriate clients, and then sends the packets to the
cache system which unions the data with any nodes with
a matching id (or selector in the case of CSS). There is a
question about the scalability of this approach.

Node.js, like vanilla JS, uses an “event driven”, “single
threaded event loop model”, which uses a queue of event
callbacks which need to be processed asynchronously. How-
ever, it is possible to block the event loop[11] within a call-
back function, should the execution take too long. In par-
ticular, the JSON.parse and JSON.stringify operations are
potentially expensive, with a complexity of O(n); so, de-
pending on the size of the incoming dictionary, this could
significantly slow down the response of the server. In our
testing so far, we have already noticed some issues with
processing very large dictionaries arriving from Max, but
we need to investigate further. It is possible that since the
data is broadcasted before being sent to the caching sys-
tem, that the blocking of the event loop will be less notice-
able on the client-side, however, the responsiveness of the
server will be reduced and this will likely effect the clock-
synchronization routine, and could also in extreme cases
result in a buildup of events to process in queue. To ad-
dress this issue, we might look into storing the URL states
in a separate database, which runs as a separate process.



Acknowledgments

The authors would like to thank Jacob Sello for his detailed
testing the system which pushed the development of many
new features and design considerations. We would also
like to acknowledge the Federal Ministry of Education and
Research in Germany (BMBF), for their support of this re-
search through the Innovative Hochschule initiative.

5. REFERENCES

[1] M. Wright, “Open Sound Control: an enabling tech-
nology for musical networking,” Organised Sound,
vol. 10, no. 3, pp. 193–200, 2005.

[2] A. Freed, D. DeFilippo, R. Gottfried, J. MacCallum,
J. Lubow, D. Razo, and D. Wessel, “o.io: a Uni-
fied Communications Framework for Music, Interme-
dia and Cloud Interaction.” in ICMC, 2014.

[3] J. MacCallum, R. Gottfried, I. Rostovtsev, J. Bresson,
and A. Freed, “Dynamic Message-Oriented Middle-
ware with Open Sound Control and Odot,” in Proceed-
ings of the International Computer Music Conference
(ICMC’15), Denton, TX, USA, 2015.

[4] A. Trockman, S. Zhou, C. Kästner, and B. Vasilescu,
“Adding sparkle to social coding: an empirical study of
repository badges in the NPM ecosystem,” in Proceed-
ings of the 40th International Conference on Software
Engineering. ACM, 2018, pp. 511–522.

[5] G. E. Krasner, S. T. Pope et al., “A Description of the
Model-View-Controller User Interface Paradigm in the

Smalltalk-80 System,” Journal of object oriented pro-
gramming, vol. 1, no. 3, pp. 26–49, 1988.

[6] M. Halpern, Y. Zhu, and V. J. Reddi, “Mobile CPU’s
rise to power: Quantifying the impact of generational
mobile CPU design trends on performance, energy, and
user satisfaction,” in High Performance Computer Ar-
chitecture (HPCA), 2016 IEEE International Sympo-
sium on. IEEE, 2016, pp. 64–76.

[7] M. Champion, L. Wood, G. Nicol, S. B. Byrne,
A. L. Hors, P. L. Hégaret, and J. Robie, “Docu-
ment object model (DOM) level 3 core specifica-
tion,” W3C, W3C Recommendation, Apr. 2004,
http://www.w3.org/TR/2004/REC-DOM-Level-3-
Core-20040407/.

[8] “timesync.js,” accessed 2019-1-9. [Online]. Available:
https://www.npmjs.com/package/timesync

[9] Y. Mann, “Interactive music with tone.js,” in Proceed-
ings of the 1st annual Web Audio Conference. Cite-
seer, 2015.

[10] R. Gottfried and G. Hajdu, “Massive networked music
performance in the old elbe tunnel,” in 2019. Proceed-
ings of the International Conference on Technologies
for Music Notation and Representation-TENOR2019.
Melbourne, 2019.

[11] node.js. (2019) Don’t Block the Event Loop (or the
Worker Pool). [Online]. Available: https://nodejs.org/
en/docs/guides/dont-block-the-event-loop/

https://www.npmjs.com/package/timesync
https://nodejs.org/en/docs/guides/dont-block-the-event-loop/
https://nodejs.org/en/docs/guides/dont-block-the-event-loop/

	 1. drawsocket
	1.1 Architecture Overview
	1.2 Controller
	1.3 Server
	1.4 Client

	 2. Drawsocket User Setup
	 3. Drawsocket API
	3.1 List-oriented API
	3.2 Object-oriented API
	3.3 Parent and child elements
	3.4 SVG layer drawing contexts
	3.5 SVG CSS Styling.
	3.6 SVG import and library definitions
	3.7 PDF import
	3.8 Animation
	3.9 Sound
	3.10 HTML5
	3.11 User Interaction

	 4. Future Work
	 5. References

