
UNLOCKING THE DECIBEL SCOREPLAYER

Aaron Wyatt Lindsay Vickery Stuart James
Monash University

Melbourne, Australia
aaron.wyatt@monash.edu

Edith Cowan University
Perth, Australia

l.vickery@ecu.edu.au

Edith Cowan University
Perth, Australia

s.james@ecu.edu.au

ABSTRACT

This paper discusses recent developments in the Decibel
ScorePlayer project, including the introduction of a canvas
scoring mode, python ScorePlayer externals, and enhance-
ments to the ScoreCreator application. Firstly, the canvas
scoring mode of the Decibel ScorePlayer app allows for
other applications, such as Max, to send drawing com-
mands to the ScorePlayer via OSC. Several examples of
implementations of generative and animated notation
scores are discussed and evaluated. An object model has
been developed allowing for the creation of hierarchies of
drawn elements. The object model defines a framework of
commands that can be used to create and control these ob-
jects, and supporting examples describe the way in which
scores can be developed to take advantage of this new
scoring mode. Secondly, a python scoreplayer-external li-
brary has been developed, defining two python classes:
scorePlayerExternal that makes a connection to the iPad,
opening a UDP listening socket and letting the iPad know
which port to send its replies to, and scoreObject which is
responsible for creating and drawing objects populated on
the canvas display window of the Decibel ScorePlayer. It
acts as a wrapper to the raw OSC commands so that pro-
gramming can be done using object-oriented paradigms.
Thirdly, the ScoreCreator, an application developed for
Mac OSX for automating the process of making scores for
the Decibel ScorePlayer, has been expanded allowing for
the defining of a range of score types and functionalities.

1. INTRODUCTION

Upon its public release in 2013 [1], the Decibel Score-
player app offered a limited number of score presentation
formats. At this early stage of development, it was consid-
ered a priority to implement robust networking capabilities
which served the demands of live performances involving
the synchronisation of multiple devices. The ScorePlayer
app continued to be developed over some years, based on
an iterative methodology, and tested in rehearsals and per-
formances with Decibel, an Australian new music ensem-
ble. The ScorePlayer’s preeminent mode of functionality
was the scrolling score format in which an image file could

be synchronously moved from left to right over a pre-
scribed period of time on multiple devices. In 2012, while
the ScorePlayer was still being used by the Decibel ensem-
ble, a ScoreCreator app was developed for Mac OSX to
simplify the creation of scores utilising the scrolling score
mode of the ScorePlayer, a user-friendly solution for those
less tech savvy. As development of the app continued, fur-
ther formats and functionalities were added [2, 3, 4, 5, 6,
7], however many of these enhancements were inaccessi-
ble to the public: and while some features were periodi-
cally made available in public releases of the app, they
were not well documented and composers often could only
access them by reverse engineering existing scores. This
paper documents a range of developments intended both to
expand the functionalities of the ScorePlayer app and to
open the platform for experimentation to interested parties.
These developments include expansion and support for
non-linear score formats in the ScoreCreator app, imple-
mentation of a canvas scoring mode for the sandboxing of
non-standard notations, and a Python library to allow for
the control of the ScorePlayer via the command line, in ad-
dition to OSC-based visual programming.

2. THE CANVAS SCORING MODE

The Decibel ScorePlayer was initially conceived as a mod-
ular platform [1], assigning control of the user interface
and networking functions to the main player window while
drawing tasks were enacted by rendering modules that
could be alternated to allow for the implementation of dif-
ferent score types. New score modalities were imple-
mented, including scrolling in all planar directions, nonlin-
ear, two dimensional [1], rhizomatic [5] and generative [4]
scores, but with standalone or very restricted user control
of their functionality. While it would perhaps be ideal for
the platform to be open allowing users to create and com-
pile their own rendering modules, iOS (like most tablet
computing environments) forbids Apps that are distributed
via the App Store to permit libraries to be dynamically
loaded [8]. We attempted to overcome this limitation by
allowing composers to directly control the drawing surface
in the canvas scoring mode (publicly released in 2018)
from an external application using commands sent via the
Open Sound Control (OSC) protocol [10, 2, 7]. This ar-
rangement permits composers to develop, prototype, and
even distribute new score paradigms and idiosyncratic
realtime score generation without the need for any code to
be accepted into the App Store. The public release of can-
vas mode implements six different types of objects:

Copyright: © 2019 Aaron Wyatt, Lindsay Vickery and Stu-
art James. This is an open-access article distributed under
the terms of the Creative Commons Attribution 3.0 Un-
ported License, which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the origi-
nal author and source are credited.

• Layers - consist of a simple rectangular region on
the canvas which is empty when first created, into
which a flat colour or an image can be loaded;

• Scrollers - that allow for a larger image to be
scrolled horizontally at a set rate through a fixed
viewing window;

• Text - using iPad supported fonts;

• Glyphs - a special case of the text object used as a
convenient shortcut to display symbols from the
bravura music font (Steinberg Media Technologies
GmbH. 2018);

• Staves – creating a five-line staff of a defined size;

• Lines - drawn within the coordinate space of their
parent object. (These are the only type of object that
cannot be used as a container for other objects.)

An external device can send drawing commands via
OSC to any networked canvas score. Each connected
score, for example on a set of iPads, has an OSC address
starting /Renderer/Command, followed by the name of the
object to be manipulated, and the command to be sent to
that object: for example, to add a layer to the score’s initial
canvas, the command “/Renderer/Command/canvas/ad-
dLayer” would be sent. This command is followed by ar-
guments defining the name of the layer to be created, the
part for it to be assigned to (or 0 for the layer to be placed
on all parts) and then the objects’ display coordinate data.
A full list of drawing commands can be found at
http://www.psi-borg.org/canvas.html.

Any application that can send and receive OSC packets
can be used to control the ScorePlayer in canvas scoring
mode. Examples of patches written in Max were included
in a previous paper [6] and can also function within Able-
ton’s Live using MaxforLive.

A library has also been developed to allow externals to
be quickly and easily written in python, and this has been
released under the LGPL via the Python Package Index, or
PyPI for short [10]. Both of these solutions use Bonjour
[11] for service discovery, and are able to find any iPads
running the ScorePlayer on the local network, as long as
multicast traffic is not blocked. In cases where such traffic
is blocked, manual connection is still possible, but an un-
derstanding of IP addressing is required.

Canvas scores, like previous ScorePlayer files, consist of
a standard zip file with its extension changed to dsz [1]
which must be bundled with all of the image resources
needed by the score, in jpg or png format, as well as xml
files [12] that define the score’s metadata and settings for
any additional options. This file is then imported into the
ScorePlayer via Apple AirDrop, iTunes’ file sharing fea-
ture or downloaded directly from a web server using either
a URL or a QR code that represents a URL. The main xml
file that defines the score is named opus.xml [1]. For can-
vas mode, the <scoretype> tag in this file is set to “Canvas”
and duration may be set either to zero or any number of
seconds. If zero (or negative), the ScorePlayer only dis-
plays the Reset button to the user, and the navigation bar

and status bar remain visible. If set to a positive value, then
the Play button is also displayed, and pressing it sends the
usual /Control/Play command over the network, starts the
clock, and hides the navigation bar until the specified time
limit is reached. The obvious advantage of this is that it
makes a larger drawing surface available, even if a com-
poser has no intention of making use of the timing func-
tions of the ScorePlayer. (The size of the canvas is
1024x768 when in landscape mode, and the status and nav-
igation bar clip reduces this height by 70 pixels). The
opus.xml file may also point to an XML preferences file.
This file (typically “prefs.xml”) is currently used to define
the number of available parts that can be drawn to. Like
previous ScorePlayer files, parts are accessed by swiping
up or down on the screen. In a canvas score this file is also
used to define the <clearonreset> setting, which deter-
mines whether the canvas is cleared by pressing the Reset
button in the ScorePlayer. If undefined this feature is by
default set to yes.

2.1 Affordances of Canvas Mode

The canvas scoring mode provides for masking and
changes in opacity in addition to a number of forms of ob-
ject animation. Since new objects are placed in the fore-
ground, existing objects can be modified by placing masks
in front of them. The opacity of all objects can be con-
trolled using the setOpacity command. Making a parent
layer translucent will also affect the opacity of any child
layers. Alternatively, the opacity can be animated using the
fade command, which additionally allows for the duration
of the opacity change to be specified. David Kim-Boyle
discusses using both masking and opacity generated in
Max as compositional tools in his tunings (2006) for Cello
and Computer [13].

“Flipcard” style animation, of which André Vida’s Vida-
tone series is an example [14, 15] can be achieved by re-
peatedly using a loadImage command to load a sequence
of evolving images into a layer. All objects can also be
moved continuously or discontinuously in any planar di-
rection on the screen. The move command sets the position
of an object and animates the transition over a period of
time specified in seconds by a duration argument, while
the setPosition command can be used to change the po-
sition of an object instantly. The scroller object is most ef-
ficient for moving large images. It allows for a larger im-
age to be scrolled horizontally at a set rate through a fixed
viewing window. The viewing window itself is defined by
the usual position and size coordinates that are passed to
the object on creation. A few additional parameters, also
passed at creation, are used to define the behaviour of the
scroller while animated. The scrollerWidth parameter
determines the width of the layer to be scrolled through the
viewing window, while the scrollerSpeed defines the
rate at which this occurs in pixels per second. Setting a
negative value for scrollerSpeed causes the scroller con-
tent to move backwards, to the right of screen. These val-
ues can be changed at any time, and the scroller can be set
in motion or stopped using the start and stop commands.

3. EXAMPLES OF IMPLEMENTATIONS OF
WORKS IN CANVAS MODE

Two generative scores by Lindsay Vickery, Lyrebird En-
vironment Player (2014) and The Semantics of Redaction
 (2014) originally implemented in Max were adapted to
utilise the canvas scoring mode. In these works audio files,
of field recordings and speech respectively, are analysed
in order to generate a score [4, 5]. In both works the intent
was to emphasise the capability of generating a
score permitting interaction by performers with
recent and locally recorded sonic environments
or a current topical speech in “near real-time”.
The data for generating the score in these works
is derived from the sigmund~ object in Lyrebird.
Mapping of the audio analysis to score elements
is shown in Table 1.

The works presented different challenges for
implementation in the canvas scoring mode. In
the case of Lyrebird, the principal parameter of
interest was the network-rate/draw-rate of the
OSC connection. In the original Max-only ver-
sion, Lyrebird drew coloured rectangles to an
LCD object at an average rate of between 21 and
22 messages per second These paintrect mes-
sages, as shown in Figure 1, are driven by the out-
put of a sigmund~ object with an FFT analysis
window size of 2048 audio samples.

Updating the score to support the canvas scor-
ing mode on the iPad required translation of the
LCD drawing commands. Whilst the original
version used a single draw command, the new implemen-

tation requires four messages: an addLayer
command, followed by a setColour, move,
and remove command. As the sequence of
these commands is crucial in procedural pro-
gramming they are sequentially executed by
a trigger object (Figure 2). The sending of
the remove command is delayed by 12 se-
conds to allow the move animation for each
rectangle to complete. Each rectangle is
named according to a variable number
‘line%s’ with a replaceable suffix of any
number between 0 and 500, as in this case
with a draw rate of 21 or 22 rectangles per
second, up to 259 separate rectangles might
appear at any time over a scroll time of 12
seconds.

To measure the responsiveness of this scoring mode, the
Max application was stress tested whilst overdrive mode
was enabled. The timing and quantity of packets sent from
Max to the iPad were analysed during these tests. Between
84 and 88 renderer commands were consistently generated
every second over a total time of 60 seconds. The net-
worked iPad also comfortably drew at this rate. At this
stage it is assumed by this that as a scoring paradigm, this
method would prove to be consistently reliable.

There are some minor differences between both rendered
versions of the score, LCD versus the iPad canvas scoring
mode in the ScorePlayer app (Figure 3), however as the
sizing of the canvas window in the LCD and on the iPad
are known, and both systems use standard RGB color
space to define their colors, on the whole the scores trans-
late reasonably closely with the added benefit of the
smooth graphical rendering capabilities of the core anima-
tion graphics rendering and animation infrastructure avail-
able on iOS devices.

Figure 1. Score generation in the Max-only version of the Lyrebird
Environment Player using the LCD object.

Figure 2. Lyrebird Environment Player canvas score mode version.

Spectral Descriptor Graphical specification
Frequency rectangle vertical position
Amplitude rectangle size
Brightness rectangle hue
Noisiness rectangle saturation

Bark Scale deviation rectangle luminance
Table 1. Spectral Descriptor to Graphical specification

mapping in Lyrebird.

In the case of The Semantics of Redaction five categories
of score elements needed to be drawn using separate pro-
cesses: score setup, noteheads, note stems, graphical sym-
bols and text (indicating the beginning of each section). In
each section the audio data is mapped in five varied
“modes” (Table 2).
The score setup includes a black line in the centre of the
score that functions as a “beam” for all of the generated
noteheads/stems and a “playhead” giving the position at
which a note is executed. These scored objects are cre-
ated as part of the initialisation routine as children of a
layer object using the commands:
/Renderer/Command/canvas/addLayer sor 0 0 0
1024 698
/Renderer/Command/sor/setColour 255 255 255
/Renderer/Command/sor/addLayer beam 0 0 348
1024 6
/Renderer/Command/beam/setColour 0 0 0
/Renderer/Command/sor/addLayer playhead 0 70 0
4 197
/Renderer/Command/playhead/setColour 255 255 0

The data for generating the score in these works is de-
rived from the analyzer~ object in The Semantics of Re-
daction. Mapping of the audio analysis to score elements
is shown in Table 3.

The rate of draw commands in The Semantics of Redac-
tion are considerably slower than in Lyrebird, however,
there are a greater variety of draw commands in the work,
ranging from rectangular colored noteheads with thin

black stems connected to the central
beam, to graphical notations, and text.
Each of these processes draws on the
same process as seen in Figure 2, except
the line%s/setColour command is sub-
stituted for a %s/loadImage command
when loading png image files. Text in-
cludes a number of further variables, and
therefore requires more than four com-
mands: addText, setFontSize,
setColour, setFont, setText, move,
and remove.
The iPad copes well with the realtime
drawing commands over the network,

provided the UDP OSC packets are received. Again be-
cause of discrepancy between the iPad screen/LCD dimen-
sions, the score is more horizontally compressed in the
Canvas mode implementation (Figure 4).

3.1 Flipcard Style Animation

An experiment to reproduce animated notation using
“Flipcard” style animation was conducted with Ryan Ross
Smith’s work Study No. 55 (2016). The work was a chal-
lenging candidate, requiring colour full-screen frames
(1920 × 1080px on the iPad) with an average size of
180KB. 500 frames of the 13-minute work (2.6% of the
total) were rendered and bundled into a .dsz file of 46MB.
A Max patch was made using the canvas loadImage com-
mand to draw and then remove successive image layers
(Figure 5). The optimal removal rate for images was
shown to be 1.2 times the draw rate. The draw command
rate was tested across a dedicated wireless network be-
tween a 2018 Macbook Pro running High Sierra and an

Figure 3. Comparison between Lyrebird ScorePlayer canvas score (left)
and LCD (right) score.

Spectral De-
scriptor

Generated graphical specification

Frequency notehead vertical position and hue
Amplitude notehead size
Brightness notehead colour saturation
Noisiness notehead colour luminance

Table 3. Notehead and graphical symbol drawing behaviour
and audio playback behaviour in The Semantics of Redaction.

Table 2. Notehead and graphical symbol drawing b and audio playback behaviour in The Semantics of Redaction.

iPad Pro running OS12.2. Draw commands were success-
fully communicated at a rate of 15ms (approximately
66FPS) and demonstrated to be stable at a rate of 41ms
(approximately 24FPS) the frame rate of Smith’s original
video. A second test using an iPad 2 crashed the Score-
player application at rates of 4FPS.

Although the results were encouraging, they suggest that
flipcard style animation in canvas scoring mode is more
suited to the implementation of smaller, shorter frame an-
imations, perhaps in combination with other, less size and
CPU intensive, processes. (A dsz bundle combining all 18
thousand frames of Study No. 55 is estimated to be a more
unwieldy 880MB in size).

4. PYTHON SCOREPLAYER EXTERNALS

First released in 1991 and created by Guido van Rossum,
Python is generally recognized as an interpreted, high-
level and general-purpose programming language. There
are several advantages to using Python as an alternative to
Max for driving the Decibel ScorePlayer’s canvas mode
features on the iPad, particularly due to it being open-

source and based on a community development model. As
a result, it is freely available on most platforms, and has a
convenient distribution mechanism for libraries in the Py-
thon Package Index, or PyPI [10]. It also has a plethora of
existing libraries, including ones specific to service dis-
covery [17] and OSC [18], which greatly simplified the de-
velopment of our own scripts. These scripts have since
been developed into the scoreplayer-external library
which is now available on PyPI following its initial release
and presentation at the Australasian Computer Music Con-
ference in December 2018. The Python scoreplayer-exter-
nal library defines two python classes: scorePlayerExter-
nala and scoreObject.

The first class is used to make a connec-
tion to the iPad, opening a UDP listening
socket and letting the iPad know
which port to send its replies to. The se-
cond object is designed to represent the
objects of music notation that populate
the canvas display window. The score-
PlayerExternal class also encapsulates a
Bonjour service browser that can be used
to find an iPad to connect to. This design
allows for the process of finding and con-
necting to an iPad to be done in very few
lines of code, allowing the composer the
freedom to focus almost entirely on draw-
ing commands.

4.1 Connecting to the Decibel
ScorePlayer using the scorePlayerEx-
ternal class

The following example code demon-
strates how a link can be established be-

tween a Python script and the ScorePlayer app using the
scorePlayerExternal class.

#!/usr/bin/env python
from scoreplayer_external import scorePlayerEx-

ternal
from threading import Event

Figure 4. Comparison between The Semantics of Redaction ScorePlayer canvas score (left) and Max/LCD (right)
score.

Figure 5. Max patch using the canvas loadImage command to draw and
then remove successive image layers for “flipcard” style animation.

finished = Event()  external
= scorePlayerExternal() ex-
ternal.selectServer()  canvas
= external.connect(onCon-
nect)
finished.wait() exter-

nal.shutdown()
external.shutdown()

 Once all of the necessary libraries have been imported,
a new scorePlayerExternal object can be created (and in
this case is assigned the name external). Running the se-
lectServer() method on this object prints the list of avail-
able servers to the console, and prompts the user to either
select one or refresh the list to check for any new servers
that might have become available. Once the user makes a
choice, the connect(connectionHandler) method can be
called. This sends a registration message to the iPad server,
letting it know of our listening port, and on return of a con-
firmation message it runs the function passed as the con-
nectionHandler argument. This function (not shown
here) should contain the drawing commands that the com-
poser wants to use to render their score. The connect func-
tion also returns an instance of a scoreObject that is a ref-
erence to our canvas. It is by calling the methods of this
returned object that new objects can be added to the score.

4.2 Creating Python-driven scores
using the scoreObject class

The scoreObject class encapsulates the
sending of the raw OSC commands used
to manipulate objects on the ScorePlayer
canvas, and allows these remote objects
to be treated as if they were Python ob-
jects. Instances of the scoreObject class
should not be created directly by the
user, but should instead be stored and
used when returned from the various
methods that add objects to the canvas.
As outlined earlier, for example, the ini-
tial connect method returns a scoreOb-
ject that represents the canvas. Other ob-
jects of varying types can be added to
this by calling the addLayer, addScroller, addText,
addGlyph, addStave, or addLine methods of the canvas.
This is demonstrated in the following code example
(which assumes that the initial canvas object has been
stored to the variable canvas):

rdef onConnect():  
canvas.clear()  
stave = canvas.addLayer('stave', 0, 0, 0,

1000, 800)
stave.loadImage('Stave.png', 1)
 score = canvas.addScroller(’score', 0, 90, 0,

1000, 800, 0, 60) score.loadImage('Score.png',
1)
 score.start()  
global finished
 finished = True

The addLayer method is used first to add a layer named
‘stave’ to the canvas. A separate scroller layer is added
named ‘score’, and the script then proceeds to scroll the
score. (Figure 6).
There are some methods that are common to all objects.
setColour can be used to change the colour of any object.
(Whether this command applies to the foreground or back-
ground colour is dependent on the type of object.) All ob-
jects apart from the canvas can also have their opacity set,
and all bar the canvas or line objects can be moved within
the coordinate space of their parent object, either instantly
or animated over a specified time frame using the move
command. Additionally, any object (except for lines) can
be used to hold other objects, allowing for the creation of
complex hierarchies of objects that can be manipulated as
one with relatively few commands. Score objects also
have commands that are specific to their type listed in the
Figure 7 tree diagram.

Using the type specific commands of the stave object, for
example, Common Practice notation can be added to a
score. The following code example adds a stave to the can-
vas and then draws a sequence of clefs and a randomly
populated sequence of stemless note-heads, the output of
which can be seen below it in Figure 8.

def onConnect():
 canvas.clear()
 stave = canvas.addStave('stave', 0, 10, 100,

1100, 72, 2)
pitches = ('C4', 'C#4', 'C#+4', 'D4', 'E4',

'F4', 'F#4', 'G-4', 'A#+4', 'B4')
stave.setClef('treble', 40)  
stave.move(-1000, 100, 10)  
for i in range(0, 20):
note = stave.addNotehead (pitches[random.rand-

int(0, 9)], (i*50)+100, 1)

Figure 6. A layer object on the canvas that contains a sublayer.

Figure 7. A tree diagram outlining the commands specific to canvas score ob-
ject type.

global finished
finished = True

Since notes are drawn on the stave using pitch notation, a
clef needs to be defined before any notes can be added. To
avoid this, note drawing could also be achieved, albeit in a
much more manual way, with either the addGlyph com-
mand or the addText command, with the font set to the
Bravura font [16]. These commands also allow the com-
poser to override the default geometries used by the stave
object. With all of these varied objects and commands,
composers can create a hybrid system of notation combin-
ing not only Common Practice and graphic notation, but
also animated notation paradigms using both the scroller
object and the more general animated movement and fade
commands.

5. ENHANCEMENTS TO THE SCORECREATOR
APPLICATION

Early versions of the ScoreCreator consisted simply of a
form window that allowed for the entry of the data that
would populate the relevant xml tags of the score’s opus
file. When the “create score” button was clicked, this data
was written out to the xml file, and this was zipped to-
gether with any image resources that the composer had
specified. While much more convenient for a composer
than editing a raw xml file, this still did not present much

of an idea of what the score would look like in the player
during the creation process. Refining the settings of a score
could potentially require a lot of movement back and forth
between the two apps. The ScoreCreator was also only ca-
pable of creating scrolling scores, and didn’t offer access
to some of the more advanced features of these.

ScoreCreator version 0.5.1 addresses both of these con-
cerns. The creation of Talking board [1] style scores has
now been added as an option, and work is currently under-
way to add Slideshow, Flash card and Canvas mode scores.
The interface has also been improved to allow for more
advanced preferences to be selected. To take scrolling
scores as an example, it is now possible to customize the
playhead, either by changing its colour or using an image
in place of the usual line, and it is possible to make vertical
as well as the standard horizontal scrolling scores (Figure

9). For vertical scores, the
score can either be set to scroll
from top to bottom or bottom
to top. Most importantly, the
new version has a preview
window, so that composers
will be able to view what their
score will look like once im-
ported into the player. While

this preview isn’t animated, the composer can still scroll
through the image to be used, seeing how it will be affected
by any scaling, and how much of it will be visible on the
iPad’s screen at any one time in both the landscape and
portrait orientations of the device. When any settings that
change the display of the score are altered in the main win-
dow, this is reflected instantly in the preview window.

Additionally, the ScoreCreator now handles images in a
more intelligent way. It has always been possible to use the
app to create a scrolling score from a series of equally sized
tiles, but now it can search for and detect if such an image

set exists upon selec-
tion of the first image.
After prompting the
user about the discov-
ery, it can then auto-
matically adjust the
settings if desired. (It
can also adjust set-
tings in the other di-
rection if the required
number of images are
not found.) On crea-
tion of a score, it will
also check to see if
any images are too
large for display on
the iPad, and will of-
fer to scale or tile the
original image as ap-
propriate. (It won’t do
this if the user has
manually done their

Figure 8. A python script responsible for creating a stave, generating a sequence of
20 pitches randomly gathered from a user-specified list, and scrolling the system off

screen over 10 seconds.

Figure 9. The updated ScoreCreator, showing the advanced preferences window for scroll-
ing scores. The preview window can also be prominently seen, showing how the score will

look as a vertical scroller.

own tiling, and will trust them to know what they are doing
in that case.) The result of all of these changes is that the
composer doesn’t need to know quite so much about how
the ScorePlayer handles their images internally, and can
trust that their score will appear in the player exactly as it
does in the preview window, leaving them to focus on the
task of composition.

6. CONCLUSIONS

The advancements in the Decibel ScorePlayer project de-
scribed above are aimed at opening the platform for exper-
imentation by composers and others. It is hoped enhance-
ments in the ScoreCreator app will allow for engagement
with a range of novel score formats, and make them acces-
sible to novice users with minimal programming experi-
ence. The development of the canvas mode now supports
drawing commands sufficient to afford significant experi-
mentation with new score formats and presentation meth-
odologies. The implementations of scores discussed in this
paper indicate that the canvas mode will support quite
draw command intensive scores in a robust manner. The
development of a Python library for the creation of exter-
nal control apps forms something of a bridge between
these two approaches, facilitating control of the canvas
scoring mode and other ScorePlayer functions with mini-
mal programming experience via a freely available and ac-
cessible language.

7. REFERENCES

[1] A. Wyatt, and C. Hope, “Animated Music Notation
on the iPad (Or: Music stands just weren't designed to
support laptops),” in Proceedings of the 2013 Interna-
tional Computer Music Conference (ICMC2013),
Perth, 2013, pp. 201-207.

[2] C. Hope, A.Wyatt, and L. Vickery, “The Decibel
ScorePlayer: New Developments and Improved
Functionality, ” in Proceedings of the 2015 Interna-
tional Computer Music Conference
(ICMC2015),Denton, 2015, pp. 314-317.

[3] C. Hope, A. Wyatt, and L. Vickery, “The Decibel
ScorePlayer - A digital tool for reading graphic nota-
tion” in Proceedings of the International Conference
on New Tools for Music Notation and Representation
(TENOR’15), Paris, 2015, pp. 59-70.

[4] L. Vickery and S. James, “Tectonic: a networked,
generative and interactive, conducting environment
for iPad,” in Proceedings of the 2016 International
Computer Music Conference (ICMC2016), Utrecht,
2016, pp. 542-547.

[5] L. Vickery, “Rhizomatic approaches to screen-based
music notation” in Proceedings of the 2016 New In-
terfaces for Musical Expression Conference
(NIME2016), Brisbane, 2016, pp. 394-400.

[6] S. James, C. Hope, L. Vickery, A. Wyatt, B. Carey,
X. Fu, and G. Hadju, “Establishing connectivity be-

tween the existing networked music notation pack-
ages Quintet.net, Decibel ScorePlayer and
MaxScore,” in Proceedings of the International Con-
ference on New Tools for Music Notation and Repre-
sentation (TENOR’17). A Coruña, 2017, pp. 171-
183.

[7] A. Wyatt, L. Vickery, and S. James, “The Canvas
Mode: Rapid Prototyping For The Decibel Score-
player,” in Proceedings of the Australasian Computer
Music Conference 2018 (ACMC2018), Perth, 2018,
pp. 99-108.

[8] D. DeVille, “Dynamic linking on iOS.” Last modified
April 2, 2014. http://ddeville.me/2014/04/dynamic-
linking

[9] M. Wright, “The Open Sound Control 1.0 Specifica-
tion.” Last modified March 26, 2002. http://open-
soundcontrol.org/spec-1_0

[10] Python Software Foundation. “Python Package In-
dex.” Accessed October 26, 2018. https://pypi.org

[11] Apple Inc. “Bonjour Overview.” Last Modified April
23 2018. https://developer.apple.com/library/ar-
chive/documentation/Cocoa/Conceptual/NetServic
es/Introduction.html.

[12] WC3. “Extensible Markup Language (XML) 1.0
(Fifth Edition).” Last modified February 7, 2013.
https://www.w3.org/TR/xml/.

[13] D. Kim-Boyle, "Real time generation of open form
scores." Proceedings of Digital Art Weeks, Zurich.
2006, pp. 3-14.

[14] A. Vida, Accessed October 26, 2018. http://www.an-
drevida.com

[15] R. Smith, A practical and theoretical framework for
understanding contemporary animated scoring prac-
tices. PhD Diss. Rensselaer Polytechnic Institute,
2016.

[16] Steinberg Media Technologies GmbH. “SMuFL:
Standard Music Font Layout.” Accessed October 26,
2018. https://www.smufl.org/fonts/

[17] Python Software Foundation. “Zeroconf 0.23.0.” Ac-
cessed June 1, 2019. https://pypi.org/project/zero-
conf/

[18] Python Software Foundation. “Python-OSC 1.7.0.”
Accessed June 1, 2019. https://pypi.org/project/py-
thon-osc/

