
CROWDED STAVES — RULES FOR SEMANTICS AND STYLE
OF CONVENTIONAL MULTIPLE-VOICES-PER-STAFF

MUSICAL NOTATION

Markus Lepper Michael Oehler Hartmuth Kinzler Baltasar Trancón
semantics GmbH Berlin Osnabrück University semantics GmbH Berlin

post@markuslepper.eu michael.oehler hkinzler baltasar@trancon.de
@uni-osnabrueck.de

ABSTRACT

In many variants of Common Western Notation (CWN)
more than two voices can be notated together in one
staff. Reading this kind of multi-voice notation implies
complicated parsing decisions, taken by the trained
musician’s brain in most cases non-knowingly. This
article makes them explicit, supposing a theoretical
maximum of information retrieval and formal consis-
tency.

1. INTRODUCTION

When talking about musical notation, very different
viewpoints can be sensible. One of these is “nota-
tion as a precise encoding”, which means that the
graphic components of the notated piece of music can
be translated by a mathematically well-defined pro-
cess into the elements of a semantic model, and vice
versa. While this approach is obviously not fully ap-
propriate to most empirical situations, it can never be
totally absent, because it represents an abstract and
idealistic “basic idea of notation” as a perfect encod-
ing system.

The method of mathematical re-modeling as applied
in our SemPart project creates compound mathemati-
cal models, intended to mimic by a precise mathemat-
ical operation the empirically and historically given
processes of encoding and decoding music notation.
Thus these models define the semantics of notation,
and the grid spanned by their variants offers precise
nomenclature for semantic and stylistic differences.

We concentrate on the Common Western Notation
(CWN), which has evolved since the 17th century, has
been successfully adapted since then in many variants
to new developments in composition, practice and the-
ory of music, and is nowadays still in vivid develop-
ment.

The created models basically consist of (a) a com-
paratively simple mathematical structure representing

Copyright: c©2020 Markus Lepper et al. This is an

open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

the graphical appearance (= “external representa-
tion” = “syntax sphere”), namely the graphical com-
ponents’ classes and the syntactical rules for their com-
bination, (b) a collection of arbitrarily complex mathe-
matical objects (values, vectors, sets, relations, func-
tions, constraints) representing the intended musical
parameters (= “semantic sphere”), (c) a mathemati-
cal function mapping syntax to semantics (= “parsing
function”) and/or (d) a function mapping semantics
to syntax (= “writing function”).

For all the technical details and philosophical impli-
cations of this approach see [1], where we applied this
method to the notation of musical dynamics. From
these principles are relevant for this article:

(A) In no case there is “one single true semantic
model”. Instead, we always found a multitude of sim-
ilar models (or to say: one model which can be widely
parameterized) which represent different usages from
contemporary or historical practice. These differences
range from slightly different flavors to opposite and in-
compatible approaches. The intention of the SemPart
project is to present the different models to the domain
specialists of historic or systematic musicology, music
pedagogy, music performance practice, editing, print-
ing, computer programming, etc., to let them select
according to their needs, and so offer to all of them a
nomenclature for talking about common features and
differences in a more precise way.

(B) While the historic evolution and the social pro-
cesses are the main forces which have defined the syn-
tax and semantics of music notation, this is completely
excluded from the modeling. The SemPart method is
an ahistoric one, which refers to examples from history
only for inspiration and for an a posteriori verification
by application.

(C) There are important empirical results about the
reading process of music notation, e.g. [2], [3], [4]
and [5]. The meta-study [6] evaluates 15 studies on
eye movement “to support the crafting of more well-
founded research hypotheses and the more system-
atic design of experiments”. Applying methods from
psychology and neurology, all these are completely
complementary to our approach, which extracts by
abstract methods an idealistic information contents
which can only serve as the theoretical maximum of
retrievable information. One could say we define a

1

mailto:post@markuslepper.eu
mailto:michael.oehler@uni-osnabrueck.de
mailto:hkinzler.oehler@uni-osnabrueck.de
mailto:baltasar@trancon.de
http://creativecommons.org/licenses/by/3.0/

proposal for the “Abstract Internal Representation”,
as it is graphically symbolized by the question mark
in Figure 1 of [4], and which is explicitly not part of
their work. E.g., we define a parsing algorithm only
to define the abstract information contents, not as a
concrete model of the empirical process of reading.

(D) The re-modeling approach presented in this pa-
per also differs fundamentally from the well-known
task of voice separation, see [7], [8] (both also for sur-
veys), [9], [10] and many others. Those papers cover a
concrete data-processing task, required for automated
music notation, analysis and retrieval, and the dif-
ferent solutions take into account very different as-
pects of perception, precision, historic rules, technical
representation, etc. In contrast, the SemPart project
addresses a more basic level and simply tries to con-
cretize (the different variants of) the mental and cul-
tural definitions which are applied when notation is
read or written by human actors. This concretization
is also given in form of an operational semantics, i.e.
an algorithm which must be executed to yield results,
but this algorithm is only the means for the analyses,
not their purpose.

2. PROCESSING PIPELINE FOR
PARSING MULTI-VOICE STAVES

2.1 Outline of the problem

This paper applies the fundamental modeling tech-
nique of the SemPart programme to the task of recog-
nizing more than two voices notated in the same staff.
The idiosyncrasies of the historical evolution of CWN
made this parsing process much more complicated and
thus mathematically interesting than it appears at the
first glance: In daily practice it is nearly always exe-
cuted by any musician without further difficulties, but
also without realizing the complicated intellectual pro-
cesses required. The following algorithms do nothing
more than making these processes visible.

For the following discussion, a voice is a sequence of
adjacent notated events in time. Each event can be
a sounding event (=sound) or a pause and has one
particular duration, measured in some musical time
system. 1

Even the oldest known example of Western Notation
writes two voices in one staff (Musica Enchiriadis, us-
ing text syllables for note heads, see page 57r of [11].)
Much later, in Ars Nova, stem direction was used for
voice indication [12].

Later more than two note heads simultaneously ap-
peared in course of notating instruments which are
capable of (sporadic) chord playing. This case is not
covered in this article.

Here we look only at more than two parallel, inde-
pendent and contiguous voices sharing one staff. In

1 For this article we assume without loss of generality this
time system to be metrical duration, with the conventional ra-
tional numbers as duration values, and with the conventional
graphical duration symbols. Nevertheless, the algorithms pre-
sented in the following would work also on arbitrarily different
bases.

Figure 1. Different note heads for filtering voices

practice, these appear (a) in orchestra scores, when
more than two “voices” in the sense of “note text
for one melody instrument” are comprehended in one
staff, and (b) in notes for keyboard instruments, where
“voices” in the sense of abstract “voice leading” can
spontaneously come into existence and vanish again.
(Case (b) comprises also some string instruments like
guitar, harp, hackbrett etc.)

Esp. in piano literature, starting with the pre-classics
like C.Ph.E. Bach and D. Scarlatti, complicated com-
binations of these “keyboard voices” have been real-
ized. Here we do not discuss what these voices are
intended to represent, whether they are meant to be
heard by the listener, how they should be played by
the musician or whether they live only on a pure con-
ceptual level, etc.

Here we are interested only in the mere graphical
notation and how this is decoded or “parsed” into a
data set which identifies the relation from events to
voices(= to voice names). For this we feed one single
staff with its contents, called original staff, through a
pipeline of processing steps.

2.2 Vertical filter

The first step separates the information from different
layers in the original staff if they are immediately dis-
tinguished by a graphical attribute. In course of the
more and more complicated voice textures, especially
in piano literature, some authors used such attributes
for a first clarification of the voice leading. The most
common means are to use a smaller size of note heads
for marking one particular voice. Also different note
head forms are possible, like cross or diamond. Fig-
ure 1 shows an example from a 20th century piano
sonata.

In modern scores, for instance if presented on a dig-
ital display, also different colors are easily possible.

If such a graphical attribution is present, this step
separates the contents of the original staff into sepa-
rate homogeneous staves according to these attributes,
called filtered staves. In case that horizontal gaps do
result, these have to be filled by additional pauses.
The next steps are applied to each of these filtered
staves separately in basically the same way as to a
homogeneous original staff.

2

2.3 Horizontal segmentation

In an orchestra score, when several melody instru-
ments share a staff, the identity of the instruments
is established by some explicit voice order declaration.
It lists the names of the instruments in one particular
sequential order, which shall be mapped by the reader
to the vertical order of the simultaneously executed
events.

In many cases this explicit declaration is not constant
over the whole duration of the score but changes by ex-
plicit (voice order) re-declaration. For our algorithm,
a staff can be cut at such a point and the resulting seg-
ments treated separately, if this declaration mentions
all existing voices. Otherwise its evaluation is much
more complicated and part of the parsing process, as
explained below.

In keyboard music the voices are (normally) not named
or declared explicitly and can come into existence and
vanish again spontaneously. Here we must cut be-
tween segments with different numbers of voices and
treat them separately. 2 The naming of the voices
(which is needed by the algorithm) is thus implicit
and synthetic, like “voice1”, “voice2”, etc.

Contrarily, in keyboard fugues like “Das Wohltem-
perierte Klavier” the number of overall voices is given
by the title like “Fuga à 5”, which can be expanded to
a canonical initial voice declaration “v1, v2, v3,
v4, v5”. 3

2.4 Input data of the algorithms

Finally we apply parsing to each staff data which re-
sults from vertical filtering and horizontal segmenta-
tion. The task is to map each note head to a voice
name, given the sequence of note heads and an initial
voice order declaration.

We model the notation text as a sequence of sets
of note heads. The type K in module perLineas in
Table 1 4 represents one note head as a tuple of its
duration (as a rational number), pitch (natural num-
ber for the vertical position in the staff), “fine x” (the
horizontal order of the note heads which belong to the
same “chord” / time point), the direction of the stem,
a flag whether it is a pause, and optionally the start
coordinate of an incoming voice leading line. Such a
coordinate from Ptx is a tuple of score position (as
defined below), vertical position (=pitch) and fine x
value and thus identifies a note head unambiguously.

The complete input data to the parsing algorithm is
of type N . It includes a sequence of sets of note heads
from PK. All note heads in such a set are played

2 A change in the visible number of voices can also result
from pause sharing and should be treated accordingly, see sec-
tion 3.1.

3 In practice, two different and disjoint declarations for both
staves of the keyboard staff must be generated. This problem
is not treated in this article, – all algorithms here treat one
single staff only. Furthermore, they may appear more voices
than mentioned by the title, typically in a coda section.

4 The mathematical notation is based on the well-proven
Z notation [13], with only few extensions for brevity. See the
appendix for details.

synchronously. The sets follow with non-zero delay in
temporal order; the index into this sequence is called
score position, is taken from N1 and corresponds to
the sequence of passing musical time points. 5

At each combination of score position and voice, there
is exactly one note head (not tied to its predecessor) or
pause symbol, iff the preceding event in this voice ends
at the time point represented by this position. These
voices are called (currently) active (at this score posi-
tion); the other voices are overlapping. Thus the main
task is to create at any given score position a bijective
map between its note heads and its active voices.

Beside these sets, each score position can carry two
lists of voice names from V for voice re-declaration,
see section 4.1 below. So N represents the above-
mentioned syntax sphere of the translation model. The
semantic sphere is represented by the data type R
which represents the result of the parsing algorithm,
see section 4.3 below.

Since traditionally the “first oboe” sounds higher
than the “second”, the declaration sequence of voice
names from left to right is mapped from top to bottom
to the note heads, which corresponds to the physical
pitch of the sounding events. This results in the cur-
rent (physical) voice order (=CVO). The CVO is a sta-
tus data which reigns the assignment of note heads to
voice names. It can be altered by subsequent explicit
re-declarations, but also by voice leading lines and by
other necessities resulting from the parsing process.
Therefore it must be passed through all functions of
our parsing algorithm as an explicitly modeled datum.

3. ISO-RHYTHMIC VOICES

First we analyze the situation in iso-rhythmic settings,
i.e. without overlapping voices. The results of voice
crossing analysis can easily be transferred to the more
complex case of hetero-rhythmic voices, but doing so
for pause sharing is left to future work.

5 In the Z formalism, which is the basis for our modeling,
indices of sequences start with the number One(1).[13] Thus
the encoding of the notes in Figure 2 is a sequence of sets of
tuples. starting with
〈{(1/4, e′′, 1,⊥, true,⊥), (1/4, e′, 1,⊥, true,⊥) },
{(1/4, e′′, 1, ↑, false,⊥),(1/4, e′, 1,⊥, true,⊥) },
{(1/4, e′′, 1, ↑, false,⊥),(1/4, e′, 1, ↓, false,⊥)},
. . .〉

and the top line of Figure 2 holds the data
〈{(3/8, g′′, 1, ↑, false,⊥),(3/4, e′′, 2, ↑, false,⊥),

(3/4, c′′, 2, ↑, false,⊥),(7/8, c′, 1, ↓, false,⊥) },
{(1/8, g′, 1, ↑, false,⊥) },
{(1/2, g′, 1, ↑, false,⊥) },
{(1/4, d′′, 1, ↑, false,⊥),(3/4, h′, 1, ↑, false,⊥) },
{(1/8, d′, 1, ↓, false,⊥) },
{(1/2, d′′, 1, ↑, false,⊥),(1/2, d′′, 1, ↑, false,⊥),
(1/2, g′, 1, ↑, false,⊥), (1/2, e′, 1, ↓, false,⊥) },
. . .〉

The right part in the second row of Figure 5 holds
〈{(1/8, c′′, 1, ↑, false,⊥),(1/4, a′, 2, ↑, false,⊥) },
{(1/8, h′, 1, ↑, false,⊥) },
{(1/4, a′, 1, ↑, false,⊥), (1/8, e′, 2, ↑, false, (2, h′, 1))},
{(1/8, d′, 1, ↑, false,⊥) },
. . .〉

3

module perLineas
C = {↑, ↓,⊥}
// stem direction: up, down, not present
Ptx = N1 × N1 × N1

// coordinates: score position, pitch, fine x
V // given Type: Voice names
K = Q× N1 × N1 × C × bool× optPtx
// note head = duration, pitch, fine x,
// stem, is pause, start of incoming lead line
N = seq(PK × iseqV × iseqV)
// score data = note heads and voice decls.
R = V 9 iseqPtx
// result, maps voice names to the
// coordinates of their note heads

lexSquash : (A9 seqZ)→ iseqA
// sort the key elements by the mapped values,
// lexicographically.
sortHX, sortHY : PK → iseq K
sortHX(k) = lexSquash(k / π3)
sortHY(k) = lexSquash(λx : k • (−1 ∗ π2(x), π3(x)))

module *perLineas.pausae
import perLineas

d : N1 // number of voices active in k̂

k̂ : iseqK

∀i, j • i < j =⇒ π2(k̂(i)) ≥ π2(k̂(j))

pausae(k̂) = {i : N1 | π5(k̂(i)) = true}
pSequ(k̂) = pausae(k̂) \ succ(|pausae(k̂)|)
pAdj(k̂)⇐⇒ #pausae(k̂) > #pSequ(k̂)

nonCommunes(k̂)⇐⇒ d = #k̂

maxCommunes(k̂)⇐⇒ ¬pAdj(k̂)

defectis(k̂)⇐⇒ d > #k̂ ∧ pAdj(k̂)

⇐⇒ ¬(nonCommunes(k̂) ∨maxCommunes(k̂))

ambig(k̂)⇐⇒ #d > #k̂ ∧#pSequ(k̂) > 1

Table 1. Note heads and sharing of pauses.

3.1 Sharing of pauses

The historical development process of CWN brought
up many rules for special cases. These make the pars-
ing process non-orthogonal and complicated. Two of
them are

nota.perLineas.pausae.communes: Multiple pauses of
the same duration in adjacent voices may be repre-
sented by one single graphical symbol.

nota.perLineas.pausae.maxCommunes: Multiple pau-
ses of the same duration in adjacent voices must be
represented by one single graphical symbol.

The first rule is implied in the second. Module per-
Lineas.pausae in Table 1 shows the definitions of the
most important respective properties, when k̂ is an
injective list of note heads and pause symbols, sorted
by vertical height.

To recognize (=parse) sharing of pauses, the total
number of intended voices must be known by some

a) b) c) d) e) f)
pAdj �X � � �X � �X
nonCommunes �X �X � � � �
maxCommunes � �X �X � �X �
defectis � � � �X � �X
ambig � � � � �X �X
d = 2 2 2 3 4 5

Ý
�
Ý

Ý
Ý
�
Ý

Ý
Ý Ý

�

Ý

Ý�

�

Ý

Figure 2. Top part check boxes indicate the prop-
erties of the note example below, given a particular
voice count d.

preceding explicit voice declaration. This is modeled
by d in that Table.

The set pausae contains all those indices where a
pause stands; the set pSequ(k̂) all those where a max-
imal group of adjacent pauses starts, e.g. {1, 2, 4} \
{2, 3, 5} = {1, 4}. The property pAdj(k̂) indicates
that there are adjacent pause symbols. Figure 2 shows
minimal examples for characteristic combinations:

nota.perLineas.pausae.maxCommunes: All occurring
maximal groups of adjacent pauses have been replaced
by one single pause symbol.

nota.perLineas.pausae.nonCommunes: No pair of ad-
jacent pauses has been replaced by one single pause
symbol.

nota.perLineas.pausae.defectis: At least one pair of
adjacent pauses has been replaced by one single pause
symbol but another pair has not.

nota.perLineas.pausae.ambig : There are multiple pause
symbols which can be expanded to the eliminated pause
symbols.

The minimal voice number for ambiguity is indeed
four: One non-pause voice is required to separate the
two pause symbols; one of these stands for two voices.
To combine this with defectis requires a further voice
with a non-replaced pause symbol.

These attributes play an important role in practice.
The piano reduction contained in Wolfgang Graeser’s
edition of Bach’s “Die Kunst der Fuge” BWV 1080
[14] consequently follows nonCommunes, which im-
plies ¬ambig and thus makes voice leading as clear
as possible. 6 In contrast, Walter Denhard’s edition
of “Das wohltemperierte Klavier I” [15] changes fre-
quently: Fuga I à 4 starts with ambig, but Fuga III
à 3 with
¬maxCommunes∧nonCommunes. Fuga IV à 5 starts
with maxCommunes ∧ ¬ambig. 7 The second half of
measure 7 starts a new declaration segment of only
three voices (see section 2.3 above), because only these
are notated without any accompanying pause. Simi-
lar in measure 21, when the pauses of voice 2 suddenly

6 For these remarks we consider the two staves of the key-
board notation as one single staff. The formally correct treat-
ment of this case is complicated and out of scope in this paper.

7 Reading both staves into one additionally yields defectis,
which is an artefact.

4

disappear while those of voice 5 are visible. Contrarily,
measure 35 switches to ¬maxCommunes, showing ad-
jacent note symbols. Starting with measure 77, even
ledger lines are employed for these.

3.2 Crossings of iso-rhythmic voices

One of the main concerns in many contexts is a light-
weight but unambiguous way to indicate temporal voice
crossings. This means that the physical top-down or-
der of the sounding notes of the voices contradicts the
declared voice name order (= CVO), but only for a
short time and without the need for a full voice order
re-declaration.

According to the historic evolution, all voices with
stem up notes are read as a multiplication (or split-
ting) of one original “upper voice” or “first voice”, and
all stem down notes correspond to a “second voice”.
Therefore a convenient but limited means for voice
crossing is the stem direction. Given a certain explicit
voice declaration 〈v1, v2, . . . , vn〉, and a set of n note
heads in which u < n are stem-up, then the first voice
names 〈v1, . . . , vu〉 are assigned to the stem-up note
heads, from top to bottom, and the stem-down note
heads are mapped to 〈vu+1, . . . , vn〉, again from top to
bottom.

In an iso-rhythmic setting, voice crossings can be ex-
pressed between the lowest voices with up-stem and
the highest voices with down-stem, but not among
voices with the same stem direction. Figure 3 shows
all possible situations for four-voice chords.

The number of all expressible voice crossings is cal-
culated as follows: Given a chord of n note heads, all
with stems and with heads on different heights (= dif-
ferent pitches), and u of them shall be stem-up. Then
there are

(
n
u

)
possibilities to assign stem directions.

u = 0 and u = n do not allow any voice crossing, so
we get

n−1∑
u=1

(
n

u

)
for the number of possible assignments. For each
u, there is one combination which is not a crossing,
namely the first in each group in Figure 3. For the
number of all possible permutations (original order
plus all crossings) we must thus subtract n − 2. All
other permutations are indeed different, what can be
shown as follows: for any given u, the voices u and
u + 1 (counted from the top) have different stem di-
rections and thus are crossed in all combinations but
the very first (see Figure 3). For all m 6= u the voices
m and m + 1 have the same stem direction and thus
never cross. So all permutations are different.

Further normalization yields

n−1∑
u=1

(
n

u

)
− n+ 2 =

n−1∑
u=1

(
n

u

)
− n+

(
n

0

)
+

(
n

n

)

=

n∑
u=0

(
n

u

)
− n = 2n − n

The table in Figure 3 shows the absolute and rela-
tive numbers of expressible voice crossings in the iso-
rhythmic case.

4. PARSING OF FREE RHYTHMIC
VOICES

In hetero-rhythmic settings more voice crossings are
possible: At each score position only the active voices
(as defined above) get a new note head. 8 So arbi-
trary voice crossings can be notated between an active
and an overlapping voice, see Figures 4 and 7. Addi-
tionally, for more flexible voice crossings, it may be
sensible to allow changes of the stem direction, which
makes parsing significantly more complicated.

Voice crossings between active voices can be indi-
cated by explicit voice leading lines. These connect
visibly the latest preceding note head of a particular
active voice with a note head at the current score po-
sition and declares graphically that both note heads
belong to the same voice, see Figure 5.

4.1 Voice (re-)declarations

Initial voice declarations (at the beginning of a staff or
a segment) must mention all present voices. They can
come in two formats: (a) as one list of voice names
for all voices, or (b) as two separate lists for up- and
down-stem voices, written above and below the staff.
In any case, the respective numbers of names and
voices must match. In case of the single list, the lead-
ing names are matched to the up-stem voices and the
trailing names to the down-stem voices. The version
with two lists can contain slightly more information
when the staff begins with stemless notes, because it
declares the voices in the second list as “nominally
down-stemmed”, see Section 4.7 below.

A re-declaration stands at a particular score posi-
tion in the midst of a segment. It comes in similar
formats: (a) one list for both stem directions or (b)
two lists for up-stemmed and down-stemmed each, or
(c) one list only for up-stemmed or (d) one list only for
down-stemmed heads. These formats must be recog-
nizable by the position(s) and length(s) of the list(s).
Furthermore, the declaration can address different tar-
gets: (A) All voices appearing in the segment, or (B)
only the voices with a note head at this score position,
or (C) only the active voices (=only the heads not tied
to its predecessors).

Re-declarations either (α) change the CVO, or (β)
they redundantly only confirm it and show it to the
reader for convenience. These are two fundamen-
tal different semantics, because the latter can be
erased from the notation without changing its mean-
ing. This results in twenty-four(24) combinations for
the types of voice re-declaration, all of which can be
found in practice. Figure 4 shows some examples.

8 In the following we write “note head” for shortness, also
when “note head or pause symbol” is meant.

5

n n! 2n − n expressible/total
2 2 2 1
3 6 5 0.833
4 24 12 0.5
5 120 27 0.225
6 720 58 0.0805
7 5040 121 0.0224

Figure 3. Voice crossings expressible by stem directions

J

)α(=acBC

v3,v2

��

)α(=acC

v3,v2

���

)β(=acB

v2,v3,v1

���

)β(=aA

v2,v3,v1,v4

��b)

a)

�
��

����

J

J

�

��

��

�

��

�

��

�

�

��

�

v1,v2,v3,v4

�

�

��

�

)α(=aABC

v1,v2,v3,v4

� �

��

�

v4)α(=bABC

�

v1,v2,v3

�

��

�

v1,v2,v3,v4

�

����

����

�

�

�

�

�

J

�

�

�

�

��

��

�

�

�

�

�

�

�

�

Figure 4. Voice (re-)declarations and crossings

Ambiguities can only arise between cases cA vs. aB,
cA vs. aC, and cB vs. aC, and can in most cases be
resolved by the nominal stem direction of the named
voices.

4.2 Preparatory steps

To apply our algorithm to concrete examples from
practice, some preparatory transformations must be
applied. These model the extraction of additional
information for voice parsing (e.g. from beams and
slurs) which is done by the trained musicians brain
unknowingly. We realize it by adding explicit voice
lead lines, see Figure 5. Additionally all ties are re-

moved by replacing e.g. the combination ˘ ^ (ˇ by a

©

�

�

�

©

©

©

�
��

��

��

©

©
�

�

�

©

©

�

�
�

�
�

©

©

©

�
�

�
�

�
�

�

�

�

��

��

==>

==>

==>

�

�

�

��

©

Figure 5. Preparatory adding of voice lead lines from
beams and slurs (not formalized in this paper)

single (artificial) note head with a duration value of
“5/8”. 9

4.3 Parsing

The following tables show different versions of a pars-
ing algorithm. This is done in a modular way of spec-
ification. Tables 2 and 3 show the fundamental and
auxiliary functions, common to all versions. Table 4
gives the more simple variant which treats filtered seg-
ments containing only one stem direction; Table 5
shows the more complex version in which each voice
may arbitrarily change its stem direction. Both algo-
rithms come in two different flavors, suonaeProximae
and solumExplicitum, as explained below. Result is
R, which gives for each voice the sequence of the co-
ordinates of all note head contained in that voice. 10

The parsing function calc(n : N) calls the real com-
putation function step(..) 11 with this input data, the

9 Indeed, the problem of “ties vs. slur” has most intricate
cases, philosophically and mathematically most complex. This
is left out in this article. E.g., the function assignD(..) in Ta-
ble 2, which treats explicit re-declarations, does not treat those
of type “B” but only “C”, so it does not need to know about
incoming ties.
10 Since coordinates represent the score position order inter-

nally, the modeling as sequences per voice is redundant, but
practical; semantically sets would suffice.
11 We write “f(..)” to refer to a function by its name, while

omitting the full type signature.

6

module *perLineas.extrahere[H] // H = auxiliary data = running status, parameterizable = CVO
import perLineas
read : N × Ptx 9 K // extract note head at given coordinate from score data
store : R× (V × N1 ×K)→ R // assign voice at score position to note head
calc : N 9 R // main function = analyze score data and initial voice declaration
∗initH : N 9 H // initialize running status; defined by importing module
step : N × N1 × (V 9 Q)×R×H 9 R×H // score data, score position, voice ends, result, running status

assignW : N1 × PV × PK × PK × seqV × PV ×R×R×H 9 R×H
// score pos., active voices, heads with/without lead, re-declaration, active voices, old/current result, aux state

assignF : N1 × seqV × seqK ×R×H × PV ×R9 R×H
// score position, active voices, note heads, result, running status, old active voices, old result

assignD : N1 × PV × PV × PV × PV × seqK × seqV ×R×H × PV ×R9 R×H
// score pos., overlap/tied/led/active voices, sorted heads, voice decls, result, old CVO, up-stem voices, old result

∗phase2 : N1 × PV × PK × seqV × PV ×R×R×H 9 R×H
// score pos., active voices, heads without lead, re-declaration, active voices, old/current result, aux state

∗finalize : N1 ×R×H × PV ×R9 R×H
// score position, result, running status, old active voices, old result

lastOrd : R× PV → iseq V // sort the set of voices according to their latest occurrence in the result
∗aboveVK , , ∗equalVK , : R× PV → (V ↔ K)
// result × stem dir → relation whether a overlapping voice is above/on equal height with a note head,

read(p, (m, t, x)) = k ⇐⇒ k ∈ π1(p(m)) ∧ k = (, t, x, , ,)

store(r, (v,m, (, t, x, , ,))) = r ⊕ {v 7→ r(v) a 〈(m, t, x)〉}
initH(p) = (v, u)

calc(p) = π1(step(p, 1, (ranv)× {0}, (ranv)× {〈〉}, (v, u)))

q0 = min(ran q) v̂ = q−1(|{q0}|) k̂ = π1(p(m)) d = π2(p(m))

#v̂ 6= #k̂ =⇒ error(“Numbers of expected and notated note heads differ”,m)

kW = {k ∈ k̂ | π6(k) 6= ⊥} kF = k̂ \ kW
#kW = 1 ∧ #kF = 0 =⇒ warning(”Redundant voice leading line”,m)

(r′, h′) = assignW(m, v̂, kW, kF, d, v̂, r, r, h)
q′ = q ⊕ λv : v̂ • q0 + π1[read(p, last(r′(v)))]

step(p,m, q, r, h) = step(p,m+ 1, q′, r′, h′)

m > #p =⇒ step(p,m, , r, h) = (r, h)

kW = π6(k) : Ptx ∃vW • last(r(vW)) = kW
vW 6∈ v =⇒ error(“Leading line comes from non-active voice”, k)

r′ = store(r, (vW,m, k)) v′ = v \ {vW}
assignW(m, v, {k} ∪ kW, kF, d, v0, r0, r, h) = assignW(m, v′, kW, kF, d, v0, r0, r

′, h)

assignW(m, v, {}, kF, d, v0, r0, r, h) = phase2(m, v, kF, d, v0, r0, r, h)

Table 2. Common and auxiliary functions for parsing two or more voices per staff

next score position to process (initially m = 1), a map
q of type V 9 Q which gives the next time point for
each voice (initially all point to 0), and the result ac-
cumulator, which is initially empty.

The data type H is a parameter specific for the vari-
ants of the algorithm. It threads additional auxiliary
status data through all function calls. Its initial value
is delivered by initH(..), which must be defined accord-
ingly in the importing module. 12 For brevity of the al-
gorithm, the score must carry a complete voice order
declaration of Type aAα with the very first event, and
(for the double stemmed case) the nominal stem di-
rection must be visible from the very first note heads.

12 Therefore the head of the module is marked with an aster-
isk, meaning “not a complete schema in the sense of Z”.

The function step(..) calculates the next time point
to process (= q0) as the lowest value in the map q, and

the set v̂ of all voices active there. k̂ are the note heads
at the next score position m, and d the voice name re-
declaration there, which at most score positions will
be empty. The set k̂ is divided into those note heads
at which an explicit voice leading line arrives (= kW,
from German “Stimm*W*eiser”) and the *F*ree rest
(= kF). First assignW(..) is called to process kW. Af-
terwards the two variants of phase2(..) (in Tables 4
and 5) call the common functions assignD(..) if there
is an explicit voice re-declaration, or assignF(..) if not.
Afterwards, the specific function finalize(..) updates
the running status H.

7

assignF(m, 〈v〉 a α, 〈k〉 a β, r, h, v0, r0) = assignF(m,α, β, store(r, (v,m, k)), h, v0, r0)

assignF(m, 〈〉, 〈〉, r, h, v0, r0) = finalize(m, r, h, v0, r0)

A = λv ∈ domr ∩ v̂ | k = last(r(v)) • (−1 ∗ π2(k), π1(k), π3(k))

lastOrd(r, v̂) = lexSquash(A)

r′ =

if #d = #v3 + #v4 then zip(m, v4, lastOrd(r, v3), k̂, d, r, U)

else if #d = #v2 + #v3 + #v4 then zip(m, v4, lastOrd(r, v2 ∪ v3), k̂, d, r, U)

else if #d = #v1 + #v2 + #v3 + #v4 then zip(m, v4, lastOrd(r, v1 ∪ v2 ∪ v3), k̂, d, r, U)

else error(“wrong length of voice declaration list”)

assignD(m, v1, v2, v3, v4, k̂, d, r, h, U, r0) = finalize(m, r′, h, v3 ∪ v4, r0)

zip(m, v̂, 〈v〉 a α, 〈k〉 a κ, 〈d〉 a δ, r, U)
// score pos., voices to allocate, fixed voices, heads to allocate, declarations, result, nominal upstem voices

=

if (v aboveVKr,U k) then

{
if v = d then zip(m, v̂, α, 〈k〉 a κ, δ, r, U)

else error(“declaration contradicts overlap/lead”, d, v)

else (v equalVKr,U k) ∧ v = d then zip(m, v̂, α, 〈k〉 a κ, δ, r, U)

else if d ∈ v̂ then zip(m, v̂ \ {d}, 〈v〉 a α, κ, δ, store(r, (d,m, k)), U)

else error(“Voice for note head is not active”, d, k)

zip(m, {}, 〈v〉 a α, 〈〉, 〈d〉 a δ, r,) =

{
if v = d then zip(m, {}, α, 〈〉, δ, r,)

else error(“declaration contradicts overlap/lead”,

zip(m, {}, 〈〉, 〈〉, 〈〉, r,) = r

Table 3. Common and auxiliary functions, continued.

module perLineas.extrahere. suonaeProximae solumExplicitum . X Y

import perLineas.extrahere[iseqV] // parameter H used to pass through the CVO

v = π2(p(1))

initH(p) = if (#v = #π1(p(1)) then v else error(“Error in initial voice declaration”)

phase2(m, v, kF, d, v0, r0, r, h) // #kF = #v

=

if d = 〈〉 then assignF(m, squash(h . v), sortH
X Y

(kF), r, h, v0, r0)

else assignD(m, ranh \ v0, {}, v0 \ v, v, sortH
X Y

(kF), d, r, h, {}, r0)

finalize(m, r, h, v0, r0) = (r, lastOrd(r,N1) h # (IDN1
⊕ (lastOrd(r0, v0)−1 # lastOrd(r, v0))))

v aboveVKr, k ⇐⇒ π2(last(r(v))) > π2(k)
v equalVKr, k ⇐⇒ π2(last(r(v))) = π2(k)

Table 4. Parsing multiple voices with all the same stem direction

On return from assignW(..), the function step(..) cal-
culates for all active voices their next time points in
the map q′: last(r′(v)) is the latest score coordinate
recognized as part of v; read(p, last(r′(v))) reads the
event at this position of the input score; π1(..) extracts
the duration. Then step(..) calls itself recursively,
until the input data from N is exhausted.

In assignW(..), the variable k steps through the note
heads kW; the start coordinate of the voice leading
line arriving there (= π6(k)) must come from a note
head which exactly ends at the current time point. So
the voice assigned to it must be active (vw ∈ v). It is
assigned to k by calling the auxiliary function store(..)

and is removed from the set v. 13

The function assignF(..) simply assigns the voices in
its second argument to the note heads in its third, in
that sequential order provided by the caller.

The function assignD(..) gets in v1..v4 the sets of
voices which are overlapping/tied/with lead-lines/still
to allocate, and in d the declaration text. It recognizes
cases aA, aB and aC, as defined in Section 4.1, by
comparing the cardinalities of the sets. 14 It always

13 The set of all initially active voices and the old result,
before evaluating the voice leading lines, are additionally passed
through by the function arguments v0 and r0, because they are
needed later by one of the algorithm’s variants.
14 For brevity, cases b to d are not supported and case B is not

called by the other modules: for brevity, ties are not modeled
in our data. The algorithm treats cases α and β uniformly and

8

holds that #v4 = #k̂. It calls zip(..), which iterates
synchronously over three lists and one set. It gets as
many declarations in d as voices in v̂∪v′, and as many
un-assigned voices in v̂ as heads to assign in k̂. It
can assign the next note head (in the respective sort-
ing order) to the next entry in the declaration, if this
voice is in the set v̂ (= still unassigned). Otherwise it
checks whether the topmost assigned voice (=overlap-
ping, with lead lines, etc.) is in sync with the declara-
tion. When the topmost note head and the topmost
assigned voice are on the same height, both alterna-
tives for their nominal order are considered. The set
U of all nominal up-stemmed voices is only needed to
compare the height of the current note head and the
current assigned voice: in the double-stem case each
nominally up-stemmed voice is infinitely higher than
any down-stemmed note head.

4.4 Parsing only one stem direction

The first and more simple case is to process only all
voices with one particular stem direction, see Table 4.
The arguments for assignF(..) are simply the currently
active voices in the sequential order of the CVO and
the sorted noted heads. (h . v is the “range restric-
tion”, which selects from the sequence h all maplets
which point into v, and squash(..) compactifies this
to a sequence.) The note heads are all those with
no arriving lead line, sorted according to the selected
method, see next section.

4.5 Two methods of note head sorting

For the sorting of the note heads (see Tables 4 and 5,
for calling assignD(..) and assignF(..)) there are two
different methods: sortHX sorts by the “fine x” hori-
zontal position only; sortHY sorts by pitch = vertical
position, and subordinately by fine x position, if nec-
essary. Both functions are defined in Table 1.

These two methods imply fundamentally differ-
ent ways to express short-term voice crossings:
The method perAltitudinemCaputis uses sortHY and
assumes that the physically lower voice is mentioned
later in the CVO. The horizontal position is used as
secondary criterion, only in cases of equal height. This
method is widely used and allows sharing of stems and
note heads (see below Section 5).

The method perCaudaeSequentiam uses sortHX and
defines the sequential order by the x position of the
stem only. Therefore it can easily express short-time
voice crossings, see Figure 6. It is not found as fre-
quently as the preceding variant, but can also be found
in practice.

4.6 Two strategies of changing the CVO

The four modules combined in Table 4 also differ in the
strategy the CVO is finally affected by the crossings

can easily be enhanced for detecting and signaling them.

c �
�

�a)
�

�
�

�
�

Figure 6. Voice crossing by x position of stems: voice
one goes c-g-c-g, vs. voice two with g-c-g-c

� ���� � ���� �����
suonaeProximae 1 1 1
(=physical) 2 4 4

3 3 3
4 2 2

solumExplicitum 1 1 1
(=nominal) 2 3 3

3 2 2
4 4 4

Figure 7. Physical vs. explicit-only changes of the
CVO. Voice names below notes, changes in bold.

between active and overlapping voices: perLineas.ex-
trahere.suonaeProximae takes the complete finally re-
sulting physical order (calculated by lastOrd(r,N1),
see the left part of the last box in the Table) as the
new CVO, which will reign the parsing step at the
subsequent score position.

Contrarily, perLineas.extrahere.solumExplicitum lets
only explicit changes (by voice order re-declaration
or by voice lead lines) change the CVO. The calcu-
lation is more complicated: lastOrd(r0, v0) is the se-
quential order of only the free voices, before any pro-
cessing/assignment at this score position had been
started. lastOrd(r, v0) is the same after all evaluation.
So lastOrd(r0, v0)−1 #lastOrd(r, v0) is the permutation
of these voices, a mapping from voice name to voice
name. This permutation is now expanded to a map-
ping which is the identity on all other voices and then
applied to the old CVO. (This is the only place where
the function parameters v0 and r0 are needed.)

The effects of both strategies are illustrated in Fig-
ure 7: The last chord has different voice assignments
depending on the CVO calculated after processing the
next-to-last score position. These are again two fun-
damentally different semantics which must be de-
clared or found out when talking about a given text. 15

4.7 Parsing both stem directions

Here the parameter H is set to iseqV × N0. The
CVO is the sequence of voice names, first the up-
stemmed, then the down-stemmed, and the additional
value (called u in the following) is the index after
which the latter start (=the count of up-stemmed voices).

15 Of course, suonaeProximae is only sensible in combina-
tion with perAltitudinemCaputis. In perCaudaeSequentiam the
height of notes does not influence the CVO anyhow. See Sec-
tion 5 for a survey on the sensible combinations of strategies.

9

module perLineas.extrahere.duplex. suonaeProximae solumExplicitum . X Y

import Lmn.nota.perLineas.extrahere[iseqV × N0]

K = π1(p(1)) v = π2(p(1)) k�∈{↑,⊥,↓} = {k ∈ K | π4(k) = �}

initH(p, v) =

if #v 6= #K then error(“Error in initial voice declaration”)

else if #k⊥ = 0 then (v,#k↑)

else error(“Nominally up-stemmed voices not visible.”)

k�∈{↑,⊥,↓} = {k ∈ kF | π4(k) = �} k̂ = anyPerm(k↑) a sortH
X Y

(k⊥) a anyPerm(k↓)

kU = sortH
X Y

(k̂(|{1..u}|)) kD = sortH
X Y

(kF \ ran(kU))

phase2(m, v, kF, d, v0, r0, r, h)

=

{
if d = 〈〉 then assignF(m, squash(h . v), kU a kD, r, (h, u), v0, r0)

else assignD(m, ranh \ v0, {}, v0 \ v, v, kU a kD, d, r, h, h(|{0..u}|), r0)

v↑ = {x ∈ v0 | π4(last(r(x))) =↑} v↓ = {x ∈ v0 | π4(last(r(x))) =↓}
vU = h(|{0..u}|) vD = (ranh) \ vU v′U = (vU ∪ v↑) \ v↓ v′D = (vD ∪ v↓) \ v↑ u′ = #v′U

finalize(m, r, (h, u), v0, r0) = (r, (lastOrd(r, v′U) a lastOrd(r, v′D)

rotate(h, v0,#(vU ∩ v0), u, u′) # (IDN1
⊕ ((lastOrd(r0, v0)−1 # lastOrd(r, v0)))) , u′))

rotate : iseqV × PV × N1 × N1 × N1 → iseqV
// CVO, active voices, number of active & orig. up-stem voices, old/new number of up-stem voices
vP = (squash(h . v))(w + u′ − u) p = h−1(vP) // max index to rotate

s = if u′ > u then {(u+ 1)..p} / h else {p..u} / h

s′ =

if u = u′ then IDV

else if u′ > u then squash(s)−1 # (squash(s . v) a squash(s .−v))

else squash(s)−1 # (squash(s .−v) a squash(s . v))

rotate(h, v, w, u, u′) = h # (IDV ⊕ s′)

v aboveVKr,U k⇐⇒ (v ∈ U ∧ π3(k) =↓) ∨ ((v ∈ U ∨ π3(k) 6=↑)∧(π2(last(r(v))) > π2(k)))
v equalVKr,U k⇐⇒ (π4(k) = ⊥ ∨ (v ∈ U ⇐⇒ π4(k) =↑)) ∧(π2(last(r(v))) = π2(k))

Table 5. Parsing more than two voices with changing stem direction

Each voice is always treated either as “nominally up-
stemmed” or “nominally down-stemmed”, even if the
current note head (or pause symbol) does not carry a
visible stem. The membership in these two groups is
only altered if this is unavoidable, i.e. unambiguously
indicated by the graphical input.

The algorithm in the modules perLineas.extrahere.du-
plex. suonaeProximae/solumExplicitum in Table 5 is
basically the same as in perLineas.extrahere.suonaePro-
ximae/solumExplicitum in Table 4. Main difference is
that the criterion whether a note head is higher than
a particular voice or higher than another note head
is additionally affected by the stem direction: All up-
stem voices and up-stem heads are infinitely higher
than all down-stem voices and down-stem heads. This
rule comes into play when sorting note heads, compar-
ing note heads with voices (see the new definition of
aboveVK ,) and calculating the new CVO. For exam-
ple, the physical variant suonaeProximae (see the left
part of the last box in Table 5) extracts the physi-
cal order of all up-stem voices and appends that of

the down-stemmed, so that physical crossings between
both groups do not affect the CVO.

4.8 Voices changing the stem direction

The algorithm assigns the note heads to the active
voices in the above-mentioned order: all up-stemmed
precede all down-stemmed. But the numbers need not
match: There can be more or less nominally up-stem
voices in the currently active voices than there are up-
stem note heads. The algorithm applies the minimal
necessary change of direction assignments on the fly.

Only in case solumExplicitum special means must
be taken by prepending the permutation delivered by
rotate(..), see Figure 8: The y-axis means increasing
pitch, with up-stem notes infinitely higher than down-
stems; all horizontal lines are overlapping voices; the
four eighth notes at score position T1 (1 up and 3
down) shall proceed to the four eighth notes at T2 (3
up and 1 down). There are explicit voice leading lines
for v1 and v8 (see the solid lines), the proceedings of
v4 and v6 follow from the algorithm (see the dotted

10

T1 T2(X)

v1

v2

v3

v4

v5

v6

v7

v8

u

u′

(ˇ (ˇ (ˇ

-
ˇ

-
ˇ (ˇ

-
ˇ

-
ˇ (ˇ

-
ˇ

-
ˇ

-
ˇ

s

Figure 8. Preparatory rotation of voice names to
enable the necessary change of stem directions

suonaeProximae solumExplicitum

pe
rA

lt
it

u
d
in

em
C

a
p
u

ti
s(

/
..

.)

pe
rC

a
u

d
a
eS

eq
u

en
ti

a
m

ca
u

d
a
eC

o
m

m
u

n
es

(/
D

iv
/
..

.)

caputCommunis(/. . .)

Figure 9. Possible combinations of semantical strate-
gies (solid boxes) vs. graphical representations =
stylistic variants (dashed boxes)

lines). The algorithm perLineas.extrahere.solumExpli-
citum simply applied the resulting permutation of the
voice names to the CVO. But here the value u (=
the number of up-stemmed voices) changes, and the
lowest up-stemmed voice (v1 after the permutation)
must precede the highest down-stemmed voice (v3) in
the CVO. Therefore the graphically indicated permu-
tation rotate(..) (as defined in Table 5) of all voices
in s = {v3, v4, v5, v6} is prepended. This leads to
the intermediate situation (X). Now u can be replaced
by u′, changing the number of nominally up-stemmed
voices, and the permutation of voice names can be
applied as in the simple case.

5. GRAPHICAL APPEARANCE OF
MULTI-VOICE STAVES. POSSIBLE
COMBINATIONS OF STRATEGIES

The strategy perLineas.caudaeCommunes allows the
note heads of different voices with the same score posi-
tion, the same stem direction and the same head form
to share the graphical representation of the stem. Fre-
quently found is also the more lenient variant perLin-
eas.caudaeCommunes.div allowing stem sharing for note
heads of different forms (i.e. quarters and halfs), and
the more restricted perLineas.caudaeCommunes.idem-
Puncta requiring the same head form and the same
number of prolongation dots [16, pg.55]. While the
parsing method perAltitudinemCaputis is used, these
transformations are purely graphical and can be intro-
duced or removed without changing the information
contents. This is not longer true with perAltitudinem-
CaputisVelSequentiam and perCaudaeSequentiam. A
further wide-spread restriction is perLineas.caudaeCom-
munes.trabsCompleta: If the stems are connected to
a beam, than either all or none of the notes of the two
voices under this beam share their stems.

Vice versa, perLineas.caputCommunis allows two voi-
ces with stems in different directions to share a note
head, if score position, vertical position, duration (in-
cluding prolongation dots) and accidentals are the same.

More lenient is [nota.vox.perLineam.caputCommunis
.punctaMixta, which allows different numbers of pro-
longation dots. This can be found in practice (Beetho-
ven, piano sonata op14/1, 1.mvmt., m.7pp,[17]) but is
not always accepted in text books ([16, pg.55, point(7)]).

Figure 9 shows the possible combinations of these
graphical strategies with the different semantical strate-
gies defined in this paper.

6. REFERENCES

[1] M. Lepper, M. Oehler, H. Kinzler, and
B. Trancón, “Diminuendo al bottom —- clar-
ifying the semantics of music notation by
re-modeling,” plosOne, 2019. [Online]. Available:
https://doi.org/10.1371/journal.pone.0224688

[2] M. A. Cara, “Anticipation awareness and visual
monitoring in reading contemporary music,” Mu-
sicae Scientiae, vol. 22, no. 3, pp. 322–343, 2018.

[3] R. Kopiez, C. Weihs, U. Ligges, and J. I. Lee,
“Classification of high and low achievers in a music
sight-reading task,” Psychology of Music, vol. 34,
no. 1, pp. 5–26, 2006.

[4] D. Schön, J. L. Anton, M. Roth, and M. Besson,
“An fMRI study of music sight-reading,” Neurore-
port, vol. 13, no. 17, pp. 2285–2289, 2002.

[5] A. Stenberg and I. Cross, “White spaces, music
notation and the facilitation of sight-reading,” Sci-
entific reports, vol. 9, no. 1, p. 5299, 2019.

11

https://doi.org/10.1371/journal.pone.0224688

[6] M. Puurtinen, “Eye on music reading: A method-
ological review of studies from 1994 to 2017,” Jour-
nal of Eye Movement Research, vol. 11, no. 2, pp.
1–16, 2018.

[7] J. Kilian and H. H. Hoos, “Voice separation - A
local optimization approach,” in ISMIR 2002, 3rd
International Conference on Music Information
Retrieval, Paris, France, October 13-17, 2002,
Proceedings, 2002. [Online]. Available: http:
//ismir2002.ismir.net/proceedings/02-FP01-6.pdf

[8] N. Guiomard-Kagan, M. Giraud, R. Groult,
and F. Levé, “Comparing voice and stream
segmentation algorithms,” in Proceedings of the
16th International Society for Music Information
Retrieval Conference, ISMIR 2015, Málaga, Spain,
October 26-30, 2015, M. Müller and F. Wiering,
Eds., 2015, pp. 493–499. [Online]. Available:
http://ismir2015.uma.es/articles/180 Paper.pdf

[9] E. Chew and X. Wu, “Separating voices in
polyphonic music: A contig mapping approach,”
in Computer Music Modeling and Retrieval:
Second International Symposium, CMMR 2004,
Esbjerg, Denmark, May 26-29, 2004, Revised
Papers, ser. Lecture Notes in Computer Science,
U. K. Wiil, Ed., vol. 3310. Springer, 2004,
pp. 1–20. [Online]. Available: https://doi.org/10.
1007/978-3-540-31807-1 1

[10] S. T. Madsen and G. Widmer, “Separating voices
in MIDI,” in ISMIR 2006, 7th International Con-
ference on Music Information Retrieval, Victoria,
Canada, 8-12 October 2006, Proceedings, 2006, pp.
57–60.

[11] H. von Werden, Musica Enchiriadis. Bam-
berg: Staatsbibliothek, 1000, vol. Var. 1,
https://zendsbb.digitale-sammlungen.de/db/
0000/sbb00000078/images/index.html?id=
00000078&seite=115&bibl=sbb.

[12] W. Tappolet, La notation musicale et son influence
sur la pratique de la musique du moyen age a nos
jours. Neuchâtel: Ed. de la Baconnière, 1947.

[13] J. M. Spivey, The Z Notation: A reference man-
ual, ser. International Series in Computer Science.
Prentice Hall, 1988.

[14] J. S. Bach, Die Kunst der Fuge BWV 1080.
Wiesbaden: Breitkopf und Härtel, 1924, edt. W.
Graeser.

[15] ——, Das Wohltemperierte Klavier I BWV 846-
869. Wien: Wiener Urtext Edition, 1977, edt.
Walter Denhard.

[16] K. Hader, Aus der Werkstatt eines Notenstechers.
Wien: Waldheim-Eberle, 1948.

[17] L. van Beethoven, Klaviersonanten I. München:
Henle Verlag, 1952, edt. B.A. Wallner.

A. MATHEMATICAL NOTATION

The employed mathematical notation is fairly standard,
inspired by the Z notation [13]. For leaner notation, we
add some overloading. Important constructs are:
P A Power set, the type of all subsets of the

set A, incl. infinites.
a \ b The set containing all elements of a

which are not in b.
A×B The product type of two sets A and B,

i.e. all pairs {c = (a, b)|a ∈ A ∧ b ∈ B}.
πn The nth component of a tuple.
A→ B The type of the total functions from A

to B.
A9 B The type of the partial functions from A

to B.
A↔ B The type of the relations between A and

B.
a 7→ b An element of a relation; simply another

way to write (a, b)
dom a, ran a Domain and range of a function or rela-

tion.
S / R = R∩ (S× ran R), i.e. domain restriction

of a relation.
R . S = R ∩ (domR × S), i.e. range restriction

of a relation.
R .−S = R \ (domR × S), i.e. negative range

restriction of a relation.
f (| s |) The image of set s under function or re-

lation f
r−1 The inverse of a relation
IDA = {a ∈ A • (a 7→ a)}, the identity rela-

tion.
r # s The composition of two relations: the

smallest relation s.t. a r b ∧ b s c ⇒
a (r # s) c. (first apply r, then apply s)

r ⊕ s Overriding of function or relation r by s.
Pairs from r are shadowed by pairs from
s:
r ⊕ s =

(
r \ (doms× ranr)

)
∪ s

seq A The type of finite sequences from ele-
ments of A i.e. maps N1 9 A with a
contiguous range {1..n} as its domain.

iseq A The type of injective finite sequences
from elements of A

squash(a) Turns any partial function N1 9 A into
a seq A by compactifying the indices.

last(a) The last element in a sequence
〈〉 The empty sequence.
α a β Concatenation of two lists.
#a The magnitude of a set (=number of con-

tained elements).
Functions are considered as special relations, i.e. sets of

pairs, like in “f ∪ g”.

12

http://ismir2002.ismir.net/proceedings/02-FP01-6.pdf
http://ismir2002.ismir.net/proceedings/02-FP01-6.pdf
http://ismir2015.uma.es/articles/180_Paper.pdf
https://doi.org/10.1007/978-3-540-31807-1_1
https://doi.org/10.1007/978-3-540-31807-1_1
https://zendsbb.digitale-sammlungen.de/db/0000/sbb00000078/images/index.html?id=00000078&seite=115&bibl=sbb
https://zendsbb.digitale-sammlungen.de/db/0000/sbb00000078/images/index.html?id=00000078&seite=115&bibl=sbb
https://zendsbb.digitale-sammlungen.de/db/0000/sbb00000078/images/index.html?id=00000078&seite=115&bibl=sbb

