
INTERACTIVE TIMESHAPING OF MUSICAL SCORES
WITH BACH AND CAGE

Daniele Ghisi
University of California, Berkeley

CNMAT
danieleghisi@berkeley.edu

Andrea Agostini
Conservatorio di Torino

andreaagostini@conservatoriotorino.eu

Eric Maestri
Conservatorio di Genova

eric.maestri@conspaganini.it

ABSTRACT

In this article we aim to organize the collection of prac-
tices that amount to modifying the temporality of a musical
score in order to create a new one, by representing them
as a combination of three basic families of operations: di-
lations, distorsions and repetitions. The initial score can
be borrowed or designed on purpose, and can be of any
complexity (an entire score, a single note, or anything in
between). We call the complex of these practices ‘time-
shaping’. We describe the analytical space derived from the
proposed organization and show how many of its processes
can be implemented in an interactive computer-aided com-
position environment using the bach and cage libraries for
Max.

1. INTRODUCTION

In this paper we focus on a set of practices that we call
‘timeshaping’. These practices are defined by the transfor-
mation of a pre-existing musical representation—such as a
score—through the reorganization in time of its elements.

More specifically, timeshaping can be thought of as a
‘symbolic processing technique’ and, as such, it can be ap-
plied to both specifically conceived musical materials and
pre-existing ones. In a way, similarly to the signal process-
ing techniques, these two possibilities mirror the way an
audio effect, such as a filter, can be employed both as a part
of a synthesizer, thus being instrumental to the production
from scratch of a new sound object, and as a step of the
processing chain applied to a prerecorded sound sample. If
pushed to the extreme, these processing techniques, in both
the audio and the symbolic domains, can become essential
tools for working within the broad conceptual area of musi-
cal borrowing [1, 2], which defines an operative approach
laying between the traditional compositional strategies of
reinterpretation of pre-existing material and the manipu-
lation of a corpus of data that can be performed in real
time. One may refer to these two compositional attitudes,
which define two conceptual poles with a vast area of over-
lapping between them rather than a clear, black-and-white
opposition, respectively ‘tabula rasa’ and ‘tabula plena’
approaches [3].

Copyright: c©2020 Daniele Ghisi et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

Timeshaping, potentially as an instance of an ampler, yet-
to-be-defined family of symbolic processing techniques,
shares some other traits with sound processing techniques:
for example, it can be both fluid and written; it can con-
ceptually be performed in both real and deferred time; its
parameters can be defined both through experimentation
and formalisation; and it is an abstract operation (or, rather,
a family thereof) which is cognitively significant, and sub-
stantially independent from the details of its practical im-
plementation. Each of the techniques described in the fol-
lowing sections can indeed be expressed through a variety
of tools, insofar as these tools provide ways of representing
and manipulating symbolic musical events: these include
all the major software systems for computer-aided and al-
gorithmic composition, such as OpenMusic 1 [5], PWGL
[6] and Abjad [7]. However, we shall discuss one specific
implementation of timeshaping practices, the only compre-
hensive one we are aware of, that is, a subset of the cage
package for Max [8], developed by two of the authors as a
complement and an expansion of the bach package.

1.1 bach and cage

bach [9] is a set of modules for Max (both external objects
written in C/C++ and abstractions developed in Max itself)
establishing a few new data types aimed at representing
symbolic musical data, a large set of tools for operating
upon those data types, and some objects for displaying, edit-
ing graphically and playing back the musical scores they
represent. cage [10], on the other hand, is a Max package
built upon bach and taking advantage of its features. It
implements a set of musically meaningful operations rang-
ing from middle-level utilities (such as the parsing of SDIF
files) to high-level musical processes (such as generation of
scales and arpeggios, or symbolic ring modulation).

One of the main, overarching principles of the bach ecosys-
tem is real-time reactiveness: generally speaking, bach com-
plies with the real-time data-flow computational paradigm
of Max, which, although quite complex from a theoretical
point of view, fosters a novel kind of relation with computer-
aided composition, one in which the computer becomes a
real musical instrument [11, 12].

1 Our approach is fundamentally different from the one proposed in
[4], where the author, under the term ‘timesculpt’, describes a series of
analytical and combinatorial techniques applied to rhythms. In particular,
our approach does not separate the rhythmic component from the other
musical parameters, but rather treats each score as a whole.

141

mailto:danieleghisi@berkeley.edu
mailto:andreaagostini@conservatoriotorino.eu
mailto:eric.maestri@conspaganini.it
http://creativecommons.org/licenses/by/3.0/


Figure 1. A simple example for each of the main timeshaping modifications. From top to bottom: augmentation from a
section of Josquin’s Missa L’homme armé (Agnus Dei); temporal distorsion of the beginning of Bach’s Cantata BWV 249a;
repetition of a figure in Beethoven’s 6th Symphony (1st movement, measure 17, first violins).

1.2 Relationship with compositional time

As Kramer suggests, time has a dual nature [13, p. 18]. On
the one hand, it is linear, when it concerns becoming; on the
other hand, it is non-linear, since it is thought in its spatial
dimension. Linear time defines the flow that goes from the
past to the future passing through the present; nonlinear
time is visualised, represented by musical notation. Com-
posers usually deal with both types of time: non-linear time
(the composed one) is a model for linear time (the perceived
one).

Libraries such as bach and cage allow a specific type of
interaction between these compositional times. The com-
puter becomes a real musical instrument for sketching and
experimenting with direct feedback in the hands of the com-
poser. As a consequence, the musical representation status
changes and can be considered as a performed musical ob-
ject. Conceiving notation as a ‘temporal instrument’ [14],
bach and cage allow to reduce the distance between linear
and non-linear time, thanks to ‘symbolic-sonorous objects’
that can potentially be manipulated performatively. These li-
braries offer an interactive ‘graphematic space’ [15, p. 215]
which is, at the same time, a representational space.

2. TIMESHAPING

We call ‘timeshaping’ a collection of compositional prac-
tices that modify the temporal shape of a musical score
(borrowed or designed on purpose), or a part of it—an en-
tire score, a single note, or anything in between—in order to
create a new one. These timeshaping practices are common
when applied to audio buffers, but less so when applied to
symbolic musical representations. We can distinguish at
least three orthogonal axes, representing different kinds of
modifications (Fig. 1):

1. Dilation: uniformly stretch or shrink the content of
the source score by a given factor. Sometimes the

factor is inferred in order to match a given target du-
ration. A classical example of usage of pure dilations
are augmentation or diminution canons. If the fac-
tor is negative, the dilation is also combined with a
retrogradation (reversal).

2. Temporal distortion: warp the content of the source
score internally, without changing its overall duration.
The operation is non-linear and may happen in a vari-
ety of different ways. It is accomplished by reading
the source score at a variable rate, under the condi-
tion that the overall elapsed time stays unchanged.
Rhythmic interpolations between different musical
figures often fall in this category. As a side note, we
can consider rhythmic quantization as a very specific
type of distortion, approximating a proportionally
notated score with a traditionally notated one.

3. Repetition: replicate the content of the source score
at regular intervals in time.

One may attempt to use the space determined by the three
orthogonal axis as a map on which to organize a number
of timeshaping processes: such an attempt yields, in our
view, Fig. 2. Such a diagram does not aim to any math-
ematical consistency, rather it is meant to be an informal
analytical tool. For one thing, the dilation axis represents
both the amount of ‘stretching’ and the amount of ’shrink-
ing’. Secondly, temporal distortions can of course be so
complex that representing them on a single axis makes for
a drastic approximation; it should also be remarked that the
constraint by which a distortion may not cause a modifica-
tion of the overall duration of the original score can be seen
as an arbitrary one, but it is useful to clearly distinguish it
from dilation; indeed, most typical agogical processes, such
as accelerandos and rallentandos, involve both categories.
Finally, when repetitions are mixed with other modifica-
tions, there may be ambiguity on whether the modification
is to be applied to all instances equally or can be applied

142



with different parameters to different instances—we shall
abide by the latter interpretation.

It should be clear to this point that the axes of this space
do not constitute a representation of the actual parameters
of one specific process, but they will hopefully provide
a conceptual framework for discussing such processes in
terms of few elementary operations.

Figure 2. A diagram showing some timeshaping practices
organized by amount of dilation, repetition and distortion.

3. TIMESHAPING PRACTICES IN CAGE

A portion of the cage library has been designed to allow
users to manipulate the temporality of scores. We will
describe their general underlying ideas and how they relate
to the representation proposed in the previous section; their
scope of application with respect to the three main axes is
represented in Fig. 6. For all that follows, let tL be the time
of the source score (sometimes called ‘logical time’), and
let tE be the elapsed time in the output score.

3.1 Dilation

The simplest module allowing the modification of the tem-
porality of a source score is cage.timestretch: it stretches
the incoming score either by a fixed factor or in order to
match a given target duration (Fig. 3), i.e., tE = k · tL.
The module works both on proportionally notated scores,
as represented by the object bach.roll, and on traditionally
notated ones, as represented by bach.score. In the latter
case, the dilation factor has to be a rational number 2 , and
the user has the ability to choose how meters in the output
score should be handled.

3.2 Temporal warping

The cage.timewarp module performs more refined local
modifications of the temporality of a source score; in its
general form, it is able to reassign notes and markers to

2 Rational numbers are not implemented in Max per se, but they are
one of the data types added by the bach package.

Figure 3. A simple example of dilation of a musical score
obtained via cage.timestretch.

some other position in time, usually defined through the
usage of a ‘transfer function’ f , in a lambda loop configura-
tion [16]. 3 In short, the object module from its rightmost
‘lambda’ outlet the original position in time tL of every item
(such as a note or a marker) and expects to receive in its
rightmost ‘lambda’ inlet either its desired resulting tempo-
ral position or the rate of the remapping. More specifically,
the module operates in two in two different ways according
to the value of the ‘order’ attribute:

• With ‘order 0’, it performs a time-to-time mapping:
for each original temporal position, given in millisec-
onds, the transfer function returns a new temporal
position at which the corresponding musical items
must be remapped, as in tE = f(tL). For instance,
if the function f is such that f(1000) = 2000, then
a chord with onset at 1 second will have its onset at
2 seconds in the resulting score. If f(tL) = ktL is a
linear function of slope k, then the module coincides
with cage.timestretch.

• With ‘order 1’, it maps every source time (on the x
axis) to the rate of the remapping, i.e., to the deriva-
tive r(tL) = dtL/dtE . For instance a function f ≡ 1
will simply yield the same source score; a function
f ≡ k will result in a timestretch of a factor 1/k; lin-
ear functions yield uniform accelerandi/rallentandi,
and so on.

It is interesting to remark that cage.timewarp with ‘order
0’ provides a quite direct implementation of the dilation
and distortion axes of the timeshaping conceptual space de-
scribed above, in that distortions correspond to non-linear
functions of time against time, whereas dilations generally
correspond to linear functions. Assuming f(0) = 0, no

3 A lambda loop is an idiomatic patching configuration typical of several
bach and cage objects and abstractions: one or more dedicated outlets of a
module output data iteratively to a section of the patch that must calculate a
result (such as a modification of the original data or a boolean return value)
and return it to a dedicated inlet of the starting object [16]. Lambda loops
are an attempt at providing a way to implement custom specialization
of generic processes, in a similar way to what happens with anonymous
function in several programming languages, in the strictly non-functional
paradigm of Max. For example, sorting a list of MIDI pitch numbers by
pitch class can be achieved through the bach.sort object with a lambda
loop containing a modulo 12 operation.

143



Figure 4. An example of temporal distortion of a descend-
ing chromatic scale obtained via cage.timewarp. Notice
how the order of notes can also become shuffled.

dilation takes place if and only if f(DL) = DL with DL

being the duration of the source score (if the object is set
to normalized mode, this means that f(1) = 1, thus includ-
ing for instance all the functions f(x) = xα). The linear
function f(x) = x means that no temporal modification
has been performed, and corresponds to the origin of the
timeshaping space.

The module can be also used in a ‘normalized’ mode, so
that the source time tL is received in the normalized range
[0., 1.], 0 corresponding to the beginning of the score and 1
to its end. This normalized usage makes it easy to perform
pure temporal distortion, without modification of the overall
score duration (see Fig. 4).

In a typical usage scenario, the lambda loop of cage.timewarp
contains a graphical breakpoint function, rather than an al-
gebraically defined one. Especially in this case, the ‘order 1’
case can be seen as more intuitively musical, as higher val-
ues on the y axis correspond to faster tempi, rather than the
somehow more abstract notion of more advanced positions
in the score.

With this in mind, this module can be seen as a flexible
tool for representing various shapes of accelerando or ral-
lentando, the latter of which can be pushed to the extreme
case of producing a ‘negative’ tempi, that is, retrograde
readings of portions of a score. Consistently with the over-
all design of bach and cage, which both put a strong focus
on the reactivity of operations, an interesting aspect of
cage.timewarp lies in that it allows to perform a real-time
experimentation with the temporality of the original score,
one in which the composer can interactively modify the
transfer function, either graphically or through some param-
eter, and immediately receive from the machine a feedback
showing the result. It is our position that this kind of inter-
activity represents in itself a novel paradigm in the field of
computer-aided composition.

3.3 Varied repetition

The cage.repeat module produces identical repetitions of a
source score (either in proportional or in standard notation).
The cage.looper module goes further, providing the pos-
sibility to only loop a portion of score (and not the entire
one), and to allow for each iteration to be individually mod-
ified, according to a lambda loop mechanism: each loop
iteration (in bach.roll format) as well as its duration are out-
put through the lambda outlets of the module: the user can
provide a custom mechanism to alter the loop, re-injecting
the next iteration (in bach.roll format), along with its possi-
bly modified duration, in the module’s lambda inlets. Due
to the fact that such modifications are designed to operate
continuously on the musical parameters, cage.looper only
works with proportionally notated scores (bach.rolls). It
should be remarked that, albeit originally based upon a time-
shaping paradigm, the operation of cage.looper transcends
the scope of this article, as it allows not only to modify the
timing of the original score, but also its pitch content and,
more generally, all its parameters in an iterative way.

3.4 Accelerandi and rallentandi

The cage.agogics abstraction allows to express rallentandi
and accelerandi through a set of high-level musical parame-
ters. The module combines the repetition functionalities of
cage.repeat with the time distorsion and dilation approach
provided by cage.timewarp, and indeed is based internally
upon those modules.

The idea behind cage.agogics is to only expose control of
three musically important parameters:

• N , i.e., number of repetitions of the source figure;

• DE , i.e., the total duration of the accelerando/rallentando
(i.e. the duration of the output score);

• rend, i.e., the ending rate, determining how faster/slower
the last repetition is, compared to the original (the
output figure always starts with the same rate as the
source score, i.e. rstart = 1).

The cage.agogics module assumes constant acceleration,
which makes the three parameters not independent. In
particular, let DL be the total duration of the source score
and let r(tL) = dtL/dtE be the remapping rate (and rend =

r(NDL)), then the acceleration a =
rend − 1

NDL
is assumed

to be constant. Hence a =
r(tL)− 1

tL
and by integration

tE =
log(a · tL + 1)

a

and substituting tL = NDL (as tE = DE) as well as
the equation for a, one obtains the fundamental relation
between the three musical parameters of cage.agogics:

(rend − 1)DE = NDL log(rend)

Only two of the three parameters are hence needed as
input from the user—the third one is inferred.

144



Figure 5. Three examples of usage of cage.agogics: the
three arguments of the module are, respectively, the number
of repetitions N , the total duration DE and the ending rate
rend. The original cell is the uppermost score; then, from
top to bottom: 1 repetition of the original cell ending 4
times slower; 5 repetitions of the cell lasting 5 seconds in
total; a certain number of repetitions of the cell lasting 5
seconds and ending at about twice the original speed.

• If N and DE are given, then

rend = −NDL

DE
W

(
− DE

NDL
e
− DE

NDL

)
,

whereW is the Lambert function (product logarithm);

• If N and rend are given, then

DE = NDL
log(rend)

rend − 1
;

• If DE and rend are given considered that N has to be
integer, we take

N = round
[
(rend − 1)DE

DL log(rend)

]
,

and then proceed to recalculate rend starting fromDE

and the newly found N .

It could be worth remarking that the score subject to rep-
etition does not necessarily have to be the actual material
intended as the final musical result of the process. The repe-
tition paradigm is a simple one to manage, hence its choice,
but the process can be as well applied to an elementary cell,
such as a single note, whose role is that of constituting a

Figure 6. The organization of timeshaping modules of cage
inside the space of Fig. 2.

rhythmic grid which will serve as a lattice for a further com-
positional process. This of course is true for all the other
operations described in this article, but seems particularly
relevant with respect to this specific process, whose very
formulation might otherwise appear arbitrarily restrictive.

3.5 Rhythmic interpolation

Rhythmic interpolation is achieved, in cage, by using the
cage.rhythminterp abstraction. Differently from the previ-
ously described modules, this abstraction does not operate
directly on scores, but rather only takes the rhythmical pa-
rameters into account (onsets and durations). This may
however be interpreted as a way to achieve a certain kind of
temporal distortion. The general idea is that, given a num-
ber n of rhythm-only scores, each containing m notes, it is
possible to create a new one whose features lie somehow
“in between” the original ones. Let us assume that oij and dij
are respectively the onset and the duration of the j-th note
of the i-th score (i = 1, . . . , n, j = 1, . . . ,m); then we can
build an interpolated score in a straightforward manner, hav-
ing onsets oj =

∑
i wio

i
j and durations dj =

∑
i wid

i
j , for

j = 1, . . . ,m. The weights wi determine the importance of
each score in the interpolation and are normalized such that∑
i wi = 1.

The case where the original scores do not contain the same
number of notes is more complex. The way we chose for
tackling it actually treats all the scores as if they contained
the same amount of notes, with some notes being duplicated
so as to provide a fixed number of interpolation paths. For
example, let us suppose that the first score contains three
notes A1, A2 and A3, and the second score contains two
notes, B1 and B2. The idea behind the interpolation model
adopted is that it is possible to build four lines upon which
the interpolation happens: A1 to B1, A3 to B2, A2 to B1

and A2 to B2 (see Fig. 7). In principle the interpolation
actually produces four notes, but when two (or more) of
them have both their starting and ending times within a
given threshold ε they are collapsed into a single one: in

145



Figure 7. Rhythmic interpolation of two scores A and B
containing a different number of notes (in 9 internal steps).

this way, at least the initial and final interpolation points
will coincide with the original rhythmic structures.

4. QUANTIZATION

As hinted at before, we can consider rhythmic quantization
as a very specific process of temporal distortion. Whether it
should be included in this discussion is debatable, as quan-
tization is generally considered a purely technical process,
rather than a compositional tool for the musical elaboration
of symbolic materials, since its aim is most often to convert
a non-measured score into a measured one, or to simplify
the rhythmic spelling of a pre-existing score. Nonetheless,
in the practice of composers such as Emmanuel Nunes,
quantization processes are arguably used with a somewhat
direct aesthetic goal [17]: we shall therefore briefly dis-
cuss some aspects of quantization here; a more complete
treatment will be perhaps the subject of a future article.

The term ‘quantization’ refers to the process of converting
a score from proportional notation, where onsets and dura-
tions are real numbers representing some absolute timing,
to standard notation, where onsets and durations are repre-
sented as rational subdivisions of a ‘whole’. Quantization
systems have a long history (see, in particular, [18, 19, 20]);
in bach, quantization is achieved via the bach.quantize
module, a rather complex one, with many different options
and working mechanisms meant to address various specific
cases which we shall not describe in detail here.

A simple quantization process could amount to ‘snap-
ping’ the starting and ending positions of each note in a
score to the nearest sixteenth subdivision. This operation
would preserve the overall duration of a score, and alter
its internal articulation through a consistent, deterministic
rounding function of time against time: in this sense, it
would precisely fit the definition of the distortion axis given
above. Moreover, this operation would closely relate to
a very idiomatic signal processing technique, bitcrushing,
which is actually a kind of distortion performed through

Figure 8. Temporal distortions given by quantizations of a
proportionally notated fragment with the same meter/tempo
and different ‘snapping grids’.

applying a rounding function of instantaneous amplitude
against instantaneous amplitude to an audio signal.

More complex kinds of quantization, also possible through
bach.quantize, typically choose different rounding func-
tions according to the specific contents and context of a
temporal window of the score, thus performing an adap-
tive approximation rather than a fixed one. In the case of
bach.quantize, the specific function adopted for each tem-
poral window is not defined analytically, but constructed by
a backtracking algorithm.

5. EXAMPLES

5.1 Risset rhythms

Following [21], we can implement in bach and cage a pro-
cess producing eternal accelerandi or rallentandi build upon
a given ‘tenor’; the patch is shown in Fig. 9 (the ‘tenor’ is
represented in the upper bach.roll, the resulting pattern is
obtained in the lower bach.roll). The main building blocks
are indeed cage.repeat and cage.timewarp, controlled via
a very precise warping function, along with a volume win-
dowing (via cage.volume) and a possible transposition of
the pitches—the transposition stage can be bypassed, decou-
pling the treatment of agogics from the pitch shifting. As-
suming that for a layer of index v ≥ 0 the source score has
been looped 2v times, the equation connecting the source
time and the elapsed time is

tE = DL

(
log2

(
tL
DL

+ 2v
)
− v

)
,

where DL is the duration of the source score. For more
information on how this formula is obtained and on the
mathematics involved, see [21]. 4 The patch heavily relies
on the programming capabilities provided by the bach.eval
module [22].

5.2 Vinyl-like speed up of scores

We can model the effect of a vinyl or tape recorder speeding
up or slowing down (i.e. combining time warping and pitch
shifting), and applying it to a proportionally notated score.

4 In our implementation, the T and τ variables mentioned in the paper
are set to have the same value T = τ = DL.

146



Figure 9. An example of patch producing Risset rhythms
starting from a musical cell, implemented following [21]
and used in Daniele Ghisi’s ‘Jean-Claude’ (from the Rock-
enhausen Almanach)

Suppose you need to speed up the beginning of a score,
until a certain note at onset tL = TS . We can model the
speeding up rate as r(tL) = (tL/TS)

α if tL < TS , with
α > 0 being a reshaping exponent. Hence, for tL < TS
one gets

tE =

∫ tL

0

1

r(u)
du = T

α

S

∫ tL

0

1

uα
du =

T
α

S

1− α
t1−αL

with 0 < α < 1 needed for the integral to converge. This
also yields a total speeding up time of TS/(1− α).

We remark that, conveniently, the slowing down portion
can be seen as the retrogradation of the speeding up of the
retrogradation.

Intuitively, this process yields a longer score than the
original — unless one crops out only the final portion of

Figure 10. A patch producing a sped up (in the beginning)
and slowed down (in the end) version of a source score (in
this case, the beginning of Ravel’s quartet). The shape of
the agogics can be controlled via an exponent; the length
of the original score can be preserved (via trimming). This
process is used in Daniele Ghisi’s music for ‘La Chute’.

the speeding up, and the initial portion of the slowing down
in order to retain the absolute duration of each portion.

The patch implementing the process, including the possi-
ble cropping, is shown in Fig. 10.

6. CONCLUSIONS AND FUTURE WORK

We have organized the collection of ‘timeshaping’ practices,
which amount to modifying the temporality of a score, into
three different axes (dilations, distorsions and repetitions),
and we have shown how some common musical practices
lie within this categorization. We maintain that interactive
computer-aided composition is an important, innovative
approach to bridging the dual nature of time (linear, when
it concerns becoming, and non-linear as source time). In
particular, we have described how the cage timeshaping
modules fit into the geometry of the aforementioned axes
and we have provided some examples of applications.

There are still many open areas of interest. From a music
theory perspective, the concept of interactive timeshaping
needs to be explored further: we have hinted at some of the

147



implications in section 1.2, which may be, in the future, the
starting point for a more detailed research on compositional
practices. From a mathematical perspective, one may at-
tempt to characterize the space defined in section 2 more
formally; as an example, we think it would be interesting
to investigate a general framework for temporal distorsions.
These models may then have implications on the develop-
ment of new computer aided-composition tools, such as a
module for temporal distorsions, controlled via high-level
musical parameters. This module might possibly stem from
an extension of cage.agogics to account for non-uniform
acceleration and variable starting rate. This would also
in part overlap with the possibility of adding an ‘order 2’
attribute to cage.timewarp, allowing users to define acceler-
ation in the lambda loop. Furthermore, quantization has a
series of problem of its own, ranging from the capability to
adapt the behavior to the musical processes, to the search
for semi-automatic, dynamical meter and tempo inference
tools.

7. REFERENCES

[1] J. P. Burkholder, “The uses of existing music:
Musical borrowing as a field,” Notes, vol. 50,
no. 3, pp. 851–870, 1994. [Online]. Available:
http://www.jstor.org/stable/898531

[2] J. Boyle and J. Jenkins, Theft! A History of Music.
Duke Center for the Study of the Public Domain, 2017.

[3] D. Ghisi, “Music Across Music: Towards a Corpus-
Based, Interactive Computer-Aided Composition,”
Ph.D. dissertation, Université Pierre et Marie Curie,
Université Paris-Sorbonne, Sorbonne Université, IR-
CAM (UMR STMS 9912), 2017.

[4] K. Haddad, “Timesculpt in openmusic,” in Agon, C., As-
sayag, G. et Bresson, J., éditeurs: The OM Composer’s
Book. Ircam/Delatour, 2006, vol. 1.

[5] C. Agon, “OpenMusic : Un langage visuel pour la
composition musicale assistée par ordinateur.” Ph.D.
dissertation, University of Paris 6, 1998.

[6] M. Laurson and M. Kuuskankare, “PWGL: A Novel
Visual Language based on Common Lisp, CLOS and
OpenGL,” in Proceedings of International Computer
Music Conference, Gothenburg, Sweden, 2002, pp. 142–
145.

[7] T. Baca, J. W. Oberholtzer, J. Trevino, and V. Adán,
“Abjad: An open-source software system for formalized
score control,” in Proceedings of The First International
Conference on Technologies for Music Notation and
Representation, 2015.

[8] M. Puckette, “Max at seventeen,” Computer Music Jour-
nal, vol. 26, no. 4, pp. 31–43, 2002.

[9] A. Agostini and D. Ghisi, “Real-time computer-aided
composition with bach,” Contemporary Music Review,
no. 32 (1), pp. 41–48, 2013.

[10] A. Agostini, E. Daubresse, and D. Ghisi, “cage: a High-
Level Library for Real-Time Computer-Aided Compo-
sition,” in Proceedings of the International Computer
Music Conference, Athens, Greece, 2014.

[11] P. Desain et al., “Putting Max in Perspective,” Computer
Music Journal, vol. 17, no. 2, pp. 3–11, 1992.

[12] A. Agostini, D. Ghisi, and J.-L. Giavitto, “Program-
ming in style with bach,” in Computer Music Multidis-
ciplinary Research, 2019.

[13] J. D. Kramer, The Time of Music: New Meanings, New
Temporalities, New Listening Strategies. G. Schirmer,
1988.

[14] E. Maestri, “Notation as temporal instrument,” in Pro-
ceedings of the International Conference on Tech-
nologies for Music Notation and Representation –
TENOR’16, R. Hoadley, C. Nash, and D. Fober, Eds.
Cambridge, UK: Anglia Ruskin University, 2016, pp.
226–229.

[15] H.-J. Rheinberger, “Transpositions: From Traces
through Data to Models and Simulations,” in Trans-
positions: Aesthetico-Epistemic Operators in Artistic
Research, M. Schwab, Ed. Leuven University Press,
2018.

[16] A. Agostini and D. Ghisi, “A Max Library for
Musical Notation and Computer-Aided Composition,”
Computer Music Journal, vol. 39, no. 2, pp. 11–
27, 2015/10/03 2015. [Online]. Available: http:
//dx.doi.org/10.1162/COMJ a 00296

[17] K. Haddad, “Fragments de recherche et
d’expérimentation : Eléments de réflexions
autour de l’écriture rythmique d’emmanuel
nunes,” https://medias.ircam.fr/x8f9800
karim-haddad-fragments-de-recherche-et-d, ac-
cessed: 2020-03-26.

[18] C. Agon, G. Assayag, J. Fineberg, and C. Rueda, “Kant:
a critique of pure quantification.” in ICMC, 1994.

[19] K. Sprotte, M. Laurson, and M. Kuuskankare, “Ksquant-
complex score manipulation in pwgl through quantiza-
tion,” in International Symposium on Computer Music
Modeling and Retrieval. Springer, 2008, pp. 253–261.

[20] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A supervised approach for rhythm transcription based
on tree series enumeration,” in Proceedings of the
TENOR Conference, Cambridge, UK, 2016.

[21] D. Stowell, “Scheduling and composing with risset eter-
nal accelerando rhythms,” in Proceedings of the Inter-
national Computer Music Conference, 2011.

[22] A. Agostini and J. Giavitto, “bell, a textual language for
the bach library,” in Proceedings of the International
Computer Music Conference (to appear), New York,
USA, 2019.

148

http://www.jstor.org/stable/898531
http://dx.doi.org/10.1162/COMJ_a_00296
http://dx.doi.org/10.1162/COMJ_a_00296
https://medias.ircam.fr/x8f9800_karim-haddad-fragments-de-recherche-et-d
https://medias.ircam.fr/x8f9800_karim-haddad-fragments-de-recherche-et-d



