USING MUSIC FEATURES FOR MANAGING REVISIONS AND VARIANTS
IN MUSIC NOTATION SOFTWARE

Paul Griinbacher
Johannes Kepler University Linz
Software Systems Engineering
Linz, Austria
paul.gruenbacher@jku.at

ABSTRACT

Music engravers need to manage both revisions and vari-
ants of digital music artifacts created with music notation
software. However, existing version control systems such
as Git fail to manage fine-grained revisions and variants in
a uniform manner. This paper presents an approach that
uses music features and applies a variation control system
in the domain of music notation. In particular, we extended
the variation control system ECCO to support the evolution
of digital music artifacts encoded in LilyPond. We illus-
trate music features using a running example. We present
basic feature-oriented workflows and discuss the architec-
ture and implementation of our LilyECCO tool. We further
present a preliminary evaluation based on an existing Lily-
Pond music artifact.

1. INTRODUCTION

Music notation tools encode music as digital artifacts using
languages such as MEI, MusicXML, LilyPond, or Hum-
drum to name but a few [1]. As with any digital artifact,
music notation tools face significant challenges of manag-
ing changes. In particular, the continuous evolution leads
to many versions of music artifacts. Two kinds of versions
can be distinguished [2]: revisions are the result of evo-
lution in time, e.g., adding some dynamics to a note, cor-
recting a slur, or fixing the pitch of a note. Revisions thus
denote sequential versions representing a snapshot of the
evolution of a music artifact. Variants on the other hand
stem from evolution in space, e.g., adding lyrics in an addi-
tional language or adding a voice for an instrument needed
for a new edition of a piece. Variants thus denote versions
of music artifacts that need to exist concurrently.

The issue of managing revisions and variants becomes
essential especially if a team of music engravers collabo-
ratively defines and evolves digital music artifacts. Cur-
rently, engravers use general purpose version control sys-
tems such as Git to manage revisions and variants. How-
ever, while existing version control systems are powerful
for handling revisions of digital artifacts, they have de-
ficiencies with respect to managing variants. In particu-

Copyright: ©2021 Paul Griinbacher et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

Rudolf Hanl
Johannes Kepler University Linz
Software Systems Engineering
Linz, Austria
rudi@ruka.at

Lukas Linsbauer
Technische Universitit Braunschweig
Software Eng. and Automotive Inf.
Braunschweig, Germany
l.linsbauer@tu-braunschweig.de

lar, the available branching and forking mechanisms of Git
and similar tools conceptually create clones. This dupli-
cation of artifacts considerably increases the maintenance
effort as changes will need to be propagated manually to
all clones.

Managing the evolution of music artifacts has many sim-
ilarities with managing the evolution of artifacts in other
domains. For instance, a number of variation control sys-
tems [3] have been conceived in the field of software en-
gineering. Variation control systems provide capabilities
for uniformly handling both revisions and variants based
on decomposing digital artifacts into finer-grained variable
entities called features [4]. In software engineering, for
example, features are used to describe user-visible char-
acteristics of software systems (e.g., specific functions).
Features are then used to manage different revisions and
variants of software systems. Properly decomposing a soft-
ware system into features is seen as essential for the imme-
diate and long-term success of software systems [4] and
case studies demonstrate the usefulness and feasibility of
feature-oriented version control for large-scale systems [5].

This paper investigates the suitability of applying features
and variation control systems in the domain of music no-
tation. We demonstrate the basic idea of features in music
artifacts using a running example. We then show how mu-
sic features can be used to manage revisions and variants
of music artifacts. In particular, we extended the variation
control system ECCO [6, 7] to support revisions and vari-
ants of music artifacts encoded in LilyPond [8]. We present
the feature-oriented workflows and briefly discuss the ar-
chitecture and implementation of our LilyECCO tool. We
further present a preliminary evaluation based on a com-
plex music artifact.

2. MUSIC FEATURES

The question of what constitutes a feature depends on the
application context and the domain of interest. For in-
stance, a common definition from software engineering de-
scribes a feature as “a distinguishable characteristic of a
concept (system, component, etc.) that is relevant to some
stakeholder of the concept” [9]. Applying this rather gen-
eral definition to music notation means to find distinguish-
able characteristics of music relevant to a music engraver.
Figure 1 shows our running example demonstrating possi-
ble examples of music features. When studying the first
few measures of this vocal score by Claude Debussy we

mailto:paul.gruenbacher@jku.at
mailto:rudi@ruka.at
mailto:l.linsbauer@tu-braunschweig.de
http://creativecommons.org/licenses/by/3.0/

Dieu! qu'il 1a fait bon regarder!
Charles d'Orléans Claude Debussy

Trés modéré soutenu et expressif

/"waﬁ ¥ T] —
Sopran - — — — —— L
v Dieu! qu'l la fait bon re-gar - der La gra-ci - eu-se bonne et bel - e
3 =
Alt < t T —— L ———
Dieu! qu'il la___fait bon re -gar -der La gra -ci - eu -se_bonne et bel - le;

Tenor

Bass

' i 14 | 4
Dieu! qu'l la fait bon re -gar -der La
Figure 1. Ten music features in the piece Dieu! qu’il la fait bon regarder! (by composer Claude Debussy and poet Charles

d’Orléans) — setup (black), bass notes (red), tenor notes (brown), alto notes (yellow), soprano notes (grey), dynamics

(orange), slurs (pink), articulations (green), lyrics (light blue), and piece header (dark blue).

can find features for setting up the score (setup), for defin-
ing notes (soprano notes, alto notes, tenor notes, bass
notes), for handling texts (lyrics, piece header), as well as
features concerning articulations, dynamics, and slurs. In
Figure 1 colors are used to visually indicate the mapping
of elements in the score to features. The running example
shows that a music artifact can be composed based on mu-
sic features. The figure shows one particular version of the
music artifact. However, different revisions and variants
can be created by including or excluding different (revi-
sions of) music features.

We now use this example to define and illustrate impor-
tant concepts of music features based on existing work on
feature-oriented software engineering [9, 3]:

Mandatory and optional music features. Common fea-
tures that are present in all variants of a music artifact are
referred to as mandatory features. For instance, we could
assume that in our example this is the case for the feature
soprano notes. Optional features on the other hand exist
only in some variants, e.g., an English translation of the
lyrics may not be provided in all its editions.

Revisions of music features. Revisions of features denote
sequential versions and are the result of evolution in time,
e.g., fixing the pitch of a note. For instance, the revision so-
prano notes.2 may fix a false note accidentally introduced
by the engraver in the initial revision soprano notes.]1.

Alternatives of music features. In many practical cases
different alternatives of features are needed. For instance,
one could imagine different editions of our running exam-
ple created based on different translations of the lyrics.

Composing music features. Mandatory music features
appear in all variants of a music artifact, while optional
and alternative features result in different variants of a mu-
sic artifact, which depend on the selection of the desired
features by an engraver.

3. INTENSIONAL AND EXTENSIONAL
VERSIONING

We investigate if and how music features can be used for
managing revisions and variants in music notation. The
field of software configuration management has developed
a wide range of methods and tools, which pursue two im-
portant versioning strategies [2]:

Extensional versioning assumes that all existing versions
are explicitly enumerated. It then allows to retrieve all ver-
sions that have been created before. Examples of tools
supporting extensional versioning are Git or Subversion,
which keep track of the evolution history by assigning re-
visions to states of a system over time. However, in prac-
tice, evolution is rarely just a linear sequence of steps, and
current tools thus provide branching mechanisms for deal-
ing with variants: for instance, short-term feature branches
exist for as long as it takes to develop a new feature in iso-
lation. Once the new feature is finished, the branch is no
longer used and merged with the original artifact. How-
ever, at this point the new feature becomes inseparable
from the rest of the artifact, i.e., its location in the arti-
fact is not managed explicitly. The purpose of long-term
branches on the other hand is to create clones of existing ar-
tifacts, based on which variants are then created. However,
long-term branches quickly leads to maintenance problems
as updates and fixes need to be propagated to all variants.

Intensional versioning aims at overcoming these limita-
tions by providing fine-grained mechanisms for manag-
ing variants, thereby avoiding feature branches or variant
branches. Furthermore, this strategy allows to create ver-
sions that have not been explicitly enumerated and com-
mitted before. Examples of tools supporting intensional
versioning are variation control systems such as ECCO or
SuperMod [3]. They use concepts like features, configura-
tions, and construction rules to compose arbitrary versions.

We will show in this paper that such composition is pos-

\score {<< \new voice = "tenor” {
ri ais X
cis's hg ais

\times {aisi“[h ais o] } cis’
is'16 hi6] }

\times { his[cis Fommmmm e
ais r T | 1
} >} [commit notes.1 >, :
| 1
§ 1
i :
§ » 1
\score {<< ‘\new Voice = "tenor"” { : 7 ’G :
re aisz \(1 Py4J 1
M AT ol bt afeic] 3 st i —
Times als ails cis
\times ./: { hiol cis'16 hi6] } parce
} o [commit notes.1, slurs.1 > Parse Lilypond
i code and create
i Abstract Syntax
]
.] Tree
‘\score {<< ‘\new voice = "tenor" { 1
ri ais !
cis® heé ais 1
\times 1 aisie[h aisio] ¥ cis’ 1
\;1'mes { his[cis" hie]l } :
} 3;§ r [commit notes.1, dynamics.1 >
]

1
1

\score {<< \new vVoice = "tenor” { |
ri ais |
cis’s hd ais 1
\times { aisi6[hi6 aisis] } cis’ 1
\times hicl cis'16 hic]l’}]
1

1

1

|

d

1

1

ais’ r
} \new Lyrics \lyricsto "tenor

Dieu' qu'il 1a fait bon
>}

" {

Lilypond
Reader

re — gar —- der
commit notes.1, lyrics.1 >

checkout notes.1, slurs.1, dynamics.1, lyrics.1

ECCO Variation Control System

mf = p
—
] —— —
rd o | » T o r I. ’9 I -4
T

Dieu! qu'il la fait bon_ re - gar - der

.) . Generate pdf, SVG, Midi, ...
LilyECCO Music Artifact

Snippets
Mapped to Features

Lilypond Compiler

.
.

grS

: \Times
.

i aisz) r
1 Create_artlfa_cttree : } \new Lyrics \lyricsto "tenor” {
N1 for configuration and ' pieu! qu'il 1a fait bon _ re --
/: create Lilypond code ! isel

ri4 ais
cis” hs ais

{ aisio[h aisie] } cis’
{ hi6[cis’ hie] ¥

'
1

1

i \score {<< \new voice = “"tenor” {
! .

'

'

|

\times

gar -- der

E Lilypond Writer

Figure 2. Workflow and architecture of LilyECCO.

sible for music features, however, there are two key chal-
lenges: (i) automatically composing features relies on cre-
ating precise and fine-grained mappings of features to el-
ements of music artifacts (cf. Figure 1). Creating such
mappings manually quickly becomes infeasible, thus mak-
ing tools indispensible; (ii) features are not independent
of each other and so handling interactions between fea-
tures [10] becomes essential. As a simple example con-
sider the last two bars of the bass voice in the running ex-
ample. The alignment of the lyrics works if both the tie
and the lyrics are present, while problems of misaligning
the text would occur in LilyPond if excluding the (ficti-
tious) feature ties.

4. LILYECCO: MANAGING
FEATURE-ORIENTED REVISIONS AND
VARIANTS OF MUSIC

Our LilyECCO approach for feature-oriented version con-
trol of music uses LilyPond [8], a computer program and
domain-specific language for music engraving. The na-
tive text-based input language for LilyPond is comprehen-
sive and provides commands needed for engraving classi-
cal music, complex notation, early music, modern music,
tablature, vocal music, or lead sheets. LilyPond automati-
cally computes the details of music layout, thereby allow-
ing composers, transcribers and publishers to focus on the
music instead of tweaking the layout.

To illustrate the typical feature-oriented workflow of Lily-
ECCO we use our running example to illustrate its evolu-
tion in different evolution steps, ultimately resulting in dif-
ferent revisions and variants. We demonstrate how a music
engraver can incrementally add music features to a reposi-

tory and later compose variants based on the repository by
specifying a feature configuration. We also illustrate how
LilyECCO internally manages snippets of music artifacts
in a feature-oriented manner.

Adding music features to an ECCO repository is possible
by executing the operation commit, thereby telling Lily-
ECCO which features (and feature revisions) are contained
in a change. The left part of Figure 2 illlustrates how a mu-
sic engraver would commit features to the ECCO repos-
itory incrementally to create the running example. Due
to space restrictions only partial code can be shown. The
engraver first commits the notes, and then adds slurs, dy-
namics, and lyrics. After each step, the engraver commits
changes by defining combinations of (revisions of) fea-
tures, as shown by the commit commands on the green ar-
rows. As soon as the engraver commits a change, the newly
added or changed LilyPond source code must be mapped
to the correct features. In LilyECCO, this is done using
automated code analysis to extract the newly added source
code artifacts and then map them to the newly created fea-
ture(s). For instance, when committing notes.1 and slurs.1,
LilyECCO determines that the code marked as yellow (the
newly added phrasing slur) needs to be mapped to the new
feature slurs, while the unchanged code is still mapped to
the feature notes.

Creating a music variant based on an ECCO repository
is supported by executing the operation checkout, which
composes (combinations of) features already stored in the
repository. A music engraver can create music variants at
any time. For example, in our running example shown in
Figure 2 the engraver checks out a music variant based on
a configuration expression defining the first revision of the
features notes, slurs, dynamics, and lyrics as indicated by

@)

] \space String
, @® o
® o ®g o o:
o o © ;0
O O O ®
OOO * - /
O
¢) o) o © &
o dieu.ly o /' \score
@® O
@) o @
\global - g C()) o ‘ O
> |
©000 \ e
o ’
o g 3 o
@)
O / ;
® - e

0000,

— \times 2/3{ ...}

OQQ

JOO

& %o ©
(]
O

0®
o
> -
o 0 .
Lyrics ® O“ ©)
o) o
e ee® o
o000

Figure 3. Selected music artifact snippets for the running example. Each node refers to an artifact snippet while colors
represent features. Labels denote individual artifacts (e.g., \global, \times 2/3) as well as features like slurs or dynamics.
The edges are directed and represent containment, thus resulting in a tree structure. Dashed lines are used to indicate

artifacts subtrees (e.g., Lyrics).

the blue arrow. LilyECCO then automatically composes
the code shown on the right. The workflow continues and
the engraver can modify the generated code to create a
new revision or variant, and again commit the changes to
LilyECCO if desired.

Throughout the continuous evolution of a music artifact,
the presented workflow is used to add new features or to
extend and update existing ones. Conducting this feature-
oriented workflow is infeasible without tool support for
any non-trivial music artifact. For instance, feature map-
pings need to be continuously updated and feature inter-
actions need to be managed. LilyECCO supports such a
feature-oriented process.

5. LILYECCO ARCHITECTURE

LilyECCO’s architecture shown in Figure 2 comprises the
following key components:

Variation Control System. It has been shown that varia-
tion control systems can address both challenges of creat-

ing precise mappings and managing feature interactions [3].

We selected the variation control system ECCO for our
purpose [6, 7]. It stores music features in a repository in the
form of artifact graphs and maintains mappings between
features and snippets of the music artifacts. ECCO further
supports the evolution of features over time by considering
feature revisions in the automatically computed traces.
For the purpose of illustration Figure 3 shows a simplified
and partial view of the music artifact snippets of Debussy’s
piece after committing the features shown in Figure 1. This
internal representation allows to determine how specific
snippets of LilyPond code map to specific features. In par-
ticular, presence conditions determine whether the artifact
snippets are part of a specific version. A presence condi-

tion is a propositional logic formula with feature revisions
as literals [7].

We extended ECCO to allow storing and managing music
features in an artifact graph structure shown in Figure 3.
For that purpose, we developed a LilyPond Reader plu-
gin allowing to recognize and store music artifacts, and
a LilyPond Writer plugin to automatically compose Lily-
Pond code for a chosen configuration:

LilyPond Reader. More technically, the Python package
parce [11] parses LilyPond input into a tree structure based
on the LilyPond language definition. This tree structure is
then used by our LilyPond Reader plugin to analyze Lily-
Pond input files and to create an artifact graph managed
by ECCO. The ECCO system is implemented in the pro-
gramming Java, while the parce parser is written in Python.
We thus use Py4J (https://www.py4j.org) to execute parce
(version 0.13) from our LilyPond Reader plugin written in
Java.

LilyPond Writer. The LilyPond Writer plugin for ECCO
is capable of creating a music artifact tree for a specific
configuration. This is done by checking out a combination
of (revisions of) features. LilyPond code is automatically
created for the features selected by the music engraver in a
configuration expression.

LilyPond Compiler. Finally, as shown in Figure 2, the
LilyPond compiler processes the LilyPond code generated
by the LilyPond Writer to produce output such as PDF doc-
uments, SVG files, or MIDI files.

ECCO is available as an open source system at https://
github.com/jku-isse/ecco. We also plan to release our Lily-
ECCO extensions in the future.

https://github.com/jku-isse/ecco
https://github.com/jku-isse/ecco

6. EVALUATION

Our evaluation of the LilyECCO approach was guided by
two research questions:

RQ1 - Correctness. Are the mappings of features to
music artifacts computed correctly? We checked the cor-
rectness of the approach by creating and replaying the evo-
lution history of a music artifact and then automatically
composing different variants.

RQ2 - Performance. Does the approach scale for real-
world music artifacts? We measured the performance of
executing our approach to assess its usefulness in realistic
workflows.

6.1 Data Set

For our evaluation we applied the approach to a fairly com-
plex piece of vocal music. In particular, we chose the motet
“Factus est Repente” by the Upper Austrian composer Bal-
duin Sulzer as our data set. The piece was decidated to the
vocal ensemble the first author is part of. The piece con-
sists of two parts: the first part comprises six voices, while
the second part comprises two voices. The complete piece
comprises about 500 lines of code. Analyzing this piece
with the parce parser used in our LilyECCO plugin results
in 10,286 abstract syntax tree elements, with a maximum
tree depth of six. Specifically, the most frequently occur-
ring elements in this piece are 2,009 note pitches, 1,456
parts of lyrics, 1,170 durations of notes, 949 lyric hyphens,
688 built-in LilyPond commands (e.g., \relative), 632
brackets, 583 direction delimiters, 583 script literals, 354
beams, 265 numbers (e.g. 4/4), 246 rests, 188 slurs and
183 definitions of dotted notes.

We identified music features by considering both the struc-
ture of this piece (i.e., parts and voices) as well as the basic
elements of musical scores (i.e., dynamics, lyrics, artic-
ulations, texts, etc.). Upon closer inspection, we identi-
fied 52 music features, which define note pitches and du-
rations for the six voices of part 1 and the two voices of
part 2 (e.g., partoneSopOneNotes, partoneBasOneNotes,
parttwoSopTwoNotes), lyrics (e.g., partoneSopOnelyrics,
parttwoSopTwolyrics), score setup (header, scorePartOne,
scorePartTwo, text), as well as articulations, dynamics, slurs,
and beams for each voice for our evaluation.

In our experiment we regarded the complete piece as the
final version of our revision history. Using the Frescobaldi
editor (www.frescobaldi.org), we then manually removed
one feature after the other from the LilyPond code, giv-
ing us an evolution history of 52 versions. Replaying this
history reflects possible changes of a music engraver incre-
mentally adding features to define the music artifact.

6.2 Research Method

Regarding the correctness (RQ1) of the feature-to-music
mappings we performed three steps:

(i) We developed a script allowing us to automatically re-
play each evolution step of the data set. The script commits
each version of the evolution history, thereby incremen-
tally adding all features described above.

(ii) We checked out selected revisions and variants based
on the music features defined in our data set using Lily-
ECCO. Since LilyECCO can also produce LilyPond files
that were never input by the engraver we selected exam-
ples of both extensional and intensional versioning: exten-
sional versioning means to construct previously committed
versions, while intensional versioning means to construct
new versions based on feature combinations never com-
mitted before (cf. Section 3).

(iii) We manually inspected selected computed feature-
to-music mappings in the ECCO repository. We also check-
ed the integrity of the different variants by compiling the
resulting LilyPond code. In case of syntax errors, we an-
alyzed the reasons preventing successful compilation. Be-
sides checking for syntax errors we also visually checked
the variants in the resulting scores.

Regarding performance (RQ2) we measured the time re-
quired to analyze the different versions of the evolution
history. Since the complexity of music artifacts grows over
time, it is important to assess if later commits still scale,
i.e., if the performance of the ECCO algorithms used to
compute commonalities and differences between two suc-
cessive commits allows to use LilyECCO in realistic work-
flows. We measured the time needed to parse the LilyPond
code, and the time needed to commit the new version to
the ECCO repository, which also includes the time needed
to compute the commonalities and differences of different
versions.

6.3 Results RQ1: Correctness

As outlined above, LilyECCO uses a tree structure to cre-
ate artifact snippets, which are created and mapped to fea-
tures based on the feature information in the commit com-
mand. In particular, the LilyECCO Reader distinguishes
between different contexts (default, string, comment) re-
sulting in tokens at different depths (default, brackets, key-
words, lyrics, numbers, pitches and delimiters). More spe-
cifically, ECCO generated 11,786 artifacts snippets when
replaying the evolution history for the data set we used in
our evaluation. About half of the snippets (5,322) depend
on the top six mappings to features: partoneSopTwoNotes
(1,001), partoneSopOneNotes (992), partoneTenTwoNot-
es (869), partoneTenOneNotes (839), partoneBasOneNot-
es (817) and partoneBasTwoNotes (804).

Regarding RQI (correctness) we show the first page of
the score for four variants created based on the Sulzer data
set. Figure 4 depicts four different variants:

(a) Full piece. This variant was created by checking out
all music features listed in Section 5.1. The generated code
compiles correctly and the score meets the expectations.
Creating this variant is an example of extensional version-
ing [2], i.e., retrieving a previously constructed version
from the repository, in the case of LilyECCO based on ex-
plicit feature names. This demonstrates that the approach
can successfully compose music artifacts based on artifacts
snippets stored in the repository for the case of extensional
versioning.

(b) Individual voice. This variant represents an interest-
ing case of intensional versioning [2], i.e., to automatically

www.frescobaldi.org

Gewidmet dem Vokalensemble Voices
Factus est repente
Pfingstantiphon fiir 2 Soprane, 2 Tenére und 2 Biisse a capella
In memoriam Joseph Kronsteiner Balduin Sulzer

4 Tempo giusto J-99)

soprn [§ §]
f) T T 1
Sopran 2 g t t |
0 P . ‘<|
Tenor 1 T T u' . — T T u' . — \u' B u' i — i
T T 4 T T T 4 rT 4 r—r Yy v ryvrr
Fac-tus, fac-tusest, fac-tus, fac-tusest, fac-tusest repen-te decce-lo
5 2 : : Y
Tenor 2 T T T = T T T u‘ . — \u' B u‘ i —
4 r— T 4 r—r Yy v vy v rr
Fac-tus, fac-tusest, fac-tus, fac-tusest, fac-tusest repen-te decce-lo
P —
Bass1 | e T e]
Fac - tus, fac - tus, Tactus _est re - pen-te de coe-lo
P —_—
Bass 2 |4) [B i [l i | B (|
i i]
Fac - tus, fac - tus, factus est re - pen-te de coe-lo
sof Lomp & Sp LT Sy ¥ Sp LY
s1 EEELSsEslaPuLme s bebe)| Sess SEae Vs by bave iee b Tt
S e ey e e g
- nus, S0 - nus - nus, S0-nus, So-nuS, S0 - nus, S0 - NUS - nus, So-nus, so-nus,
g L § S S Sp T I L T
s2 § e e e e e g
&> ¥ P g 3 @ G e @ 5o A e e
S0 NUS, SO - HUS - NUS, SO-NUS, SO-NUS, SO - NUS, SO - HUS - NUS, S0-NUS, 'So-nuS,
f S S o S S o S o
0 o ™ g e W ae ™ a M e e Vo
I e e e e e e e e e
r r r 4 r Y Y r
0-nus, %0 - nus - nus, S0-nus, So-nuS, S0 - nus, %0 - nuS - nus, S0-nus, so-nus,
W Sy S Sy S S Sy LY
i L R L e
0-nus, %0 - nUS - nUS, S0-NUS, SO-NUS, S0 - NUS, %0 - NUS - nuS, S0-nus, So-nus,

S Smf L mpg & S wy f

S0 TS, S0 - MUS - MU, SO-HUS, S0-MUS, S0 - TS, S0 - HUS - MUS, S0-nus, Lo-mus,
f s o ¢ s

A A T W A A W W 4 53

vl [y Jr el [ady o g e gy vy g Y v g B
S0 TS, S0 - MUS - NUS, SO-TUS, SOMUS, 50 - NS, %0 - NUS - MUS, S0-MuS, SO-nS,

(a) Full piece (extensional)

Gewidmet dem Vokalensemble Voices
Factus est repente
Pfingstantiphon fiir 2 Soprane, 2 Tenére und 2 Biisse a capella
Balduin Sulzer

In memoriam Joseph Kronsteiner
Psalm

Sopran 1

Sopran 2

=
ri-tu-i sanc-to;_ sancto,sancto,sancto,_sancto,sancto,sancto, si-cut 6 - rat
rp
0 fe-ba Lhos - — . - .,‘m{ﬁ%
U= e = = S R S S E R E S S airnsdisrsa
r —r Yy rrr yyvyr v v r r r v —
ri-tu-i nc - to;__ sancto, sancto, sancto,_sancto, sancto, sancto, si-cut e - rat

81

¥ =
et nuncetsem-per_ et in se-cu-la se-cu,

(c) Soprano voices Part 2 (intensional, small fixes needed)

Gewidmet dem Vokalensemble Voices
Factus est repente
Pfingstantiphon fiir 2 Soprane, 2 Tenére und 2 Biisse a capella

In memoriam Joseph Kronsteiner Balduin Sulzer

. Tempog‘iustolJ:Q%i nf Z nf Z ‘ Z nf Z ;f
Sopran 1 ! ! E===m=esecmcer=es e
} } A e~ - A e Nl L
% - nus, % - nus - nus, S0 -nus, so-nus,
mf k4

S0 - nus, S0 - nus - nus, So-nus, So-nus, t t t

—g— 3 —

[E A —
Hahaha-ha! Al

3 g
le-lu,al - le-lu - ja - ha, hahahaha! U - bi erant se-

o - quen-tesmag-na - li - a

L R

(b) Individual voice (intensional)

Gewidmet dem Vokalensemble Voices
Factus est repente
Pfingstantiphon fiir 2 Soprane, 2 Tenére und 2 Biisse a capella
In memoriam Joseph Kronsteiner Balduin Sulzer

5 Tempo giusto d-9)

Sopran 1 g I

Sopran 2 § § §

(d) Soprano voices, notes only (intensional)

Figure 4. The first page of the score for four variants created with extensional or intensional versioning based on our data
set during the evaluation: (a) shows the score with all music features; (b) shows a score variant for a single voice; the score
variant in (c) includes the two soprano voices of Part two; and variant (d) includes only the notes of the soprano voices. In
cases (a), (b), and (d) the variant was created without errors while minor fixes were needed in case (¢) to move and remove
wrongly mapped code (cf. Section 6.3.).

construct a new combination of features on demand. The
intention was to create a score variant with all features
needed for a single voice. As in the first case the code
of the generated variant compiles correctly and the score
meets the expectations.

(c) Soprano voices of Part 2. This score variant extract-
ing the soprano voices for part two is similar to the previ-
ous one at first sight. However, in this case of intensional
versioning the initial attempt resulted in a syntax error de-
tected by the compiler. The reason is that LilyECCO had
never analyzed this specific variant, and there is an interac-
tion of features that never existed before together (cf. our
example at the end of Section 3). In particular, LilyECCO
could not distinguish some global definitions and score
definitions of part 2, as these features had never been com-
mitted separately. However, the workflow in LilyECCO in
such cases is to simply fix the syntax errors in the checked-
out variant and then commit the corrected variant, there-
by telling LilyECCO how the specific variant looks like.
In this case this was done by moving and removing two
lines of code and commit the variant again, thereby allow-
ing LilyECCO to distinguish these two features in future
checkouts. Over time, this iterative process improves the
mappings of features to music elements and allows the mu-
sic engravers to correctly perform intensional versioning.

(d) Soprano voices, notes only. This variant is an exam-
ple of successful intensional versioning. It includes the
two soprano voices, but drops all other features. In this
case LilyECCO was able to successfully construct the pre-
viously unknown variant.

6.4 Results RQ2: Performance

Regarding performance we report the execution times of
analyzing the different versions of the evolution history.
The experiment has been conducted using a Java 13 Hot-
Spot 64-Bit Server VM on Windows 10 running on a PC
with an Intel Core i5 with 3.5 GHz and 16GB DDR3-
RAM. In our data set the size of the music artifact ranges
from 39 elements (AST nodes) in the first version to 10,286
elements in the 52" version. The algorithms in ECCO rely
on computing tree-based commonalities and differences of
code, so both the size of the artifact and the interaction of
features have an influence on performance.

However, performance was acceptable for the data set
given the complexity of the score, the number of features,
and the size of the evolution history. The time to commit
ranged from 0.1 to 28.2 seconds (mean: 5.8; standard de-
viation 7.8). User-perceived performance also depends on
the time needed to parse the LilyPond code and to create a
tree structure that can be handled by ECCO. This time to
parse ranged from 0.2 to 2.1 seconds (mean: 1.3; standard
deviation: 0.6). With respect to overall performance, the
maximum time needed for parsing and committing a ver-
sion was about 32 seconds for version 52, which indicates
sufficient performance for practical workflows, given that
commits would normally not be made very frequently.

6.5 Discussion

The preliminary evaluation was successful in that it demon-
strates the feasibility of the approach to automatically map
snippets of music artifacts to features and to compose new
variants of music artifacts based on the features for both
extensional and intensional cases. These promising results
give rise to plenty of opportunities for further research:

The question of what constitutes a feature depends on
the application context and the eye of the beholder. For
instance, features may be used in an ad-hoc fashion to track
increments and additions to music artifacts (e.g., adding a
new voice). However, they may also be used in a more
systematic manner by planning the purpose of the different
required variants in advance. This means that features used
for the purpose of creating variants for music education
would differ from the scenario of a music publishing house
creating different scores from the same base.

Evaluating the usefulness of music features will be neces-
sary, e.g., by conducting user studies with music engravers
or by analysing existing evolution histories such as the Mu-
topia archives. Such studies will also help to better un-
derstand the practical advantages of LilyECCO compared
to a more traditional approach using Git or a similar tool.
In our evaluation we chose a rather fine-grained definition
of features for the purpose of evaluating both the correct-
ness and performance of our approach. We plan to study
the impact of different levels of feature granularity on both
correctness and performance.

Another important area is to look at usability, in partic-
ular the cognitive complexity of specifying configuration
expressions. Variation control systems like ECCO use log-
ical expressions to manage variants with features. Depend-
ing on the number of versions and the interactions of fea-
tures this task may become cognitively demanding. The
Cognitive Dimensions of Notations framework [12] refers
to such tasks as hard mental operations. For instance, cre-
ating configuration expressions for checking out variants
is difficult for engravers who think in terms of music code
but not in terms of features. It may help to let users point
to artifact snippets that should be included in the variant
rather than having them to consider logical expressions.
Also, feature models may help to reduce the cognitive load
by providing a higher-level and hierarchically-organized
graphical perspective, as SuperMod [13] or FORCE? [5,
14] show.

In terms of possible tool support an interesting capabil-
ity is to color features in music score editors, as shown for
source code of programming languages [15]. Such a fea-
ture would also ease to systematically study the granular-
ity of music features in realistic workflows. For instance,
such studies have been conducted in the domain of soft-
ware engineering to better understand how complex soft-
ware artifacts can be decomposed into features of different
granularity [15].

Our current LilyPond Reader and LilyPond Writer plu-
gins have so far been primarily used and tested for vocal
music. Further implementation enhancements are required
to support the full scope of the LilyPond language. This
will then allow a more comprehensive evaluation of using

music features for different kinds of music. We also plan
to improve the performance of our approach by executing
the Java and Python code of LilyECCO in a single virtual
machine.

The LilyECCO extension for ECCO is based on the Lily-
Pond system. However, our approach can also be applied
to other music notation software packages, if they allow
parsing their music artifacts to create a tree structure, which
can then be analyzed by ECCO. ECCO also supports XML
files. In case no API is available, an alternative thus would
be to use MusicXML as an intermediate artifact format.
However, this approach seems to be risky and cumber-
some, given the often unpredictable results of current Mu-
sicXML exporters and importers.

Our current evaluation focused on the case of a single en-
graver committing music features and composing different
music variants. We can extend this to support collaborative
scenarios involving multiple engravers based on the dis-
tributed operations of the variation control system ECCO,
which allows to clone repositories and to pull music fea-
tures from one repository to another as shown in [16].

7. RELATED WORK

LilyECCO uses tree-based code diffing to relate music fea-
tures to music elements when committing changes to the
repository. Antila et al. [17] discuss the limitations of
line-based diffing approaches and also propose a hierarchi-
cal diffing approach for collaboratively editing music arti-
facts. Similarly, Herold et al. [18] present the MusicDiff
tool for comparing two files with encoded music scores,
which can also visualize the differences between these en-
codings. However, both approaches do not use features
to label changes and to support music composition as in
LilyECCO.

Fournier-S’niehotta et al. [19] propose an approach that
leverages a music content model for defining virtual cor-
pora of music notation objects that allow the development
of search and analysis functions across music artifacts en-
coded in different formats. While the approach does not
consider evolution, the idea to perform analyses across di-
verse digital artifacts is also fundamental to LilyECCO,
which can work with different kinds of artifacts.

Dannenberg has proposed to provide views on a score [20],
which “contains a subset of the information in the data
structure and sometimes provides alternate or additional
data to that in the data structure”. This would allow that
a change in a score can automatically be propagated to
the parts (views on the score). The composition of a vari-
ant with LilyECCO based on features can also be seen as
mechanism to create views on a score, and changes com-
mitted to the shared repository could be made available to
other views (variants) via committing feature revisions and
again checking out variants.

LilyECCO composes snippets, i.e., partial scores, to cre-
ate new scores based on a selection of features. The idea to
compose new scores based on existing ones has also been
proposed by Lepetit-Aimon et al. [21]. In their approach
a score can be composed as an arbitrary graph of score ex-
pressions.

8. CONCLUSIONS

We presented the LilyECCO approach for managing both
revisions and variants of digital music artifacts created with
music notation software. Our approach uses music fea-
tures and a variation control system to manage the evolu-
tion of digital music artifacts using the LilyPond language.
Our preliminary evaluation investigated both the correct-
ness and the performance of LilyECCO, overall demon-
strating its feasibility. The experiences gained in the ex-
periment further allowed us to identify a number of inter-
esting research directions for using music features in music
notation workflows.

9. REFERENCES

[1] W. Lemberg, L. F. Moser, and U. Liska, “Music
Engraving Conference, Music University Mozarteum,
Salzburg,” 2020. [Online]. Available: https:/gitlab.
com/MusicEngravingConference/2020

[2] R. Conradi and B. Westfechtel, “Version models for
software configuration management,” ACM Computing
Surveys, vol. 30, no. 2, pp. 232-282, 1998.

[3] L. Linsbauer, F. Schwigerl, T. Berger, and
P. Griinbacher, “Concepts of variation control
systems,” Journal of Systems and Software, vol. 171,
p. 110796, 2021.

[4] T.Berger, D. Lettner, J. Rubin, P. Griinbacher, A. Silva,
M. Becker, M. Chechik, and K. Czarnecki, ‘“What
is a feature? a qualitative study of features in in-
dustrial software product lines,” in Proceedings 19th

International Software Product Line Conference, ser.
SPLC’15. Nashville, USA: ACM, 2015, pp. 16-25.

[5] D. Hinterreiter, L. Linsbauer, K. Feichtinger,
H. Prihofer, and P. Griinbacher, “Supporting feature-
oriented evolution in industrial automation product
lines,” Concurrent Engineering, vol. 28, no. 4, pp.
265-279, 2020.

[6] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and
A. Egyed, “Enhancing clone-and-own with system-
atic reuse for developing software variants,” in 30th
IEEE International Conference on Software Mainte-
nance and Evolution, Victoria, BC, Canada, Septem-
ber 29 - October 3, 2014. 1EEE Computer Society,
2014, pp. 391-400.

[7] L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed,
“Variability extraction and modeling for product vari-
ants,” Software & Systems Modeling, vol. 16, pp.
1179-1199, Jan 2017.

[8] “Lilypond —notation reference,” 2020. [Online]. Avail-
able: https://lilypond.org/doc/v2.20/Documentation/
notation-big-page.html

[9] K. Czarnecki and U. Eisenecker, Generative Program-
ming: Methods, Tools, and Applications. Boston,
MA: Addison-Wesley, 2000.

https://gitlab.com/MusicEngravingConference/2020
https://gitlab.com/MusicEngravingConference/2020
https://lilypond.org/doc/v2.20/Documentation/notation-big-page.html
https://lilypond.org/doc/v2.20/Documentation/notation-big-page.html

[10]

(11]

[12]

[13]

[14]

[15]

[16]

P. Zave, “Feature interactions and formal specifications
in telecommunications,” Computer, vol. 26, no. 8, pp.
20-28, Aug 1993.

W. Berendsen, “The parce module,” 2020. [Online].
Auvailable: https://parce.info

A. Blackwell and T. Green, “Notational systems—the
cognitive dimensions of notations framework,” in HCI
Models, Theories, and Frameworks, ser. Interactive
Technologies, J. M. Carroll, Ed. San Francisco: Mor-
gan Kaufmann, 2003, pp. 103—-133.

F. Schwégerl and B. Westfechtel, “Integrated revision
and variation control for evolving model-driven soft-
ware product lines,” Software & Systems Modeling,
vol. 18, no. 6, pp. 3373-3420, 2019.

K. Feichtinger, D. Hinterreiter, L. Linsbauer,
H. Prihofer, and P. Griinbacher, “Guiding feature
model evolution by lifting code-level dependencies,”
Journal of Computer Languages, p. 101034, 2021.

C. Kistner, S. Apel, and M. Kuhlemann, “Granularity
in software product lines,” in 30th International Con-
ference on Software Engineering (ICSE 2008), Leipzig,
Germany, May 10-18, 2008, W. Schifer, M. B. Dwyer,
and V. Gruhn, Eds. ACM, 2008, pp. 311-320.

D. Hinterreiter, L. Linsbauer, F. Reisinger, H. Prihofer,
P. Griinbacher, and A. Egyed, “Feature-oriented evolu-
tion of automation software systems in industrial soft-
ware ecosystems,” in 23rd IEEE International Confer-
ence on Emerging Technologies and Factory Automa-
tion (ETFA 2018), Torino, Italy, 2018, pp. 107-114.

(17]

(18]

(19]

(20]

(21]

C. Antila, J. Trevifio, and G. Weaver, “A hierarchic
diff algorithm for collaborative music document edit-
ing,” in Proceedings of the International Conference
on Technologies for Music Notation and Representa-
tion — TENOR’17, H. L. Palma, M. Solomon, E. Tucci,
and C. Lage, Eds. A Coruiia, Spain: Universidade da
Coruda, 2017, pp. 167-170.

K. Herold, J. Kepper, R. Mo, and A. Seipelt, “Music-
Diff — A Diff Tool for MEL” in Music Encoding Con-
ference Proceedings, E. De Luca and J. Flanders, Eds.
Humanities Commons, 2020, pp. 59—-66.

R. Fournier-S’niehotta, P. Rigaux, and N. Travers, “Is
there a data model in music notation?” in Proceed-
ings of the International Conference on Technologies
for Music Notation and Representation — TENOR’ 16,
R. Hoadley, C. Nash, and D. Fober, Eds. Cambridge,
UK: Anglia Ruskin University, 2016, pp. 85-91.

R. B. Dannenberg, “Music representation issues,
techniques, and systems,” Computer Music Journal,
vol. 17, no. 3, pp. 20-30, 1993.

G. Lepetit-Aimon, D. Fober, Y. Orlarey, and S. Letz,
“Inscore expressions to compose symbolic scores,” in
Proceedings of the International Conference on Tech-

nologies for Music Notation and Representation —
TENOR'’16, R. Hoadley, C. Nash, and D. Fober, Eds.

Cambridge, UK: Anglia Ruskin University, 2016, pp.
137-143.

https://parce.info

	 1. Introduction
	 2. Music Features
	 3. Intensional and Extensional Versioning
	 4. LilyECCO: Managing Feature-oriented Revisions and Variants of Music
	 5. LilyECCO Architecture
	 6. Evaluation
	6.1 Data Set
	6.2 Research Method
	6.3 Results RQ1: Correctness
	6.4 Results RQ2: Performance
	6.5 Discussion

	 7. Related Work
	 8. Conclusions
	 9. References

