
MULTI-SCALE ORACLE AND AUTOMATED REPRESENTATION OF
FORMAL DIAGRAMS BASED ON THE COGNITIVE ALGORITHM

Joséphine Calandra
IReMus, LaBRI

josephine.calandra@labri.fr

Jean-Marc Chouvel
IReMus

jeanmarc.chouvel@free.fr

Myriam Desainte-Catherine
LaBRI

myriam@labri.fr

ABSTRACT

This article deals with the automatic representation of for-
mal diagrams, which corresponds to a paradigmatic analy-
sis of the musical work which is being listened to. These
diagrams represent musical materials as a function of time
and are initially obtained from the audio signal, applying
a Cognitive Algorithm. In this article, we focus on the
second step of the algorithm, as such we assume that the
first step, analyzing and labeling the audio signal, has been
done. Thus, we propose to analyze predefined materials
given as a string. Then we develop the automatic creation
of all the formal diagrams of higher levels that result from
it. The structuration of the sequences of materials of the
lower level constructs the formal diagrams of higher lev-
els. The structured characters which are gathered then rep-
resent a higher-level material. Therefore, we present the
Multi-scale Oracle: a data structure that stores and con-
nects the different levels and materials. Thus, a character
string given as input of the system produces a superposi-
tion of formal diagrams as a function of various structur-
ing parameters. As the hierarchical formal diagrams offer a
new representation of music, we suggest the musicologists
could use these diagrams for analysis.

1. INTRODUCTION

Our research consists of performing a music analysis as a
cognitive process accurately related to this specific music
as a phenomenon in time. Therefore, we seek to model the
representation of the temporal evolution of a piece of music
according to the different cognitive imperatives of people
who are listening to music. As it has been demonstrated
by François Delalande in [1], cognitive imperatives in-
duce the way people listen to music and therefore structure
music. By offering in this method of analysis a different
representation, thus a different than commonly used read-
ing, we want to understand how music creations through
their audio representation are segmented by the listeners
and therefore procure emotions to them (G. Brelet [2], J.
Sloboda [3]). Listening systems and representations over
time, such as OSSIA Score [4] and Antescofo [5], exist but
do not offer a structured representation. On the other hand,

Copyright: ©2021 Joséphine Calandra et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

the structure estimation of pieces of music by multi-criteria
analysis and regularity constraint developed by G. Sargent
in his thesis [6] gives hierarchical representations that do
not consider the temporal phenomenon.

In previous work, one of the authors [7] developed the
Cognitive Algorithm: a listening model which aims at mod-
elizing the cognitive processes that are set up while listen-
ing to music. Nevertheless, this modelization is a hypo-
thetical one that structures the music listener’s audio rep-
resentation to be as faithful as possible to the Gestalt The-
ory. By structure, we mean the action of segmenting in
a way that gathers objects together to constitute a unique
object of higher level. The output is a representation of
formal diagrams at different structuring levels of distinct
time scales. Each formal diagram gives a view of the mu-
sic constituents’ temporal evolution, called objects that are
the elements analyzed as instantiated paradigms. We draw
a line between the object and the material as the latter
is the actual paradigm. For instance, the deployment of
new materials is highlighted by the discovery front: the
line representing the most recent new materials at each
instant t. Formal diagrams also highlight behaviors such
as pattern reiteration, reversion, or speed. From a given-
structural-level diagram, and in parallel with the construc-
tion of this diagram, we can create the higher-level one by
using segmentation and similarity criteria and, therefore,
grouping lower-level materials to create a higher-level ma-
terial. Moreover, the analysis and then the formal diagram
representation is not specific to the note scale but applica-
ble to different temporal scales and different sound dimen-
sions. These are determined by the similarity and segmen-
tation criteria provided as a parameter of the system and
the constitution of lower-level diagrams.

Besides, this representation is different from scores or
piano-rolls as it changes the ordinate axis and highlights
the temporal appearance of the materials and not the pitches,
which offers another reading for pieces of music. A form
of compression is also obtained as the material memory in-
creases as we listen to music. Then, to get an accurate rep-
resentation, we do not need to know all the materials when
processing the music representation. Therefore, there is a
need to determine the similarity and segmentation criteria
that will be put in place to run a configurable algorithm
as generic as possible to obtain as many representations
as possible perceptions of music. In this article, we want
to develop an algorithm that can offer representations that
a musicologist would not have been able to create from
the angle of his own experience and analysis by automat-

mailto:josephine.calandra@labri.fr
mailto:jeanmarc.chouvel@free.fr
myriam@labri.fr
http://creativecommons.org/licenses/by/3.0/


ing the Cognitive Algorithm. Even if this algorithm has
already been tested manually by Jean-Marc Chouvel, our
goal here is to automate this analysis in order not only to
simplify the task of the musicologist but also to remove
one’s pre-established knowledge to better understand the
composition and auditory processes.

In this article, we focus on the second part of the algo-
rithm, assuming that the audio signal is already labeled into
characters. Then we will deal with the analysis of charac-
ter strings representing the music. F. Lerdahl and R. Jack-
endoff [8] proposed a theory to structure tonal music with
different grouping rules that would bring some tools for the
elaboration of segmentation rules in our algorithm.

Memory is where the information is stored and the ques-
tion of access to the stored elements and memory opti-
mization arises: this is why there is a need to augment the
Cognitive Algorithm with an accurate representation of the
memory. For that, we propose to use the Factor Oracle as
implemented by C. Wang and S. Dubnov [9] and first pre-
sented by C. Allauzen, M. Crochemore, and M. Raffinot in
[10].

We seek to create a multi-scale computed representation
that gathers different superposed reading levels. Moreover,
we aim to do so by systemizing the paradigmatic and syn-
tagmatic analysis optimally. However, we are not inter-
ested in the semiotic analysis of these results: we leave
this work to the musicologists wishing to analyze the com-
position put in the system.

In Section 2, we explain how the Multi-scale Oracle works,
and what data structures we chose to organize the memory
of the modelized listening subject. In Section 3 we will
explicit the different rules implemented to structure hier-
archically the various character strings that are input. Sec-
tion 4 explains the structuring function implementation and
the memory hierarchization, and Section 5 presents appli-
cations of the Cognitive Algorithm to Wolgang Amadeus
Mozart’s K545 Rondo and Claude Debussy’s Hommage à
Rameau reduced as label strings. Then, we will discuss the
results in Section 6.

2. MULTI-SCALE ORACLE

A description of the Multi-scale Oracle, the combination
of the Cognitive Algorithm and the Factor Oracle, is pro-
vided. We also describe the chosen data structures for
memory implementation, where the materials are stored.

2.1 Presentation of the Cognitive Algorithm

The Cognitive Algorithm (Figure 1) was developed and ap-
plied by one of the authors [11] to propose a methodolog-
ical algorithm for musical analysis. This algorithm is the
process that constructs the different layers of formal dia-
grams associated with the music supplied as input. This
is mainly composed of two tests. A first test is called
Paradigmatic Recognition Test. It is a comparison between
the object currently being listened to and the previously lis-
tened to objects. The second test is the Syntagmatic Recog-
nition Test. This test validates whether the concatenation

Figure 1: General Scheme of the Cognitive Algorithm. For
more information, a complete version can be found in [12].

of the objects obtained since the last segmentation consti-
tutes a higher-level object.

The algorithm at a level of structure i is the following.
All the objects are processed one by one. At the instant
t, the object obj(i, t) is assimilated. The first test is then
carried out: if the object which has just been heard is sim-
ilar to an object previously heard of the same level, then
it is recorded in the formal memory. The formal memory
corresponds to the memory where the objects in the time
dimension are stored. If this object has never been heard
before, it is written in the formal memory and also in the
material memory: the memory that stores every new ma-
terial which appears over time. Then, the current object
obj(i, t) is concatenated in the incoming knowledge with
previously heard objects of the same level. The assump-
tion is made that a higher level object is being created and
the next objects at this level can be guessed according to
what has already been processed before. Then comes the
second test: if there is at this moment a structuring crite-
rion, then the test is validated and this hypothetical object
becomes a higher-level object. The structuring criteria will
be clarified in part 3.2. Then, we iterate the same algo-
rithm with this new higher-level object obj(i + 1, t − k),
where k is the number of lower-level concatenated objects
multiplied by their duration, as input. If, conversely, no
segmentation criterion is detected, the test is invalidated
and the algorithm is reiterated with the next object of the
same level.

The difficulty of the computer implementation is that the
functions described in this algorithm are general. There is
a need to make them mathematically explicit while allow-
ing the system to remain as inclusive as possible because
we want to analyze any type of music.

In a previous article [13], we focused on a single level of
construction, the first one which is the sampling window
scale. We also focused on the first part of the algorithm:
the Paradigmatic Recognition Test at the signal level. In
this article, we leave the signal analysis aside and focus
on analyzing from a higher level where materials are al-
ready represented by symbols. Therefore the first test cor-
responds to a character string comparison and the second
test corresponds to the structure by segmentation criteria
explained in part 3.2.



Figure 2: Factor Oracle based on the string “aba-
cabacdeab”.

2.2 Organization of the memory

The audio is represented by a character string where each
character corresponds to a given material. A material can
be a declination of any specific musical criterion such as a
specific pitch, tone, or even rhythm at different hierarchical
levels such as notes scale, grouping notes scale, phrases, or
music parts. Therefore the input object for each level of the
system is at time t a single character. The memory organi-
zation is essential for the system performances because the
algorithm performs a constant back and forth, especially
with the previously heard objects of the different levels.

2.2.1 Factor Oracle

Objects acquired in the system are represented in memory
by an oracle as designed by C. Wang and Shlomo Dub-
nov [9]. The Factor Oracle is a data structure of the form
Q = q1q2...qt...qT with T states. This oracle enables,
thanks to links, to quickly find the longest character string
previously heard in the system, which is similar to the cur-
rently heard character string. There are two types of links:
suffix links and forward links. Suffix links are created from
state t + k to state t with k > 0 when the element cor-
responding to the link qt+k going from state t + k − 1 to
state t + k and the element corresponding to the link qt
going from state t − 1 to t are equals. Forward links are
of two types: the internal forward links correspond to the
links going from the previous state t − 1 to the state t and
correspond to the temporal unfolding of the musical work.
External forward links are created from state t to state t+k
with k > 0 when the most recent internal forward link
qt+k is preceded by a qt+k−1 link such that qt+k−1 = qt
and qt+k have never followed qt before. Each forward link
is named after the index corresponding to the listened ma-
terial at that moment, the suffix links are not labeled and the
states correspond to each temporal moment t of the input.
We find an example of a Factor Oracle created from the
string “abacabacdeab” in Figure 2.

For the implementation of the Factor Oracle, we use the
code developed by C. Wang and S. Dubnov [14].

2.2.2 Relation between the Oracle and the Cognitive
Algorithm: the Multi-Scale Oracle

The benefit of using such a memory organization is that
there is no need to go through the entire string to find pre-
vious similar elements. Searching and comparing elements

in the entire string has a nlog(n) complexity. With the Fac-
tor Oracle, accessing the last similar item is constant once
the new state is created. Nevertheless, the creation of the
oracle data structure still requires computation time.

Also, the oracle models the incoming knowledge mem-
ory: indeed, thanks to the forward links of the currently
heard object suffix, we can make one or more hypotheses
about what the oracle expects to follow this object. These
hypotheses will be validated or not by Syntagmatic Recog-
nition Test. Whether or not these hypotheses are validated
provides information on the auditory cognitive behavior by
consolidating the music structure or, conversely, by creat-
ing a surprise effect.

Nevertheless, the oracle does not compute any informa-
tion about segmentation, so we need to create rules to jus-
tify segmentation and we need to create data structures to
store the materials. The incoming knowledge memory and
the structuring rules need to access the higher-level objects,
such as the oracle anticipates the incoming objects at the
actual level according to the existing ones in higher levels
that contain these actual-level objects. For that, we create
different Factor Oracles at each necessary structure level,
and we complete those with other data structures that store
the information connecting every level. This is what we
call the Multi-Scale Oracle.

2.2.3 Multi-Scale Oracle data structures description

Besides the oracle, various data structures are added to
memorize the materials and to make links between the dif-
ferent hierarchical levels of the formal music analysis. The
Multi-Scale Oracle is the concatenation of the Factor Ora-
cle and the following structures, instantiated as many times
as there are hierarchical levels of structure.

The concatenated object corresponds to the word cur-
rently created in the incoming knowledge memory for the
higher level. This character string corresponds to the con-
catenation of all the characters read since the last structure
in this level. Each time the string is structured, this charac-
ter string is reinitialized to the empty word, then each new
character corresponding to the material heard is concate-
nated until it is structured again.

The links table associates each current state with the in-
dex of the corresponding state of the higher-level oracle.
This table is updated at each structure. When structur-
ing, all the characters contained in the concatenated ob-
ject, which correspond to different states at the level of
the current oracle, correspond to a single character at the
higher level. Therefore as many indices as there are char-
acters contained in the concatenated object are added in
the links table. These indices have the same value, which
is the maximum index of the links table incremented by
1. This value corresponds to the index of the higher-level
state associated with the new structured object.

The history next table corresponds to all the higher-level
materials obtained until instant t. This is an array of pairs
(i label, i str) where i label corresponds to the higher-
level label and i str is the corresponding current level struc-
tured string. This data structure is optimized because it is
updated in constant time and browsed in maximum linear



Figure 3: Formal diagram of the string “abacabacdeab”.

time meanwhile it contains at most as many elements as
the higher level.

The formal diagram corresponds to the formal represen-
tation of the current state of the oracle at the current hier-
archical level. This diagram is a matrix of size n ∗ t where
n is the number of materials and t is the current time. For
each index Mi,j , with 0 ≤ i < n and 0 ≤ j < t we have
Mi,j = 1 if at instant j the material i is parsed, Mi,j = 0
otherwise. An example of a formal diagram created from
the string “abacabacdeab” is shown in Figure 3.

3. CREATION AND IMPLEMENTATION OF THE
TWO PARADIGMATIC AND SYNTAGMATIC

RECOGNITION TESTS

In this section we present how the different rules of the
Paradigmatic and Syntagmatic Recognition Tests were de-
termined and implemented.

3.1 Paradigmatic Recognition Test

The first test compares the current object as strings with the
previously heard objects. At the moment, this is a mod-
ule verifying the strict equality between two strings. Of
course, we intend to improve this part in the future because
strict equality between two objects considered to be similar
in a musical piece is rare. Two patterns considered as sim-
ilar can, in reality, have a variation of note, rhythm, tempo,
nuance, or even transposition, which can be transcribed as
a different character at a lower level and thus also impact
the recognition of the pattern at higher levels.

For example, the patterns C-C-G-G-E-E-C-C might be
considered similar to C-G-E-C for the musicologist while
the strict comparison of the associated strings aabbccaa
and abca (with a associated to C, b to G, and c to E) gives a
negative result for sure. The same problem will arise with
time expansion or reduction of the same pattern, or nota
cambiata that might appear in some patterns. The question
of computing similarity will then arise in later studies.

3.2 Syntagmatic Recognition Test

We set up different structuring rules for the second test.
Each rule was developed according to the constraints im-
posed by the previously implemented ones. We searched
the most basics rules considering the more complex F. Lerd-
hal and R. Jackendoff generative theory [8], based on the
Gestalt theory. When the second test is raised, these rules

are applied or not according to the current context: if the
rule is applied, the test is validated, otherwise, it is not.

We suggest five rules. Nevertheless, more advanced rules
can be developed in the future.

3.2.1 Rule 1

Rule 1: when an already known object at level n is read
again, the level n is structured just before this object. The
structured concatenated object constitutes a higher-level
object.

Here is an example of Rule 1 on the string “abacabacde-
abfgabachijklmhinopqabacrsrsttu”. Str. 0-1 stands for the
structure of level 0 giving a corresponding object at level 1.
Level 1 contains the labeling of such structure with strict
string equality. Opening parenthesis represents the begin-
ning of a new object at a higher level while a closing paren-
thesis represents the structuring operation.
Level 0 : abacabacdeabfgabachijklmhinopqabacrsrsttu
Str. 0-1 : (ab)(ac)(a)(b)(a)(cde)(a)(bfg)(a)(b)(a)(chijklm)
(h)(inopq)(a)(b)(a)(crs)(r)(st)(tu)
Level 1 : ABCDCECFCDCGHICDCJKLM
Str. 1-2 : (ABCD)(CE)(CF)(C)(D)(CGHI)(C)(D)(CJKLM)
Level 2 : ABCDEFDEG
Str. 2-3 : (ABCDEF)(D)(EG)
Level 3 : ABC
Str. 3-4 : (ABC)
Level 4 : A
Correspondance between level 3 and level 0 gives A= (aba-
cabacdeabfgabachijklmhinopq), B= (a) and C= (bacrsrsttu)

However, we see that this rule alone can give dispropor-
tionately sized objects at high levels. It is not consistent
in a perspective where one would want objects of the same
level to have a similar duration (Grouping preference rules
5 in [8]).

Besides, this structuring system also raises concerns be-
cause this rule essentially destroys the principle of hypoth-
esis. If we have, for example, the sequence “abacab”,
there should be segmentation before the second and the
third “a” because an already known “a” appears again and
there is also segmentation of the second “b” for the same
reasons. This gives the structure “(ab)(ac)(a)(b)”. This
structure destroys the hypothesis expecting a “b” after the
arrival of the second “a”. Therefore, there is no possibility
that the word “ab” will come up again because this is what
happened at the first occurrence of “a”.

When we speak about structuring while an already known
object is back, it is for the initial segmentation, in the ab-
sence of additional rules, such as those of the Gestalt the-
ory. Once there is a grouping, the structuring must indeed
be done in real-time with all the activated levels consider-
ing the higher-level object and not layer by layer. There-
fore, there is no question of segmenting between “a” and
“b” if there has been a group “(ab)” recorded (this can be
referred to the Grouping Well Formedness Rule number 4
in [8]).



3.2.2 Rule 2

Rule 2 aims at resolving the hypothesis problem: level n
is structured only if the object constituted of the concate-
nated object plus the character that has just been read does
not exist at the higher level.

Therefore, in the previous example, we do not structure
before the arrival of the second b. We then have the struc-
ture “(ab)(ac)(ab)”.

We must specify then that the segmentation is not done
one level after the other but all levels at once. First, the
only string we know “abacabacdeabfgabachijklmhinopq
abacrsrsttu” is read in real-time :
step 1 - Level 0 : a
step 2 - Level 0 : ab
step 3 - Level 0 : aba
There is a “a” again, so “ab” is structured and a new level
is created, containing the symbol “A” that corresponds to
the label of the lower-level group “(ab)”. That gives at
step 4:
Level 0 : aba
Str. 0-1 : (ab)a
Level 1 : A
Then the first string is read again until the next structura-
tion. We know “(ab)” corresponds to a material of level
1 so we will not structure in the middle of this material at
level 0. If there is a structuring criterion at level 1 (for ex-
ample if A is read again), a level 2 is created and computed
in parallel.
Step 12 gives the results:
Level 0 : abacaba
Str. 0-1 : (ab)(ac)(ab)a
Level 1 : ABA
Str. 1-2 : (AB)A
Level 2 : A

The string “abacabacdeabfgabachijklmhinopqabacrsrsttu”
structured with the rules 1 and 2 gives the results :
Level 0 : abacabacdeabfgabachijklmhinopqabacrsrsttu
Str. 0-1 : (ab)(ac)(ab)(acde)(abfg)(ab)(achijklm)
(hinopq)(ab)(acrs)(rst)(tu).
Level 1 : ABACDAEFAGHI
Str. 1-2 : (AB)(ACD)(AEF)(AGHI)
Level 2 : ABCD
Str. 2-3 : (ABCD)
Level 3 : A

Nevertheless, in the string “abacabacde”, the return of the
pattern “ac” represented by “B” at level one is hidden in a
larger pattern “acde” because the new object “d” does not
allow to structure after the second occurrence of “ac”: the
structure is then “(ab)(ac)(ab) (acde)”. Then, we propose
Rule 3

3.2.3 Rule 3

As soon as the concatenated object at level n is an ob-
ject already seen at the upper level, the string is structured
(Grouping Well Formedness Rule number 5 in [8]).

This rule complements Rule 4, which, however, requires

additional computations.

3.2.4 Rule 4

There is a structuring operation when the concatenated ob-
ject is a string that has already been heard even included in
a larger higher-level object. It is then also necessary to
structure the element when it was seen for the first time
and to modify the objects of higher levels accordingly.

The string “abacabacdeabfgabachijklmhinopqabacrsrsttu”
structured with the four rules gives the results :
Level 0 : abacabacdeabfgabachijklmhinopqabacrsrsttu
Str. 0-1 : (ab)(ac)(ab)(ac)(de)(ab)(fg)(ab)(ac)(hi)(jklm)
(hi)(nopq)(ab)(ac)(rs)(rs)(t)(t)(u).
Level 1 : ABABCADABEFEGABHHIIJ
Str. 1-2 : (AB)(AB)(C)(AD)(AB)(EF)(EG)(AB)(H)(H)
(I)(I)(J)
Level 2 : AABCADEAFFGGH
Str. 2-3 : (A)(A)(BC)(A)(DE)(A)(F)(F)(G)(G)(H)
Level 3 : AABACADDEEF
Str. 3-4 : (A)(A)(B)(A)(C)(A)(D)(D)(E)(E)(F)
Level 4 : AABACADDEEF

The difference between Rule 3 and Rule 4 in this example
is the structure of “(hi)” with Rule 4 while Rule 3 would
have given the two objects “(hijklm)” and “(hinopq)”. How-
ever, immediately repeated objects are immediately struc-
tured as higher-level materials with this rule. This induces
isolation of these materials which can no longer be in-
cluded in a larger material. This also implies that all the
higher levels will contain exactly these same materials of
this given length.

Also, the structuring algorithm ends, not because we can
no longer structure, but because there is a loop and the
same structures are obtained at the highest levels.

3.2.5 Rule 5

To avoid this material isolation, Rule 5 is therefore pro-
posed: an isolated object is not structured (Grouping Pref-
erence Rule 1 in [8]).

The string “abacabacdeabfgabachijklmhinopqabacrsrsttu”
structured with the five rules gives the results :
Level 0 : abacabacdeabfgabachijklmhinopqabacrsrsttu
Str. 0-1 : (ab)(ac)(ab)(ac)(de)(ab)(fg)(ab)(ac)(hi)(jklm)
(hi)(nopq)(ab)(ac)(rs)(rs)(ttu).
Level 1 : ABABCADABEFEGABHHI
Str. 1-2 : (AB)(AB)(CAD)(AB)(EF)(EG)(AB)(HHI)
Level 2 : AABACDAE
Str. 2-3 : (AAB)(ACD)(AE)
Level 3 : ABC
Str. 3-4 : (ABC)
Level 4 : A

In this case, structured elements of roughly equivalent length
are obtained at each level. However, this rule might not be
efficient on the one hand because the isolated elements are
integrated into the following grouping whereas it might be
more relevant to integrate them into the previous grouping



Algorithm 1: Structuring function(level n=0,
marker m=0)
Result: Every hierarchical level structured with the

associated formal diagrams
if level n does not exist and marker m == 0 then

oraclen ← initialization(oraclen);
linksn ← [0];
history nextn ← tab(empty);
formal diagramn ← matrix(empty);
concat objn ← string(empty);

end
while parsing string s do

c← parsed(s);
oraclen ← add state(oraclen, c);
formal diagramn(c, t)← 1;
display(formal diagramn);
if (RULES are passed and m == 0) or
(m == 1 and len(concat objn) > 0) then

segmentation(n+ 1,m);
end
concat objn ← append(concat objn, c);
if level == 0 and EOS then

m← 1;
end
if m == 1 then

segmentation(n+ 1,m);
concat objn ← append(concat objn, c);

end
end

or to keep this object isolated, for example, if it is strongly
isolated by a silence.

4. MAIN ALGORITHM AND HIERARCHICAL
MEMORY

The Cognitive Algorithm is implemented in such a way as
to update the Multi-scale Oracle and obtain the formal di-
agrams displayed and updated in real-time.

4.1 Structuring function

The main algorithm consists of calling the structuring fun-
ction(level n, string s, marker m). This function is initial-
ized at level n (usually set at 0), with the initial string s,
and marker set at 0. A pseudo-algorithm of the structuring
function is provided in the Algorithm 1.

Algorithm 2: segmentation(level n, string s, marker
m)
tn+1 ← max(linksn) + 1;
for i in range(length(concat objn)) do

linksn ← append(linksn, tn+1);
end
s← label(concat objn);
concat objn ← string(empty);
structuring function(n+ 1, s,m);

The structuring function is a recursive function divided
into three parts. The first part corresponds to the initial-
ization of the various data structures at the current level
if they do not exist. The oracle at level n oraclen is ini-
tialized with the initializing function provided in the Vari-
able Markov Oracle module developed by C. Wang and S.
Dubnov [14]. The links table linksn is initialized with a
node 0 which correspond to the index of the initial state
of the oracle. The history next table and the formal di-
agram at level n history nextn and formal diagramn

are initialized with an empty table and an empty matrix and
the concatenated object at level n concat objn is initial-
ized with an empty string. Then the function starts a loop
which parses the character string input to the function. It
adds in the data structures the new object acquired at this
level. First, a state corresponding to the character c parsed
on the string s is added to oraclen with the adequate func-
tion provided in the Variable Markove Oracle module [14].
Then the formal diagramn is updated, meaning that the
material corresponding to the character c is added to the
formal diagram if it does not exist yet, and the value of the
matrix at material c and time t is set to 1. Then the updated
formal diagramn is displayed.

In a second part, there is a structuring operation if the
previous rules are validated for the character c at time t
(Algorithm 2). The links table linksn is updated with
the corresponding index of the higher-level node. There
is then a comparison of the concat objn with the already
existing top-level objects contained in history nextn and
s become the label at the next level corresponding to the
concat objn.

If the object does not exist, history nextn is updated
with the couple (s, concat objn) with s as a new label.
The concatenated object is reset to the empty character
string and structuring function(n + 1, s,m) is called
at the next level with the new labeled object as the input
string. At the upper levels, the character string corresponds
to a single character s, and the function exit and goes back
down to the lower level when there is no structuring. If the
function is called at the first level of structure, the charac-
ter string is read as long as there is no structuring. Finally,
concat objn is updated by concatenating the parsed char-
acter c.

A question is to know when to end the algorithm at higher
levels without creating an infinite number of oracles. For
this, we use a marker. This leads us to the third part: when
the last character of the initial character string is read, the
marker changes from zero to one and remains at one for
each entry in the function at higher levels. Structuring at
each level is then enforced. The function segmentation
is called again for the last characters of each level so that a
new state is not created for this level because it corresponds
to the last structuration. Moreover, if the upper level does
not exist, it is not created and the algorithm goes directly
to the lower level. As all the needed information is pro-
vided to the system at this point, the reading and structur-
ing of the remaining characters in the intermediate levels
are completed a few steps later.



Figure 4: Representation of the Multi-scale Oracle.

4.2 Hierarchization of the memory

The organization of the Multi-scale Oracle and the back
and forth in the memory between hierarchical levels is ob-
tained as follows: the Multi-scale Oracle lists for every
level i a substructure gathering the five data structures de-
scribed above: a factor oracle, a formal diagram, a history
next table, a concatenated object and a links table. These
data structures are updated at any time t when new char-
acters are read. Information from higher and lower-level
oracles can be accessed through the links tables. Relations
between the lower-level and higher-level materials are re-
censed in each history next structure. A representation of
the Multi-scale Oracle is presented in Figure 4.

Each time the lower level is structured, the higher level is
created if it does not exist yet and a new state at this higher
level is created. The same process is repeated if there is
a structuring operation following the creation of this new
state. If there is no structuring, the algorithm returns to the
lower level where a new state is added, which will lead or
not to new structuring operations. If the algorithm is at the
lowest level, then it keeps on acquiring new elements of
the musical piece, meaning characters from the string.

Figure 5 illustrates schematically the steps of updates and
structuration in the Multi-scale Oracle according to the five
rules with the string “abacabacdeab”. First, there is the
creation of an initial state for the data structures of level
0, meaning the data structures are created and initialized.
This is the step (0), the step of the creation of a new level.
Then, the first character “a” is read. A state corresponding
to character “a” is created in the oracle of level 0 and the
formal diagram is updated with the material correspond-
ing to “a” : this is the step (1), the step of creation of
a state. There are no structure criteria so anything else
happens and “a” is appended to the concatenated object
which was until then the empty word. The same thing is
done with the letter “b” (2). The third letter “a” is read, so
a state is added to the according oracle and the formal di-
agram is updated (3). Then, as this letter has already been
seen before, there is structuration of the concatenated ob-
ject which is “ab”. This is the step (4), the step of struc-
turation. The next level does not exist yet, so there is the
creation of a new state at the next level: adequated data
structures are created and initialized (5). A new state cor-
responding to lower-level concatenated object “ab”, la-
belled “a”, is created (6) and there are no structure criteria
so the loop for level 1 of structure ends, and another char-
acter “c” is parsed at level 0. The algorithm goes on this
way until the end of the string of level 0. The concatenated
object is structured at states (29), (31), and (33) because
the marker is set at 1 since the end of step (28).

5. RESULTS

Examples on W.A. Mozart’s Rondo K.545 and C. Debussy’s
Hommage à Rameau associated strings are provided to il-
lustrate the Multi-Scale Oracle analysis based on strings.

5.1 W.A. Mozart’s Rondo K.545

We take as an example of study the character string “aba-
cabacdeabfgabachijklmhinopqabacrsrsttu” which is a re-
duction of the Rondo K.545 by W.A. Mozart. We find in
Figure 6 the segmentation from the score at the scale of the
musical phrase that leads to such a reduction. This reduc-
tion was operated manually by the authors and allows us
to start on a basis for hierarchical structures automatically
computed with the Cognitive Algorithm. We did this first
analysis from the score to simplify our problem. In the fu-
ture, the first step will not be made by a musicologist but
by a configurable automated audio analyzer giving labels
such as what we propose in [13].

We see that the musical phrases labeled with the same
letters are simplifications of different variations. What we
consider as strict equality during the automatic analysis is
then not a real one. The impact of this simplification will
be studied when the connection between the signal analysis
and the multi-scaled analysis from a character string will
be implemented.

As studied in part 4, different results are obtained de-
pending on the rules implemented to structure the piece
of music. When we structure according to the five rules
mentioned, we find the formal diagrams in Figure 7.



Figure 5: Hierarchization of the memory.

The analysis of these diagrams from a compositional point
of view is left to musicologists. However, we can make a
few observations about the obtained results. We can com-
pare these diagrams with those obtained when we remove
one or more of the stated rules.

If we remove Rule 4 and Rule 5 (see Figure 8) , we end
up in the configuration where the diagrams created from
a certain level are identical (see part 3.2). So we have as
many new diagrams produced as there are oracles created
until the end-of-string marker is activated. The termina-
tion of the algorithm is therefore ensured, but we have a
finite number of identical diagrams and the same number
of associated windows for each process that is opened. For
example in Figure 4, there are four hierarchical levels, so
there are four open windows on the computer’s screen that
make the results harder to read.

5.2 C. Debussy’s Hommage à Rameau

We can run the algorithm with any other string as an en-
try. From an analysis of Claude Debussy’s piece of music
Hommage à Rameau obtained in the same way than the
previous example, the associated labels obtained are (1, 2,
3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 1, 2, 3, 4, 9, 20, 21, 20, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 28, 29, 32, 33, 34, 35, 1, 2, 3, 4, 5, 6, 36, 37,
9, 38, 39, 9, 39, 40, 1, 39, 40, 41, 42). As there are more
than 26 labels, we use numbers instead of letters for easier
readability. The associated hierarchical diagrams obtained
with the rules 1, 2, 3, 4, and 5 are represented in Figure 9.
The Paradigmatic Recognition Test computed with strict
equality of the strings gives some rigidity to the formal di-
agrams which might be more accurate with a more flexible
similarity test.

6. DISCUSSIONS

We wonder whether the different rules proposed in part 3.2
are necessary and relevant: the study of W.A. Mozart’s

Rondo K.545 gives rather efficient results because it has
a relatively conventional form, even if we can already see
some ambiguities with structures that play between binary
and ternary form. However, some pieces of music can lead
to more complex and ambiguous structures. For example,
in some configurations, the combined rules 4 and 5 induce
a significant restructuration of the character string. There-
fore there are additional cognitive operations (in the sense
of our modelization, meaning higher processing complex-
ity) with the combination of some rules. Indeed, the extract
“abacabachijklmabach” is structured in “(ab)(ac)(ab)(ac)
(hijklm)(ab)(ac)(h” or “ABABCAB” which itself is struc-
tured “(AB)(AB)(CAB”. The parenthesis is not closed at
the end of the strings because the analysis is in progress:
the last characters correspond to the concatenated object
and structuring criteria are required for the characters to
be structured. When the “inopq” objects are concatenated
to the previous string there are changes in the structure.
In fact, the “abacabachijklmabachinopq” character string
becomes “(ab)(ac)(ab)(ac)(hi)(jklm)(ab)(ac)(hi)(nopq” that
is labeled at higher level “ABABCDABC” which itself is
structured “(AB)(AB)(CD) (AB)(C”. Rule 5, which pre-
vented at first glance from structuring before the third “A”
in level two of the first example, was finally not used be-
cause a new character “D” appears with the use of Rule
4 in the second example. Moreover, contrary to the ex-
ample of W.A. Mozart’s Rondo K.545, the use of Rule 4
sometimes might not involve only the direct higher level
but also other levels. In the example presented before, the
combination of several rules induces a deeper modification
of several higher levels.

However, these additional computations might not be a
problem as maybe the cognitive processes themselves con-
sist of recomputing at any time and restructuring the in-
coming information.

Another question is to know whether these rules are suffi-
cient. For example, we do not take the time signature into
account while it can be significant. The character string



Figure 6: Structuration of the W.A. Mozart’s Rondo K.545
from the sheet.

Figure 7: Formal diagrams of W.A. Mozart’s Rondo K.545
at hierarchy levels 0, 1, 2, and 3 with the five structuring
rules. The objects have different colors to differentiate two
different objects of the same material that are one after the
other.

“abacac” may be structured “(ab)(ac)(ac)” (binary struc-
turation obtained with the rules we propose in this article)
or “(aba)(cac)” (ternary slicing). There may even be beat
or time signature changes within the same song.

Finally, it is necessary to measure to what extent the im-
plemented rules remain neutral and are not inferred from
the knowledge of the musicologist. Adding a time sig-
nature, for example, could orient the analysis of a piece
where the composer was trying to override its existence in
his work.

The computation of similarity between two objects also
has to be deepened. Indeed, we want to set up a similarity
threshold with a computing distance between two character
strings rather than strict equality.

Also, we would like to spell out different functions, such
as changes in tempo, nuances, transposition, inversion, and
their associated coefficients, to clarify the interconnections
between two elements considered to be of the same class.
Therefore all the information necessary for the reconstruc-
tion of the initial music from a high hierarchical level would
be obtained. Moreover, we could represent the presential
rate of a previously heard object. For example, if the cur-
rently heard object is 80% similar to a previous one, the



Figure 8: Formal diagrams of W.A. Mozart’s Rondo K.545
at hierarchy levels 0, 1, 2, 3, and 4 with the structuring
rules 1, 2, and 3. Six other levels (levels 5, 6, 7, 8, 9, and
10) are created but not shown here as they are identical to
levels 3 and 4.

adequate material will be represented accordingly.

Currently, a display is presented in such a way as a win-
dow corresponds to a diagram. However, this display is not
optimal because there can be a wide range of hierarchical
levels meaning a significant number of windows. Further-
more, this display does not align the origins of the dif-
ferent diagrams, while this would visually highlight even
more the relations between the different hierarchical lev-
els. In the future, we would like to represent all of these
diagrams on a single three-dimensional graph, where the
first two axes would be the time axis and the material axis,
and the third axis would correspond to the time scale of
the structures. It would enable a continuous representation
of the structures on different levels. However, we would
have to modify our multi-scale oracle, such as it would be
less linear for each structuring level. Instead of having one

Figure 9: Formal diagrams obtained with the rules 1, 2, 3,
4, and 5 of C. Debussy’s Hommage à Rameau at hierarchy
levels 0, 1, 2 and 3.

augmented Factor Oracle at each level, we would have an
oracle with multi-scale connexions.

Moreover, at the first level of structuring (from the signal)
a representation in gray level for the dynamics of the dif-
ferent objects is implemented, but we still have to integrate
it for the different hierarchical levels as there is so far no
information on the dynamics with only character strings as
input.

7. CONCLUSIONS

In this article, we propose an automatic implementation of
a new musical representation. This representation is com-
puted based on the temporal evolution of the piece on dif-
ferent time scales. Then, we suggest an algorithm allow-
ing from a character string, where each character corre-
sponds to a defined musical material, to produce formal
diagrams, meaning representations of musical materials as
a function of time. These diagrams are structured on dif-
ferent hierarchical temporal levels. Each level is structured
in real-time when listening to music, the auditory process
being modeled by the parsing of the initial character chain.
This automated production of the representation was im-



plemented by the creation of elementary rules defined in
this article. We also leave the possibility to choose the Syn-
tagmatic Recognition rules to obtain different possible di-
agrams. Moreover, this article also describes the memory
arrangement and the relations between the different levels
of memory with the Multi-Scale Oracle. Also, we describe
and explain the main loop of the algorithm and the trajec-
tory between the different structural levels.

Next, we need to connect the signal analysis of the first
level and the entire hierarchical analysis based on string
characters. In the first situation, the similarity between ob-
jects is computed based on the sampling widows, and the
objects are segmented when there are changes. On the op-
posite, the similarity between strings is calculated based on
string comparison, and these are segmented when they are
similar. The whole point will now be to create consistency
between the two different analyses.

8. REFERENCES

[1] F. Delalande, La musique au-delà des notes. Presse
Universitaires de Rennes, 2019.

[2] G. Brelet, le temps musical: essai d’une esthétique
nouvelle de la musique, 2 Volumes. Presses Universi-
taires de France, Paris, 1949.

[3] J. Sloboda, “Music structure and emotional response:
Some empirical findings,” Psychology of Music,
vol. 19, pp. 110–120, 1991.

[4] J.-M. Celerier, P. Baltazar, C. Bossut, N. Vuaille, J.-M.
Couturier, and al., “Ossia: Towards a unified interface
for scoring time and interaction,” in Proc. Int. Conf. on
Technologies for Music Notation and Representation -
TENOR 2015, Paris, France, 2015.

[5] A. Cont, “Antescofo: Anticipatory synchronization
and control of interactive parameters in computer
music.” in International Computer Music Conference
(ICMC), Belfast, Ireland, 2008, pp. p.33–40.

[6] G. Sargent, “Estimation de la structure de morceaux
de musique par analyse multi-critères et contrainte de
régularité,” PhD Thesis, Rennes University, 2013.

[7] J.-M. Chouvel, “Musical form, from a model of hear-
ing to an analytic procedure,” Interface, vol. 22, pp.
99–117, 1993.

[8] F. Lerdhal and R. Jackendoff, A generative theory of
tonal music. Cambridge, Mass. : MIT Press, 1983.

[9] C. Wang and S. Dubnov, “The variable markov or-
acle: Algorithms for human gesture applications,”
in IEEE Multimedia, vol. 22, no. 4, 2015, doi:
10.1109/MMUL.2015.76., pp. 52–67.

[10] C. Allauzen, M. Crochemore, and M. Raffinot, “Factor
oracle: a new structure for pattern matching; ; theory
and practice of informatics.” in Proceedings of SOF-
SEM’99, Paris, France, 1999.

[11] J.-M. Chouvel, Analyse Musicale, sémiologie et cog-
nition des formes temporelles. L’Harmattan, Paris,
2006.

[12] ——, “Categories and representation in cognitive mu-
sical analysis,” Sonus, vol. 35, pp. 17–35, 2014.

[13] J. Calandra, J.-M. Chouvel, M. Desainte-Catherine,
and al., “Génération automatique de diagrammes
formels par un algorithme cognitif modulaire: étude
préliminaire,” in Journées d’Informatique Musicales
(JIM), Strasbourg, France, 2020.

[14] C. Wang and S. Dubnov, “Guided music synthesis with
variable markov oracle,” in 3rd International Work-
shop on Musical Metacreation, 10th Artificial Intelli-
gence and Interactive Digital Entertainment Confer-
ence, Raleigh, North Carolina, 2014.


	 1. Introduction
	 2. Multi-scale Oracle
	2.1 Presentation of the Cognitive Algorithm
	2.2 Organization of the memory
	2.2.1 Factor Oracle
	2.2.2 Relation between the Oracle and the Cognitive Algorithm: the Multi-Scale Oracle
	2.2.3 Multi-Scale Oracle data structures description


	 3. Creation and implementation of the two Paradigmatic and Syntagmatic Recognition Tests
	3.1 Paradigmatic Recognition Test
	3.2 Syntagmatic Recognition Test
	3.2.1 Rule 1
	3.2.2 Rule 2
	3.2.3 Rule 3
	3.2.4 Rule 4
	3.2.5 Rule 5


	 4. Main algorithm and hierarchical memory
	4.1 Structuring function
	4.2 Hierarchization of the memory

	 5. Results
	5.1 W.A. Mozart's Rondo K.545
	5.2 C. Debussy's Hommage à Rameau

	 6. Discussions
	 7. Conclusions
	 8. References

