
SYMBOLIST RE-IMAGINED: BIDIRECTIONAL GRAPHIC-SEMANTIC
MAPPING FOR MEDIA NOTATION AUTHORING AND PERFORMANCE

Rama Gottfried
Hochschule für Musik und Theater

Hamburg, Germany
rama.gottfried@hfmt-hamburg.de

ABSTRACT

SYMBOLIST is an in-development application for experi-
mental notation, which aims to provide an un-opinionated
authoring environment for the design and performance of
symbolic notation. By following an information visual-
ization rather than prescribed musical orientation, the ap-
plication is thought of as an open play-space, with tools
for experimentation and thinking visually about relation-
ships between representation and interpretation in media
performance. In the paper we begin with an overview of
the project’s background, iterations and relationship to the
DRAWSOCKET project, and introduce a redesign of the sys-
tem, centered on a new framework for custom symbol def-
initions for bidirectional mapping and user interaction. In
conclusion we discuss future development directions and
evaluation of the project.

1. BACKGROUND

The origins of the SYMBOLIST project can be traced back
to 2011, through the development of a composition prac-
tice in Adobe Illustrator using a plugin called Scriptogra-
pher, 1 which allowed users to create new drawing tools
in Javascript which could then be used in Illustrator as an
interactive brush. As a composer working with experimen-
tal instrumental techniques and spatial notation, Scriptog-
rapher was perfect for my composition needs at the time,
since you could design a notation for a given technique
or musical expression and then code it as an interactive
graphic function, which could then be manipulated graph-
ically in Illustrator. With the access to the mouse move-
ment, interactions could be used to compose different el-
ements of the notation, much in the same way that mouse
interaction is used in programs like Processing. 2

For example, a note with a spatially indicated duration
typically is written as a note-head of some shape with a
line extending out from it to show its duration. Using
Scriptographer, you could create an interaction for com-
posing note-duration symbols, where clicking down on the

1 https://scriptographer.org/
2 https://processing.org/

Copyright: c© 2022 Rama Gottfried. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

Illustrator canvas places the note-head, and then using the
mouse drag, determine the end of the duration line, ending
at the location of the mouse up event.

Further, you could also group elements to structure hier-
archies of objects which would then appear in Illustrator
as grouped objects, visible as nested folders in the layers
menu.

Around the same time, I was studying at UC Berkeley’s
Center for New Music and Audio Technologies (CNMAT)
developing approaches to instrument design using Open-
SoundControl (OSC) [1] for data structuring. One day,
while working with Scriptographer, I had saved a score
in Illustrator as Scalable Vector Graphics (SVG) format 3

and accidentally opened the SVG file in a text editor. In
the SVG file I noticed that all of the graphic objects were
there in a human readable format, and closely resembled
the kind of nested objects that we were working on at CN-
MAT in the Odot library[2]. This gave me the idea that I
might be able to translate the SVG information into OSC,
then “perform” the OSC score in much the same way as
you would a stream of OSC coming from a sensor-based
instrument—in a similar spirit to Daphne Oram’s “Oram-
ics” [3] and Xenakis’ UPIC system [4], but with a greater
focus on symbolic interpretation.

Soon after, while composing for a high-resolution spatial
audio rendering system, I found that I was lacking a way
to compose spatial movements graphically, in a way that
would connect with instrumental notation practice. Af-
ter some experiments using Blender 4 to draw 3D curves
which could then be parsed via Python and sent out over
OSC, I was dissatisfied by the perceptual differences be-
tween common practice notation and the kinds of 3D rep-
resentation I was able to create in Blender—both had their
merits, but what was missing was a compositional frame
that connected the two representation paradigms into a uni-
fied notation system. Due to time constraints, for this piece
I fell back on using automation controls in Ableton Live 5

and sending OSC to control the movements using Max
for Live. 6 This was practical, but this kind of automa-
tion approach has the limitation of forcing the composer to
separate each data parameter into separate streams of data
(e.g. x, y, z), whereas in a symbolic representation mul-
tiple attributes can be indicated in unified graphic repre-
sentation. Following these experiences [5] I later returned

3 https://www.w3.org/TR/SVG11
4 https://www.blender.org/
5 https://www.ableton.com/en/
6 https://cycling74.com/

mailto:rama.gottfried@hfmt-hamburg.de
http://creativecommons.org/licenses/by/3.0/

to the SVG-OSC transcoding idea, and developed a first
working model which was presented at the 2015 TENOR
conference [6].

In the meantime, the Scriptographer project was aban-
doned by its developers after Adobe drastically changed
their plugin API in version CS6. The new Adobe API was
different enough that it would require a significant amount
of work, and even then the mouse interaction tools that
were used in Scriptographer were no longer accessible, so
the authors decided to stop development on the project and
later went on to create Paper.js, 7 which has some simi-
larities with Scriptographer, but is more closely related to
Processing since it no longer is bound to the Illustrator ap-
plication environment.

After preliminary tests using the SVG-OSC transcoding
for score playback, it was becoming increasingly compli-
cated to parse complex hierarchies of symbols in order to
format them into OSC streams, so in 2017 I began work
in collaboration with OpenMusic [7] developer Jean Bres-
son, through an Ircam-ZKM Musical Research Residency
towards the goal of creating a system that could replace the
Scriptographer/Illustrator approach that I had developed so
far.

The first version of SYMBOLIST was created in 2018 as a
standalone JUCE 8 application, which provided the basic
tools for drawing vector graphics and query system that
allowed SYMBOLIST to be used as a lookup table for OSC
stream playback [8].

Working in JUCE seemed practical since it has a wide
user base and is used for audio plugins as well as Max
and Ableton Live applications. There were some minor
complications, due to JUCE’s incomplete SVG support, 9

however, generally, we were able to create a working first
prototype of the system.

A conceptual turning point in the project occurred towards
the end of the residency as we were thinking about how to
simplify the process of using the SVG data for controlling
digital processes.

In the first version of SYMBOLIST, as in the original SVG-
OSC implementation, the graphic data needed to be in-
terpreted by the application that received the data. Using
Odot I would parse the graphic OSC information coming
in from SYMBOLIST, and then map the data to other pro-
cesses, for instance synthesis parameters or coordinates for
spatial rendering.

The process of interpretation requires that the parsing-
mapping algorithm knows the context of the graphic ob-
jects. For example, that a circle is a note-head and not a
rhythmic dot, and so on. Like the axes of a graphic plot
of information, contextual musical symbols (meter, staff-

7 http://paperjs.org/
8 https://juce.com/
9 https://forum.juce.com/t/complex-svg-files-fail-to-load-

properly/26917/16

lines, clefs) indicate to the reader how they should interpret
the notes and rhythmic symbols written on the staff.

The following phase of SYMBOLIST development contin-
ued as I began work at the Hamburg University of Music
and Theater, working with Georg Hajdu in the Innovative
Hochschule project. Continuing from the idea of the clef
as a graphic symbol that contextualizes the notation on a
musical staff, I began work on developing a system for
SYMBOLIST that would allow users to define interpretive
symbols for hierarchical context parsing. Since the data is
already in hierarchical format inside the application’s data
structure, it was logical that SYMBOLIST could interpret
the graphics internally, and then stream OSC post parsing
and mapping, rather than streaming the raw graphic infor-
mation which required complex parsing of the graphic hi-
erarchies to contextualize the symbol references, as in tra-
ditional common practice notation.

Following this line of thought it became clear that what
SYMBOLIST really needed was a system for bidirectional
mapping, where graphic data is interpreted as symbolic
data with semantic meaning, and inversely, that the user
should also be able to send data in its semantic representa-
tion to SYMBOLIST, where it would then be mapped to its
graphic representation.

In 2018 I began implementing this idea into the JUCE
version of SYMBOLIST, but soon needed to switch tracks
to focus on a different notation issue for a project at the
Innovative Hochschule, developing a platform for realtime
networked score display.

At the end of 2018, and first half of 2019 we developed
a drawsocket, a server/client framework for realtime dy-
namic notation using web browsers for graphic rendering [9,
10]. Based in node.js and standard web technologies of
HTML, SVG, CSS, and Javascript, DRAWSOCKET is es-
sentially an OSC wrapper [11] for web browsers, 10 pro-
viding a homogeneous message API for the creation and
realtime manipulation of browser elements.

Returning to SYMBOLIST after the first DRAWSOCKET
concerts, I began wondering if the framework of SYMBOL-
IST needed to be redesigned from the perspective of bidi-
rectional mapping, since I realized that this was most likely
going to be the most important part of the graphic-data re-
lationship that the system is developing towards.

SVG is very well supported in modern browsers, and hav-
ing just worked with node.js and browser technologies for
DRAWSOCKET, it seemed that the flexibility of Javascript
could be a convenient option for users to create custom
symbol definitions (as in Scriptographer). I decided to see
how fast it would be to implement a proof of concept using
Electron.js, 11 a cross-platform desktop application devel-
opment using a node.js server and Chrome as a front-end,
used for applications like Skype, WhatsApp, Visual Studio
Code, Slack, WordPress, and others.

10 And by extension, provides access to other media via WebAudio,
WebGL, etc.

11 https://www.electronjs.org/

1.1 Symbolist JUCE

1.2 Clefs and Bidirectional Mapping

1.3 Drawsocket and Symbolist JS

Using DRAWSOCKET as a frontend, and node.js for the
backend I found that I was able to get up and running very
quickly with Electron, and decided to continue SYMBOL-
IST development in this direction, bringing the experience
gained from the JUCE version to the creation of a deeper
structure for the creation of symbol interpretations that in-
tegrate into the graphic manipulation of symbolic data.

2. APPLICATION STRUCTURE

The new implementation of SYMBOLIST is organized as a
server-client model (Figure 2), comprising of:

• The main SYMBOLIST application server, running
in node.js, which serves the main display page and
manages messages between the client and server via
WebSocket 12 connection. Within the main server,
a child process called the “io-controller” handles in-
put and output from external sources via OSC over
a UDP socket, and maintains the “score,” a database
of hierarchical score elements, stored in SYMBOL-
IST “semantic representation” format (Section 4).

• The “editor,” a browser-based user interface client,
which displays the graphic representation of the data,
and allows the user to edit and create new data ob-
jects through graphic interaction. The “ui-controller”
runs in the browser and handles interaction via a li-
brary of definition scripts, which specify mappings
to and from data and graphics formats, as well as
other tools and interactions.

Since the system is now based on a web-server model,
we are able to also use Max’s node.script object to run the
server from within Max as an alternative to the Electron
desktop app.

3. GRAPHICAL AUTHORING AND
INTERACTION

The SYMBOLIST graphic user interface (Figure 1) is de-
signed around units of symbolic objects and their contex-
tual containers. Graphic “symbol” objects are placed in
“container” symbols, which function as a context frame
that can be used to interpret the meaning of the symbol.

In order to maintain an open and un-opinionated approach,
the SYMBOLIST framework does not specify how contain-
ers and symbols should look, act, or respond when you
interact with them. Rather, the interaction and meanings
of the symbols are defined in a library of custom object
“definitions,” which specify meaning through mapping se-
mantic data to-and-from its graphic representation.

Symbol definitions provide a mechanism to design custom-
tailored composition environments for particular author-
ing situations, stored as Javascript libraries, which can be
shared between users, and used as templates. Leverag-
ing web-browser technologies like JS, HTML, CSS, SVG,
etc., there are many ways to customize the layout in SYM-
BOLIST, and potentially, the definition libraries could com-

12 https://websockets.spec.whatwg.org

pletely transform the editor layout to serve a particular use-
case scenario.

The main graphic components of the default SYMBOLIST
graphic editor are:

• Score view: the top-level view of the application win-
dow, containing the main view and side bar. Sliders
are provided to offset the view of the document, as
well as basic zoom functionality.

• Palette: a set of buttons in a side toolbar displaying
icons of symbols that have been defined for the cur-
rent selected container context.

• Tools: a set of buttons that open high-level tools, that
can be used for operations like algorithmic gener-
ation of new symbols, or applying transformations
to existing elements (e.g. alignment of multiple ob-
jects, setting distributing objects, or other operations).

• Inspector: a contextual menu for editing the seman-
tic data of a selected symbol, which on update is
mapped to the graphic representation and sent to the
server to update the main score database.

On entering the application, the editor loads a score or
configuration file from the default load folder, which sets
the top-level page setup and palette options. A typical se-
quence of creating a score might be as follows:

1. The user opens a workspace with one or more de-
fault container symbols displayed on the screen, for
example an empty rectangle, which is like a piece of
paper.

2. Clicking on the “paper” container rectangle selects
it, and then the user sets it as the new context by
pressing the [s] key.

3. After setting the context, the palette toolbar is popu-
lated with icons of symbols that are defined with the
selected container context type.

4. Clicking on one of the palette toolbar symbol icons
puts the interface into “palette mode,” where the mouse
interaction is now designed for use with this specific
symbol type.

5. Holding the Command(Mac)/Control(Win) key en-
ters “creation mode,” which by convention draws a
temporary preview of the symbol (how it will appear
when you click), and displays the corresponding se-
mantic representation data as textual feedback.

6. After clicking, the symbol is placed in the container.

7. Clicking and dragging a symbol graphically modi-
fies its semantic data in reference to the container
context. In the case of common practice notation
this would be how you would change the time and
pitch information of a symbol. The interaction re-
sults depend on the “selection mode” specified in the
symbol definition.

3.1 Interface Components

3.2 User Experience

Figure 1. SYMBOLIST screenshot, showing some different types of staves, and editing capabilities.

data

data
message forwarding

JSON

WebSocket

web server HTML

HTTP

OSC

UDP

data

ui defsio defs
Drawsocket JSON
HTML/CSS/SVG/JS

editor GUI

webpage

browser

ui_controller
io_controller

symbolist server
(node.js)

(Max, Pd, SuperCollider, etc.,
anything that understands OSC)

sound/video/IO etc.

score
bi-directional

mapping
between graphic

and data

mapping
for data performance

and server-side
actions

external media
rendering applicaiton

Figure 2. SYMBOLIST architecture.

8. User can also modify the semantic parameters as text
by selecting the symbol and hitting the [i] key, which
brings up the inspector window, where you can edit
the data directly.

9. Pressing the [e] key enters “edit mode” for the se-
lected symbol, useful for editing of internal attributes
that are less relative to the container symbol. For ex-
ample, you would enter edit mode to adjust bezier
curve anchor points.

4. DATA REPRESENTATION

At the heart of SYMBOLIST are two parallel forms of in-
formation expression: semantic and graphic representation
(Figure 3).

Semantic data specifies the various attributes of informa-

tion about a symbolic object in terms of the object’s mean-
ing to the author. For example, the meaningful attributes
of a note object might be information about pitch and du-
ration, or a point object might contain x, y, and z values
corresponding to the point’s location in 3D space. In SYM-
BOLIST the semantic representation is thought of as the
main holder of information, which can be grouped into hi-
erarchies to represent scores or other types of data struc-
tures.

The graphic representation is a symbolic visual expres-
sion of the semantic data, designed relative to the context
defined by the author.

The aim of SYMBOLIST is to provide an agnostic envi-
ronment for developing, and composing with, new sym-
bolic representations of semantic data for use in multime-
dia composition practice; and so, the central design con-

sideration of this new implementation is to build a flexible
framework for specifying a wide range of mapping rela-
tionships between semantic and graphic representations.

Semantic data

{
 note: a4,
 start-time: 1,
 duration: 1s,
 amplitude: 1
}

Graphic representation

Figure 3. Semantic vs graphic representation of the same
information. Note: Figures 3-6 use pseudocode for brevity
(see Sections 6 and 7 for syntax details).

5. MAPPING

Between each of these representation contexts there is a
layer of mapping, with the semantic data serving as the
primary representation type.

Semantic data to graphic representation mapping (Fig-
ure 4) is used for the creation of graphic symbols from a
stream of input, for example from generative processes,
textural authoring, or computer assisted composition sys-
tems [7, 12, 13, 14, 15].

Graphic representation to semantic data mapping (Fig-
ure 5) is used in order to create or edit data based on graphic
information. This is the typical “graphical user interface”
situation, where the data is accessible through its visual
representation.

Semantic data to performance media mapping (Figure 6)
is the use of the data as a sequence of events that can be
played in time (or used to control other processes not nec-
essarily in time).

Note that in SYMBOLIST mapping between performance
media and graphic representation is achieved through first
mapping to semantic data. See section 8 for further discus-
sion.

Semantic data

{
 note: a4,
 start-time: 1,
 duration: 1s,
 amplitude: 1
}

{
 circle: {
 center-x: 100px,
 center-y: 100px,
 radius: 3px
 },
 line: {
 start-x: 100px,
 end-x: 200px,
 start-y: 100px,
 end-y: 100px
 }
}

Graphic representation

Figure 4. Semantic data mapped to create a graphic repre-
sentation from input data.

{
 note: f5,
 start-time: 1,
 duration: 1s,
 amplitude: 1
}

{
 circle: {
 center-x: 100px,
 center-y: 50px,
 radius: 3px
 },
 line: {
 start-x: 100px,
 end-x: 200px,
 start-y: 50px,
 end-y: 50px
 }
}

Semantic data Graphic representation

Figure 5. If edited graphically, the updated graphic data is
then mapped back to semantic data representation.

Score Output (OSC)

{
 class: “stave”,
 contents: [{
 class: “basicEvent”,
 note: a4,
 start_time: 1,
 duration: 1,
 amplitude: 1
 }, {
 class: “basicEvent”,
 note: e5,
 start-time: 1.5,
 duration: 1,
 amplitude: 1
 }]
}

{
 lookup: [{
 phase: 0.8
 note: a4,
 start_time: 1,
 duration: 1,
 amplitude: 1
 }, {
 phase: 0.2
 note: e5,
 start_time: 1,
 duration: 1,
 amplitude: 1
 }]
}

score lookup

Figure 6. Using the lookup method defined by the symbol
class, the semantic data can be used to perform external
instruments via Open Sound Control.

6. SEMANTIC REPRESENTATION

Within the SYMBOLIST application semantic data is stored
as Javascript objects and read/written in JSON 13 format
(transcoded to-and-from OSC for inter-application com-
munication).

The main attributes used in SYMBOLIST semantic data
objects are:

• id: a unique identifier name (required).

• class: a reference to the definition of the object type
in the user-definition library (required).

• contents: an array of child objects that a parent con-
tainer object might hold (required for container sym-
bols).

Semantic data objects may include any number of other
attributes 14 (pitch, amplitude, etc.). For example a simple
semantic object might look like:

1 {
2 "id" : "foo",
3 "class" : "legs",
4 "action" : "jump",
5 "start_time" : 0.1
6 }

Here we see an object with the id “foo,” which is of class
“legs,” that has an attribute action associated with it and a
start time.

13 https://www.json.org/json-en.html
14 The term attribute is used here interchangeably with properties, pa-

rameters, aspects, etc.

Symbols may also contain other symbols. Container sym-
bols function to frame their contents, providing reference
and context like a plot graph frame, which provides a per-
spective and scaling for interpreting the set of data points
displayed in the graph. Similarly, when a semantic data
object contains other objects, the children are stored as an
array in the object’s contents field. For example, for an
imaginary class “timeline,” which holds two types of leg
actions, we might write:

1 {
2 "id" : "bar",
3 "class" : "timeline",
4 "duration" : 1,
5 "contents" : [{
6 "id" : "foo-1",
7 "class" : "legs",
8 "action" : "jump",
9 "start_time" : 0.1

10 },{
11 "id" : "foo-2",
12 "class" : "legs",
13 "action" : "sit",
14 "start_time" : 0.2
15 }]
16 }

Since the data elements are stored as JS objects, it is easy
to import/export SYMBOLIST scores as JSON files.

When the application loads, it reads a default initializa-
tion file in the form of a SYMBOLIST score. The current
default initialization config file looks like this:

1 {
2 "about" : "some metatdata",
3 "id" : "Score",
4 "class" : "RootSymbol",
5 "contents": {
6 "id" : "trio",
7 "class" : "SystemContainer",
8 "x": 200,
9 "y": 100,

10 "duration": 20,
11 "time": 0,
12 "contents" : [{
13 "id" : "oboe",
14 "class" : "FiveLineStave",
15 "height" : 100,
16 "duration": 20,
17 "time": 0,
18 "contents" : []
19 },
20 {
21 "id" : "bassoon",
22 "class" : "PartStave",
23 "height" : 100,
24 "time": 0,
25 "duration": 20,
26 "contents" : []
27 },
28 {
29 "id" : "synth",
30 "class" : "PartStave",
31 "height" : 200,
32 "time": 0,
33 "duration": 20,
34 "contents" : []
35 }]
36 }
37 }

In this example, we can see there is a “RootSymbol,”
which contains a “SystemContainer,” which in turn con-
tains two “PartStave” symbols and one “FiveLineStave”
symbols.

7. BROWSER NOTATION

SYMBOLIST uses SVG to draw graphic symbol represen-
tation, utilizing DRAWSOCKET as a convenience wrapper
to provide shorthand methods for the creation and manip-
ulation of browser window elements.

The SYMBOLIST format for a symbol in its browser ren-
dered notation, is a set of three group elements (<g> in
SVG, or <div> in HTML) marked by class tags, which
follow the defined symbol class name.

For a symbol class type “SymbolClassName,” the SVG
template would be:

1 <g id="foo" class="SymbolClassName symbol">
2 <g class="SymbolClassName display"></g>
3 <g class="SymbolClassName contents"></g>
4 </g>

The “symbol” class marks the top-level symbol group con-
taining the “display” and “contents” groups. The “display”
group holds all of the symbol’s display information and
the “contents” group contains any potential child elements.
For simplicity all graphic symbol elements include both the
display and contents elements as placeholders.

Since SYMBOLIST is constantly mapping back and forth
between semantic data and its graphic representation, we
are making use of the HTML dataset feature 15 to store
the semantic metadata inside the top-level symbol element.

For example, using our imaginary “legs” actions above,
we include the action and start time parameters, written as
dataset attributes by using the prefix “data-”: 16

1 <g id="bar" class="Timeline symbol"
2 data−duration="1">
3 <g class="Timeline display"></g>
4 <g class="Timeline contents">
5 <g id="foo-1" class="Legs symbol"
6 data−action="jump"
7 data−start time="0.1">
8 <g class="Legs display"></g>
9 <g class="Legs contents"></g>

10 </g>
11 <g id="foo-2" class="Legs symbol"
12 data−action="sit"
13 data−start time="0.2">
14 <g class="Legs display"></g>
15 <g class="Legs contents"></g>
16 </g>
17 </g>
18 </g>

8. SYMBOL DEFINITIONS

Symbols are defined as Javascript classes, which are stored
and recalled when symbol actions are performed. For each
user interaction, the ui- and io-controllers look up the sym-
bols involved in the interaction by class name, and use their
definition to execute the symbol’s reaction.

Definitions specify the bidirectional mapping between se-
mantic and graphic representations and responses to OSC
“lookup” queries which can be used to perform the score.

15 https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/dataset
16 Note that according to the HTML dataset specifications, all names

will be converted to lowercase, this can create issues in some cases, so
best practice is to use all lowercase for attribute names.

6.1 Containers

6.2 Score Files

7.1 SVG / HTML Format

7.2 Storing Semantic Data in Dataset Attributes

There are two types of definition scripts:

• ui-definitions run in the ui-controller and perform
user interactions based on the different interaction
modes, and applies bidirectional mapping between
semantic and graphic representations.

• io-definitions run in the io-controller and are used to
assist in the lookup and OSC performance mappings
of the semantic data to media like sound synthesis,
video, etc., or to perform server-side score manipu-
lations.

In each controller context there are certain methods and
variables that need to be defined in order for the class to
function properly in the SYMBOLIST ecosystem. Users
may also call custom io- and ui- methods from external ap-
plications via OSC (described further in Sections 11 and 12).

For convenience, there is a base class template that can be
used to handle most common interaction situations, which
may be overridden by sub-classes for custom handlers. A
set of helper functions are provided in global objects called
“ui api” and “io api” which can be used in definitions for
many essential operations. Eventually it is planned to cre-
ate a graphical tool in the editor to help define symbol def-
initions, but this is not yet implemented.

9. UI DEFINITIONS

At the time of writing, the variables and methods defined in
the symbol class used in the the ui-controller when handing
user actions are:

• class: the unique name of the symbol, used to store
and lookup the symbol definition.

• palette: an array of class names of other symbols
that can be used within a container symbol, which
are drawn in the palette toolbar when the user selects
the symbol as a new context.

• getPaletteIcon: called when drawing the palette icon,
returns DRAWSOCKET drawing commands.

• paletteSelected: called when the user clicks on the
symbol icon, used to trigger custom UI. When the
symbol is selected in the palette, the definition should
enable its mouse handers.

• getInfoDisplay: called when creating the inspector
window; returns drawing commands for the inspec-
tor contextual menu.

• fromData: called to map data from semantic to graphic
representation.

• selected: called on selection and deselection, for op-
tional custom UI handling.

• drag: called when the user drags selected symbols;
by default the ui api translate function is used to set
the symbol’s SVG translation matrix to preview the
new location.

• applyTransformToData: called on mouse-up if se-
lected objects have changed, and applies the trans-
form matrix to the SVG attribute values.

• currentContext: called when the user enters or exits
a container symbol (hitting the [s] key, [esc] to exit).

• editMode: called when entering and exiting edit mode.

9.1 Data and View Parameters

Looking at Figures 4 and 5 we can see that in some cases
the relationship between a semantic property and its graphic
representation is not a one-to-one mapping. For instance in
Figure 4 the note property needs to be mapped to a pixel
position that is used both for the center point of a graphic
circle (note-head) as well as the starting point for a line
(duration indication). In reverse, Figure 5 shows how when
the user moves a symbol graphically, the new pixel posi-
tions need to be translated back to its semantic representa-
tion to update the score.

To manage the bidirectional mapping between semantic
and display representation, the template base class uses an
intermediate stage called “view-parameters”. The idea is
that the view-parameters contain the bare-minimum num-
ber of variables needed to draw the symbol.

For example, in Figure 4 the graphic representation re-
quires a y position relative to the pitch’s location in the
staff, an x position relative to the start time, and a width
value relative to the duration of the event. After first map-
ping from the semantic attributes note, start-time and dura-
tion to view-parameters x, y, and width, the drawing method
can then use the view-parameters x, y, and width values to
draw its two graphic objects from a single set of values.

The ui template class uses two functions to define data-
view mappings: dataToViewParams which receives the se-
mantic data and returns the view-parameter object, and
viewParamsToData which performs the opposite mapping.
Just as the view-parameters provide a minimal set of vari-
ables needed to draw multiple graphic graphic objects from
the semantic representation, the viewParamsToData func-
tion uses the same view-parameters to map back to seman-
tic data. For example, in Figure 5 the mapping only needs
either the center point of the note-head or the start-x posi-
tion of the line to determine the start-time parameter.

The template class also two additional data/view param-
eter translation methods to coordinate child objects with
parent containers: childDataToViewParams and childView-
ParamsToData. For example, in Figures 4 a note-head
circle is drawn from its note parameter, whose position
is relative to the parent five-line staff object. Inside the
note’s dataToViewParams and viewParamsToData meth-
ods, it will need to “ask” its parent objects where to place
itself by calling the parent’s childDataToViewParams and
childViewParamsToData functions. In deeply hierarchical
container structures, it is possible that the parent may need
to ask its parent for some data as well, and so the parent
querying system can provide a way to maintain separation
of concerns between different aspects of the notation.

10. IO DEFINITIONS

Running in the server, the io-controller’s job is to handle
OSC communication with external applications, reading

and writing files, and maintaining the score database. Cur-
rent default io-definition variables and methods used by the
io-controller are:

• class: the unique name of the symbol, used to store
and lookup the symbol definition.

• comparator: a comparator function used in container
symbols to sort child symbols. For example, if a
given container uses a time value for sorting, when
a new child node is added, the comparator function
helps the container insert the child element at the
correct location in the contents array. 17

• lookup: called via OSC to look up events at a given
value specified by the container (e.g. typically time);
returns the query results to the caller via OSC. By
default the output is an array of all active data objects
at the lookup point, along with the relative phase
position within each element, useful for controlling
amplitude envelopes etc. Figure 6).

• getFormattedLookup: called via OSC to request a
complete list of events for external sequencing, for-
matted in the symbol definition to apply to the exter-
nal syntax requirements.

Note that the lookup and getFormattedLookup methods
receive the complete OSC bundle that is sent in, and also
have access to the entire score database, and so it is also
possible to define multiple ways of looking up (and per-
forming) the score data at the same time; for example mul-
tidimensional nearest neighbor lookup, or polytemporal se-
quencing.

11. CREATING SYMBOLS FROM OSC INPUT

As an illustration of how data is processed through the
SYMBOLIST architecture, we can follow the sequence of
events in the case of semantic-to-graphic mapping; for ex-
ample when algorithmically generating score data, using
an outside process to create new symbols via OSC mes-
sages.

By convention, SYMBOLIST uses the DRAWSOCKET mes-
sage syntax for OSC and JSON interprocess communica-
tion, where a “key” address is used a keyword to signal
which routine should interpret the message, and the “val”
address contains an object payload (or array of objects) to
be processes.

The io-controller has a small collection of built-in pro-
cesses that can be called via OSC, the most important of
which is the function to add new data elements to the score
and graphic display, accessible using the data keyword.

For example, here is an OSC bundle using the data key:

17 Pre-sorting increases the efficiency for later lookup queries.

1 {
2 /key : "data",
3 /val : {
4 /class : "FiveLineStaveEvent",
5 /id : "foo"
6 /container : "oboe",
7 /time : 0.13622,
8 /ratio : "7/4",
9 /duration : 0.1,

10 /amp : 1
11 }
12 }

The “data” keyword message has the following required
and optional attributes:

• class: the class name of the object to create (re-
quired) .

• container: the id of the container symbol class to put
the object in (required).

• id: a unique id to use for the data object (optional);
if not specified a unique string will be generated .

• Other required or optional parameters will depend
on the symbol definition.

Upon receiving an OSC message with the key “data,” the
object payload stored by val is added to the model, and
then relayed to the ui-controller.

Data-to-View Mapping in the ui-controller

Received by the ui-controller, the semantic data then is
mapped to graphic data, by looking up the symbol’s class
definition and calling the ui-definition’s fromData method,
which maps from the data representation to the graphic
drawing commands.

As discussed above (in Section 9.1), when using the sym-
bol template base-class, the fromData method will usu-
ally call the symbol’s internal dataToViewParams which
performs the mapping from semantic to a minimal set of
graphic values which are then used to draw the graphics,
by sending drawing commands to DRAWSOCKET accessed
through the ui api, including the HTML dataset storage, as
described above (in Section 7).

A typical drawing command would look something like:
1 ui api.drawsocketInput({
2 key: "svg",
3 val: {
4 class: "NoteLine symbol",
5 id: uniqueID,
6 parent: containerID,
7 ...newView,
8 ...ui api.dataToHTML(dataObj)
9 }

10 })

Here, we use the JS spread operator “. . . ” to merge the
newView variable, holding DRAWSOCKET format SVG data
organized in three <g> group containers (as described in
Section 7), and the HTML dataset information, encoded
via the dataToHTML helper function into the val object
with the associated “svg” DRAWSOCKET keyword. The
object is then sent to DRAWSOCKET via the drawsocket-
Input helper function to be added to the browser screen.

12. CUSTOM USER METHODS

Users may also create their own custom methods in either
ui or io-definition classes and call them from an outside

11.1 Symbol Creation from an External Process

process via OSC (or from other symbol definitions), using
the “call” keyword. 18

Using DRAWSOCKET syntax, the “call” system requires
two parameters in the val object to lookup and execute the
method:

• class: name of the class to lookup.

• method name of class method to call.

However, all parameters in the val object will be passed
to the function, which can be used as a variable length ar-
gument when calling the method.

Custom class methods can be used to apply operations to
the score or ui, for example a method for transposing all
pitches on the “Staff” named “oboe” might look like this:

1 {
2 /key : "call",
3 /val : {
4 /class : "Staff",
5 /method : "transpose",
6 /id : "oboe"
7 /steps : 12
8 }
9 }

On receiving this OSC bundle, the io-controller will lookup
the class “Staff” and attempt to call its method “transpose,”
passing the entire val object to the symbol method as an ar-
gument. The user-defined “transpose” function might then
do something like lookup the “oboe” staff in the model,
and then iterate all of its contents, offsetting the “note”
values by the number of steps specified in the method ar-
guments.

13. CONCLUSIONS

With the new symbol class definition system in place, ini-
tial tests seem promising, and support the hope that this
new experimental SYMBOLIST implementation will be able
to handle a wide variety of score and symbol structures
by providing mechanisms for users to compose bidirec-
tional mappings between semantic and graphic represen-
tation. The system has the potential to address many appli-
cations in digital media compositional practice, and may
someday evolve into a fully-functional authoring environ-
ment for computer performable symbolic notation.

In order to further evaluate the robustness of the system,
the next steps will be to go through the process of develop-
ing complete definition libraries for working with different
types of notation systems. As a test case, we have been
working on a set of definitions for common practice nota-
tion, which is planned for presentation at the 2023 TENOR
conference, along with other experimental approaches.

One challenge that may need to be addressed is the ease
or difficulty of creating new symbol definitions. At the mo-
ment the system is based in Javascript, which means that
the user must program the definitions with textural code.
However, since SYMBOLIST is a graphically oriented au-
thoring environment, it would be convenient if there was
a way to create new symbol definitions graphically within
the main editor application. To address this issue, further

18 SYMBOLIST will pass the same call request to both definitions, so if
both have a function of the same name they will both be called.

research is planned to develop a GUI for symbol defini-
tions, and other tools to help streamline the process of
specifying bidirectional mappings. For example, most math-
ematical operations have an inverse operation, so perhaps
there could be a GUI interface that provides tools to define
both mapping directions simultaneously.

The Electron framework is currently working well for
cross-platform app development, however some issues came
up after the Electron version 12 update, which introduced
new security measures including context isolation, 19 and
increased limitation in using the require function used in
SYMBOLIST to import user libraries. In order to comply
with new Electron web safety measures, SYMBOLIST now
uses Webpack 20 to bundle the symbol definitions into a
static library file, which is loaded on startup—previously
users were able to dynamically load symbol definitions at
run time, which seems like a more natural user experience.
The new security measures are less than ideal for dynamic
updating, however, on the positive side, since SYMBOL-
IST is now browser-based and uses the same system as
DRAWSOCKET for dynamic graphic rendering, SYMBOL-
IST could now be easily used in networked situations. For
example for synchronized score display, or use with multi-
touch tablets (iPad etc.). In cases where SYMBOLIST is ex-
posed to the internet, the new web-security measures may
be important. More testing is needed to determine which
features are the most critical, balancing usability with web-
security.

For playback/sequencing of SYMBOLIST scores, users can
currently send either lookup or lookupFormatted messages
to the io-controller, which will then respond with data that
can be used to perform the score in another software like
Max, Pd, SuperCollider, etc. The lookup system is cur-
rently implemented in Javascript, which is not the fastest
or most temporally precise method of playing back the
score. As a starting point we are testing a new Max ex-
ternal called o.lookup∼, which accepts a list of x and y
coordinate points and reads through the sequence of points
via a sample-rate phase input. This system works quite
well for single data sequences (i.e. value of y at point
x), however for more robust playback, it might be worth-
while to develop a more complete database lookup system
in C/C++, which could provide optimized getter methods
for data playback. For example, this might take the form of
a Max external that can read a SYMBOLIST score and pro-
vide optimized access for playback, and instrument track
selection. It could also be imagined that a score could
be exported to playback in a DAW like Ableton Live, and
to form connections to other OSC sequencing applications
like IRCAM’s Antescofo expression language[16].

Other development directions that may be interesting to
pursue would be to integrate other frameworks into the ap-
plication. Some first steps for 3D graphics have begun with
the introduction of the three.js 21 library, visible in the ro-
tated cubes in Figure 1, however more work is needed to
provide tools for manipulating 3D graphics. In the area of
notation for spatial movement, there are plans to continue

19 https://www.electronjs.org/docs/latest/tutorial/context-isolation
20 https://webpack.js.org/
21 https://threejs.org/

development of trajectories (visible in the curves attached
to note events in Figure 1), and to connect SYMBOLIST
with the ICST’s Spatialization Symbolic Music Notation
(SSMN)[17].

In the audio domain it could be interesting to develop
tools for development of signal processing graphs that could
be interpreted and performed in other applications, for ex-
ample generating Faust 22 or Max/Gen∼ DSP code.

There are many possibilities for the future development
of SYMBOLIST, and so far it seems that the framework
is providing a solid ground for the creation of new au-
thoring environments. In a way, SYMBOLIST is a meta-
environment, an application that aims to ease the process
of creating new authoring environments. Like the creation
of a new instrument, the challenge then is to work through
the difficulties of creating the instrument, so that it can be
learned and used for the creation of new kinds of art.

14. REFERENCES

[1] M. Wright, “Open Sound Control: an enabling tech-
nology for musical networking,” Organised Sound,
vol. 10, no. 3, pp. 193–200, 2005.

[2] J. MacCallum, R. Gottfried, I. Rostovtsev, J. Bresson,
and A. Freed, “Dynamic Message-Oriented Middle-
ware with Open Sound Control and Odot,” in Proceed-
ings of the International Computer Music Conference
(ICMC’15), Denton, TX, USA, 2015.

[3] P. Manning, “The oramics machine: From vision to re-
ality,” Organised Sound, vol. 17, no. 2, pp. 137–147,
2012.

[4] G. Marino, M.-H. Serra, and J.-M. Raczinski, “The
upic system: Origins and innovations,” Perspectives of
New Music, pp. 258–269, 1993.

[5] R. Gottfried, “Studies on the Compositional Use of
Space,” IRCAM, Paris, France, Tech. Rep., 2013.

[6] ——, “SVG to OSC Transcoding: Towards a Plat-
form for Notational Praxis and Electronic Perfor-
mance,” in Proceedings of the International Confer-
ence on Technologies for Notation and Representation
(TENOR’15), Paris, France, 2015.

[7] J. Bresson, C. Agon, and G. Assayag, “OpenMusic:
Visual Programming Environment for Music Compo-
sition, Analysis and Research,” in Proceedings of the
ACM international conference on Multimedia – Open-
Source Software Competition, Scottsdale, AZ, USA,
2011, pp. 743–746.

[8] R. Gottfried and J. Bresson, “Symbolist: An open au-
thoring environment for end-user symbolic notation,”
in Proceedings of the International Conference on
Technologies for Music Notation and Representation
(TENOR’18), 2018.

22 https://faust.grame.fr/

[9] R. Gottfried and G. Hajdu, “Drawsocket: A browser
based system for networked score display,” in Proceed-
ings of the International Conference on Technologies
for Music Notation and Representation–TENOR 2019.
Melbourne, Australia: Monash University, 2019, pp.
15–25.

[10] G. Hajdu, “Quintet. net: An environment for compos-
ing and performing music on the internet,” Leonardo,
vol. 38, no. 1, pp. 23–30, 2005.

[11] A. Freed, D. DeFilippo, R. Gottfried, J. MacCallum,
J. Lubow, D. Razo, and D. Wessel, “o.io: a Uni-
fied Communications Framework for Music, Interme-
dia and Cloud Interaction.” in Proceedings of the In-
ternational Computer Music Conference (ICMC’14),
Athens, Greece, 2014.

[12] N. Didkovsky and G. Hajdu, “MaxScore: Music
Notation in Max/MSP,” in Proceedings of the In-
ternational Computer Music Conference (ICMC’08),
Belfast, Northern Ireland / UK, 2008.

[13] A. Agostini and D. Ghisi, “A max library for musical
notation and computer-aided composition,” Computer
Music Journal, vol. 39, no. 2, pp. 11–27, 2015.

[14] T. Baca, J. W. Oberholtzer, J. Treviño, and V. Adán,
“Abjad: An open-source software system for formal-
ized score control,” in Proceedings of the First Inter-
national Conference on Technologies for Music Nota-
tion and Representation-TENOR2015. Paris: Institut
de Recherche en Musicologie, 2015, pp. 162–169.

[15] G. Burloiu, A. Cont, and C. Poncelet, “A visual frame-
work for dynamic mixed music notation,” Journal of
New Music Research, vol. 46, no. 1, pp. 54–73, 2017.

[16] J.-L. Giavitto, J.-M. Echeveste, A. Cont, and P. Cuvil-
lier, “Time, timelines and temporal scopes in the
antescofo dsl v1.0,” in Proceedings of the Interna-
tional Computer Music Conference (ICMC), Shanghai,
China, 2017.

[17] E. Ellberger, G. T. Perez, J. Schuett, G. Zoia, and
L. Cavaliero, Spatialization Symbolic Music Notation
at ICST. Ann Arbor, MI: Michigan Publishing, Uni-
versity of Michigan Library, 2014.

	 1. Background
	 2. Application Structure
	 3. Graphical Authoring and Interaction
	 4. Data Representation
	 5. Mapping
	 6. Semantic Representation
	 7. Browser Notation
	 8. Symbol Definitions
	 9. UI Definitions
	9.1 Data and View Parameters

	 10. IO Definitions
	 11. Creating Symbols from OSC input
	 12. Custom User Methods
	 13. Conclusions
	 14. References

