
OSSIA SCORE 3

ABSTRACT

The ossia system has been introduced in 2015 as a notation

for interactive scores. We present the result of seven years of

usage and improvements to the ossia score software which

acts as both an editor and player for such scores, and how

it morphed from a simple OSC-only control sequencer to

a fully-fledged multimedia system supporting live audio

and video processing, live-coding with multiple embedded

programming languages, communication with a variety of

software and hardware and adaptations for more traditional

music creation such as support for varying tempo and time

signatures. In particular, we mention a few “original sins”

and implementation mistakes done at the beginning of the

software engineering process and how they had to be fixed.

1. INTRODUCTION

In 2015, the foundations for a method of authoring inter-

active scores were presented to the TENOR conference, in

a paper titled: “OSSIA: Towards a Unified Interface for

Scoring Time and Interaction”[6].

This paper presents the result of seven years of active

use in a variety of artistic settings, what has held and what

hasn’t, and how the ossia paradigm for interactive scores

was extended. It gives an overview of the various research

aspects that were studies for interactive scores so far, reports

on their status and talks about upcoming research.

From the very beginning, the implementation software,

originally named i-score and renamed ossia score – to high-

light the from-scratch rewriting of the system and its inclu-

sion in a larger software ecosystem – , has been conceived

as a platform for fostering art-science research.

1.1 A primer on interactive scores

The visual syntax of interactive scores as defined in ossia

is composed of a few basic elements, visible in Figure 1

which are combined together by the composer to create

scores. Due to user feedback and evolutions of the system,

some names have been changed since [6]. These changes

are mentioned here:

Copyright: © 2022 Jean-Michaël Celerier. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

• A process is an object which performs a computation

over time; it is similar to e.g. a Max/PureData object

or SuperCollider ugen. A specificity of processes is

that they can be used to define both non-temporal

content (e.g. an audio filter such as a distortion, an

oscillator...) or content with an implicit temporality

(e.g. an automation curve, a MIDI piano roll) directly.

• An interval (renamed fromConstraint in [6]) allows to

define the span of time over which a set of processes

will run.

• A time sync (renamed from Time Node in [6]) allows

to synchronize the start and end of multiple intervals,

either at a fixed time or by waiting for an external

event: OSC message, mouse click, etc. In the latter

case, the external event is represented by a visual

object called trigger, shown at the top of the time

sync.

• A condition allows to enable or disable a set of in-

tervals at run-time depending on the truth value of

an expression at the time at which it is evaluated in

the score (after the end of the previous intervals and

before the start of the next intervals).

• A state (renamed from Event in [6]) indicates the start

and end of an interval. States can carry messages

such as OSC packets that will be sent immediately

when the state is reached during the execution of the

score.

• Time syncs and intervals form a graph which we call

a scenario. A scenario is a process; this means per the

definitions of intervals and processes that intervals

and scenarios allow to define a hierarchical system.

2. SEMANTIC EVOLUTION

We detail here how the visual language and system have

evolved since its introduction in 2015 and the areas of focus

for the research and development.

2.1 Loop semantics

The original loop semantic, described in [5] was through a

specific process which implemented a looping behaviour

for a single temporal interval, isolated from its parent. This

added a hierarchy level, and separated entirely the looped

content, from the overall loop duration.

Jean-Michaël Celerier
 ossia.io

Talence, France
jcelerier@ossia.io

Pia Baltazar
 ossia.io

Talence, France
pia@ossia.io

Myriam Desainte-Catherine
Univ. Bordeaux, LaBRI- UMR 5800, CNRS, INRIA
 Talence, France.

myriam@labri.fr

mailto:jcelerier@ossia.io
mailto:myriam@labri.fr
mailto:pia@ossia.io
http://creativecommons.org/licenses/by/3.0/

Figure 1: Visual syntax of ossia score. A: an interval of

fixed duration. B: a condition. C: an interval of variable

duration; the minimum can in this example be adjusted with

a visual handle. D: the blue dot is a state. The white circling

around it indicates that the state contains messages to be sent.

The yellow T on top indicates a trigger. E: an empty state.

F: an interval which contains an automation process. G:

an interval which contains two connected audio processors,

represented as dataflow nodes. H: a time sync. Note that

this score is itself contained in a scenario process, itself

a child of an interval which is the hierarchical root of the

score.

After years of experimentation, while we observed that

this method was able to cover a fair amount of use cases, we

also noticed how unwieldy it was for artists as it made scores

harder to read. The visual similarities between the looped

content, and the parent interval containing the loop object,

made understanding the behaviour of a score at a glance

more complicated. In addition, looping could not easily be

changed “on the fly”: artists would often want to simply

loop a sound for some time, but our original method required

conceiving the temporal structure of the score beforehand.

Study of the use cases for loops led us to a separation of

the original loop process into two distinct features:

• Looping an individual process through a simple UI

control: each process with a temporal information

can be looped: sound files; automations, etc. The

process’ actual duration is decoupled from its parent

interval’s duration. This kind of loop is outside of

the temporal structure of the scenario, it is merely a

filter which can be applied to any process, and can be

toggled at will at any point in the user interface.

• A generic go-to mechanism for the scenario. Visually

a new primitive, this is actually just an interval of

duration zero, for which the restriction of “always

going forward” is relaxed. This mechanism enables

more generic cases than the previous loop primitive,

and makes writing state machines in ossia score an

easy task, as the end of an interval can now start any

other interval in a score.

Figure 2: Example of tempo and musical grid variations:

multiple time-line have different tempo curves. The first

timeline will follow the tempo of the parent. The second

will follow its own tempo curve. The third one takes its

tempo from a low-frequency oscillator: the speed of that

timeline will constantly oscillate. The grid switches from44 at the first bar, to 78 at the fifth bar; bar 4 is an implicit 14
bar as the start of bar 5 can be arbitrarily moved to simplify

user interaction.

2.2 Musicality, polyrhythms, quantization

For the longest time, even though the interactive scores

project was born out of a musical context, it did not provide

any tooling to help the composer used to traditional and

western musical cues. The software provided no beat grid,

no notion of tempo, and no quantization to allow synchro-

nizing multiple competing elements on a single beat which

would be determined by the grid in which the musicians are

playing.

In ossia score 3, we introduce the ability to specify metric

modulations in the score (time signature changes through

a musical grid, and tempo changes through automation

curves). Both features can be seen in Figure 2.

Both musical grid and tempo curve are optional properties

of an interval. If an interval does not have either, it and

its children processes will stay synchronized with respect

to the parent interval’s grid, recursively. At any point, it

is possible to dissociate a child interval from the parent’s

musical grid or tempo, in the first case by enabling a custom

grid (through a GUI widget visible when the user selects an

interval), in the second case, by adding a tempo process to

it.

The tempo process is by default an automation curve which

allows to define a fixed tempo variation. This process also

provides inputs: these inputs allow to control the tempo,

or the playback position, through the score. This enables

writing scores where the execution speed of a part comes

from an external input, a mathematical function, or any

combination of either.

Quantization is another feature which is propagated hier-

archically: by default, interactive triggers will wait for the

next quantized time as defined by their parent, for instance

the start of the next bar or next quarter note. Any interval

can redefine it instead, to allow some parts of a score to

quantize to the next bar, and other parts to quantize to the

next eighth note relative to this interval’s internal musical

grid and current execution time. For instance, given a fixed

BPM of 60, if a trigger’s boolean expression becomes true

at 32.3 seconds since the interval started, it will actually

trigger at 33 seconds if this interval’s quantization is set to

quarter notes, and 32.5 seconds if it is set to eighth notes.

2.3 Data processing, combining data flow and time flow

The original implementation focused on control signals:

sending and receiving OSC and MIDI messages, for in-

stance. It quickly became obvious that having to start a

whole other software for the sake of playing a synchronized

sound file and setting up OSC communication was cumber-

some for the users of the software. This led to research about

introducing an audio pipeline into the system. A second re-

quirement quickly came up: applying audio effects such as

VST plug-ins or Faust signal processors, as using systems

such as Soundflower or JACK for routing audio between

software was also too complicated for a part of the target

user base. By then it became obvious that a built-in dataflow

pipeline was required, with the usual affordances provided

by the patching software paradigm: processes (called nodes,

objects, ugens in other systems) with multiple input and

output ports (controls, audio or MIDI inputs and outputs),

connected together through virtual cables.

The main question was then: how to make a dataflow

pipeline, which describes an invariant computation, fit as

part of an interactive scorewhere processes constantly change

over the execution of the score. The solutions for this were

twofold:

• In addition to the ability to connect cables showcased

in Figure 3, the ports in ossia score can read and

write data directly from a global environment, through

OSC-like addresses. When a cable is connected, that

address is overriden.

• Cables have two axes of configurability: direct and

delayed, strict and glutton. Direct (the default) means

that if process A and B are running at the same time

in real-world clock, B processes the output of A just

like in a traditional patcher. Delayed means that the

cable acts as a delay line between A and B: if A starts

a second before B, B will receive all the data that was

produced by A since it started and thus be a second

late. Glutton (the default) means that the connection

of a cable has no impact on whether A and B runs,

strict means that if A and B are connected, and ei-

ther is not running, the other will also be disabled.

This is mainly useable as a performance optimiza-

tion, to make sure that complicated signal processing

pipelines are not kept running if the data source has

not started yet.

This has led to the introduction of a dual-visualization

for intervals: at any point, the user can switch between

the time-line view, where the horizontal axis is used to

represent the evolution of time, and the so-called nodal view,

which shows all the processes as nodes similar to traditional

Figure 3: Applying an effect to a sound file with an explicit

cable.

patching software. This way, the user can focus on editing

temporal behaviour such as synchronizing automations with

soundfiles, etc. in a timeline, and on editing complex signal

processing flows in a more adapted user interface.

2.4 Live visuals

Shortly after artists querying about “simply playing back a

sound file”, the same question happened for video. Proto-

types of efficient OSC-controlled video players weremade 1

yet this also proved insufficient in terms of synchronization

precision and capabilities.

Thus, score 3 introduces support for video playback and

video processing through the same data-flow system as for

audio, showcased in Figure 4. This has been done with the

Qt RHI library. 2 which provides a small wrapping layer

over modern GPUAPIs: Direct3D 11, Vulkan, Metal (and

more traditional OpenGL).

Some complexity for the implementation of this feature

comes from the fact that processing happens on the GPU, not

on the CPU: working with a modern graphics API is about

preparing a set of commands that are being send to the GPU

for rendering at a regular interval. The GPU generally works

at a 60 Hz rate while the rest of ossia score follows the audio

buffer rate. The implementation works by creating a mirror

graph of GPU nodes which lives in its own thread. While

cables look like they pass texture data, what they actually do

is instruct the source node to render on a texture stored in the

input of the sink node; this enables multiple nodes to render

on the same target. Render order and blending options are

not made available to the user yet and is a work-in-progress

for an upcoming minor release.

Multiple outputs are possible; each output will only render

the nodes that are directly connected to it. For instance, it is

possible to render to multiple windows, or to both a window

and a system such as Spout or shmdata.

1 https://github.com/OSSIA/ossia-videoplayer
2 https://www.qt.io/blog/graphics-in-qt-6.

0-qrhi-qt-quick-qt-quick-3d

https://github.com/OSSIA/ossia-videoplayer
https://www.qt.io/blog/graphics-in-qt-6.0-qrhi-qt-quick-qt-quick-3d
https://www.qt.io/blog/graphics-in-qt-6.0-qrhi-qt-quick-qt-quick-3d

Figure 4: Mixing multiple video sources and applying

GPU video effects through shaders following the Interactive

Shader Format specification.

Leveraging the GPU has some advantages: the author has

for instance prototyped a particle renderer process which

was able to maintain 60 FPS for ten million particles with a

GTX 1080 graphics card.

One feature which is not available is the delayed cables

for GPU textures: this is because unlike audio or control

data which can be expected to be bufferable for reasonable

durations on the order of minutes or even hours, video data

memory usage grows too fast to make this viable. 3

2.5 Pragmatisms for live playback of interactive scores

Scores in ossia score until now allowed for what could be

called “known unknowns” in a show. The classic use case

is: a sound has to trigger ten seconds after an actor reaches

the center of the stage. The actor being human implies that

the time taken to reach the center of the stage is unknown:

the durations of the sound start cannot be fixed as a duration

from the beginning of the play, only from when the center

of the stage is reached. Thus, the ossia score user can add a

trigger point and use for instance position sensors to encode

in the score the actual conditions for the sound starting to

play, as well as add bounds for the time that the actor must

take, to make sure that the score continues.

What remained was “unknown unknowns”: consider a

catastrophic case where all the sensors stopped working

for unforeseen reasons. It does not make sense to account

for such cases during the authoring of the score; yet in the

midst of the action, it makes sense to still have a safeguard

to allow a stage manager to take control of things manually,

even if this does not respect the semantics originally written

score: the show must go on.

Thus, multiple features were introduced over time to al-

low to override the written score as a last measure during

playback:

• Triggers can be triggered by hand and through a re-

mote interface.

• Interval speed can be adjusted live, independently for

each interval.

3 To give a reference point, merely storing 60 frames (one second) of
raw 4K (3840 × 2160) textures in GPU memory with ARGB float32
texture format uses upwards of 7 gigabytes; most consumer GPUs do not
even have that much memory. In addition, most GPUs are very limited in
terms of maximum texture count: many high-end NVidia and AMD GPUs
are limited to 4096 total allocations for a given GPU context

Figure 5: A score which controls an external sound file

player through OSC.

• The “main playhead” can be moved: this is similar

to transport in the usual audio-video software.

• Intervals can be started manually at any point in the

score.

• States can be sent manually at any point in the score.

Starting an interval will follow quantization settings; im-

plementation of quantization for starting states and global

transport remains to be implemented. This enables very

simple live-looping systems to be put in place.

Transport is an interesting feature, as it is in a sense equiv-

alent to starting the execution of a software from any point

in its code: it is not possible to ensure that it will always

make sense. Two semantics are provided by ossia score,

that the user can choose in the settings:

• Simply start executing from the given point visually.

• Try to compute the state in which every external sys-

tem should be at this point, send them this state, and

start executing.

Consider the score of Figure 5: it first sends a message

to start an external sound playback device. If one wants to

start the score from the 3 second mark, the play message

has to be sent beforehand for the execution to make any

sense.

2.6 Web

Having ossia score work on a web browser has been the re-

sult of a long process, which started in 2015 with Qt’s NaCL

port, then migrated to Asm.js and finally to WebAssembly,

the web standard which enables compiling native C++ code

and running it in a web browser.

The result of this work can be found at the address https:
//ossia.io/score-web which allows to write and exe-

cute simple scores in a web browser. Not all features are

currently available, as more dependencies need to be recom-

piled for the WebAssembly target. The objective of this

work is to allow ossia score to export a score as a web page

so that it can be easily experienced over the internet.

2.7 Computational performance

One of the first supported system for audio effects in ossia

score was Faust [8], the well-known DSP language. The

software embeds the Faust compiler, which itself leverages

https://ossia.io/score-web
https://ossia.io/score-web

LLVM, the compiler framework. The C++ compiler clang
is also based on LLVM; from there, it was relatively easy

to introduce a C++-based add-on system [2].

The end goal of that add-on system is to ensure that the

users of the software get the most performance out of their

hardware: most native C++ software is compiled for a basic

baseline in order to maximize compatibility. This means

that someone with a recent Intel Skylake CPU most of the

time does not benefit of the advanced vector instructions in

that CPU, since it would break compatibility with people

using older CPUs, unless the program author instructs the

compiler to build multiple versions (which would multiply

the size of the binaries). In contrast, by embedding the com-

piler inside the software, we can work towards rebuilding

the hot paths directly on the user’s computer, as we can

probe the exact CPU instructions that are available there.

Right now, this feature is used only for external add-ons;

when it will have undergone enough testing on enough hard-

ware the plan is to migrate the various signal processing

plug-ins which the software provides to that system.

2.8 Live-coding and scripting in scores

Acertain focus was put on using score as a platform for live-

coding. Multiple languages are embedded in the software

and can be recoded on-the-fly [3], during the execution of

the score:

• The first one was Javascript, through Qt’s ES7 inter-

preter, and allowed to quickly devise which features

made sense as actual processes implemented in native

code.

• The Faust language integration supports live recom-

pilation.

• The math expression language ExprTK is used [9].

• Likewise for the ISF shaders used for GPU visuals.

• PureData has been embedded thanks to libpd [1];

patches can be edited live. The send and receive
objects are used to create GUI controls in ossia score

which can be used to score parts of a PureData patch

over time [4].

• C++ code can also be live-recompiled. This comes up

in three different processes: Bytebeat (which executes

Bytebeat expressions), Texgen (which generates 2D

textures for visuals) and CPP JIT (a generic C++ ob-

ject which can be used to implement general objects

with any kind of input or output ports).

3. IMPLEMENTATION NOTES

Some fairly deep changes came up during the software

development process, which make sense to discuss with

the broader community mainly so that pitfalls in which the

project fell can be avoided by others who would encounter

similar situations.

3.1 Evolution of time-tracking

When the development was started, time was counted in

milliseconds stored in double values. This was a mistake:

due to the way double arithmetic works, we encountered

after a few years cases where the execution would be stuck

for scenarios running over the course of multiple days, for

installations. This was due to the expectation t+ ε > t not
holding anymore for orders of magnitude of ε which start
to be relevant to our use-cases. For instance, the following

assertion does not hold for double-precision floating-point:

3600 ∗ 24 ∗ 1000 < 3600 ∗ 24 ∗ 1000+10−9. That is, after

merely a day, adding a nanosecond does not have an effect

anymore. Thus, wemigrated in version 2 to using audio sam-

ples for storing time internally in the engine, while staying

with the original time format for the user interface in order

not to break the save format. This worked better, but now

made it harder to work in preparation of the video format

support, as many common video formats timestamps are not

easily divisible by audio rates (for instance, 24 images per

second versus 44100 samples per second). Thus, for ossia

score 3, a migration to flicks was done: this unit, originally

introduced by Oculus VR, is defined as a common multiple

of most time formats used in media production. One sec-

ond holds 705600000 flicks; timestamps for every common

audio sample rate and video frame rate can be represented

without loss of precision while keeping flicks an integral

value.

3.2 Save format and JSON woes

ossia score leveraged from the very beginning JSON as its

save format, as it is widely understood, and easily readable.

However, the migration to flicks mentioned before had an

unforeseen impact. The JSON specification does not man-

date a minimal precision for storing numbers; in particular,

the library we had been using, QJson which is part of Qt,

makes the choice of converting every integral number to

floating-point which had not been an issue until then, but

looses precision for flicks representing long durations.

It was hence necessary to migrate to a library which sup-

ported 64-bit integers to allow us to safely store durations

without data loss and without breaking compatibility with

the existing format – the RapidJSON library was chosen.

3.3 Threaded networking

The first implementation of network protocols was threaded.

Incoming OSC messages for instance would be processed

in a specific thread; callbacks would be called from that

thread. Users of the libossia library would have to take

care of thread-safety for their own data structures. While

this work was done in ossia score, in practice doing it this

way was a mistake: many environments would only support

single-thread callbacks (Python, Unity3D) and require a lot

of busywork for repatriating data from the network threads

to the main thread. A recent change was to use the Asio [7]

library which provides an event-loop approach where the

user of theAPI can choose whether processing must occur in

a separate thread or not; doing so from the beginning would

have saved dozens of hours of work with threads. Addition-

Figure 6: Nebula.

ally, using theAsio library in libossia allowed us to leverage

its support for multiple networking protocols: besides the

traditional UDP, libossia and score now support OSC over

TCP, Unix sockets (both stream and datagram), WebSockets

and serial port, with various encodings. Unix sockets in

particular are interesting when staying on the same machine:

the author measured an improvement of 10-15% when mea-

suring how many messages can be transmitted per second

when compared to UDP on loopback network interfaces.

3.4 Forked libraries

Various libraries forked during the development process,

mainly to provide more efficient versions of the originals

without having to retain API compatibility which was not

useful in our case since the software was being developed

from scratch:

• A fork of Ross Bencina’s OSCPack library for OSC

performance, adaptability to different back-ends and

modernization for compatibility withmore recent C++

standards. 4

• A fork of RtMidi [10] into libremidi 5 with many

improvements: greatly reduced memory allocations,

support for more backends (UWP on Windows, Web-

Midi with Emscripten, rawALSA for sending large

SYSEXmessages), notification of newly available de-

vices, and modernization for compatibility with more

recent C++ standards. This fork also merges and im-

proves the ModernMIDI library which provided SMF

reading and writing.

4. ARTWORKMILESTONES

We would like to discuss here artworks made with ossia

score which provided useful as feedback mechanism: they

evidenced the need for new features which were developed

in tandem and can now benefit the greater community.

4.1 Nebula

Nebula is a sensory installation. The visitor

enters a dark room. In the centre of the room, a

4 github.com/jcelerier/oscpack
5 github.com/jcelerier/libremidi

Figure 7: Quarrè.

black cylinder is placed on the floor. Acoloured

and luminous mist sculpture emerges from the

top of the inert object.

Nebula (Figure 6) is an art installation created by the duo

Les Baltazars. It is one of the first artwork which used the

software at a “non-toy” scale: the score lasts for 30 minutes

and contains hundreds of automations controlling evolving

patterns of lights and mist. It was useful as a benchmark

of the software, in particular for the UI rendering which

had to show thousands of lines on-screen while maintain-

ing acceptable performance, and was used a lot as part of

optimization work, and for the device tree, which contains

more than a thousand parameters.

4.2 Rain of Music

Rain of Music is a work-in-progress hybrid human-machine

opera, which involves soundpainting for both human and

robot performers. Technically, it has been used as a way to

test various integrations of protocols inside ossia score, and

most notably direct serial port control for the Metabots, the

robots used for the performance.

4.3 Quarrè

Quarrè (Figure 7) by Pierre Cochard was one of the first

works which explored multi-user interaction for a single

score. Up to five participants are each given a phone; the

score broadcasts instructions to each phone which will show

distinct user interfaces over the duration of the score. The

user interfaces have widgets which give back feedback to

the score, which then uses it to control generative sound

processes to create eerie ambiances and textures.

4.4 HERMÈS

HERMÈS by João Svidzinski [11] explores multi-user inter-

action, over the internet instead of in a same-room setting.

It used ossia score, OpenStageControl and Max/MSP to

provide a performance during the Journées d’Informatique

Musicale 2021.

4.5 Carrousel Musical

The Carrousel was the largest incentive for introducing a na-

tive audio data-flow system in ossia score. It is a merry-go-

round located in “L’Abbaye aux Dames” in Saintes, France,

with multiple instruments and sensors. The songs contain

github.com/jcelerier/oscpack
github.com/jcelerier/libremidi

Figure 8: Jeu de la Marelle.

Figure 9: Phonemacore performance.

parts which record and replay the young player’s musical

performance with an improved rhythm. Dozens of VST

instruments such as Kontakt and various effect busses are

output in spatialized sound with low-latency, and an addi-

tional DMX light show. The project was first prototyped in

Ableton Live and Max4Live but the performance was not

adequate, which prompted the implementation of a custom

solution.

4.6 Jeu de la Marelle

Laurence Bouckaert and Olivier Moyne devised an aug-

mented game of hopscotch in their piece “Jeu de la Marelle”

(Figure 8). Each square is a pressure sensitive area that is

able to detect the impact of the stone thrown by the player.

They can sense the weight distribution along their X and Y

axis. Throwing the stone or stepping on either of these tiles

then triggers a specific behavior of the system, through the

RGB lighting on the ground, the octophonic sound system

surrounding the player, and the visual projection on the wall.

The score was able to run on a Raspberry Pi 4 computer

connected to a multi-channel sound card, a video projector

and an ArtNet node for controlling LED strips. Live audio

and video processing is done with Faust and ISF shaders

respectively.

This project was one of the impulsions for having a com-

plete video pipeline, and making sure that the software was

performant enough to be useable from low-power embedded

computers such as Raspberry Pis.

4.7 Phonemacore

Phonemacore (Figure 9) was a musical project started in

2018 to explore the possibilities of ossia score for adding

interactivity to popular-ishmusic (metal with simple 44 and 128
signatures). The performers were a guitarist, a keyboardist

and a drummer: the band Phonema. Bass tracks were stored

in the score. The song had 7 parts; a participant chosen

from the public would play a video game made for the song.

Whenever a level would be completed, the musicians would

move on to the next part of the song, and keep playing until

the player reaches a high enough score. This work was used

as a basis to implement musical metrics, tempo changes, and

quantization in the software, as those all had to be worked

around during the creation of the piece.

4.8 Twitch live-scoring sessions

The author regularly presents live sessions on a Twitch chan-

nel 6 , where a score is created and played “live”: the exe-

cution of the score runs at all time; process creations, con-

nections and Faust, JS, ISF scripting are all done while the

score is running. It is mainly used as a debugging exercise,

to make sure that live editing is reliable enough for allowing

live-coding performances to take place.

5. CONCLUSION

We gave an overview of the state of the research on the

applicability of the ossia system for interactive scores of

various forms.

An upcoming work is the extension to less art-centric use-

cases: a student is currently working on protein diffusion

sonification with the system, which opens a set of issues

related to parsing and processing efficiently large amount

of data.

Another ongoing issue is applying generative and proce-

dural techniques for creating scores programmatically: pro-

viding an efficient API for allowing users to generate scores

from Javascript code both offline and during the execution

is a priority.

Acknowledgments

This work has been financed by: SCRIME, ANR, ANRT,

BlueYeti, EpicMegagrants, SNI, RégionNouvelle-Aquitaine,

and kind private donations.

References

[1] Peter Brinkmann et al. “Embedding pure data with

libpd”. In: Proceedings of the Pure Data Convention.

Weimar, Germany, 2011.

[2] Jean-Michaël Celerier. “A Cross-Platform Develop-

ment Toolchain for JIT-Compilation In Multimedia

Software”. In: Proceedings of the Linux Audio Con-

ference. Stanford, USA, 2019, pp. 37–42.

[3] Jean-Michaël Celerier. “Leveraging Domain-specific

Languages in an Interactive Score System”. In: Sonic

Arts Today 10.1 (2018), pp. 28–33.

6 https://twitch.tv/jcelerier

https://twitch.tv/jcelerier

[4] Jean-Michaël Celerier. “Patches in a timeline with

ossia score”. In: Vortex Music Journal 9.2 (2021),

pp. 1–14.

[5] Jean-Michaël Celerier, Myriam Desainte-Catherine,

and Jean-Michel Couturier. “Graphical Temporal Struc-

tured Programming for Interactive Music”. In: Pro-

ceedings of the International Computer Music Con-

ference (ICMC). Utrecht, The Netherlands, 2016,

pp. 377–380.

[6] Jean-Michaël Celerier et al. “OSSIA: Towards a Uni-

fied Interface for Scoring Time and Interaction”. In:

Proceedings of the International Conference on

Technologies for Music Notation and Representation

(TENOR). Paris, France, 2015, pp. 82–91.

[7] Christopher Kohlhoff.Boost.Asio. 2008. URL: https:
//www.think-async.com.

[8] Yann Orlarey, Dominique Fober, and Stéphane Letz.

“Faust: an efficient functional approach to DSP pro-

gramming”. In: New Computational Paradigms for

Computer Music. Paris, France, 2007, pp. 65–96.

[9] Arash Partow.C++Mathematical Expression Toolkit

Library (ExprTk). 2000. URL: http://www.partow.
net/programming/exprtk/.

[10] Gary P Scavone and Perry R Cook. “RtMidi, RtAu-

dio, and a synthesis toolkit (STK) update”. In: Pro-

ceedings of the International Computer Music Con-

ference (ICMC). 2005, pp. 327–330.

[11] João Svidzinski. “HERMES v2 - WEB CONCERT

COLLABORATIF EN TEMPS RÉEL”. In: Journées

d’Informatique Musicale 2021. AFIM. Remote con-

ference, France, July 2021.

https://www.think-async.com
https://www.think-async.com
http://www.partow.net/programming/exprtk/
http://www.partow.net/programming/exprtk/

	 1. Introduction
	1.1 A primer on interactive scores

	 2. Semantic evolution
	2.1 Loop semantics
	2.2 Musicality, polyrhythms, quantization
	2.3 Data processing, combining data flow and time flow
	2.4 Live visuals
	2.5 Pragmatisms for live playback of interactive scores
	2.6 Web
	2.7 Computational performance
	2.8 Live-coding and scripting in scores

	 3. Implementation notes
	3.1 Evolution of time-tracking
	3.2 Save format and JSON woes
	3.3 Threaded networking
	3.4 Forked libraries

	 4. Artwork milestones
	4.1 Nebula
	4.2 Rain of Music
	4.3 Quarrè
	4.4 HERMÈS
	4.5 Carrousel Musical
	4.6 Jeu de la Marelle
	4.7 Phonemacore
	4.8 Twitch live-scoring sessions

	 5. Conclusion

