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ABSTRACT

In this paper we present applications integrating two clas-
sic machine learning methods into a Computer-aided Com-
position environment with the specific purpose of notating,
organizing and synthesizing audio from large sets of sound
data. We present a modular sample replacement engine
driven by a classification method, and a texture synthesis
application employing a clustering method. The applica-
tions are designed and presented with a particular focus
on modularity and extensibility, with the goal of provid-
ing flexible options for integration into existing Open-
Music projects. Therefore, in addition to presenting the
metholodgy behind our applications, we also highlight the
modular aspects of their structure along with several func-
tions for performing transient detection, Mel-frequency
cepstrum analysis, and probability vector calculation.

1. INTRODUCTION

The development of computer software for compositional
applications has a long tradition and today’s computer-
aided composition (CAC) environments provide users with
powerful frameworks in which multiple types of media
(instrumental, electronic parts, spatialization, gesture, etc.)
can be created, represented and manipulated in an inte-
grated fashion [1]. Machine learning (ML) methods open
up a large number of possibilities for such environments,
particularly because these methods can create multi-di-
mensional networks of relationships across large amounts
of data [2]. In this paper we outline two applications for
sound analysis, notation and synthesis driven by ML. The
ML methods involved here are classic amongst current lit-
erature for ML-based audio applications, and are designed
with clear access points for altering and extending them.
We were particularly interested in these applications being
modular. That is, for them to be easy to take-apart, build-
up, and integrate into existing CAC projects. Built using
a combination of the OM-SoX external library as well
as custom functions within the OpenMusic environment,
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these applications are able to easily be incorporated into a
user’s larger CAC workflow.

In this paper, we first situate these applications within the
wider context of machine learning-based and corpus-based
synthesis and notation tools. Highlighting the modular as-
pects of the project, we show several custom functions that
are implemented at different stages of the sound analysis,
notation, and synthesis process. Then, we walk through
the two applications, describing the techniques and algo-
rithms involved, as well as show audio examples of the
applications’ output (available on the accompanying web-
site). 1 Finally, we discuss the benefit, potential impact,
and limitations of these applications, and speculate on fur-
ther directions this project could take.

1.1 Related Works

Our interest in analyzing and querying large amounts
of audio brought us near several methods in corpus-
based concatenative analysis and synthesis. Tools such
as the Caterpillar system [3], Audioguide [4], and OM-
Pursuit [5] 2 are significant examples from this field, and
the research behind those tools has informed our own deci-
sions around what audio features, distance functions, and
software to use. Though these aforementioned tools are
effective and flexible, we have found in our experiences
with students and professionals that they can be perceived
as a bit of a ‘black box’ to artists with beginner to interme-
diate knowledge in these methods. The input and output
of these tools are clear, while the internal algorithm is not
immediately so. Thus, we sought to provide a modular
toolbox within a popular visual composition environment,
in a way that not only makes clear their internal processes,
but also that is easy to adjust and integrate into existing
OpenMusic projects.

1 https://edu.marlonschumacher.de/
audio-ml-4-cac/

2 http://www.music.mcgill.ca/marlonschumacher/
software-contributions/om-pursuit/
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Figure 1: Interchangeable audio descriptors are set as
patches in lambda mode. Here, a patch extracting 13
MFCCs is being used.

In terms of ML methods in CAC, our project shares simi-
larities with OM-AI [6], an external library for OM# 3 that
also seeks to provide tools to composers interested in ML.
In order to maintain the modular nature of our applications,
the ML algorithms and audio descriptor analysis functions
are built as abstractions consisting of OpenMusic objects
and simple custom LISP functions. Consequently, a user
may change or even switch out these abstractions to suit
their needs. Figure 1 shows our audio descriptor analysis
engine with each descriptor as a patch in lambda mode.
Featured in our application are Mel-frequency cepstrum
coefficients (MFCCs), as well as spectral centroid, spec-
tral difference, and covariance descriptors. Any number
of these descriptors can be chained together to be incorpo-

3 https://github.com/cac-t-u-s/om-sharp

rated into the ML process.
Likewise with our ML algorithms, Figure 2 shows a

clustering algorithm in the form of an OpenMusic pro-
gram, with the distance function implemented as a patch
in lambda mode. This was an important structural deci-
sion to the project, as it not only gives a user a clear view
of how the ML functions operate within the OpenMusic
patch, it also allows for modularity within the actual ML
algorithms. This would be useful for a user who might
need to use a different distance function to evaluate their
data, or who may need to pre-process or clean up their
audio sets in some way before entering certain stage of the
ML algorithm.

Figure 2: Interchangeable distance function. For certain
audio sets, special functions such as a distance matrix or
tree distance may be more suitable than Euclidean dis-
tance [3].

In order to provide the required DSP functionalities
within OpenMusic and for flexible integration into ex-
isting workflows we employed OM-SoX , a framework for
audio analysis and synthesis, bundled as an external library
to be loaded into OpenMusic .

1.2 OM-SoX

OM-SoX is a programmable, modular analysis-synthesis
framework for algorithmic audio processing in OpenMu-
sic , developed by the second author. We used its analy-
sis functions to derive audio descriptors, and detect and
classify transients. We also used its processing functions
to synthesize sound from that analysis data. While OM-
SoX has been a popular tool used for audio processing [7],
sound synthesis 4 and notation 5 (see Figure3), there so far

4 http://www.music.mcgill.ca/marlonschumacher/
arts/6-fragments-on-one-act-of-cleaning-a-piano

5 http://notation.afim-asso.org/doku.php/
evenements/2013-06-27-etude-notation1
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seem to have been less notable applications for incorpo-
rating its analysis functionalities into compositional work-
flows. Included in our applications are functions that use
OM-SoX to extract cepstrums, Mel-frequnecy cepstrum
coefficients, spectral centroid, spectral difference, covari-
ance, and detect transients. We hope this project might
provide inspiration for possible musical applications of the
analysis engine in OM-SoX .

Figure 3: Figure shows the use of OpenMusic & OM-
SoX for the creation of a mixed-paradigm notation in a
Maquette object.

2. TWO MACHINE LEARNING APPLICATIONS
FOR COMPUTER-AIDED COMPOSITION

With the overall scope of this project introduced, we will
now present the two applications and the ML methods that
drive them.

2.1 Modular Drum Sample Replacement

Our first technique uses a supervised classification method
to create a modular sample replacement engine. In our ex-
ample OpenMusic patch, we use three objects for mediat-
ing the sample replacement process: a multi-seq 6 notates
the detection and classification of transients in the audio,
a BPF-library notates the multi-sound-set sample replace-
ment process, and a maquette-based sample sequencer
transcribes new audio with the replacement samples.

The multi-seq, an object that notates data in the form of
traditional western musical staves, sorts the segments of
a given instrument-type (i.e. snare, kick, hi-hat) into its
own staff (see Figure 4). This ‘score’ serves firstly as a
transcription of the transients detected and classified by our
OM-SoX functions. The score’s second purpose is that of
a script, dictating, in partnership with the BPF-library, the
construction of a new sequence of samples.

In the BPF-library, each BPF corresponds to a transient
which will be reconstructed from a pool of possible re-
placement samples. The specific replacement sample used
is determined by a probability vector, which is sampled
from the BPF.

In our accompanying audio examples there are three
separate sample replacement libraries used: an acoustic

6 https://support.ircam.fr/docs/om/om6-manual/
co/Poly-Multi-Editor.html

Figure 4: A sound is trimmed into individual segments,
which are then classified and notated by instrument-type
on a multi-seq object.

drumkit, an electronic drumkit, and a set of field record-
ings. Thus, each BPF called for each note from the multi-
seq is sampled into three points. If the number of sample
libraries were four, then four would be the sample-value
of the BPF weighted vector. As illustrated in Figure5
the weighted vector is calculated from a three-point and
four-point sampling. In the accompanying example audio,
an interpolation between two BPFs is executed such that
the beginning of the resynthesized drumloop consists ex-
clusively of acoustic drum samples (sample replacement
library 1), see Figure 6 for the specific interpolation. Grad-
ually, this balance shifts so that at the end of the loop, there
is an equal likelihood that a note from the multi-seq would
call the electric drumkit or the field recordings. (sample
replacement libraries 2 and 3). This BPF interpolation is
a simple technique employing a high level visual inter-
face for controlling the complexity of large sets of audio
samples.

The multi-seq and BPF interfaces then lead to a maquette-
based sequencer (see Figure 7), where the classified audio
is represented again, this time with the final replacement
samples (designated by color). Here, the transients notated
and classified in the multi-seq can now be handled as actual
audio samples, and can controlled for even further sound
synthesis.
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(a)

(b)

Figure 5: The x- and y-axis of the probability vector BPFs
are in relative units. The probability values (y-axis) are rel-
ative to the total sum of all the indices values, and the dis-
tribution of proability values along the function is evenly
distributed across the x-axis.

2.1.1 Preparing Audio for Classification

In this example, audio of live-performed drums is seg-
mented into its individual attacks according to a transient
detection method in OM-SoX . We track changes in am-
plitude between small grains to detect transients in the
audio (see Figure 8. In our examples, we take the average
amplitude of the audio. However, it is possible here to also
detect transients along a specific band of the frequency
spectrum.

Each segment is compared against a training set of al-
ready-classified drum hits using a k-nearest neighbors clas-
sification algorithm. The algorithm assigns each segment
a class-ID, designating what drum or cymbal the segment
contains. The class-ID of this segment sorts it into one of
seven staves in a multi-seq (seven, per the number of class-
IDs learned by the training set), altogether constructing a
rough 7 transcription of the drum loop.

7 The multi-seq in its current state notates only a class-ID, an onset
time, and a duration for seven possible class-IDs. A higher level AMT
tool would likely employ hundreds, accounting for dozens of different
parameters including dynamics and timbre.

Figure 6: The gradual interpolation from the first BPF to
the last is a simple technique that results in a complex mix-
ture of many different sample libraries.

Figure 7: The maquette notates the results of the sample
replacement process controlled by the multi-seq and BPF-
library.

2.1.2 Classification Method

The method of transient classification used is a k-nearest
neighbors algorithm. This is a classic supervised ML clas-
sification method, one that has been applied already for
many years to audio applications. For readers who may be
experienced in OpenMusic but unfamiliar with ML meth-
ods, this section (and the later section on k-means clus-
tering) dives into the specifics of how this ML algorithm
works.

First, a library of already-labeled drum samples has
‘trained’ the OpenMusic patch to classify a sound in
one of seven different sound types (this is the ‘training
set’). Then, a segment of input audio (from the ‘testing
set’) is analyzed (converted from audio signal to a vector
of numbers) and compared against the data in the train-
ing set (see Figure 9). Here, the classification algorithm
assigns a class-ID to the testing set vector according to



Figure 8: The amplitude is derived from a DFT analysis,
making it possible to detect transients within specific fre-
quency bands.

the class-ID’s of the nearest vectors from the training set.
This method is considered ‘supervised’ because there is
a training set which the author of the algorithm has arbi-
trarily designated what class-IDs correspond to what data.
An important corollary to this is that the act of classify-
ing means that the algorithm is returning a discrete value
(the class-ID. For this method there is no result that is
“in-between” one sound type and another.

This algorithm does not handle any actual audio signal.
Before any data is processed, it is first analyzed and as-
signed a number of values that describe it. These are called
audio descriptors, and they are often derived from spec-
tral information in the signal. In our project, we used the
discrete Fourier transform (DFT) analysis to extract spec-
tral centroid, spectral difference, covariance, and Mel-fre-
quency cepstrums of the audio signal. Figure 10 compares
a sound to its vector and eventual classification.

2.1.3 Classification Training Phase

We train our OpenMusic patch on a relatively small set
of audio: 105 classified drum samples (fifteen samples of
seven different drum sound-types), assigning MFCC data
to each of them. The audio used in the testing set does
not overlap with the training set. However, it does come

Figure 9: A data point is tested against a training set of
labeled data to determine what class it belongs to.

(a)

(b)

(c)

Figure 10: (a) The segmented sound before analysis. (b)
The vector that references the sound segment. (c) The as-
signed class-ID after classifying the vector.

from the same recording session. Having a common source
instruments and microphones between training and test-
ing sets is an important necessity when the training set is
small. This helps ensure that the classification algorithm
is not influenced by characteristics of the audio signal not
relevant to the application. For example, the frequency re-
sponse of a microphone, the spectral content of the back-
ground noise, and the specific timbre and tuning of the
drums recorded all influence the audio’s signal and con-
sequential MFCC data.

Our decision to use a small training set aligns with our
interest in keeping a low barrier of entry for users new to
ML methods. While these applications also function with
large training sets 8 , such sets typically carry their own sets
of concerns. Every data set brings different results to an

8 such as MedleyDB, OpenMIC-2018, URBAN-SED, Urban Sound
Datasets, for example.



algorithm, and thus it becomes especially important to in-
terrogate the audio features each of these sets are curated
around and annotated with [8].

2.1.4 Classification Testing Phase

Audio from the testing set is analyzed and converted to
vectors of audio descriptor data in the same manner as the
training set. The testing set data is processed with a k-
nearest neighbors (knn) classification algorithm. In sum-
mary, a knn algorithm compares the distance between the
given testing set vector and a number (k) of the nearest
vectors from the training set. The effectiveness of a knn
algorithm depends on how this distance is calculated.

We used an n-dimension euclidean distance function for
our knn algorithm (as well as for our other, unsupervised
clustering algorithm). Drawing from research on corpus-
based concatenative synthesis [3], we determined that an
n-dimension euclidean distance function was the most ap-
propriate function for our specific goals of classifying and
querying audio based on DFT analysis. Our OpenMusic
patches include functions for extracting four audio features
(MFCCs, spectral centroid, spectral difference, and covari-
ance). However, it is possible for any number of audio de-
scriptor functions to be incorporated. For example, any of
OM-SoX ’s 33 built-in audio descriptor analysis functions
can also be used. Referencing classification methods used
by Artemi-Maria Gioti [9], we used MFCCs in our exam-
ples because of their usefulness in classifying the timbre of
audio.

2.2 Texture Synthesis

Our second technique uses an unsupervised clustering
method to synthesize sound textures from a large library
of unclassified audio (we refer to texture synthesis as the
reconstitution of certain sound characteristics via smaller
preexisting sound elements, see e.g. [10] for an overview
of different approaches). A sound library of any size is an-
alyzed, clustering the individual sounds into groups based
on one or more audio descriptors. These clusters are pre-
sented in a class-array and a 3DC-library, two OpenMusic
objects that can provide alternative representations of mul-
tiple parameters of a sound all at once (see Figure 11). This
allows a user to view and organize large amount of data
for texture synthesis. The synthesis process is executed
through a collection of sorting and processing functions
in which a user is capable of both orchestrating broad
gestures involving many sounds, and arranging individual
sounds.

2.2.1 Curating Sounds for Clustering

The results of this clustering method are influenced pri-
marily by what audio is curated at the start. This method
is ‘unsupervised’, meaning that the input of the audio is
compared against itself. There is no external ‘training-set’
of data by which the processing of the input data is super-
vised. Rather, the clustering method analyzes a set of data
and makes a network of connections between each sound.

This clustering method analyzes a three-dimensional vec-
tor of audio descriptors (spectral centroid, spectral differ-

(a)

(b)

Figure 11: (a) A class-array object illustrating the path-
name, cluster-id, audio features, and segmentation infor-
mation of the input audio library. (b) A 3DC-library visu-
alizing the four clusters of sounds in a three-dimensional
space.

ence, and covariance). We found that grouping multiple
different descriptors such as these can lead to unexpected
and interesting clusters. The idea here is that the sounds are
not simply sorted along a single parameter (pitch, noise,
harmonicity). But rather are grouped along a metric that
combines multiple parameters.

We found that the most interesting results of this method
often come when the designated number of cluster groups
is different than the number sound-types in the input li-
brary. This “encourages” the algorithm to find similarities
between sounds that are not from the same sound type.
For example, with a 3-mean cluster method (i.e. the audio
is clustered into three groups), an audio library consisting
of cymbals, clarinet multiphonics, and field recordings
clearly groups itself according to its sound type. Sound-
type (or, timbre) has such a strong influence over our
three audio features. However, this same three-mean clus-
ter method, when applied to only clarinet multiphonics
suggests for us an unorthodox, but interesting, way of
grouping this relatively homogeneous set of sounds into



three groups.

2.2.2 Clustering Method

The k-means clustering algorithm is a classic method for
unsupervised machine learning. In our context, a cluster-
ing algorithm is used to group the input sounds. A ‘mean’
in this context refers to the mean value of a given cluster.
For example, a 3-mean clustering algorithm will return 3
clusters (see Figure 12). The k-means clustering method
is an iterative 4-step process in which 1) a number (k) of
random ‘means’ are generated and each sound from our
input is assigned to its nearest mean value. 2) This forms
a number (k) of groups. The ‘centroid’ of a given group
is calculated and that becomes a new mean value of that
group. 3) step 1 is repeated with the new mean. The vec-
tors are grouped anew, according to their distance from the
closest of the new means. And then step 2 is done, evaluat-
ing the centroid of these new groups and generating a new
set of k means from that. 4) After multiple iterations, the
groups eventually settle into an unchanging set. Further it-
erations only produce the same clusters and means. This
indicates that the process is complete.

(a)

(b)

Figure 12: (a) A collection of unlabeled data (b) That same
data clustered around three ‘means’.

This algorithm may return different results each time it is
executed, even when using the same input data. This is due
to the random means generated in step 1. For our purpose
of organizing sound against multiple parameters at once,
we found it preferable to have an algorithm that provided
varying outputs upon each return. Similar to using seeds
in pseudo-random functions, this k-means clustering algo-
rithm could potentially be controlled more tightly through
the use of seeds for the randomly generated mean. Despite
that, by representing and indexing the returned clusters in a
3DC-library and class-array object, a user is able to easily
evaluate the clusters, allowing them to make adjustments
to their input library and k-value, and iterate the clustering
algorithm further until a desired grouping is found. Any
need to save or replicate a particular output from the clus-
tering algorithm is able to be saved by exporting the class-
array as an OM-instance.

Figure 13: Texture synthesis with a maquette object.
The cluster-sorted pitched-instrument sounds are the temp
boxes in the maquette, while the sound boxes denote hand-
placed cymbal samples. In this example, the y-axis does
not influence the sound.

2.2.3 Sorting and Calling Sounds for Synthesis

Once clustered and stored in the class-array object, the
sounds are selected and organized in a maquette, where
they can be subsequently edited and synthesized. There
are a number of functions for organizing audio in the ma-
quette. Firstly, the order of the clustered sounds can be
sorted by cluster-id, as well as by any other dimension in
the class-array (e.g. covariance). Once sorted, any num-
ber of cluster groups can be called from the class-array to
be placed in the maquette. The selected groups of sounds
are then arranged in the maquette according to a list of on-
sets. Finally, it is also possible to hand-pick and arrange
individual sounds in the texture, via a pop-up menu that
indexes all the sounds in the patch. This is a useful tool
for balancing out broad algorithmic gestures with micro,
‘hand-written’ ones. Figure 13 illustrates the accompany-
ing example output audio: a collection of saxophone, clar-
inet, and violin sounds are sorted into three cluster groups.
This creates a gradual nuanced harmonic texture that ebbs
between noise and harmony. This homogeneous texture
is then punctuated by individually placed cymbal sounds
called by the pop-up menu.



3. CONCLUSIONS

Our hope is that these applications inspire and lower the
barrier of entry for composers interested in incorporating
ML methods into their own CAC workflows. Particularly,
we hope that the modularity in these applications helps
users develop new aesthetic approaches to ML methods. A
variety of interfaces common in the OpenMusic environ-
ment were incorporated into the applications as forms of
higher-level, complementary representations for control-
ling synthesis processes. These interfaces can be seen as
a form of notation not only in a symbolic format (i.e. the
multi-seq and maquette), the class-array can be understood
as a tabulated notation, and the 3DC- and BPF-libraries as
a form of geometrical notation. This variety aligns with the
modular intentions of this project.

This project is still in its early stages, with several possi-
ble directions for further development. One current limi-
tation of these applications is that they do not break out of
the medium of sound synthesis. While there are notation-
based parts in these applications, they are limited to medi-
ating the journey of beginning with input sounds and end-
ing with new sounds. Functions for score synthesis would
be a clear step forward and would provide one further level
of integration for a composer’s CAC environment. A score
synthesis function would be particularly useful for the si-
multaneous notation and synthesis of electronic parts.

If the applications were evaluated purely on their accu-
racy of timbre classification, then the use of classic ML
methods can also be considered a limitation. For exam-
ple, incorporating few-shot object detection into the classi-
fication application would likely increase its accuracy and
efficiency in transcribing drum hits.
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