SUPEROM: A SUPERCOLLIDER CLASS TO GENERATE MUSIC SCORES
IN OPENMUSIC

Claudio Panariello
Sound and Music Computing group
KTH Royal Institute of Technology,
Stockholm, Sweden
claudiop@kth.se

ABSTRACT

This paper introduces SuperOM, a class built for the soft-
ware SuperCollider in order to create a bridge to OpenMu-
sic and thus facilitate the creation of musical scores from
SuperCollider patches. SuperOM is primarily intended to
be used as a tool for SuperCollider users who make use
of assisted composition techniques and want the output of
such processes to be captured through automatic notation
transcription. This paper first presents an overview of ex-
isting transcription tools for SuperCollider, followed by a
detailed description of SuperOM and its implementation,
as well as examples of how it can be used in practice. Fi-
nally, a case study in which the transcription tool was used
as an assistive composition tool to generate the score of a
sonification — which later was turned into a piano piece —
is discussed.

1. INTRODUCTION

Automatic generation of notation is a complex topic [1].
The design of computational algorithms to convert acous-
tic music signals into some form of music notation, so-
called Automated Music Transcription (AMT), is a chal-
lenging task in signal processing and artificial intelligence
[2]. Typically, AMT systems take an audio waveform as
input and compute a time-frequency representation, after
which a representation of pitches over time is outputted
[2]. This process involves, among other subtasks, multi-
pitch estimation (MPE), onset and offset detection, beat
and rhythm tracking, interpretation of expressive timing
and dynamics, as well as score typesetting. A comprehen-
sive overview of signal processing methods for music tran-
scription was presented in [3]. Discussions of challenges
for AMT have been published in [4, 2]. While the tech-
nological aspects of AMT tools are highly relevant to the
work presented in this paper, they differ somewhat from
Computer-Aided Composition (CAC) tools (software that
allows composers to design computer processes that gen-
erate musical structures and data [5]) in the sense that they
are primarily designed to aid the transcription process, not

Copyright: © 2022 Author Name. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 Unported License, which per-

mits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

68

Emma Frid
IRCAM STMS Lab,
Paris, France
KTH Royal Institute of Technology
Stockholm, Sweden
emmafrid@kth.se

necessarily the composition process, which is the purpose
of the SuperOM presented in this paper. More specifically,
the purpose of the current work is to translate code into
scores, not to generate scores directly from audio files ! .

Sound synthesis tools used in assisted composition usu-
ally do not include automatic music notation features,
mainly because these tools were not designed with that par-
ticular use case as a primary motivation. However, having
the possibility to visualize sounds in standard Western mu-
sic notation can be useful in many composition contexts.
Different attempts have been made to fill this gap, but the
efforts have often been characterized by a lack of docu-
mentation, making it difficult to present a full review of
the tools and methods used. A reoccurring strategy in this
context seems to be to use SuperCollider2 [6] classes that
can bridge with LilyPond [7], either directly or through
third-party software. SuperCollider is a programming lan-
guage for audio synthesis and algorithmic composition.
LilyPond? is a free system to write music.

One of the oldest attempts to bridge sound synthesis soft-
ware with automatic notation tools is LilyCollider*, de-
veloped by Bernardo Barros [8]. LilyCollider is an interac-
tive software that can build sequences of music notation in
an interactive way, extending the SuperCollider program-
ming language (sclang). LilyCollider wraps the LilyPond
music notation software, meaning that it can be used to
generate a LilyPond score from SuperCollider code. How-
ever, the system has some limitations when it comes to
rendering time; it requires you to wait until the score is
engraved [9]. Today, LilyCollider has been abandoned in
favor of SuperFomus 3 , which was also developed by Bar-
ros. SuperFomus relies both on LilyPond and FOMUS ©
to generate a music score. FOMUS is an open-software
application developed by David Psenicka which allows the
automation of many musical notation tasks for composers
and musicians. It was designed with composers who work
with algorithms and computer music software languages
in mind and facilitates the process of creating profession-
ally notated scores. An interesting aspect of SuperFomus

! Although that would be possible using the SuperOM, for example
using spectral analysis features.

nttps://supercollider.github.io/
3https://lilypond.org/
4https://github.com/smoge/LilyCollider
Shttps://github.com/smoge/superfomus
Shttps://fomus.sourceforge.net/

mailto:claudiop@kth.se
mailto:emmafrid@kth.se
http://creativecommons.org/licenses/by/3.0/
https://supercollider.github.io/
https://lilypond.org/
https://github.com/smoge/LilyCollider
https://github.com/smoge/superfomus
https://fomus.sourceforge.net/

is that it allows for musicXML export. In other words,
it can be used to generate a file that easily can be edited
in any scorewrite software. However, SuperFomus has
some limitations, specifically when it comes to more ad-
vanced rhythm algorithms, and it may not be the optimal
solution for working with metric structures [9]. In other
words, it can be somewhat unreliable when dealing with
complex music notation structures. In addition, it appears
as though is no longer maintained, which may add some
troubleshooting time when installing it.

Another system is Fosc 7 which stands for FO-rmalised
S-core C-ontrol (FO-r S-uperC-ollider). Fosc is an API
that ports much of the Python code base of Abjad ?, a sys-
tem that supports composers in building complex pieces of
music notation in iterative and incremental ways, to Super-
Collider. Since Abjad wraps the LilyPond music notation
package, Fosc can be used for the generation of musical
notation in LilyPond. Despite being powerful, Fosc does
not allow for musicXML export, thus limiting the quan-
tity and quality of information that can be preserved in the
score.

Finally, a custom-made SuperCollider class called Son-
aGraphLily was included in the SonaGraph framework, a
harmonic spectrum analyzer suitable for assisted and al-
gorithmic composition, developed by Andrea Valle [10].
SonaGraphLily manages mapping from sonographic data
(i.e. spectrum over time) to music notation, using LilyPond
code. It creates LilyPond source files that are rendered as
graphic files. However, besides the fact that this class is
optimized to work on a SonaGraph instance, it doesn’t sup-
port musicXML export.

2. MOTIVATION

Although the above-described software solutions may be
useful for certain use cases, they all fall short when it
comes to generating musically complex scores while al-
lowing for musicXML export, which is the main aim of
the SuperOM, described in the forthcoming sections. In
other words, the goal of SuperOM is to enable generation
of scores from SuperCollider in the fastest way possible
with as few dependencies as possible, while at the same
time preserving extremely high precision in the notation,
and allowing for musicXML export.

The SuperOM is a SuperCollider class that produces mu-
sic scores in the form of OpenMusic (OM) files, i.e. in the
form of .omi files. OpenMusic [11] is an open-source
environment® dedicated to music composition, developed
at IRCAM in the end of the 1990s (see e.g. [12, 13]). It
is a visual programming language based on Lisp allowing
the user to design processes for the generation and ma-
nipulation of music material, but it can also be used for
other applications [13]. Similarly to other graphical en-
vironments such as Pure Data (Pd) ! and Max/MSP!!

"https://github.com/n-armstrong/fosc

8https://abjad.github.io/

9Tt can be downloaded for free from
openmusic-project.github.io/openmusic/

Onttps://puredata.info/

Uhttps://cycling74.com/

https://

69

the workflow to code programs in OpenMusic is based on
patching together different modules. However, as opposed
to such tools, the output of the OM processes is also visu-
alized using conventional music notation. A screenshot of
the OpenMusic interface is displayed in Figure 1. Open-
Music has been used by a wide community of composers
and computer musicians throughout the years. Notable
composers include, among others Kaija Saariaho, Marco
Stroppa, Brian Ferneyhough, Philippe Manoury, Fabien
Lévy, and Mauro Lanza. 12

There are several reasons why OpenMusic was adopted
in this project. Firstly, OpenMusic’s powerful capabilities,
especially in terms of handling very complex music struc-
tures, as well as its exporting features, were important fea-
tures. OpenMusic allows for export into many different file
formats, e.g. MIDI, bach [14], and musicXML. As such,
it enables the generation of files that can be opened and
edited in most common scorewriter software (such as Mus-
eScore, Sibelius, Finale, or Dorico, just to name a few).
Another reason is the simplicity of the overall installa-
tion: SuperOM’s only dependency is, in fact, OpenMusic,
which installation is quite straightforward. Moreover, no
prior knowledge of OpenMusic is actually required, since
the only OpenMusic features required by a SuperCollider
user are import/export file. Finally, yet another reason is
the aim to bridge two open-source software solutions as
well as their communities. In fact, . omi files generated
by the SuperOM in SuperCollider are completely legit and
working OpenMusic files. This means that they can be ma-
nipulated directly by OpenMusic users. This aspect can en-
courage collaborative frameworks in which SuperCollider
and Open Music users can work together, exchanging their
own material.

However, as for all software solutions, the adoption of
OpenMusic might have some drawbacks. For example, the
playback functionality in OpenMusic could be considered
an obstacle, since it requires a third-party software synth
player to work, which is out of the scope of this paper.
Nevertheless, it seems that future versions of OpenMusic
will have an embedded synth available. > On the other
hand, if a SuperCollider user decides to use OpenMusic
merely as a way to export a musicXML file for a notation
software, the playback part can indeed be skipped.

3. CLASS DESCRIPTION

The main method of SuperOM is .writeOMfile,
which takes the following arguments: fileName,
midicents, magnitudes, rhythmTree,
metronome, quantization, threshold,
dynamics (see Listing 1).

Once an . omi file has been produced, it can be imported
in an OpenMusic patch and opened from there. The file
can then be edited directly in OpenMusic and exported
as an XML file (for example using the POLY object).

2nttps://en.wikipedia.org/wiki/OpenMusic

13 Please see the OpenMusic IRCAM
https://discussion.forum.ircam.fr/t/
open-music-midi-player/39930, accessed
2022.

Forum

14 December

https://github.com/n-armstrong/fosc
https://abjad.github.io/
https://openmusic-project.github.io/openmusic/
https://openmusic-project.github.io/openmusic/
https://puredata.info/
https://cycling74.com/
https://en.wikipedia.org/wiki/OpenMusic
https://discussion.forum.ircam.fr/t/open-music-midi-player/39930
https://discussion.forum.ircam.fr/t/open-music-midi-player/39930

CHORD

»[n alele] |

b wbe ofetefel o} opoted

f->mc [
CHORD
e feooe
A
o E ’—r 0
F [6 e -
T oo i d i
3 i off e
arithm-ser)2 e L3
#o
! =
2 [-
me->f) Dmia
)
X
<
foom
LLLLLL
il
midic @
arplp @

Zoom 60
Font size 28

] staff GoF @

Approx | 1/8

;;;;;;

Figure 1. A basic example of an OpenMusic patch. In this example, several modules are connected to generate a harmonic
series on the fundamental frequency 240, up to the 24th harmonic. The window CHORD is displaying the result using

conventional music notation.

o SuperOM.new;

o.writeOMfile (fileName:,
magnitudes:,
:, quantization:,
dynamics:) ;

midicents:,
rhythmTree:, metronome
threshold:,

Listing 1. SuperOM

A more detailed description of the arguments taken by
.writeOMfile follows below.

3.1 fileName

The argument £ileName is the name for the output file,
including the .omi extension (e.g. "test.omi"). The
output will be produced in the same folder where the Su-
perCollider file is located.

3.2 midicents

The argument midicents is an array of notes, ex-
pressed in midicents. This argument is always passed
as an array of staves, thus leaving to SuperOM the
task to interpret how many staves should be written
in the OM output file. For example, in the case
of [[lo, ll, lQ,], [mo, mi,ma,], [77,0, ni,na, },] the
rows are interpreted as subsequent separated staves; the
first staff will contain notes [lg, l1, l2, ...], the seconds staff
will contain notes [mg, m1, ma, ...], the third staff will con-
tain notes [ng, n1, no, ...], etcetera. Chords can be specified
with additional brackets, e.g. [[ng, n1, [n2, n3), n4, ...]]. In
this example, there is one staff and the notes n, and ng are
interpreted as a bichord.

3.3 magnitudes

The argument magnitudes is an array (or an array of
arrays) of the notes’ magnitudes. magnitudes can be

70

expressed either in decibels (dBs) or as MIDI velocities
(i.e. values from 0 to 127), the SuperOM will take care
of interpreting the given array in the correct way with the
method .dbvelSmart. magnitudes must match the
size of midicents. If no magnitudes are given, all the
notes will automatically be set to velocity = 100.

3.4 rhythmTree

rhythmTree is an array of rhythms, provided as floats
(or fractions), i.e. 0.5 or 1/4 for a quarter note, 0.25 or
1/8 for an eight note, etc. A positive value represents
the duration of a note, while a negative value represents
a pause. For example, —1/16 represents a rest of a six-
teenth note. A rest, however, can also be specified using
the SuperCollider’s operand Rest (). If this argument is
nil, the magnitudes argument will be used as a source
to create a rhythm tree (see Section 4.2).

3.5 metronome

This argument specifies the metronome of the score. If
only one value is given, the metronome will be the same
for the entire score. As an alternative, an array of
metronomes can be specified, matching the rows size of the
midicents array, thus assigning a different metronome
to each staff. The default metronome value is 60 bpm.

3.6 quantization

Amount of quantization of the notes, expressed in MIDI-
CENTS. The default value is 50 (i.e. a quarter-tone).

3.7 threshold

This argument, expressed in dB, sets a threshold for the
magnitudes, meaning that values below this level will be

&=

instance
[*] [*]
Jn=144 e s 5 5 |
% } 1 T —— —
[+ [9}

Figure 2. Instance of an OpenMusic POLY class. The
figure shows the content of the file produced by the code
shown in Listing 2.

considered as silence, i.e. pauses. The default value is
—36 dB.

3.8 dynamics

The dynamics flag can be set to t rue or false. If true,
the output file will display the notes” magnitudes as music
dynamics (i.e. from “ppp” to “fff”) in the score. The
MIDI velocities are converted into music dynamics using
the method . veldyn. The default value is false.

4. EXAMPLES

In the following section, a number of examples are pro-
vided to demonstrate potential use cases for SuperOM.
All of the example .omi files, as well as the correspond-
ing XML output, are available for download from here:
https://tinyurl.com/9j2fbab5p.

Listing 2 shows the most basic example of SuperOM: the
array pitches contains a list of notes and a chord, every-
thing expressed in midicents; the array rhythm contains
a list of durations and pauses. Line 5 of Listing 2 produces
an .omi file with the name "exampleO.omi" that will
contain the music material specified in the two arrays. The
result is a file that, once imported in OM, will look like the
one displayed in Figure 2.

var pitches = [6000, [6200, 6550,
68001, 7000];

var rhythm = [1/2, -1/6, 2/6, -2/5,
3/51;

o = SuperOM.new;

o.writeOMfile ("exampleO.omi", [pitches
], rhythmTree: rhythm, metronome:
144);

Listing 2. Basic usage of SuperOM.

Listing 3 shows another simple usage of the class, this
time producing a chromatic scale with eighth-tones, start-
ing from C4, as 32th notes. Please notice that in or-

71

der to create a score with eighth-tones, we have to spec-
ify the correct quantization in writeOMfile, using

quantization: 25.

(6000, 6025..7200);
{1/32}.dup (pitches.size);

var pitches =
var rhythm =

o = SuperOM.new;

o.writeOMfile ("examplel.omi", [pitches
], rhythmTree: rhythm, metronome:
144, qgquantization: 25);

Listing 3. A chromatic scale with eighth-tones starting
from C4.

Listing 4 shows a simple variation of the previous exam-
ple, adding random magnitudes and printing them in the
score, with the flag for the argument dynamics set to
true. The result imported in OM will look like the one
displayed in Figure 3.

var pitches = (6000, 6025..7200);

var mags = {rrand(-18, -3)}.dup/(
pitches.size);

var rhythm = {1/32}.dup (pitches.size);

o0 = SuperOM.new;
o.writeOMfile ("example2.omi", [pitches
], magnitudes: mags, rhythmTree:
rhythm, metronome:144, gquantization
25, dynamics:true);

Listing 4. A chromatic scale
from C4, with dynamics.

with eighth-tones starting

LN POLY

1| 1] nigEE

siulaleles o

mfmf pp p mf mp p p S P wmf mf mp f p p

Figure 3. Instance of an OpenMusic POLY class showing
the content of the file produced by the code shown in List-
ing 4.

Using standard features provided in SC, a more complex
score can be generated with a few lines of code. Listing 5
shows the code to produce a score with the following prop-
erties: five staves with different chromatic scales; rhythms
and pauses chosen by a given set, with each staff having a
different metronome.It is worth noticing that in this exam-
ple the argument pitches is passed without extra brackets
(see line 7) since it has already been created as an array of
staves (see line 2). The result imported in OM will look
like the one displayed in Figure 4.

https://tinyurl.com/9j2fba5p

POLY

% 1|)i ng=E

» ||‘-\.‘g‘

«

K o
) e
) " : ; T — .
= g . i — =]
= T — :] T T =
i ‘ T -——ts fo . ¥e =
@ y v o —r vt o ey ¥
thlﬂg 2
’ .
‘ — 3] 7
ohs = E = — =
1 i ¥
J:114
2
A : —
f———— : ! ‘ — . ! : ! Eﬁrﬁﬁ
J 1Bk k. s 7
h:us 2 3
s = i T — T ’ - 2 o - —
6 i = ot =TT ¥e =
\ v C A o+ * "

Figure 4. Instance of an OpenMusic POLY class showing the content of the file produced by the code shown in Listing 5.

S;
{ (6000, 6050..7200)+(
rrand (-5, 5)=%100)}.dup(staves);
var rhythm {{[1/4, 1/8, 1/16].choose
x[-1, 1].choose}.dup (pitches.shape
[1]*x2) }.dup(staves);
var metronomes {rrand (102,

var staves =
var pitches

144) 1} .dup
(staves) ;

o = SuperOM.new;
o.writeOMfile ("example3.omi", pitches,
rhythmTree: rhythm, metronome:

metronomes) ;

Listing 5. Snippet of code to produce a score with five
staves with different chromatic scales, rhythms with pauses
chosen by a given set, and five different metronomes.

Listing 6 shows code that produces a score with eight
staves, each of them containing random frequencies taken
from a harmonic series, random magnitudes, and ran-
dom rhythms, quantized to 32th notes. The frequencies
are conveniently translated into midicents thanks to the
.cpsmidicents method.

200, staves 8;

var pitches {{Array.fi11 (24, {|i]| (i
+1xrrand (50, 51))1}) .choose}.dup(
notes) }.dup (staves) .cpsmidicents;

var mags {{rrand (=18, -3)}.dup(notes
) } .dup (staves) ;

var rhythm {{rrand (0.1,

var notes

1) .softRound

(1/32, 0, 1)}.dup(notes) }.dup (
staves) ;

o = SuperOM.new;

o.writeOMfile ("exampled.omi", pitches,
mags, rhythm, 84, 25, -36, true);

Listing 6. Snippet of code to produce a more complex
score with eight staves.

72

4.1 Writing a score from patterns

Patterns are typical SuperCollider data structures that al-
low for the management of events in time, specifying the
rules for the production of such events [1]. As demon-
strated in Listing 7, a musical piece expressed through
a pattern can then be translated into a score using the
SuperOM. In order to do that, events must be conveniently
stored into separate arrays, for example using the method
.collect. These can then be used as arguments for gen-
erating the output score.

var length = 50, pitches, rhythm;
P = Pbind(
\midinote, Pxrand([60, 62, 64,
66, 68, 701, inf),
\dur, Prand([1/16, 1/8, Rest
(1/16), Rest(l/8)1, inf));
e = p.asStream;
pitches = length.collect ({e.next (()).
midinote}) *100;
rhythm = length.collect ({e.next (()).
dur});
o = SuperOM.new;
o.writeOMfile ("example6.omi", [pitches
], rhythmTree: rhythm, metronome
:144);

Listing 7. Writing a score from a pattern.

4.2 Writing a score from spectral data

Another interesting application of SuperOM is the ability
to write a score from spectral data, as seen in Listing 8.
This feature can be useful in situations when you want to
create a score from a series of frequencies and magnitudes
from a spectral analysis process. The strategy used here
is based on grouping subsequent notes that have the same
frequency and magnitude. Grouping in this context means
that rhythmic values are summed together (for example,

two 1/8 notes are replaced by one 1/4 note). Notes that
have different magnitudes will not be grouped. Magni-
tudes below the given threshold value are interpreted as si-
lence, meaning that such notes are transformed into pauses.

var fregs = {rrand(400,
cpsmidicents;

var mags = {[-18, -12,
}.dup (fregs.size);

fregs.postln;

mags.postln;

SuperOM.new;

500) } .dup (50) .

-9, —-6].choose

o =

o.writeOMfile ("exampleS5.omi", [fregs],
magnitudes: mags, rhythmTree: nil,
metronome: 144, quantization: 100,
threshold: -12, dynamics:true);

Listing 8. Writing a score from spectral data

5. CASE STUDY - GENERATING A PIANO PIECE
USING SUPEROM

The SuperOM has been intensively used by the first au-
thor in his artistic practice. The tool has been very useful
especially since it allows for the creation of transcriptions
of material derived from spectral analysis. Below is a short
account of a case study in which SuperOM was used in a
composition process involving sonification of video mate-
rial.

SuperOM was successfully used in a joint study car-
ried out together with the pianist and researcher Johan
Frost. This project made use of sonification of a video
that was created from multiple video recordings of Frost
playing Debussy’s “Reflects dans I’eau”. More specifi-
cally, the aim of the project was to sonify moving images
using a Disklavier piano, a self-playing piano designed by
Yamaha 4. Sonification is defined as the use of nonspeech
audio to convey information [15] 15

The video to be sonified was created starting from mul-
tiple video recordings of Frost’s performance. The videos
were edited together, highlighting musical events and the
musical narrative of Debussy’s piece. The final merged
video was then sonified, and the sonification was used as
starting material in the composition process. The aim of
the composition process was to create a new piano piece to
be played in synch with the original video in a live perfor-
mance at a concert series in the Spring of 2023. The incpit
of piano piece is shown in Figure 5.

The overall sonification workflow involved three stages
and two different softwares: 1) the video was loaded into
Max/MSP, in which video processing took place using,
among others, the cv.jit package '°; 2) the data was sent
to SuperCollider via OSC 7, where the mappings for the

“https://www.disklavier.com/

15 This definition has later been expanded by Thomas Hermann
to: “(..) data-dependent generation of sound, if the transforma-
tion is systematic, objective and reproducible (...), see https://
sonification.de/son/definition/.

o https://jmpelletier.com/cviit/

"https://ccrma.stanford.edu/groups/osc/index.
html

73

actual sonification was implemented; 3) MIDI messages
were generated in SuperCollider and sent to the Disklavier,
which played the newly generated piano piece. To estab-
lish a strong connection between the video and the gener-
ated sound, the sonification used harmonic content derived
from the same Debussy piece that drove the creation of the
video.

Once the sonification was realized, SuperOM was used
to generate an actual score of it. In order to do that, the
mappings relative to pitches, note durations and velocities
were stored into separate arrays, and used to initialize an
instance of an SuperOM. The output score was an accu-
rate representation of the sonification: as a matter of fact,
the complex metric structures produced with the sonifica-
tion were completely captured in the score. Once exported
in musicXML, the file could be opened without errors in a
commercial music notation software, where the composi-
tion process continued by selecting and merging musically
interesting materials, and by reducing their complexity in
order to make them playable. However, this workflow had
some limitations. Firstly, despite the score containing all
the note velocity information, thus making its MIDI play-
back sound correctly, it did not have any music dynam-
ics printed on the staves. This was solved by improving
the code and adding the dynamics flag presented in Sec-
tion 3. A second obstacle was that the score produced by
the SuperOM contained a large number of staves (namely
25), resulting from how the sonification data was stored.
This aspect made the score quite impracticable to read and
difficult to work on, and it required a staves merging oper-
ation, done by hand, in order to achieve a typical piano-
looking score. In the future, such a problem could be
solved by carefully designing SuperOM methods to col-
lapse many staves into one.

It should be noted that the final product of the process
outlined above was not a literal sonification mapping the
video input directly to output (i.e. the final piece) in an ob-
jective way; the author interacted with the generated mate-
rial, merging and adapting different generated parts into a
final piece, thus disrupting the direct connection between
input and output. In other words, sonification was used
as a subtask within the composition process, assisting the
author’s composition process by providing ideas for the fi-
nal piano piece. This process is somewhat similar to what
is referred to as mixed-initiative interaction in the field of
Human Computer Interaction (HCI), in which each agent
(human or computer) contributes what it is best suited at
the most appropriate time [16]. Using this mixed strategy
outlined above, the piece closes the circle of re-mediation
from a piano piece by Debussy, to: 1) a video made with
the intent to visualize the musical material of Debussy’s
piano music; 2) a sonification based on this video, using
material from the original piano music; 3) the use tonal
material created in step 2), which in turn served as mate-
rial for a new composition for the piano; and finally 4) a
performance played in real-time by a pianist.

https://www.disklavier.com/
https://sonification.de/son/definition/
https://sonification.de/son/definition/
https://jmpelletier.com/cvjit/
https://ccrma.stanford.edu/groups/osc/index.html
https://ccrma.stanford.edu/groups/osc/index.html

4 Feline, almost neurotically J= 144

8o
2\ =
J) e = e e T
2 f i va 7
Jf esplosivo = J:
~ ni--~F=
o= ”'E
> d
e, al
@ Tt I & E . 5
(3] te — e VA= i
pfe E tEam . = ;n] hdd 55 3 3 :
Bl E==é i—) N —— ‘ 3—
 Afisss RO N
@z |

Figure 5. Excerpt from the beginning of the piano piece composed starting from a sonification of video images.

6. LIMITATIONS

A limitation of the current version of the SuperOM con-
cerns combining midicents staves of different lengths. As
a matter of fact, midicents arrays should all have the same
length, in order to create a final rectangular matrix. One
workaround to solve this issue is to fill the shorter arrays
with zeros (a sort of zero padding), thus matching the size
of the longest array, see Listing 9. In this way, the addi-
tional O pitches will be ignored, as long as the rhythm tree
doesn’t contain rhythm information.

var pitchesl = [7200, 7400, 7500,
76007 ;

var rhythml = [1/6, -2/6, 1/4, 1/4,
1/471;

var pitches2 = [6000, 6200, 6550,

6800, 7000, 6800, 5300, 5625, 6378,
67407 ;

var rhythm2 = [1/2, -1/6, 0, 0, 2/6,
-2/5, 3/5, 1/6, -1/6, 0, 0, 1/6,
1/471;

var pitches3 = [5500, [5600, 5950],
5700, 60507];

var rhythm3 = [-1/8, 1/8, 1/8, 1/81];

pitches2.do ({pitchesl=pitchesl++0});
pitches2.do ({pitches3=pitches3++0});

o0 = SuperOM.new;

o.writeOMfile ("example9.omi", [
pitchesl, pitches2, pitches3],
rhythmTree: [rhythml, rhythm2,
rhythm3], metronome: 144);

Listing 9. Generating a score from midicents arrays with

different lengths.

Interestingly, rhythm trees that contain zeroes make sub-
sequent notes collapse, thus creating chords. This effect is
demonstrated in the example in Listing 10, in which two
ways of writing the same musical score are compared. As
before, also here we need to zero pad the shortest arrays.

[6200, 6550,
[5300, 5625,

var pitchesl = [6000,
6800], 7000, 6800,
63781, 6740];

var rhythml = [1/2, -1/6, 2/6, -2/5,
3/5, 1/6, -1/6, 1/6, 1/41;

var pitches2 = [6000, 6200, 6550,
6800, 7000, 6800, 5300, 5625, 6378,
67407 ;

var rhythm2 = [1/2, -1/6, 0, 0, 2/6,
-2/5, 3/5, 1/6, -1/6, 0, 0, 1/6,
1/47;

pitches2.size.do ({pitchesl=pitchesl
++01});

o = SuperOM.new;

o.writeOMfile ("examplelO.omi", [
pitchesl, pitches2], rhythmTree: [
rhythml, rhythm2], metronome: 144);

Listing 10. Comparison of two different ways of producing
the same score in output.

7. CONCLUSIONS AND FUTURE WORK

This paper presents SuperOM, a class for bridging Su-
perCollider with OpenMusic thus enabling generation of
complex music scores with a high level of precision. Files
generated with SuperOM can be imported and edited in
OpenMusic, which allows for collaborative frameworks
between the two software.

The SuperCollider code of the implementation of
SuperOM is still in progress and is continuously im-
proved. The code is readily available on from here:
https://github.com/claudiopanariello/
SuperOM. The material provided includes the SuperOM
files and a tutorial file. At the point of writing, the first
author is using SuperOM in several projects, for example
in the generation of scores from algorithmic compositions
realized in SuperCollider, or in the creation of music
transcriptions of material derived from spectral analysis
of audio recorded material (especially audio feedback
recordings). This ongoing work will continue to inform
the design of SuperOM, allowing it to be iteratively
improved over time. The use case presented in Section 5
serves as a formative evaluation of the SuperOM, carried
out by the author from a first-person perspective. In
the future, there is a need for empirical evaluation with
actual users, to identify weaknesses and areas of possible
improvement.

It is worth mentioning that the music scores discussed
in this paper refer to traditional Western score. There are
many situations in which other score notations might be
more appropriate. Therefore, a possible future direction
might be to design other classes that could allow for non-
standard notations, similarly to what Ghisi and Agostini
did in extending bach by introducing the dada library [17].

Acknowledgments

The first author would like to express his gratitude to
Mauro Lanza, who kindly helped out with the OpenMu-
sic code.

8. REFERENCES

[1] A. Valle, Introduction to SuperCollider. Logos Verlag
Berlin GmbH, 2016.

[2] E. Benetos, S. Dixon, Z. Duan, and S. Ewert, “Auto-
matic music transcription: An overview,” IEEE Signal
Processing Magazine, vol. 36, no. 1, pp. 20-30, 2018.

[3] A. Klapuri and M. Davy, Signal processing methods
for music transcription. Springer Science & Business
Media, 2007.

[4] E. Benetos, S. Dixon, D. Giannoulis, H. Kirchhoff,
and A. Klapuri, “Automatic music transcription: Chal-
lenges and future directions,” Journal of Intelligent In-
formation Systems, vol. 41, no. 3, pp. 407-434, 2013.

[5] D. Bouche, J. Nika, A. Chechile, and J. Bresson,
“Computer-aided composition of musical processes,”’

75

(6]

(7]

(8]

[9]

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

Journal of New Music Research, vol. 46, no. 1, pp. 3—
14, 2017.

S. Wilson, D. Cottle, and N. Collins, The SuperCol-
lider Book. The MIT Press, 2011.

H.-W. Nienhuys and J. Nieuwenhuizen, “LilyPond, a
system for automated music engraving,” in Proceed-
ings of the XIV Colloquium on Musical Informatics
(XIV CIM 2003), vol. 1. Citeseer, 2003, pp. 167-171.

B. Barros, “LilyCollider and rhythmic structures,” Re-
vista Vortex, vol. 2, no. 2, 2014.

Bernardo Barros, “Music Notation with SuperCol-
lider.” [Online]. Available: http://bernardobarros.com/
files/lilycollider-sc2013/slides.pdf

A. Valle, “SonoGraph. a cartoonified spectral model
for music composition,” in Proceedings of the 16th

Sound & Music Computing Conference. SMC, 2019,
pp. 462-4609.
G. Assayag, C. Rueda, M. Laurson, C. Agon, and

O. Delerue, “Computer-assisted composition at IR-
CAM: From PatchWork to OpenMusic,” Computer
Music Journal, vol. 23, no. 3, pp. 59-72, 1999.

C. Agon, “Openmusic: Un langage visuel pour la com-
position musicale assistée par ordinateur,” Ph.D. dis-
sertation, Paris 6, 1998.

J. Bresson, C. Agon, and G. Assayag, “OpenMusic:
Visual programming environment for music composi-
tion, analysis and research,” in Proceedings of the 19th
ACM international conference on Multimedia, 2011,
pp. 743-746.

A. Agostini and D. Ghisi, “A Max library for musical
notation and computer-aided composition,” Computer
Music Journal, vol. 39, no. 2, pp. 11-27, 2015.

G. Kramer, B. Walker, T. Bonebright, P. Cook, J. H.
Flowers, N. Miner, and J. Neuhoff, “Sonification re-
port: Status of the field and research agenda,” Univer-
sity of Nebraska - Lincoln, Tech. Rep., 2010.

J. E. Allen, C. I. Guinn, and E. Horvtz, “Mixed-
initiative interaction,” IEEE Intelligent Systems and
their Applications, vol. 14, no. 5, pp. 14-23, 1999.

D. Ghisi and A. Agostini, “Extending bach: A family
of libraries for real-time computer-assisted composi-
tion in Max,” Journal of New Music Research, vol. 46,
no. 1, pp. 34-53, 2017.

https://github.com/claudiopanariello/SuperOM
https://github.com/claudiopanariello/SuperOM
http://bernardobarros.com/files/lilycollider-sc2013/slides.pdf
http://bernardobarros.com/files/lilycollider-sc2013/slides.pdf

	2 - TENOR_BOSTON_2023_paper_5657 Nowakowski.pdf
	 1. Introduction
	 2. Method
	 3. Results
	3.1 System Usability Score (SUS)
	3.2 AttrakDiff2
	3.3 Liveness

	 4. Discussion
	4.1 Limitations and Problems
	4.2 Metrics in detail
	4.3 Correlating the results

	 5. Conclusion & Future Work
	 6. References

	3 - TENOR_BOSTON_2023_paper_5929 Loui.pdf
	ABSTRACT
	1. INTRODUCTION
	Techniques for the notation, representation, and visualization of music and sound are inextricably linked to the human understanding of musical structure within their broad contexts. These understandings include the cognitive representations that the ...
	2. Studies in Musical Creativity
	3. Challenges and Motivations Behind Present Research
	4. the BP sequencer
	5. experiment 1: sequence production task: generating creative output
	6. Experiment 2: Sequence Ratings Task: Perception of creativity
	7. Experiment 3: EEG Signatures of Creativity from BP Sequencer data
	8. CONCLUSIONS
	9. references
	Acknowledgments
	We acknowledge funding support from NIH R01AG078376, NIH R21AG075232, NSF-CAREER 1945436, and NSF 2240330 to PL. We thank lab members Anjali Asthagiri, Jethro Lee, Catherine Zhou, Kristina Abyad, Carly Monson, Ayla Hadley, Corinna Parish, Eva Wu, and ...

	4 - TENOR_BOSTON_2023_paper_8103 Frame.pdf
	 1. Background
	1.1 Documentation for Digital Musical Instruments
	1.2 The AirSticks Community

	 2. Related Work
	2.1 Prescriptive notation
	2.2 Descriptive notation
	2.3 Describing experience?

	 3. The notation system
	3.1 Overview
	3.2 Capturing AirStick experiences
	3.3 Technical process
	3.4 Case study

	 4. Discussion
	4.1 Utility of new systems
	4.2 Future work

	 5. References

	5 - TENOR_BOSTON_2023_paper_5652 Celerier.pdf
	 1. Introduction
	 2. An ossia score primer
	 3. Distributing scores
	3.1 Abstracting over hardware with groups
	3.2 Distribution of interaction
	3.3 Polyphony

	 4. Distributing data
	 5. Visual language extensions
	 6. Implementation
	 7. Distribution examples
	7.1 Sending data between machines
	7.2 Combining control data across a group of players
	7.3 Duplicating an input
	7.4 Score for SMC2022
	7.5 Polyphony, sharing and visual language

	 8. Conclusion

	6 - TENOR_BOSTON_2023_paper_4288 Privato.pdf
	 1. Introduction
	 2. Background
	2.1 Instruments-Scores and Non-visual Inscriptions
	2.2 Event Scores and Non-visual Inscriptions
	2.3 Permanent Magnets

	 3. The Magnetic Score
	3.1 Magnetic Board
	3.2 Magnetic Discs
	3.3 Sound Processing

	 4. Presenting the Magnetic Score
	 5. Discussion
	5.1 Magnetic Inscriptions
	5.2 The Magnetic Score as Inherent Score
	5.3 Relational Inscriptions

	 6. Future Work
	 7. Conclusions
	 8. acknowledgments
	 9. References

	8 - TENOR_BOSTON_2023_paper_7600 Armitage.pdf
	 1. Introduction
	 2. Background
	2.1 Perspectives on Agency
	2.2 Exploring Agency through Boundary Objects

	 3. Agential Scores
	3.1 Agency of Points and Lines
	3.2 A Typology of Entanglements with Agential Scores
	3.3 Assemblages and Intra-action
	3.4 Agential Scores in Practice via Artificial Life

	 4. Tölvera: a Library of Number Beings
	4.1 Number Beings
	4.2 Mappings and Visualisations
	4.3 Implementation

	 5. Musical Encounters with Tölvera
	5.1 Encounters Summaries
	5.1.1 Encounter 1: Boids & Two Guitars
	5.1.2 Encounter 2: Physarum & Two Guitars
	5.1.3 Encounter 3: Boids, Physarum, Guitar & Conductor
	5.1.4 Encounter 4: Reversing Roles from Encounter 3

	5.2 Post-Encounters Discussion

	 6. Discussion
	6.1 Fluid Material Agency
	6.2 Mapping of Self Onto Agential Materials
	6.3 Perceiving the Intra-Actants
	6.4 Future Considerations

	 7. Conclusion
	 8. References

	9 - TENOR_BOSTON_2023_paper_2697 Hori.pdf
	 1. Introduction
	 2. Note-Tablature-Form Tree for Monophonic Cases
	2.1 Fingering decision based on HMM
	2.2 Note-tablature-form tree

	 3. Note-Tablature-Form Tree for Polyphonic Cases
	3.1 From chord to tablature
	3.2 From tablature to form
	3.2.1 Representing forms by finger numbers
	3.2.2 Numbering string-fret pairs
	3.2.3 Non-decreasing finger numbers
	3.2.4 Enumerating left hand forms
	3.2.5 Inserting mandatory separators
	3.2.6 Inserting optional separators

	 4. Conclusion
	 5. References

	10 - TENOR_BOSTON_2023_paper_8126 Panariello.pdf
	 1. Introduction
	 2. Motivation
	 3. Class description
	3.1 fileName
	3.2 midicents
	3.3 magnitudes
	3.4 rhythmTree
	3.5 metronome
	3.6 quantization
	3.7 threshold
	3.8 dynamics

	 4. Examples
	4.1 Writing a score from patterns
	4.2 Writing a score from spectral data

	 5. Case study – generating a piano piece using SuperOM
	 6. Limitations
	 7. Conclusions and Future work
	 8. References

	11 - TENOR_BOSTON_2023_paper_9804 Shapiro.pdf
	 1. Introduction
	 2. Related Work
	 3. Language Features
	3.1 Low-Level Fundamentals
	3.2 High-Level Templates
	3.3 Additional Features

	 4. Sample Program
	 5. Compiler Structure
	 6. Template Expansion Logic
	6.1 Backbone Logic
	6.1.1 Generating Notes in a Diatonic Scale
	6.1.2 Generating Chord Templates in a Diatonic Scale

	6.2 Template Expansions
	6.2.1 Scales
	6.2.2 Chords and Arpeggios
	6.2.3 Cadences
	6.2.4 Harmonic Sequences

	 7. Conclusion
	 8. References

	12 - TENOR_BOSTON_2023_paper_6679 Yamamoto.pdf
	 1. Introduction
	 2. Preliminaries
	2.1 Tonal Pitch Space
	2.2 Distance Models concerning Harmonic Features

	 3. Our Approach
	3.1 From Chord Names to Chord Interpretation Paths
	3.2 Between Chroma Vectors and Chord Interpretations
	3.3 From Chroma Vectors to Chord Interpretation Paths

	 4. Experiments
	4.1 Dataset
	4.2 Results

	 5. Conclusion
	 6. References

	13 - TENOR_BOSTON_2023_paper_9279 Gaulhiac.pdf
	 1. Introduction
	 2. Background
	 3. Harmonic Descriptors
	3.1 Implementation & Spectra Computation
	3.2 Concordance
	3.3 Third Order Concordance
	3.4 Roughness

	 4. From Harmonic Descriptors to Harmonic Maps
	4.1 Stability of Sounds
	4.2 Timbral Considerations

	 5. Interactive Harmonic Maps
	5.1 Implementation
	5.2 MPE Control & Harmonic Trajectories

	 6. Examples
	6.1 Influence of the Number of Partials
	6.2 Influence of Timbre
	6.3 Influence of Dynamics & Playinng Techniques
	6.4 Influence of Harmonicity
	6.5 Roughness
	6.6 Third Order Concordance

	 7. Conclusions & Future Work
	 8. References

	14 - TENOR_BOSTON_2023_paper_7968 Lepper.pdf
	 1. Introduction
	 2. Beaming Rules as a Transformation Pipeline
	2.1 Foundation: Genuine Beams
	2.2 Modification of Genuine Beams
	2.3 Beams for Rhythms
	2.4 Local Transformations of Beam Patterns

	 3. Additional External Data
	3.1 Indirect Influence by Stem Direction
	3.2 Direct Influence
	3.3 Beams expressing Tempo – ``Feathered'' Beams

	 4. Two-Dimensional Layout: Vertical Position and Pitch Height
	4.1 Ergonomic Significance of Beam Inclination
	4.2 Stem Direction of Beam Aggregates
	4.3 Graphical Placement of Beam Aggregates
	4.4 Fine Tuning against the Staff Lines
	4.5 Resolving Conflicts by Breaking Beams
	4.6 Resolving Conflicts by Knees
	4.7 Resolving Conflicts by Changing Height and/or Inclination

	 5. Aspects Not Covered
	 6. Conclusion
	 7. References
	 A. Appendices
	A.1 Polymetric Constellations Expressible by Beams

	16 - TENOR_BOSTON_2023_paper_2367 Onttonen.pdf
	 1. Introduction
	 2. Main features
	2.1 Leader interface
	2.2 Musician interface

	 3. Design principles
	 4. Development process
	 5. Technical implementation and limitations
	 6. Case: Labra
	6.1 General remarks
	6.2 Two examples

	 7. Conclusions and future work
	 8. References

	18 - TENOR_BOSTON_2023_paper_9910 Bell.pdf
	 1. Introduction
	1.1 Are scores maps?
	1.2 Maps do not represent time
	1.2.1 Databases as an art form
	1.2.2 Morton Feldman and the European clock makers

	 2. Corpus-Based Concatenative Sound Synthesis (CBCS) today
	2.1 Timbre Space
	2.2 Corpus-Based Concatenative Synthesis - State of the art

	 3. First attempts
	 4. Motivations
	 5. Workflow
	5.1 Corpus Selection
	5.2 Analysis in FluCoMa
	5.2.1 Slicing
	5.2.2 mfcc on each slice - across one whole slice/segment
	5.2.3 statical analysis over each slice
	5.2.4 Normalization
	5.2.5 Dimensionality Reduction
	5.2.6 Neighbourhood queries

	5.3 PatchXR
	5.3.1 Interaction and OSC communication

	 6. Future works: the Raspberry Pi Orchestra
	 7. Conclusions
	 8. References

	10 - TENOR_BOSTON_2023_paper_8126 Panariello.pdf
	 1. Introduction
	 2. Motivation
	 3. Class description
	3.1 fileName
	3.2 midicents
	3.3 magnitudes
	3.4 rhythmTree
	3.5 metronome
	3.6 quantization
	3.7 threshold
	3.8 dynamics

	 4. Examples
	4.1 Writing a score from patterns
	4.2 Writing a score from spectral data

	 5. Case study – generating a piano piece using SuperOM
	 6. Limitations
	 7. Conclusions and Future work
	 8. References

	Blank Page
	Blank Page
	Panariello P. 74.pdf
	 1. Introduction
	 2. Motivation
	 3. Class description
	3.1 fileName
	3.2 midicents
	3.3 magnitudes
	3.4 rhythmTree
	3.5 metronome
	3.6 quantization
	3.7 threshold
	3.8 dynamics

	 4. Examples
	4.1 Writing a score from patterns
	4.2 Writing a score from spectral data

	 5. Case study – generating a piano piece using SuperOM
	 6. Limitations
	 7. Conclusions and Future work
	 8. References

	10 - TENOR_BOSTON_2023_paper_8126 Panariello.pdf
	 1. Introduction
	 2. Motivation
	 3. Class description
	3.1 fileName
	3.2 midicents
	3.3 magnitudes
	3.4 rhythmTree
	3.5 metronome
	3.6 quantization
	3.7 threshold
	3.8 dynamics

	 4. Examples
	4.1 Writing a score from patterns
	4.2 Writing a score from spectral data

	 5. Case study – generating a piano piece using SuperOM
	 6. Limitations
	 7. Conclusions and Future work
	 8. References

