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ABSTRACT

Tonal�Pitch�Space�(TPS)�defines�a�numerical�distance�be-
tween� two�chord� interpretations.� Although� it� is�based�on�
musical�knowledge�and�theory,�the�structure�and�values�are�
not�defined�in�an�objective�manner.�Preceding�works�have�
addressed�this�problem,�and�TPS�has�been�revised�and�op-
timized�the�definitions�of�distance,�in�the�interpretation�of�
chord�paths,�given�chord�names.�But,�because�of�the�prop-
erty�of�the�task�they�used,�they�failed�to�reassess�one�of�the�
three�subelements�of�TPS,�basic-space.� In� this�study,�we�
modify� the� task� to� incorporate�pitch� class� (PC)� informa-
tion�so�that�we�can�not�only�train�other�distance�models�that�
concern�PC�but�also�compare�their�performance�with�that�
of�basic-space.� We�show� that� the�data-oriented�approach�
improves�the�accuracy�from�the�original�basic-space,�espe-
cially�when�we�add�a�distinction�of�major�and�minor�keys.

1.� INTRODUCTION

Tonality� identification� is� an� attractive� but� hard� issue;� al-
though� human� listeners,� often�without� any� difficulty,� fix�
one� key� to� understand/� recognize� tonal�music,� the� exact�
process� is� still� unknown.� To� determine� a� key,� we� need�
to� consider� the� relationship� between� chords,� considering�
cadences� or� tension/� relaxation� structure.� Moreover,� we�
also� need� to�model� the� relationship� between� each� chord�
and�pitch�class� (PC).�But,�when�we� represent� this�cogni-
tive� process� in� computers,� we� are� required� to� assess� the�
relationship�objectively,�excluding�our�subjectivity,�so�that�
the�numeric�distance�in�chords�should�be�an�intrinsic�clue;�
Tonal�Pitch�Space�(TPS)�[8]�has�been�one�of�the�most�con-
vincing� theories� to�give�such�a�numeric�distance�between�
two�chords.

Thus�far,�we�have�employed�TPS�to�measure�the�distance�
in�chords,�however,�some�definitions�of�TPS�look�arbitrary.�
For� example,� the� notion� of� basic-space� (Figure� 1)� gives�
different�hierarchical�importance�among�12�tones�in�an�oc-
tave,�diatonic�(scale)�tones,�the�third,�the�fifth,�and�the�root�
in� this�order;� but,� is� the�difference�of� importance�always�
one?
Yamamoto�And�Aojo�[15]�dared�to�Avoid�employing�the�
numerical�definition�of�APS,�Aut�Anstead,�they�tried�to�
make

machines learn the similar distance model, giving a se-
quence of Berklee chord names. Since a chord name al-
ready includes rich information, it can be limitedly inter-
preted into pairs of key and degree without needing to con-
sider the relationships to each PC. Therefore, they cannot
reduce the definition of distance to each PC; that is, the
adequacy of the basic-space in Figure 1 was untouched.

We reconsider the importance of the basic-space so that
we once abandon chord names, excluding the bias offered
by chord names, and employ chroma vectors, which di-
rectly mention each PC. With this, we try to obtain a statis-
tic model which behaves similarly to TPS, to give a plau-
sible interpretation for a sequence of pitch events.

2. PRELIMINARIES

2.1 Tonal Pitch Space

TPS is the quantitative harmony analysis proposed by Fred
Lerdahl [8]. It is proposed to complement Lerdahl’s orig-
inal music theory, A Generative Theory of Tonal Music
(GTTM) [7] which applies generative grammar to extend
the Schenkerian theory. In TPS, a chord (e.g., C major
triad) is interpreted as a pair of a key and a degree (e.g.,
interpretations of C major triad are as follows: I/C, III/a,
V/F, IV/G, VI/e, and VII/d), then distances are defined be-
tween these chord interpretations. The distance between
chord interpretations x and y can be calculated as (1).

�(x, y) =region(x, y) + chord(x, y)

+ basic-space(x, y)
(1)

where region(x, y) is a distance between keys, chord(x, y)
is a distance between degrees.
basic-space(x, y) is a distance on a structure called basic-

space which concerns the importance of each PC relating
to the chord interpretations. Basic-space is composed of
five levels (i.e., root, fifth, triad, diatonic, and octave) and
each level contains the PCs reflecting the chord interpre-
tations. Figure 1 shows the example when x = I/C and
y = iv/d. For each chord interpretation, the root PC of the
chord has four circles (i.e., up to the root level), the fifth
PC has three circles, the third PC has two circles, and ev-
ery other diatonic PC has one circle 1 . Then the distance
between two chord interpretations is defined as the number

1 We omit the octave level in Figure 1 and Figure 3 because it does not
affect the results.

83

&RS\ULJKW���������+LUR\XNL�<DPDPRWR��6DWRVKL�7RMR��7KLV�LV�DQ�RSHQ�DFFHVV�
DUWLFOH�GLVWULEXWHG�XQGHU�WKH�WHUPV�RI�WKH�&UHDWLYH�&RPPRQV�$WWULEXWLRQ�����
8QSRUWHG�/LFHQVH��ZKLFK�SHU�PLWV�XQUHVWULFWHG�XVH��GLVWULEXWLRQ��DQG�UHSURGXFWLRQ�
LQ�DQ\�PHGLXP��SURYLGHG�WKH�RULJLQDO�DXWKRU�DQG�VRXUFH�DUH�FUHGLWHG�

mailto:yamamoto@kusuli.com
mailto:tojo@jaist.ac.jp
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Figure 1. Basic-space.

of circles that exist only in the destination (the boxed cir-
cles in Figure 1). In this case, basic-space(I/C, iv/d) = 5.
The details are explained in [8].

The calculation above is applicable only when x and y
are in relative keys which are defined as follows:

C(R) =

8
>>><

>>>:

{I, i, ii, iii, IV,V, vi}
if R is a major key

{i, I, bIII, iv, v, bVI, bVII}
otherwise

(2)

where C(R) is the set of all relative keys of key R.
If x and y are not in relative keys, distance between x and

y can be calculated as:

�(x, y) = min

 
�(x, TR1) +�(R1, Rn) + �(TRn , y)

|R1 2 C(Rx), Rn 2 C(Ry)

!

�(R1, Rn) = min

0

BB@

n�1X

i=1

�(TRi , TRi+1)

|Ri+1 2 C(Ri)

1

CCA

(3)
where TR is key R’s tonic, Rz is chord interpretation z’s
key. In other words, the transition from x to y must be
considered as a combination of transitions within relative
keys, and calculate the tonal distance for each combina-
tion, and then the shortest of these total distances is taken
as the distance between x and y.

2.2 Distance Models concerning Harmonic Features

There have been a lot of approaches to applying some kinds
of space to model harmonic features and utilizing the dis-
tance to calculate plausibility. Heinichen [5], Kellner [6],
and Weber [14] tried to define the space to express the
positional relationships of each key area (region). Rie-
mann [10] applied the Tonnetz, which had been invented
by Euler [3] as a way of representing just intonation, to
analyze harmonic relationships from the viewpoint of PC.
Bharucha and Krumhansl [1] proposed a model of tonal
hierarchy which has an empirically defined value to ex-
press relationships between chords within the same region.
Randall et al. [9] explored the similarities with Lerdahl’s
TPS [8], which is defined rather theoretically, as a metric

space, and proposed another distance model. Tymoczko et
al. [12] formalized the levels of abstraction when we try to
interpret harmony. Yamamoto and Tojo [15] generalized
the structure of TPS and applied machine learning to train
several distance structures. Here, we try to extend their
approach further to complement their study.

3. OUR APPROACH

In this study, we aim to obtain optimal distances between
PCs and chords, through the task of finding the most plau-
sible path in chord interpretation, from chroma vectors.
First, we review the issue of chord interpretation (§3.1).
Second, we introduce some distance models which can cal-
culate the distance between a chroma vector and a chord
interpretation (§3.2). Then, we explain the way how to
embed the models of §3.2 into the method of §3.1 to en-
able the method to receive chroma vectors instead of chord
names (§3.3).

3.1 From Chord Names to Chord Interpretation Paths

Figure 2. Interpretation graph.

Sakamoto et al. [11] have proposed a method to find
the most plausible interpretation of a given chord name se-
quence. Given a chord name sequence, first, their method
extends each chord to its interpretations and constructs a
graph whose edges have weights that correspond to the dis-
tances on TPS. Then it applies the Viterbi algorithm to find
the shortest interpretation paths from the start to the goal.
Figure 2 shows an interpretation graph for chord name se-
quence C ! F ! G ! C. One of the shortest interpreta-
tion paths in Figure 2 is I/C ! IV/C ! V/C ! I/C.

Yamamoto and Tojo [15] have tried to generalize TPS
and proposed several functions called “distance elements
(DEs)” and a way to train them with annotated datasets.
Based on the method of [11], their method replaces the
TPS with the proposed generalized TPS then convert path
distance to path probability such that the shortest path should
have the highest probability, and finally apply SGD to up-
date parameters. Their best model (i.e., a DE or combina-
tion of DEs) achieved over 86% accuracy while the origi-
nal TPS was about 40%, and they also found a model with
just 58 learnable parameters could achieve more than 80%.
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In this study, we pick one of the most effective DEs pro-
posed in [15] 2 as the base model on which we extend the
structure in §3.3.

3.2 Between Chroma Vectors and Chord
Interpretations

In this section, we introduce chroma distance models which
are inspired by the structure of basic-space (and the basic-
space itself is one of them).

A chroma vector is a 12-dimensional vector, the element
of which represents its membership (1/0) or graded salience
of the corresponding PC. We define the distance between a
chroma vector and a chord interpretation as the sum of all
distances between PCs and the chord interpretation.

Firstly, we can calculate this distance using basic-space.
For example, the distance between the chroma vector [1, 0,
0, 1, 0, 0, 0, 1, 0, 0, 1, 0] and the chord interpretation I/C
can be calculated as the inner product of the chroma vec-
tor and the vector generated from the basic-space (as the
number of gray boxes) as in Figure 3. This means basic-
space divides PCs into five categories, namely, root (i.e., C
in this case), third (i.e., E), fifth (i.e., G), diatonic (i.e., D,
F, A, B), and the others then gives the predefined PC-level
distance values as in Table 1.

Figure 3. The distance between [1, 0, 0, 1, 0, 0, 0, 1, 0, 0,
1, 0] and I/C based on basic-space.

root third fifth diatonic other
0 2 1 3 4

Table 1. The PC-level distance values from basic-space.

But, how to classify PCs and what distance values to ap-
ply are not obvious. So we try other possible models. Al-
though the distance values are predefined in the original
basic-space, the distance values in the following models
will be learned by machine learning given an annotated
dataset.

The first model, ch dist 2, simply considers if the PC is in
the chord note (i.e., root, third, and fifth) or not. The next
model, ch dist 3, distinguishes whether the PC is diatonic
or not in addition to the distinction by chord membership.
The next one, ch dist 5, uses the same categories as those
of basic-space. And finally, ch dist 10 uses the same five
categories but also distinguishes major or minor. We also
define a dummy model, ch dist 0, for comparison. This
one always returns 0 regardless of what input is given. Ta-
ble 2 shows the chroma distance models defined above.

2 DE 8.1. This one achieved 86.25% accuracy with 686 parameters.

PC classification params
basic-space root/third/fifth/diatonic/other 0
ch dist 0 - 0
ch dist 2 chord/other 2
ch dist 3 chord/diatonic/other 3
ch dist 5 root/third/fifth/diatonic/other 5
ch dist 10 (root/third/fifth/diatonic/other) 10

⇥(major/minor)

Table 2. Chroma distance models. params is the number
of learnable parameters.

3.3 From Chroma Vectors to Chord Interpretation
Paths

The method explained in §3.1 receives chord names as the
input, but now we modify it to receive chroma vectors. The
graph structure becomes like Figure 4. The layer width be-
comes 24 (keys) ⇥ 7 (degrees) = 168 because all interpreta-
tions should be considered at every layer. Then every layer
is duplicated to accept chroma vector inputs. Nodes in du-
plicated layers are connected by horizontal edges whose
weights express the distances in the models introduced in
§3.2.

The learnable parameters are trained to maximize the path
probability of the ground truth paths. However, the for-
mula of path probability is revised as follows because of
the modifications in the interpretation graph.

P(X0:s = x0:s|c0:s, G0:2s)

�
=

8
><

>:

1 if s = 0 3

(
Qs�1

t=0
exp(�CD(ct,xt)+GTPS(xt,xt+1))

Zc,G,t
)

⇥CD(cs, xs)/Z
(2)
c,G,s otherwise

(4)
where

Zc,G,t
�
=
X

l2Gt

X

m2Gt+1

P(Xt = l|G0:2t�1)

⇥ exp(�CD(ct, l) + GTPS(l,m)),

Z(2)
c,G,t

�
=
X

l2Gt

P(Xt = l|G0:2t�1) exp(�CD(ct, l)),

xt is a chord interpretation at t, ct is a chroma vector at t,
CD is a chroma distance model, and GTPS is a generalized
TPS proposed in [15]. This formula is designed to convert
a path distance (i.e.,

Ps�1
t=0 (CD(ct, xt)+GTPS(xt, xt+1)))

to a path probability so that the shorter (shortest) path has
higher (highest) probability.

The new graph (Figure 4) is a lot more complex than
the original graph (Figure 2). But, all layers (except for
the start and end layers) have the same set of nodes so all
edges are the same too. Especially, even if a set of fully-
connect edges become 168 ⇥ 168 = 28, 224 (originally it
was 6⇥ 6 = 36), it can be utilized repetitively. Moreover,
the edges of chroma distances (i.e., the horizontal edges

3 0th layer contains only one node, that is, the start node
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Figure 4. Revised interpretation graph.

below chroma vectors) can be calculated by a matrix prod-
uct. Therefore, the computational cost does not increase as
it looks.

4. EXPERIMENTS

4.1 Dataset

We use the dataset annotated in rntxt format [13], pub-
lished at [4]. There are 384 pieces (1,905 phrases, 68,463
chords) and we regard every phrase as a unit (i.e., to which
we predict the interpretation sequences) but when a phrase
exceeds 50 chords we divide it into units each of which
does not exceed 50 chords. Then we use 80% for training,
10% for validation, and the remaining 10% for the test.

We extracted key, degree, and applied chord informa-
tion from rntxt, then omit all repetitions of the same
chord interpretations. About applied chords, a tonic chord
is added at the end of every local key section to express
pivot chord modulation. Chroma vectors are obtained from
rntxt using music21 library [2].

We set all the initial parameter values to be zero and train
them by mini-batch stochastic gradient descent with batch
size=100 and learning rate=0.001. We continue training at
least 10 epochs and until no accuracy update in the valida-
tion set for an epoch 4 then pick the parameter which gives
the highest validation accuracy.

4.2 Results

Table 3 shows the performance of, and Tables 4, 5, 6,
and 7 shows the resulting PC-level distance values of the
chroma distance models defined in §3.2, and Table 8 illus-
trates distance values between chroma vector [1, 0, 0, 0,
1, 0, 0, 1, 0, 0, 0, 1] and some chord interpretations by
the distance models. The performance is evaluated by how
frequently the found path goes through the ground truth
node (i.e., chord interpretation) in the revised interpreta-
tion graph. acc shows the accuracy the method could es-
timate ground truth chord interpretation for each chroma

4 We loosened the stopping condition because the original condition in
[15] was too costly to conduct an exhaustive evaluation.

vector. key acc shows the accuracy the method could esti-
mate at the ground truth key for each chroma vector.

acc key acc
basic-space 50.21% 60.14%
ch dist 0 3.58% 11.22%
ch dist 2 49.30% 57.07%
ch dist 3 49.00% 58.67%
ch dist 5 53.52% 62.86%
ch dist 10 55.53% 65.67%

Table 3. Performance of chroma distance models.

chord other
0 2.4576

Table 4. Resulting PC-level distance values of ch dist 2.

chord scale other
0 2.0414 2.6578

Table 5. Resulting PC-level distance values of ch dist 3.

root third fifth scale other
0.8525 2.8191 0 3.1986 4.2753

Table 6. Resulting PC-level distance values of ch dist 5.

root third fifth scale other
minor 1.2041 2.5036 0 3.3633 3.6971
major 0.7070 2.6557 0.0956 3.1862 6.2754

Table 7. Resulting PC-level distance values of ch dist 10.

Even if we used a fairly strong model (i.e., DE 8.1 from
[15]), it is almost impossible to narrow down the candi-
dates without a hint from chroma vector (i.e., ch dist 0) 5 .

5 Having said that, 3.58% is much better than 1/168 ⇡ 0.60%
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I/C i/e vi/C VII/d
basic-space 6 6 9 7
ch dist 0 0.0000 0.0000 0.0000 0.0000
ch dist 2 (Table 4) 2.4576 2.4576 4.9152 2.4576
ch dist 3 (Table 5) 2.0414 2.0414 4.0828 2.6578
ch dist 5 (Table 6) 6.8702 6.8702 9.2163 7.9469
ch dist 10 (Table 7) 7.0710 6.6445 18.2302 9.7337

Table 8. Distance values between chroma vector [1, 0, 0,
0, 1, 0, 0, 1, 0, 0, 0, 1] and some chord interpretations.

Compared to ch dist 0, ch dist 2 performed very well with
only distinguishing the membership of chords. Also, sep-
arating diatonic PCs (ch dist 3), relative positions in triad
(ch dist 5), and major or minor key (ch dist 10) all con-
tributed to improve accuracy to some extent. Moreover,
the result shows that basic-space worked quite well. It
went below the same category model (i.e., ch dist 5) but
outperformed fewer category models (i.e., ch dist 2 and
ch dist 3). This result we think indicates the importance
of distinguishing that five categories. The most complex
model (ch dist 10) can be thought as a combination of two
revised basic-spaces for major key and minor key respec-
tively. And it achieved the best performance.

Looking at the learned PC-level distance values, “other”
category has the largest and “scale” category has second-
largest values. This is consistent with basic-space (Table
1). But within the “chord” category, “root” has the small-
est value in basic-space while “fifth” has the smallest in the
learned values. It is surprising that giving “fifth” smaller
value than “root” enables the method to find better inter-
pretation paths. We think this needs to be investigated fur-
ther.

5. CONCLUSION

In this research, we have reconstructed the theory of dis-
tance between chords, motivated by Tonal Pitch Space (TPS),
and proposed a model to guess interpretations (pairs of
key and degree) to a sequence of chords, represented by
chroma vectors. Since chroma vectors do not refer to human-
recognizable interpretation but mention only pitch classes,
we can objectively compare the relation between the role
of the basic-space in a key and distances in notes.

We have compared six different sets of parameters, in-
cluding the raw basic-space, and proved that these stochas-
tic models outperformed the original TPS. We have exper-
imented music pieces upon an open database, and the data-
driven distance learning improved the accuracy by five per-
cent or so, especially when we added a distinction of major
and minor keys.

Our future work includes further refinement of this stochas-
tic TPS, adding other features such as musical genre or dif-
ference of age, and so on.
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