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ABSTRACT

This paper introduces a newly designed sequencer of
music in the Bohlen-Pierce (BP) scale to assess creative
perception and cognition. We begin with a brief overview
of scientific studies on musical creativity, leading up to a
gap in the field that is unaddressed by traditional studies
that compare different forms of musical training and
instrument-dependent output for understanding creativity.
We then introduce the novel BP sequencer, an
experimental interface that affords generating and rating
the creativity of novel musical sequences that are uniquely
composed in the Bohlen-Pierce scale. We then report three
preliminary experiments in which we quantify the number
of sequences generated by each individual and isolate the
musical-informatic features that were rated as more
creative. Participants showed a wide range of creativity in
generating novel sequences. Sequences that were rated as
more creative were generally longer, had more unique
pitches, and had more different interval sizes.
Furthermore, a preliminary electrophysiological (EEG)
study quantifies three distinct candidate biomarkers for the
perception of musical creativity. This novel sequencer of
Bohlen-Pierce scale music can provide a useful tool for
assessing creative perception and cognition. The code for
this tool is freely available, along with video tutorials and
documentation.

1. INTRODUCTION

Techniques for the notation, representation, and
visualization of music and sound are inextricably linked to
the human understanding of musical structure within their
broad contexts. These understandings include the
cognitive representations that the human mind develops in
response to continuous exposure to perceptual input with
its statistical regularities in one’s environment, that give
rise to understanding of musical structure and creative
interpretations of said structure in the form of musical
outputs. Musical outputs that feature improvisation may,
because of their inherently quick-changing nature, require
different forms of notation from musical output that are
through-composed; this is related to the different forms of
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mental representation that musicians who practice
improvisation may have, relative to musicians who
primarily perform through-composed music.

2. STUDIES IN MUSICAL CREATIVITY

Studies in music cognition that compare musicians with
different levels of improvisation training have focused on
western classical and jazz improvisation genres, mainly
due to its relative ease of access to researchers who are
conducting neural and cognitive studies of improvisation
in lab-based, relatively experimentally controlled
environments. In one representative previous study, 38
young adult participants with varying degrees of musical
improvisation training completed a novel improvisation
continuation task and underwent Magnetic Resonance
Imaging (MRI) scans to relate the creativity of musical
improvisations to brain structure [1]. In the improvisation
continuation task, participants were tested in a lab-based
environment with a computer and a MIDI keyboard. The
computer presented pre-recorded short musical motifs,
and then participants were asked to continue the short
motifs on the keyboard and then improvise and extend to
the motifs (instructions were to “riff off of”” the motifs).
Recorded performances were then rated by expert jazz
instructors for creativity. Voxel-based morphometric
analyses on T1 data showed that creativity ratings were
negatively associated with gray matter volume in the
right inferior temporal gyrus and bilateral hippocampus.
Furthermore the duration of improvisation training,
which was significantly correlated with creativity ratings,
was negatively associated with gray matter volume in the
rolandic operculum. Although experience with a
keyboard was positively correlated with creativity
ratings, this study notably introduced an improvisation
task that could be performed even by participants with no
specific musical training. The observation of brain
structures that correlate with improvisation experience
informs us that the capacity for creativity may be
measurable at the level of the brain, and relatable to
improvisatory behavior. On the other hand, these
anatomical measures are relatively stable over time,
changeable only over long periods of practice throughout
the lifespan [2]-[4]. More time-sensitive measures of
brain activity are needed to observe moment-by-moment
fluctuations in the perception and production of creative
output. In that regard, another previous study compared
the electrical brain potentials (using the
electroencephalogram, or EEG) of classical and jazz-
trained musicians as they listened to Western chord
progressions that were either highly expected (I-IV-V-I),
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slightly unexpected (I-N6-V-I), or highly unexpected (I-
IV-V-N6) [5]. This study found that while jazz-trained
musicians, with their well-learned improvisation
strategies, were more sensitive to slight harmonic
expectancy violations early on in the perceptual pathway
(around 100-200 milliseconds after the onset of the
unexpected chord), they quickly integrated the
unexpected chords into the ongoing musical contexts
such that there was less error-related brain activity, as
evidenced by a return to baseline in brain potentials by
around 800 milliseconds after the unexpected chord
onset. In contrast, classical musicians were less sensitive
to unexpected chords at 100-200 ms, but showed a
persistent significant brain potential difference at 800 ms
after the onset of the highly unexpected chord. These
results suggest that expectations and contextual
information are crucial in the mental representation of
musical structure, and that different types of training and
enculturation within a musical genre can completely alter
the temporal cascade of neural events that give rise to the
perception of musical structure.

Using similar techniques of electrical brain potentials
coupled with behavioral testing, other studies have shown
that differences in mental representation between classical
and jazz musicians are localized to the brain mechanisms
that generate motor patterns that subserve commonly
expected and unexpected chord progressions [6], and are
influenced by the cognitive representation of functional
categorization on the basis of musical structure as well as
on the basis of motoric representations of musical chords
and chord progressions [7]. Taken together, this line of
research in the neuroscience of music suggests that
creativity, as operationally defined by training in
improvisation through jazz musical training, involves
time-sensitive categorization and reconstruction of
functional categories of musical sounds as filtered by the
musician’s training and experiences. In that sense,
studying the effects of training in improvisation is useful
for creativity researchers, as improvisation is a form of
real-time creativity that can be quantitatively studied [8].

3. CHALLENGES AND MOTIVATIONS BEHIND
PRESENT RESEARCH

Although there is much to be learned from these studies,
many open questions remain about the nature of creativity
that are yet unaccounted for by this line of work. One
major limitation lies in the operational definition of
creativity as that which is encouraged by jazz training.
While common-practice jazz pedagogy often does rely
upon improvisation as a core part of the curriculum, this
form of training is only available to a select few, and only
represents a small part of the broad and diverse musical
experiences found around the world. If our goal is to
understand creativity through real-time generative musical
processes that can reveal some information about our
mental representations of musical structures, then studying
jazz improvisation only represents a very narrow part of
the many possible mental representations.

17

A more scalable and broadly applicable approach may be
to design user-friendly interfaces for musical creativity
that rely on minimal training, and can quickly become
conducive to studies in the perception and cognition of
musical structures as they are being created in real time.
To maximize accessibility for use in music cognition
studies, and to lower the barrier of entry for individuals
with no specific musical training, we make use of novel
tuning systems that are different from the world’s
commonly used musical systems. Specifically, we use the
Bohlen-Pierce (BP) scale, a thirteen-tone macrotonal scale
that differs from the world’s scale structures: while the
majority of musical scales around the world rely on octave
equivalence [9], with octave being a 2:1 ratio in frequency,
the BP scale makes use of the tritave, which is a 3:1 ratio
in frequency [10]. Previous innovations in musical
notation (presented at TENOR) have considered
expansions for non-standard musical systems such as BP,
such as by introducing dynamic notation [11]. In the same
spirit, here we aim to create a training-independent
common ground that affords studies in music perception
and cognition, specifically neurocognitive studies of
musical creativity, that are relatively independent of
musical culture and genre-specific training.

Here we introduce the BP sequencer, a platform-
independent tool to assess musical creativity. We describe
core features of the user interface and the types of data
collection that it affords as a research tool. We also
describe variations on the core interface that allow for
separate studies in the perception and cognition of
creativity in this nontraditional musical system. Finally,
we describe a preliminary EEG study that captures several
candidates for the neural correlates of creativity as
operationalized by listeners’ ratings of creativity from
musical data obtained using the BP sequencer.

4. THE BP SEQUENCER

The Interface: Inspired by Max/MSP’s live.step object
and interface, we have created a user interface that
iteratively and interactively generates loops, or musical
sequences in the Bohlen-Pierce scale, that is intuitive to
use with no background in music theory and no previous
training, while also being a logical extension of the
Improvisation Continuation Task reviewed above for
quantifying creativity in musical improvisation [1]. The
interface automatically generates tone sequences with
fundamental frequencies ranging from 440 Hz to 1320 Hz
in 13 possible steps as determined by the Bohlen-Pierce
scale [10]. The interface generated tone sequences with a
fixed inter-onset interval of 148 ms. Each sequence could
be of variable length as determined by the participant. The
structure of the sequence (i.e. the specific sequence of
pitches in each loop) is repeated continuously, and can be
set by the participant in real time using a visual interface
as shown in Figure 1.



Figure 1. BP sequencer. A: Experiment interface for
Sequence Generation Task. B: Sequences can be
concatenated across participants to compute histograms
(C) from which interval entropy will be computed.

5. EXPERIMENT 1: SEQUENCE PRODUCTION
TASK: GENERATING CREATIVE OUTPUT

In a first experiment using this interface, young adult
participants from Northeastern University (n = 11)
participated in return for course credit. The participant’s
task is to generate as many creative sequences as possible
within five minutes, where a creative sequence is defined
as both original and appropriate [12]. Unlike the tasks
typically used to measure creativity in music (e.g.
improvisation at the keyboard), this sequence generation
task is easy and intuitive to individuals across cultures
without specialized training. Each participant’s generated
sequences are saved in a text file, with each sequence
represented as a string of integers from 0 to 12
corresponding to the 13 possible steps in the Bohlen-Pierce
scale. Sequence files can then be concatenated across all
participants to form a larger database of creative outputs
(Figure 1B).

These data can be used to extract the following measures
from each participant’s sequence file for between-subjects
analyses: fluency as the number of unique sequences
generated by each participant, entropy of interval sizes
generated by each participant as a measure of originality,
and information content of pitch classes as a measure of
surprise (computed from histogram of interval sizes,
Figure 1C). Fluency and originality have been previously
shown by our lab and others to be related to the neural
markers of creativity [13], whereas entropy and
information content are known markers of uncertainty and
surprise that have been linked to prediction and reward in
fMRI and electrophysiological studies [14]-[16].
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We expect that participants who generate higher fluency,
entropy, and information content will also score higher on
fluency and entropy on other non-musical creativity tasks
in the lab, such as the Alternative Uses Task [17],
supporting the hypothesis that participants who are more
creative will generate sequences with higher interval
entropy and information content.

6. EXPERIMENT 2: SEQUENCE RATINGS TASK:
PERCEPTION OF CREATIVITY

Sequence Rating Task: In a second experiment, another
group of young adult participants (n = 10) rated the
sequences generated by the first group for creativity. Using
a visual slider, participants are asked to rate each sequence
for creativity, originality, and appropriateness. Participants
are allowed to rate as many sequences as they can within
five minutes.

Creativity ratings for each sequence were significantly
correlated with the number of unique pitches used in the
sequences (r = 0.31, Figure 2A). Among sequences that
used all possible pitches, sequences with large intervals
and more entropy and information content resulted in a
higher creativity rating than sequences with smaller
intervals and low information content. For example,
Figure 2B and 2C shows two sequences that were
generated by participants from Experiment 1. Both
sequences used the maximal number of unique pitches (13
in the BP scale). However, the sequence in Figure 2B has
larger intervals and a higher entropy of interval sizes, and
is rated higher by listeners in Experiment 2. This is
consistent with prior research on jazz improvisation [1],
[13], [18], in which participants improvised on given
sequences on a piano keyboard, and the improvised
sequences were subsequently rated by jazz instructors.

Figure 2. A-C. Preliminary results from Sequence
Generation Task.

7. EXPERIMENT 3: EEG SIGNATURES OF
CREATIVITY FROM BP SEQUENCER DATA

Experiment 3 aims to relate the perception of sequences
generated from the BP sequencer to neural markers of
creativity in EEG. Participants were young adults recruited
from Northeastern University (n = 6). Each participant
listened to each sequence generated from Experiment 1,
and rated it for creativity (originality and appropriateness)
using the same interface as the Sequence Ratings Task in
Experiment 2, with EEG triggers (event time tags)



generated by Max/MSP and recorded with the BrainVision
system. EEG was recorded with a 64-channel BrainVision
actiCHamp system with PyCorder software in a sound-
attenuated and electrically-shiclded chamber. EEG data
was sampled at 1000 Hz and filtered using .5 Hz high pass
filter and 60 Hz notch filter for electrical noise. EEG was
re-referenced to electrode channels TP9 and TP10, which
are relatively stable and commonly used for auditory EEG
studies, and corrected for ocular artifacts using
Independent Components Analysis (ICA) consistent with
most auditory EEG data acquisition protocols [19].
Preprocessing and analyses were done in Matlab with
EEGLAB toolbox [19].

Figure 3. Preliminary results from EEG study in A.
Frequency-domain, B. Steady-state evoked potential, and
C. Event-Related Potential (time-domain) analyses.

Frequency-based: To assess neural entrainment, power
spectral densities (PSDs) were computed over the full
length of each EEG channel using Welch’s procedure
(pwelch in MATLAB) with a 1600 sample window and a
8000 sample overlap. Lower alpha power and higher SSEP
at the first harmonic were observed during sequences that
received the highest creativity ratings (tertile split) (Figure
3A), suggesting less boredom and higher entrainment to
the stimulus.

Steady-state evoked potential (SS-EP): As the
frequency-tagging technique has previously been used to
assess neuronal entrainment to beat and meter [20], we
isolated EEG activity in the form of steady state evoked
potentials (SS-EPs) specifically at the note rate, which is
set at 148 ms per note (6.76 Hz) for our perception task.
Starting from the frequency-based results from above, the
broad-band frequency activity was removed by
subtracting, at each bin of the frequency spectra, the
average amplitude measured at neighboring frequency
bins (two frequency bins ranging from —0.15 to —0.09 Hz
and from +0.09 to +0.15 Hz relative to each frequency
bin). A prominent SSEP was observed at the note rate of
6.76 Hz (corresponding to the inter-onset interval of 148
ms) and its harmonic of 13.5 Hz (Figure 3B), confirming
that our task elicits robust neural entrainment to the beat
frequency.

Event-Related Potential (ERP): In addition to
assessing frequency-based EEG markers of creativity, we
computed Event-Related Potentials (ERPs, or electrical
fluctuations that are uniquely related to the event of
interest [21]) to tones in sequences that were rated as
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highly creative against sequences that were rated as
medium in creativity. Figure 3C shows ERPs of the
highest-rated tertile of trials (red) against the medium-
rated tertile (black). A persistent difference in ERP was
observed between high, medium, and low ratings, from
less than 10 ms after tone onset throughout the duration of
the time window being analyzed (Figure 3A). Sequences
that were rated low in creativity showed the most negative
waveforms, whereas sequences that were rated high in
creativity showed the least negative waveforms. Negative
waveforms during auditory processing, also known as the
processing negativity [22], have been identified as the
mismatch negativity (MMN), a negative waveform
observed in response to unexpected or unpredicted tones
given a context [23]-[25]. Results are consistent with the
link between unexpectedness and creativity: while highly
predictable sound sequences may be perceived as
uninspiring, and highly unpredictable sound sequences
may be perceived as negative prediction error (in the sense
that the participant’s mind is unable to form a predictive
model of how the sequence would go), it is the slightly
unexpected sequences that elicit positive prediction errors,
and are linked to higher creativity ratings. These neural
markers can thus be coupled with behavioral testing and
music technology to enable a better understanding of
musical creativity.

8. CONCLUSIONS

We designed a unique user interface for collecting data on
musical creativity, using the non-standard tuning system
of the Bohlen-Pierce scale. In three experiments, we begin
to address questions related to musical creativity as it
relates to originality and appropriateness, and we relate the
perception of musical creativity to brain-based measures
as characterized by EEG. The BP scale is not a commonly
used musical system in any culture; thus a sequencer that
is built on the BP scale is equally accessible to those with
varying levels of experience in different musical systems
around the world, rendering it similarly useful for someone
from the Western musical tradition and from other
traditions, such as Chinese pentatonic or Indonesian
heptatonic musical traditions. Furthermore, since
Max/MSP is a platform-independent programming
language with free runtime versions, a Max/MSP-based
user interface that is quick to learn can be scalable in the
future for massive online studies. The current studies,
though using only small sample sizes, are a step towards
this goal. Taken together, we believe that the BP sequencer
is a platform-independent, relatively training-independent
tool that lowers the barrier-to-entry in neural and cognitive
assessments for musical creativity. The code for these
tasks are freely available at https://github.com/mind-lab-
bos/BPsequencer, along with written instructions and
video tutorials.
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