A NOTATION SYSTEM FOR DISTRIBUTED MEDIA ART

Jean-Michaél Celerier
Concordia University / ossia.io
Montréal, Canada
jeanmichael.celerier@gmail.com

ABSTRACT

Interactive, intermedia scores are scoring systems which
enable composers to specify temporal evolutions and vari-
ations of such multimedia systems. We introduce a visual
notation for distribution of the interpretation and execution
of such scores over a computer network: both the temporal
organization of the score and the multimedia data can be
distributed through a set of scoring primitives.

For instance, we will show how one can write and exe-
cute a score which specifies: part A plays on a first group
of computers, followed by part B on a second group of
computers, while a parallel part C containing a synchro-
nized video effect is being played on a separate machine
with dedicated video hardware. Based on the pre-existing
scoring environment ossia score, we cover how the exten-
sions interact with the existing score execution algorithm,
and present a set of small distributed scores which enables
varied behaviours to be defined by the composer from our
proposed set of nine temporal and three dataflow primitives
for score distribution.

1. INTRODUCTION

Interactive scores are scoring systems which encode inter-
activity and the set of variations that can take place during
the performance of said scores. Intermedia scores are scor-
ing systems which encode not only the actions of musical
instruments, but also of video systems, OSC controls, etc.
ossia score [3, 4] is both an interactive, intermedia scor-
ing language, and the software implementation of said lan-
guage as an open-source score editor and interpreter.

The present research covers multiple ongoing parallel tracks
for the distribution of interactive, intermedia scores, which
converged in an implementation in ossia score. Simply put,
we are interested in all the possible ways in which one can
“distribute” an interactive, intermedia score over a com-
puter network, and in how visual scoring languages can be
defined to enable composers to write such a score, with a
unique visual representation conveying the distribution se-
mantics desired by the composer.

A fundamental example of distribution is the classical or-
chestra: orchestral scores can specify staves for violins,
flutes...which are then distributed to an arbitrary number

Copyright: © 2022 Jean-Michaél Celerier, Akané Levy This is an open-access article

distributed under the terms of the Creative Commons Attribution 3.0 Unported

License, which permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

28

Akané Levy
ossia.io
Talence, France
levy.akane@gmail.com

of performers which will all have their own personal inter-
pretation of the score.

In the case of intermedia scores, it is common for com-
puters and their strict internal clocks to be at the core of the
performance: interactive, intermedia artworks can range
from pieces that do not incorporate any human element dur-
ing the performance to intricate collaborations between hu-
mans and machines. The goal of this research is to devise a
notation to encode distributed semantics inside ossia score,
which will allow performance to occur from a single doc-
ument shared over the network, and provide an implemen-
tation of the distributed performance of said notation.

Distributed works in media art have existed for a long
time: laptop orchestras [14] are a famous instance of musi-
cal ensembles revolving around a group of human perform-
ers being conducted and themselves using their laptops as
musical instruments. Said laptops can optionally be syn-
chronized, for instance to keep a shared musical beat across
the piece. The question of conducting in the face of com-
puter networks is discussed by Smallwood in [13]:

Thus, possibilities for coordination, message-
passing, group control, quantization, tempo,
dynamics and so on are on the table for all
composers working with PLOrk. Should these
tasks be given to a conductor? Should the con-
ductor be human, or should it be a program op-
erating over the network? Or should there be
both kinds of conductor?

Scoring systems for laptop orchestra pieces are as far as
the author could find, bespoke and generally customized
for each individual piece. Other systems that embody dis-
tributed composition and performance often focus on dis-
tributing scores that are closer to traditional western sheet
music, such as Quintet. Net introduced by Hajdu in [8] and
based on Max/MSP. Likewise, Indra [1] is another Max-
based system for networked live performance with real-
time compositional aspects. Other systems focus more on
graphical or alternative notations: Decibel ScorePlayer [9]
“allows for network-synchronised scrolling of proportional
colour music scores on multiple iPads”. More recently,
Drawsocket [7] by Gottfried and Hajdu focused on live
generation of graphical scores in the web browser from
Max/MSP patches and a NodeJS communication layer, with
the main aim being conduction of human performers through
the distribution of the visual notation over multiple net-
worked displays.

In the present paper, we will argue for a basic set of vi-
sual primitives for writing such scores in the hope of foster-

mailto:jeanmichael.celerier@gmail.com
mailto:levy.akane@gmail.com
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

ing collaboration and a common understanding of the ways
performers, be they human or machine, can be synchro-
nized (or not) in such artworks. First, semantics for dis-
tribution of both temporal interactions and specifications
will be presented, then we will introduce a core primitive
for symbolizing the various ways exchange and sharing of
multimedia data can be done in a distributed score. Exten-
sions to ossia score’s visual language to encode these dis-
tribution semantics into the scoring language will be pre-
sented, and various examples of usage will be discussed.

The implementation is entirely self-contained in ossia score.

Due to its current use of WebSockets for communication, it
works transparently across both desktop apps and the beta
version of the WebAssembly port of the software.

2. AN OSSIA SCORE PRIMER

D _ G i
C
. - E
Trigger Condition I—{- - _)
@ State Time Sync | H

F
= Temporal interval

----- » Temporal jump — Direction of the flow of time

Figure 1: Syntactic elements of ossia score’s visual lan-
guage.

Dubbed “interactive sequencer for the intermedia arts”,
ossia score is a system which combines both non-linear
time-lines and the data-flow paradigm to allow artists to
create interactive multimedia artworks, musical pieces, mu-
seum installations, etc. It supports audio and video play-
back and effects, as well as communication and control
over protocols such as OSC, OSCQuery, WebSockets, Art-
Net or even raw serial port communication.

The visual language is showcased in fig. 1. Here is a
short description of the syntax elements and their seman-
tics: time intervals are represented with horizontal lines
proportional to their durations. A full horizontal line means
that the time must not be interrupted, while a dashed hori-
zontal line means that the time of the interval can be inter-
rupted to continue to the next part of the score according to
an external event. The time during which such interruption
can occur can be bounded by the user: these bounds are vis-
ible as the small black parentheses around the dashes. Start
and end points of a group of intervals can be synchronized.
On these synchronizations points, an optional trigger can
be used to specify that the synchronization is dependent on
an external event, such as an OSC message. Conditions al-
low to selectively disable parts of the score depending on
the value of an external control at the moment execution

29

reaches that point: an OSC parameter, a MIDI CC...

In fig. 1, execution occurs as follows: the interval A runs
for a fixed duration. When it ends, a condition is evalu-
ated: if it is false, the branch which contains B will not
run. Else, after some time, the flow of time in B reaches a
flexible area centred on an interaction point, also called a
trigger. If an interaction happens, B stops and D starts. If
there is none, D starts when the max bound of B is reached
by the flow of time in B. Just like after A, an instantaneous
condition will make G execute or not execute. In all cases,
C started executing after A. C expects an interaction, with-
out time-outs. If the interaction happens, the two instanta-
neous conditions which follow C' are evaluated: the truth
value of each will decide of the execution of £ and F'. Fi-
nally, after G, execution circles back to the end of A thanks
to the temporal jump 7; the condition will be reevaluated,
at least C' will start again, and B depending on the value
of the condition. Besides this, the system allows varying
each interval’s execution speed independently during the
performance: even if all the external conditions evaluate to
the same value at the same time, it is possible to have two
very different executions for the same score.

In itself, this only represents an abstract “flow of time”:
the score language needs to have a way to specify con-
crete behaviours, such as sounds or videos being played,
OSC messages being sent, etc. This is done at two lev-
els: states can contain a bundle of messages that are sent
at a specific point in time, and intervals contain processes
that generate, filter and output data: automations, MIDI,
sound or video file players, VST effects and instruments,
PureData patches, JavaScript scripts, video effect proces-
sors, etc. Processes can be linked together in a dataflow
graph akin to the usual patching or coding environments:
PureData [12]..., or communicate directly with the exter-
nal environment: OSC-like addresses can be specified for
their inputs and outputs ports to address the external envi-
ronment of the software, visualized in 2.

These processes are rarely represented on paper notation.
The software implements this visual language along with
many such processes; the temporal scoring language is it-
self defined as such a process, called Scenario, and as such
can be nested recursively to implement grouping and hi-
erarchy: scenarios describe the organization of intervals,
which themselves contain processes.

3. DISTRIBUTING SCORES

A first prototype for distribution in ossia score had been
introduced in [2]. We recapitulate here the core ideas: the
distribution of interactive scores is a semantic that allows
defining on which hardware specific parts of scores are go-
ing to run. For instance: a computer handles the audio pro-
cessing of a performance, while another processes video
feeds. Through simple modifications to the software model
of ossia score, this enables varied networked behaviours
to occur. Our implementation uses a client-server archi-
tecture: one of the machines acts as a server and ensures
the coherency of the network session. More interesting
peer-to-peer implementations would be possible through
distributed consensus algorithms such as Paxos[10], but in

3.2 Distribution of interaction

Remember that ossia score allows defining interaction points
in the score: in the non-distributed case, this means for in-
stance that someone can write a score where a sound plays
until a physical sensor is activated, then a light flash oc-
curs. The interaction point will contain an expression such
as: device:/sensor/1 > 100. The question we ask is:
what are the possible semantics for the distribution of the
evaluation of such an expression over the network — and
most importantly, what does it enable intermedia composers
to do. The main idea is that we can leverage the multiplic-
ity of computer clients to represent consensus in the score:
for instance, by assigning the interaction point to a group,
we require that all the participants to the group validate the
expression for enacting forward progress past the interac-
tion point in the score; client machines outside of the group
simply don’t participate in the expression evaluation and
just follow the result defined by the group evaluating the
expression.

We consider two axes for defining the temporal relation-
ships between how the synchronization of expression res-
olution is achieved across a group of clients executing a
given scenario. The temporal properties to balance are:

Figure 2: A screenshot of ossia score, showing the main
system for authoring scores with the visual language of
fig. 1. On the left, a tree view shows the OSC addresses
to which the score can speak. On the right, an inspector al-
lows to edit the properties of selected elements. The score
is in the center.

practice the current implementation has performed suffi-
ciently well for the needs of the scores written with it so
far. The success of the client-server architecture in Quin-
tet.Net shows that this is a viable long-term approach.

» Latency: how fast an individual machine reacts to

3.1 Abstracting over hardware with groups the resolution of an interactive expression on the net-
work.
The core idea is the addition of a notion of groups to the
software model. Groups are the interface and abstraction » Respect of the temporal order: how precisely the over-
between physical hardware and the semantic level of the all execution of the score on the network matches the
score: we do not want to annotate IP addresses represent- specification given by the composer.
ing a specific computer in scores for obvious maintainabil-
ity and readability reasons. The way groups are used by These two properties are at odds: for instance, if in the
the composer is simply by assigning objects of the score to case given above, different groups and hardware execute
a group defined as part of the score’s metadata: a part of sound playback and light control, is it tolerable for the aes-
the score can be assigned to a group named audio, another thetics desired by the composer that the computers of the
part to a group named osc_controls for instance. These first group still play back sound for a few milliseconds if
parts can play in parallel, one after each other, or more gen- that means that the light flash starts closer to the sensor pa-
erally in any temporal arrangement made possible by the rameter change? Only the composer can answer this ques-
scoring semantics given in Section 2. Then, when the per- tion.
formance happens, all the computers supposed to partake The proposed distribution system enables fine-tuning of
in the execution of the score connect to the session, and the synchronization mechanism by leveraging the pre-existing
choose which groups they want to join. During playback, a asynchronous infrastructure in ossia score: interactive trig-
given client computer will execute only the elements of the ger points. Two cases are possible for interactive trigger
score which are assigned to any of its groups. This means points assigned to a group: they can be time-compensated —
that for prototyping, it is trivial to run the entire score on a that is, when all the computers validate the trigger, the net-
single computer, simply by assigning the unique score in- work engine will try to define a date in the future at which
stance to every group defined in the score. every computer must actually execute the trigger point, so
Due to the hierarchic model of ossia score processes, where ~ that this happens simultaneously from the point of view
a scenario is itself a process, entire parts of the score can of an external observer looking at all the computers. Or,
easily be distributed to various groups, simply by chang- execution can also happen on an as-fast-as-possible basis,
ing a property on a parent node of this hierarchical process which can be helpful when the artistic trade-off between
tree. The group property is inherited across the child ob- latency and synchronization tips in favour of the shortest
jects: if an interval is assigned to a group A, all its children reaction times.
processes are recursively assigned to that group too unless
one explicitly selects another group. Likewise, all the other Asynchronous versus synchronous: in the asynchronous
properties mentioned in the sections below propagate hi- case, the synchronization semantics of trigger points
erarchically until an element of the score with properties are not respected across the network. The triggering
explicitly set by the composer is encountered. algorithm is:

30

1. Obtention of a consensus on the value of the ex-
pression across the network on the server ma-
chine.

2. The server notifies all the clients, which react
as soon as they get a message.

This means that if the latency between a client ex-
ecuting a process that precedes the trigger point and
the server is greater than the latency between the server
and a client that executes a process following the
trigger point, to an external observer, an external ob-
server will see both timelines overlap for a short du-
ration, which would be impossible in a non-distributed
execution of the score.

In the synchronous case, the semantics of trigger points
are respected across the network: the following in-
tervals cannot start before the previous intervals have
ended on all clients. The triggering algorithm is:

1. Obtention of a consensus on the value of the ex-
pression across the network on the server ma-
chine.

2. The server notifies all the clients that the trigger
has started executing.

3. When the clients finish executing the intervals
that precede the trigger point, they notify the
server.

4. The server notifies all the clients that the trigger
has finished executing.

5. The clients start executing the following inter-
vals.

This of course increases latency, but ensures that the
temporal semantics of the score are respected glob-
ally: the score executes on the network in the same
order as it would on a single machine, except with
greater delays.

» Uncompensated versus compensated: in the uncom-
pensated case, messages are processed as soon as
they arrive. In the compensated case, the server tries
to derive a timestamp in the future where all clients
are supposed to have received a message according
to their respective latency with regards to the server,
in order to make sure that from an external observer
point-of-view, everything happens simultaneously.

For instance, consider a situation with three machines:
one server at time ¢y with latency 0 with regards to

itself, one with a latency of 50 milliseconds and one

with a latency of 100 milliseconds, the server will

send to the entire network session messages that re-

quest execution at a minimum of ¢y + 100ms. Note

that we implicitly assume that the machine’s wall

clocks are synchronized through an external mech-

anism such as NTP or PTP.

3.3 Polyphony

Processes of the score can operate either in free or shared
mode. Free means that the properties and execution of a

31

given process is independent across machines; shared means
that the process’s state will be synchronized across all the
machines that execute it. For instance: a scenario playing a
sound could play it at two different speeds and have entirely
different conditions resolutions on multiple clients in the
free case, while in the shared case, all the clients executing
it will be kept in sync for this specific scenario’s execution:
condition resolution and interval speed adjustments will be
synchronized across the network. Likewise, for processes
with controls, this means that a change of control during
execution will not be synchronized across machines in the
free mode, to enable for instance multiple performers to
interact with a virtual musical instrument each in a differ-
ent way on their respective computer. In contrast, in the
shared mode, the controls will be synchronized across all
the machines.

For instance, for processes such as sound generators or
filters, this simply means that a process in free mode can
execute with different state for its user-interface controls
across the session. In shared mode, a change of control
from a client is applied to all the other machines in the net-
work.

Likewise, in free mode, a scenario process will be able
to execute with different interval speeds, conditions and in-
teractions in all the clients executing it. In shared mode,
the interval speeds, expression resolutions, will be synchro-
nized across the network through the mechanisms described
above.

4. DISTRIBUTING DATA

An open question which had been evoked in [2] was the dis-
tribution of the live, run-time data of the score: the original
implementation did not consider the transfer of things such
as OSC parameters, sound or video streams: it only focused
on the distribution of the temporal semantics, and users had
to define the transmission of controls through separate sys-
tems such as NetJACK[11].

We introduce here a new set of processes in ossia score
which leverage the underlying networking session to en-
able scores to embed media data transfer semantics through
user-friendly objects. These processes are called Netpit:
Message Pit, Audio Pit and Video Pit. Right now, their
implementation focuses on ease of implementation for the
sake of prototyping and experimenting with writing scores
and as such uses WebSockets for data transfer instead of
WebRTC ' . The final implementation aims to use WebRTC
as it is the only real-time audio-video protocol supported
by web browsers: there is no other choice if we aim for our
system to be fully functional in the web.

These processes have a combining semantic. They have
one input port, and one output port. Their operating rule
is: the data that a Netpit process instance receives as input
is combined with all the clients executing this process with
a user-chosen function: summing or concatenating chan-
nels for audio, taking the mean for real-valued control sig-

! An implementation using WebRTC, more optimized for audio and
video transfer, has been started but is stuck on a bug in the underlying
GStreamer library implenting the WebRTC protocol: https://gitlab.
freedesktop.org/gstreamer/gstreamer/-/issues/1261

https://gitlab.freedesktop.org/gstreamer/gstreamer/-/issues/1261
https://gitlab.freedesktop.org/gstreamer/gstreamer/-/issues/1261

nals, applying a blend for videos, etc. For instance, if two
clients execute a given Netpit audio process at some point
during the execution of a score, with each their custom mi-
crophone input set in the input port, both clients will by
default get a sum of both microphone signals as output of
the process. There is as of now no latency compensation in
the system.

This, combined with the notion of group, enables to trans-
parently define a set of distributed behaviours: users do not
have to fiddle with defining explicit distribution semantics
such as one would do in environments such as Max/MSP,
by using custom network send / receive objects for each sig-
nal they want to transmit; here, the objects scale automat-
ically to the network topology used and allow he desired
distribution semantics inside the dataflow graph engine of
ossia score.

5. VISUAL LANGUAGE EXTENSIONS

To represent the multiple states of synchronization of the
elements of ossia score, we propose to introduce a set of
alternative symbols to denote the various network-related
semantics. Table 1 presents the matrix of possibilities. The
idea behind this prototypical design language is to represent
the concepts described in sections 3 and 4 as follows:

Inactive elements (e.g. those that are not in a group that
a given ossia score instance executes) are in grey, while
active elements are in colour.

The free—shared dichotomy is represented by a connect-
ing line: free elements aren’t tied together, shared elements
are.

We chose to not represent the uncompensated—compensated

axis yet as it would double the amount of symbols neces-
sary while only providing marginal benefits in local net-
works with very short latencies ; the toggle is however still
available from the user interface.

The asynchronous—synchronous dichotomy straightens the
round shapes to evoke the stricter constraints of synchro-
nization related to non-synchronization. Frutiger says about
the square in [6],

(...) a symbolic object, boundaried property,
also a dwelling place with the feeling of floor,
ceiling, walls, protection, etc. (p.43)

The notion of readiness which matches well with our free
and uncompensated and asynchronous semantics is also as-
sociated with the circle by the same author:

The most used figures are 1 and 0, two signs
that have highly differentiated forms: the straight
line and the circle. Once again we come across
the binary principle: 1 = notch, cut, hardness
(two visible stroke endings); 0 = emptiness,
readiness (no beginning or ending). (p.211)

The most restrictive and synchronized case should be the
same as the original, non-networked version, as a network
with only one computer can be considered as fully synchro-
nized with itself. It would be of course possible to argue
the opposite: that a network with a single score instance

32

running is equivalent to the free case. However, using the
original symbols in the free case would likely have im-
plied that the shared cases would have to bear additional
visual elements to denote the stronger semantics synchro-
nization semantics that they carry: experiments in this di-
rection made the visuals too heavy and harder to read. In
short, we opted for deconstructing the existing elements
instead of constructing new ones, with the sole exception
of the condition becoming “straighter”: debate is ongoing
about changing its appearance to the squared version in the
non-networked mode of ossia score.

These visual language extensions are still ongoing a pro-
totyping and experimentation process in ossia score and
may still evolve in terms of representation, with the goal
being making the transmission of our distribution seman-
tics as obvious as possible to the users.

6. IMPLEMENTATION

The system discussed here is implemented in C++, using
simple messages over WebSockets through the Qt Web-
Sockets implementation. This enables the system to func-
tion over both desktop, embedded, and tentatively through
the web with the WebAssembly port of Qt, with a single
codebase. The only limitation is that the web version can-
not act as a server for the session as web browsers do not
allow web page to open network ports.

The latency of simple operations such as a control change
is overwhelmingly defined by the network’s implicit la-
tency, plus the local latency between the network thread
of the software, and the audio or video thread which will
end up turning the network message into an observable be-
haviour, which is at most the duration of an audio buffer or
screen frame. Since our current implementation is based on
a client-server architecture, the network communication la-
tency is always the latency between the originating client
and the server, plus the latency between the server and the
other clients that will receive the message.

For the synchronized operations discussed in Section 3.2,
the latency will increase due to multiple round-trips be-
tween the involved clients and server: the overall latency
will always be bounded by the latency of the slowest client
as the server waits for all the clients in a group to trigger
the advancement of the score.

The system has been tested so far with up to 8§ instances
on a local network, over Wi-fi and Gigabit Ethernet, and
with two instances over the internet. Our naive video and
audio transfer implementations however are only useable
with correct results on a local network so far, and would
require using specific codecs with optimizations (such as
GPU encoding / decoding for video) making them suitable
for use over the internet.

7. DISTRIBUTION EXAMPLES

We cover in this section a few examples of usage of the new
data distribution primitives and distributed scores.

Shared

El ¢ Free
emen Uncompensated Compensated
Inactive Active Inactive Active Inactive Active

Triggers o T T
Conditions ° C E

o®

[]
Processes ¢) < E

Table 1: Proposed visual syntax for the distribution specification of ossia score’s elements. The icons for processes are

displayed in their header, and are also used for intervals.

Figure 3: Distribution of a mixed audio stream across ma-
chines: this is the entire score.

7.1 Sending data between machines

In this example, we want to showcase the simplest possible
example of distributing data: there are two machines, both
want to hear a mix of all the musical instruments playing
on the network: for instance the scenario is the classic net-
worked band rehearsal. Fig. 3 shows how simple it is: this
behaviour is the one that the “Audio Pit” object will pro-
vide by default. All the machines can be in the same default
group, all. They will all execute the process: its input is
set to the address audio:/in/main which represents the
default input of the sound card of the computer. The pro-
cess will pull the audio input, and sends it to all the clients
which then each perform the downmix with the data they
received? .

7.2 Combining control data across a group of players

In this example, we wish to combine MIDI CCs, gamepad
inputs or even GUI widgets which would be controlled by
musicians on cheap hardware, in order to generate audio on
a computer with a powerful sound card. Fig. 4 shows how
such a setup can be achieved.

The groups are defined as follows: there is a players
group, and an audio group. The “Knob” process is asso-
ciated with the first group: only the clients in this group
will execute this process. The second group is associated
to the entire bottom interval: it applies recursively to the
processes within. During execution, all the clients which
registered themselves in the players group will have their
“Knob” send an input message to the “Message Pit” pro-

2 Our current research prototype implementation uses a central server;
a production implementation using WebRTC would be P2P

33

Figure 4: Clients-to-server communication.

cess, which by default is assigned to the all group, which
everyone is part of by default. Then, the score instance
which registered itself in the audio group will receive a
list containing all the input frequencies of the clients. It ap-
plies it to a simple polyphonic synthesizer and effect chain
and renders it on a sound system.

7.3 Duplicating an input

This example is a sort of contraposition of example 7.2.
A single machine produces an input, which is going to be
broadcast. A set of machines will synthesize either sounds
or visuals from this input, depending on their groups. The
group organization is actually almost the same as exam-
ple 7.2: the only difference is that a video group is added,
in order to distribute audio and video rendering on differ-
ent hardware. Fig. 5 shows the score. Note that the system
has no way to specify the number of participants, which is
purely a property of the actual performance that will take
place: a performance could use one client, two audio ma-
chines and two video machines, while the next performance
could actually average the input of four clients, and only
use a single audio and video output clients, without chang-

Figure 5: A single client’s input data will be broadcast to
all the machines in the audio and video groups.

ing anything to the score. Conceptually, the score specifies
only sections and not individual players, just like scores for
orchestras or choirs usually does not specify an exact num-
ber of second violins or singers.

7.4 Score for SMC2022

A successful prototype demonstration happened for the 2022
Sound & Music Computing Conference (fig. 6), located
in Saint-Etienne (France). The score was distributed be-
tween this location and the home of the author in Peyriac-
Minervois, 357 km away and featured both interactive trig-
gering and distribution of OSC data. Audio and video trans-
mission had not been implemented yet and have so far only
been tested on local networks.

This score was before the introduction of the visual lan-
guage, it featured multiple groups and controls, as well as
a shared evolution of the interactive timeline over the net-
work: the automations at the top would for the first part
all be synchronized together as the main scenario was in
“shared” mode. Then, a sub-scenario D was in free mode:
inside this hierarchical level, the trigger’s triggering time
would be independent across machines.

7.5 Polyphony, sharing and visual language

This example (fig. 7) presents some of the visual language

extensions introduced in Section 5 The root scenario is shared:

execution speed and triggers will be synchronized across
the entire network (the scenario is assigned to the special
“all” group which encompasses all clients). Then, its score
is as follows: intervals 4 and B are assigned to respective
groups of the same name. Both contain an audio generator.

34

Figure 6: Excerpt of the score demoed over the internet at
SMC2022 — this was before the introduction of the visual
language.

The generator of group A is shared: if any client changes
one of the control, this is passed on all the other machines
which execute it. The generator of group B is free: every
client can change its controls independently. Clients that
are neither part of 4 nor B will not execute any of these
sound processes. Whenever the interactive trigger point be-
tween A and the Video interval is triggered, all the machines
start executing the video effects (GLSL shaders) locally.
The Scenario which contains GFX/ and GFX2 is in free
mode: all the machines can execute it independently. That
means for instance that the speed of execution of GFXI
and GFX2 can differ across all clients, and that the inter-
active trigger point between both isn’t synchronized across
the network. The output of the video generator processes
is connected to an Echo Trace process in shared mode: its
controls will be shared across the network. Finally, in the
video effect chain, the V'VMotionBlur video effect is in free
mode: its controls are also independent across the network.

8. CONCLUSION

This work introduces a notation system for intermedia com-
posers to author distributed behaviours in a simple graph-
ical environment. The interactive system has been tested
both in local networks and over the internet.

The remaining implementation goals are to make sure that
the system works correctly from web browsers through os-
sia score’s WebAssembly port, and improving the data pro-
tocol implementations to use more optimized protocols than
the current WebSockets-backed implementation, which is
not well suited to streamed multimedia data such as audio
and video. In particular, a pathway we would like to ex-
plore, is to automatically adapt the protocols used for au-

Figure 7: A score with various behaviours across various groups. This uses the visual language discussed in Section 5.

dio/video data transmission to the clients connected and the
network situation: if the performance does not use web-
based clients and is entirely situated on a local network, it
would make sense to automatically use NewTek NDI for
video transmission due to its efficiency [5]. In contrast, if
the performance is done over internet, it would make more
sense to use WebRTC for its P2P communication abilities,
and support for various NAT-bypassing technologies which
would enable its use across for instance academic institu-
tion firewalls. A tentative to use the Opus codec for trans-
mitting audio content has also been done, but so far did not
provide an acceptable quality / latency trade-off for musical
applications.

References

Drake Andersen. “INDRA: A Virtual Score Platform
For Networked Musical Performance.” In: Proceed-
ings of the International Conference on Technolo-

(1]

gies for Music Notation and Representation (TENOR).

Hamburg, Germany, 2021.

Jean-Michaél Celerier, Myriam Desainte-Catherine,
and Jean-Michel Couturier. “Exécution Répartie De

Scénarios Interactifs.” In: Proceedings of the Journées

d’Informatique Musicale (JIM). Paris, France, 2017.

Jean-Michaél Celerier et al. “OSSIA: Towards a Uni-
fied Interface for Scoring Time and Interaction.” In:

Proceedings of the International Conference on Tech-
nologies for Music Notation and Representation (TENOR).

Paris, France, 2015.

Jean-Michaél et al. Celerier. “ossia score 3.” In: Pro-
ceedings of the International Conference on Tech-

(4]

Marseille, France, 2022.

35

(5]

(6]

(7]

(8]

[10]

[11]

[12]

[13]
nologies for Music Notation and Representation (TENOR).

[14]

Andrew Cross et al. “IP Workflow and Scalable Video
Performance.” In: SMPTE17: Embracing Connec-
tive Media. SMPTE. 2017, pp. 1-12.

Adrian Frutiger. Signs and symbols, their design and
meaning. 1989.

Rama Gottfried and Georg Hajdu. “Drawsocket: A
browser based system for networked score display.”
In: Proceedings of the International Conference on
Technologies for Music Notation and Representa-
tion (TENOR). Melbourne, Australia: Monash Uni-
versity. 2019, pp. 15-25.

Georg Hajdu. “Quintet. net: An environment for com-
posing and performing music on the Internet.” In:
Leonardo 38.1 (2005), pp. 23-30.

Cat Hope and Lindsay R Vickery. “The Decibel Score-
player — A Digital Tool for Reading Graphic Nota-
tion.” In: Proceedings of the International Confer-
ence on Technologies for Music Notation and Rep-
resentation (TENOR). Paris, France, 2015.

Leslie Lamport. “The Part-time Parliament.” In: ACM
Transactions on Computer Systems 16.2 (1998), pp. 133—
169.

Stéphane Letz, Nedko Arnaudov, and Romain Moret.
“What’s new in JACK2?” In: Proceedings of the Linux
Audio Conference (LAC). Utrecht, Netherlands, 2009.

Miller Puckette et al. “Pure Data: Another Integrated
Computer Music Environment.” In: Proceedings of
the Second Intercollege Computer Music Concerts.
Tokyo, Japan, 1996.

Scott Smallwood et al. “Composing for laptop or-
chestra.” In: Computer Music Journal 32.1 (2008),
pp. 9-25.

Dan Trueman. “Why a laptop orchestra?” In: Organ-
ised Sound 12.2 (2007), pp. 171-179.

	2 - TENOR_BOSTON_2023_paper_5657 Nowakowski.pdf
	 1. Introduction
	 2. Method
	 3. Results
	3.1 System Usability Score (SUS)
	3.2 AttrakDiff2
	3.3 Liveness

	 4. Discussion
	4.1 Limitations and Problems
	4.2 Metrics in detail
	4.3 Correlating the results

	 5. Conclusion & Future Work
	 6. References

	3 - TENOR_BOSTON_2023_paper_5929 Loui.pdf
	ABSTRACT
	1. INTRODUCTION
	Techniques for the notation, representation, and visualization of music and sound are inextricably linked to the human understanding of musical structure within their broad contexts. These understandings include the cognitive representations that the ...
	2. Studies in Musical Creativity
	3. Challenges and Motivations Behind Present Research
	4. the BP sequencer
	5. experiment 1: sequence production task: generating creative output
	6. Experiment 2: Sequence Ratings Task: Perception of creativity
	7. Experiment 3: EEG Signatures of Creativity from BP Sequencer data
	8. CONCLUSIONS
	9. references
	Acknowledgments
	We acknowledge funding support from NIH R01AG078376, NIH R21AG075232, NSF-CAREER 1945436, and NSF 2240330 to PL. We thank lab members Anjali Asthagiri, Jethro Lee, Catherine Zhou, Kristina Abyad, Carly Monson, Ayla Hadley, Corinna Parish, Eva Wu, and ...

	4 - TENOR_BOSTON_2023_paper_8103 Frame.pdf
	 1. Background
	1.1 Documentation for Digital Musical Instruments
	1.2 The AirSticks Community

	 2. Related Work
	2.1 Prescriptive notation
	2.2 Descriptive notation
	2.3 Describing experience?

	 3. The notation system
	3.1 Overview
	3.2 Capturing AirStick experiences
	3.3 Technical process
	3.4 Case study

	 4. Discussion
	4.1 Utility of new systems
	4.2 Future work

	 5. References

	5 - TENOR_BOSTON_2023_paper_5652 Celerier.pdf
	 1. Introduction
	 2. An ossia score primer
	 3. Distributing scores
	3.1 Abstracting over hardware with groups
	3.2 Distribution of interaction
	3.3 Polyphony

	 4. Distributing data
	 5. Visual language extensions
	 6. Implementation
	 7. Distribution examples
	7.1 Sending data between machines
	7.2 Combining control data across a group of players
	7.3 Duplicating an input
	7.4 Score for SMC2022
	7.5 Polyphony, sharing and visual language

	 8. Conclusion

	6 - TENOR_BOSTON_2023_paper_4288 Privato.pdf
	 1. Introduction
	 2. Background
	2.1 Instruments-Scores and Non-visual Inscriptions
	2.2 Event Scores and Non-visual Inscriptions
	2.3 Permanent Magnets

	 3. The Magnetic Score
	3.1 Magnetic Board
	3.2 Magnetic Discs
	3.3 Sound Processing

	 4. Presenting the Magnetic Score
	 5. Discussion
	5.1 Magnetic Inscriptions
	5.2 The Magnetic Score as Inherent Score
	5.3 Relational Inscriptions

	 6. Future Work
	 7. Conclusions
	 8. acknowledgments
	 9. References

	8 - TENOR_BOSTON_2023_paper_7600 Armitage.pdf
	 1. Introduction
	 2. Background
	2.1 Perspectives on Agency
	2.2 Exploring Agency through Boundary Objects

	 3. Agential Scores
	3.1 Agency of Points and Lines
	3.2 A Typology of Entanglements with Agential Scores
	3.3 Assemblages and Intra-action
	3.4 Agential Scores in Practice via Artificial Life

	 4. Tölvera: a Library of Number Beings
	4.1 Number Beings
	4.2 Mappings and Visualisations
	4.3 Implementation

	 5. Musical Encounters with Tölvera
	5.1 Encounters Summaries
	5.1.1 Encounter 1: Boids & Two Guitars
	5.1.2 Encounter 2: Physarum & Two Guitars
	5.1.3 Encounter 3: Boids, Physarum, Guitar & Conductor
	5.1.4 Encounter 4: Reversing Roles from Encounter 3

	5.2 Post-Encounters Discussion

	 6. Discussion
	6.1 Fluid Material Agency
	6.2 Mapping of Self Onto Agential Materials
	6.3 Perceiving the Intra-Actants
	6.4 Future Considerations

	 7. Conclusion
	 8. References

	9 - TENOR_BOSTON_2023_paper_2697 Hori.pdf
	 1. Introduction
	 2. Note-Tablature-Form Tree for Monophonic Cases
	2.1 Fingering decision based on HMM
	2.2 Note-tablature-form tree

	 3. Note-Tablature-Form Tree for Polyphonic Cases
	3.1 From chord to tablature
	3.2 From tablature to form
	3.2.1 Representing forms by finger numbers
	3.2.2 Numbering string-fret pairs
	3.2.3 Non-decreasing finger numbers
	3.2.4 Enumerating left hand forms
	3.2.5 Inserting mandatory separators
	3.2.6 Inserting optional separators

	 4. Conclusion
	 5. References

	10 - TENOR_BOSTON_2023_paper_8126 Panariello.pdf
	 1. Introduction
	 2. Motivation
	 3. Class description
	3.1 fileName
	3.2 midicents
	3.3 magnitudes
	3.4 rhythmTree
	3.5 metronome
	3.6 quantization
	3.7 threshold
	3.8 dynamics

	 4. Examples
	4.1 Writing a score from patterns
	4.2 Writing a score from spectral data

	 5. Case study – generating a piano piece using SuperOM
	 6. Limitations
	 7. Conclusions and Future work
	 8. References

	11 - TENOR_BOSTON_2023_paper_9804 Shapiro.pdf
	 1. Introduction
	 2. Related Work
	 3. Language Features
	3.1 Low-Level Fundamentals
	3.2 High-Level Templates
	3.3 Additional Features

	 4. Sample Program
	 5. Compiler Structure
	 6. Template Expansion Logic
	6.1 Backbone Logic
	6.1.1 Generating Notes in a Diatonic Scale
	6.1.2 Generating Chord Templates in a Diatonic Scale

	6.2 Template Expansions
	6.2.1 Scales
	6.2.2 Chords and Arpeggios
	6.2.3 Cadences
	6.2.4 Harmonic Sequences

	 7. Conclusion
	 8. References

	12 - TENOR_BOSTON_2023_paper_6679 Yamamoto.pdf
	 1. Introduction
	 2. Preliminaries
	2.1 Tonal Pitch Space
	2.2 Distance Models concerning Harmonic Features

	 3. Our Approach
	3.1 From Chord Names to Chord Interpretation Paths
	3.2 Between Chroma Vectors and Chord Interpretations
	3.3 From Chroma Vectors to Chord Interpretation Paths

	 4. Experiments
	4.1 Dataset
	4.2 Results

	 5. Conclusion
	 6. References

	13 - TENOR_BOSTON_2023_paper_9279 Gaulhiac.pdf
	 1. Introduction
	 2. Background
	 3. Harmonic Descriptors
	3.1 Implementation & Spectra Computation
	3.2 Concordance
	3.3 Third Order Concordance
	3.4 Roughness

	 4. From Harmonic Descriptors to Harmonic Maps
	4.1 Stability of Sounds
	4.2 Timbral Considerations

	 5. Interactive Harmonic Maps
	5.1 Implementation
	5.2 MPE Control & Harmonic Trajectories

	 6. Examples
	6.1 Influence of the Number of Partials
	6.2 Influence of Timbre
	6.3 Influence of Dynamics & Playinng Techniques
	6.4 Influence of Harmonicity
	6.5 Roughness
	6.6 Third Order Concordance

	 7. Conclusions & Future Work
	 8. References

	14 - TENOR_BOSTON_2023_paper_7968 Lepper.pdf
	 1. Introduction
	 2. Beaming Rules as a Transformation Pipeline
	2.1 Foundation: Genuine Beams
	2.2 Modification of Genuine Beams
	2.3 Beams for Rhythms
	2.4 Local Transformations of Beam Patterns

	 3. Additional External Data
	3.1 Indirect Influence by Stem Direction
	3.2 Direct Influence
	3.3 Beams expressing Tempo – ``Feathered'' Beams

	 4. Two-Dimensional Layout: Vertical Position and Pitch Height
	4.1 Ergonomic Significance of Beam Inclination
	4.2 Stem Direction of Beam Aggregates
	4.3 Graphical Placement of Beam Aggregates
	4.4 Fine Tuning against the Staff Lines
	4.5 Resolving Conflicts by Breaking Beams
	4.6 Resolving Conflicts by Knees
	4.7 Resolving Conflicts by Changing Height and/or Inclination

	 5. Aspects Not Covered
	 6. Conclusion
	 7. References
	 A. Appendices
	A.1 Polymetric Constellations Expressible by Beams

	16 - TENOR_BOSTON_2023_paper_2367 Onttonen.pdf
	 1. Introduction
	 2. Main features
	2.1 Leader interface
	2.2 Musician interface

	 3. Design principles
	 4. Development process
	 5. Technical implementation and limitations
	 6. Case: Labra
	6.1 General remarks
	6.2 Two examples

	 7. Conclusions and future work
	 8. References

	18 - TENOR_BOSTON_2023_paper_9910 Bell.pdf
	 1. Introduction
	1.1 Are scores maps?
	1.2 Maps do not represent time
	1.2.1 Databases as an art form
	1.2.2 Morton Feldman and the European clock makers

	 2. Corpus-Based Concatenative Sound Synthesis (CBCS) today
	2.1 Timbre Space
	2.2 Corpus-Based Concatenative Synthesis - State of the art

	 3. First attempts
	 4. Motivations
	 5. Workflow
	5.1 Corpus Selection
	5.2 Analysis in FluCoMa
	5.2.1 Slicing
	5.2.2 mfcc on each slice - across one whole slice/segment
	5.2.3 statical analysis over each slice
	5.2.4 Normalization
	5.2.5 Dimensionality Reduction
	5.2.6 Neighbourhood queries

	5.3 PatchXR
	5.3.1 Interaction and OSC communication

	 6. Future works: the Raspberry Pi Orchestra
	 7. Conclusions
	 8. References

	10 - TENOR_BOSTON_2023_paper_8126 Panariello.pdf
	 1. Introduction
	 2. Motivation
	 3. Class description
	3.1 fileName
	3.2 midicents
	3.3 magnitudes
	3.4 rhythmTree
	3.5 metronome
	3.6 quantization
	3.7 threshold
	3.8 dynamics

	 4. Examples
	4.1 Writing a score from patterns
	4.2 Writing a score from spectral data

	 5. Case study – generating a piano piece using SuperOM
	 6. Limitations
	 7. Conclusions and Future work
	 8. References

	Blank Page
	Blank Page
	Panariello P. 74.pdf
	 1. Introduction
	 2. Motivation
	 3. Class description
	3.1 fileName
	3.2 midicents
	3.3 magnitudes
	3.4 rhythmTree
	3.5 metronome
	3.6 quantization
	3.7 threshold
	3.8 dynamics

	 4. Examples
	4.1 Writing a score from patterns
	4.2 Writing a score from spectral data

	 5. Case study – generating a piano piece using SuperOM
	 6. Limitations
	 7. Conclusions and Future work
	 8. References

	10 - TENOR_BOSTON_2023_paper_8126 Panariello.pdf
	 1. Introduction
	 2. Motivation
	 3. Class description
	3.1 fileName
	3.2 midicents
	3.3 magnitudes
	3.4 rhythmTree
	3.5 metronome
	3.6 quantization
	3.7 threshold
	3.8 dynamics

	 4. Examples
	4.1 Writing a score from patterns
	4.2 Writing a score from spectral data

	 5. Case study – generating a piano piece using SuperOM
	 6. Limitations
	 7. Conclusions and Future work
	 8. References

