
UNIVERSITY OF A CORUÑA

SPAIN

Proceedings of the

Third International Conference on

Technologies for Music Notation and Representation

TENOR 2017

Helena Lopez Palma,
Mike Solomon,
Emiliana Tucci,

Carmen Lage
(editors)

A Coruña 2017

Universidade da Coruña
Servizo de Publicacións

Proceedings of the Third International Conference on Technologies for Music Notation and Representation
TENOR 2017
http://www.tenor-conference.org/index.html

LOPEZ PALMA, Helena; SOLOMON, Mike; TUCCI, Emiliana; LAGE, Carmen
A Coruña, 2017
Universidade da Coruña, Servizo de Publicacións
University of A Coruña, UDC Press.

Number of pages: viii+239
210x197 mm
index: p. vii

ISBN: 978-84-9749-666-7
Persistent URL: http://hdl.handle.net/2183/18494

CDU: 781.24:004.4(100)(042.3)*TENOR2017
IBIC: AVQ | UYU | GTN

Edition
Universidade da Coruña,
Servizo de Publicacións: www.udc.gal/publicacions

c© Edition, Universidade da Coruña.
c© Papers, Images, Scores, Authors.

Design and Layout: NATURAL LANGUAGE UNIT
LATEX editors: Natural Language Unit
using LATEX’s ‘confproc’ package, version 0.8 (by V. Verfaille)

Logo design: Nicolas Taffin

Licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND).
All rights reserved. No part of this publication may be reproduced in any form or by any means without the permission of the
publishers or the authors concerned.
All copyrights remain with the authors.

Reservados todos los derechos. Ni la totalidad ni parte de este libro puede reproducirse o transmitirse por ningún proced-
imiento electrónico o mecánico, incluyendo fotocopia, grabación magnética o cualquier almacenamiento de información y
sistema de recuperación, sin el permiso previo y por escrito de las personas titulares de los derechos de autor.

http://www.tenor-conference.org/index.html
http://hdl.handle.net/2183/18494
www.udc.gal/publicacions
http://creativecommons.org/licenses/by-nc-nd/4.0/

TENOR 2017 – The Third International Conference on Technologies for Music Notation and Representation

The goal of the Third International Conference on Tech-
nologies for Music Notation and Representation has been to
address a set of specific research issues associated with Mu-
sic Notation that were elaborated at the first two editions of
TENOR: the foundational Paris conference and the second
one held at Cambridge. The Coruña TENOR conference has
aimed at focusing the scientific and artistic inquiry over mu-
sic notation on two themes: vocal music and digital archives.
During TENOR 2017, 3 workshops, 1 keynote conference,
21 presentations, and 2 concerts have offered an overview of
the state of the art in the representation of music creation.

The three pre-conference workshops focused on innovative
technological approaches to music notation: “Hacking, ex-
tending and wrapping” by Mike Solomon; “The Guido Lan-
guage and Engine” by Dominique Fober and Mike Solomon;
and “Totalitarian Scoring Workshop” by Benedict Eric Carey
and Ryan Ross Smith.

The Keynote conference by Goffredo Haus and Luca Lu-
dovico — “Digitization of Historical Music Archives: Pre-
serving the Past, Embrazing the Future” — presented the
digitization technology created by the Laboratorio di Infor-
matica Musicale of the Department of Computer Science of
the University of Milan to build the LIM Music Archive,
which includes among its digital collections music scores,
libretti, graphical documents and objects associated to opera
performances taken place at La Scala of Milan.

Papers focused on new forms of symbolic representation of

music events including electronic music, interactive perfor-
mances, live coding, as well as the migration of musical
instruments to gestural and mobile platforms, hybridisations
with dance, 3D design and multimedia. They presented inno-
vative techniques of music notation, transcription and sonic
visualisation which are associated to the fields of musical
analysis, composition, performance and acoustics. Paper pre-
sentations were articulated in 8 sections: Music transcription,
graphic notation, visualisation and analysis, ontology, voice,
interaction, and music collaboration.

Concert 1 included five world premier compositions authored
by Richard Hoadley: “Homage to Cervantes”; Tomas Marco:
“Persiles avista Roma”; Helena Palma: “Voice prints”; Seth
Shafer: “Terraformation”; and Silvia Teles: “Des pas sur
l’invisible”; and a presentation by soprano Kristina Warren.
Hoadley’s and Marco’s compositions were commissioned by
TENOR 2017 as part of the commemorative events set to
homage Cervantes on his 4th Centenary. Concert 2 included
a world premier of the collaborative virtual reality composi-
tion created at the workshop “Totalitarian Scoring”, and the
interactive music game, “Plurality Spring”, designed by Paul
Turowski.

The workshops took place at the Faculty of Philology in the
University of A Coruña. The scholarly conference, papers,
music sessions and concerts took place at Paranymph Hall of
the Rectorate of the University of A Coruña.

TENOR 2017
Organising Committee

Organizing Committee

Helena Palma (UDC)
Mike Solomon (Ensemble 101)
Amor Admella (UDC)
Laura Castro (UDC)
Felix Cordoba (UDC)
Manuel Fernandez Ferreiro (UDC)
Mercedes Fernandez Valladares (UCM)
Fernando Gonzalez (UDC)
Andres Lacasa Nikiforov (OSG)

Carmen Lage (UDC)
Teresa Lopez (UDC)
Maria Jesus Lorenzo (UDC)
Carmen Parrilla (UDC)
Nieves Pena (UDC)
Mercedes Regueiro Diehl (UDC)
Dolores Sanchez Palomino (UDC)
Xose Manuel Sanchez Rei (UDC)
Emiliana Tucci (UDC)

Steering Committee

Jean Bresson (IRCAM STMS)
Pierre Couprie (IReMus Univ Paris-Sorbonne)
Dominique Fober (GRAME)
Yan Geslin (INA-GRM)
Richard Hoadley (ARU)
Mike Solomon (Ensemble 101)

ScientificCommittee

Trevor Bača
Karim Barkati
Sandeep Bhagwati
Alain Bonardi
Bruno Bossis
Jean Bresson
Pierre Couprie
Cecile Davy-Rigaux
Carlos Duque
Elsa De Luca
Dominique Fober
Jason Freeman
Ichiro Fujinaga
Yann Geslin
Daniele Ghisi
Gérald Guillot
George Hajdu
Goffredo Haus

Richard Hoadley
Cat Hope
Adrian Hull
David Kim-Boyle
Peter McCulloch
Thor Magnusson
Tomas Marco
Chris Nash
Helena Palma
Jean Penny
Philippe Rigaux
Eleanor Selfridge-Field
Mike Solomon
Mathew Thibeault
Lindsay Vickery
Hasnizam A. Wahid

Performers

Alfredo Garcia (baritone)
Adrian Pais (saxophone)
Florian Vlashi (violin)

vi

Conference Program

Keynote: MUSICAL ARCHIVING TECHNOLOGY 1
1 Digitization of historial music archives: Preserv-

ing the past, embracing the future
Goffredo Haus, Luca A. Ludovico

Session 1: MUSIC TRANSCRIPTION 9
9 Macaque. A tool for spectral processing and

transcription
George Hajdu

17 A machine learning framework for the catego-
rization of elements in images of musical docu-
ments
Jorge Calvo-Zaragoza, Gabriel Vigliesoni,
Ichiro Fujinaga

25 A web interface for the analysis and performance
of aleatory music notation
Adriano Baratè, Luca A. Ludovico

Session 2: GRAPHIC NOTATION 33
33 The 3-D score

David Kim-Boyle

39 An architectural approach to 3D spatial drum no-
tation
Jeremy J. Ham

51 A CAP for graphic scores. Graphic notation and
performance
Benny Sluchin, Mikhail Malt

Session 3: VISUALISATION AND ANALYSIS 57
57 Are scores maps? A cartographic response to

goodman
Daniel Miller

69 How can music visualisation techniques reveal
different perspectives on musical structure?
Samuel J. Hunt, Tom Mitchell, Chris Nash

Session 4: ONTOLOGY 79
79 Melody retrieval and composer attribution using

sequence alignment on RISM incipits
Jelmer van Nuss, Geert-Jan Giezeman, Frans
Wiering

91 Formalizing quality rules on music notation. An
ontology-based approach
Samira Cherfi, Fayçal Hamdi, Philippe Rigaux,
Virginie Thion, Nicolas Travers

Session 5: VOICE 99
99 SMARTVOX. A web-based distributed media

player as notation tool for choral practices
Jonathan Bell, Benjamin Matuszewski

105 Notated control as composed liveness in works
for digitally extended voice
Kristina Warren

Session 6: INTERACTION 111
111 Notating electroacoustic music for performers

from a practitioner’s experience
Terri Hron

117 Performer action modeling in real-time notation
Seth Shafer

125 Expression marks for programming interactive
music
Juan Carlos Martínez Nieto, Jason Freeman

Session 7: MUSIC 131
131 Timed sequences: A framework for computer-

aided composition with temporal structures
Jérémie Garcia, Dimitri Bouche, Jean Bresson

137 The house harmonic filler: Interactive explo-
ration of chord sequences by means of an intu-
itive representation
Angel Faraldo, Perfecto Herrera, Sergi Jordà

145 Generating equivalent rhythmic notations based
on rhythm tree languages
Florent Jacquemard, Adrien Ycart, Masahiko
Sakai

155 “Des pas sur l’invisible”. The octave space and
the self-multiplication process
Silvia Mendonça

Session 8: COLLABORATION 161
161 Vexations of ephemerality

Sandeep Bhagwati
167 A hierarchic diff algorith for collaborative music

document editing
Christopher Antila, Jeffrey Treviño, Gabriel
Weaver

171 Establishing connectivity between the existing
networked music notation packages Quintet.net,
Decibel Score Player and MaxScore
Stuart James, Cat Hope, Lindsay Vickery, Aaron
Wyatt, Ben Carey, Xiao Fu, George Hajdu

Concert 185
185 Persiles avista Roma

Tomas Marco
195 Voice prints

Helena Palma
209 Des pas sur l’invisible

Silvia T
215 Terraformation

Seth Shafer
229 Homenaje a Cervantes

Richard Hoadley

Index of Authors 239

vii

viii

DIGITIZATION OF HISTORICAL MUSIC ARCHIVES: PRESERVING THE
PAST, EMBRACING THE FUTURE

Goffredo Haus, Luca A. Ludovico
Laboratorio di Informatica Musicale

Dipartimento di Informatica “Giovanni Degli Antoni”
Università degli Studi di Milano

Via Comelico, 39 - 20135 Milano - Italy
{goffredo.haus,luca.ludovico}@unimi.it

ABSTRACT

Cultural institutions dealing with music (opera houses,
conservatories, public and private collections, etc.) often
hold huge archives made of music-related heterogeneous
materials. These subjects can greatly benefit from digitiza-
tion campaigns and the consequent adoption of ICT tech-
niques as it regards not only the preservation, but also the
exploitation and revivification of their content. This paper,
that summarizes the keynote speech held at the 3rd Inter-
national Conference on Technologies for Music Notation
and Representation (TENOR 2017), starts from the expe-
riences of the Teatro alla Scala and the Ricordi Historical
Archive in order to show the new possibilities emerging
from the adoption of computer-based technologies and ap-
proaches.

1. INTRODUCTION

Opera houses, conservatories, public and private collec-
tions and other music institutions often hold in their
archives an invaluable heritage made of heterogeneous ma-
terials, including scores, audio recordings, iconographic
material, books and letters, etc. In these contexts, a dig-
ital vision – mainly based on digitization campaigns and
the consequent adoption of technological approaches and
methodologies – is becoming increasingly important, not
only for the preservation, but also for the exploitation and
reliving of their music and music-related content.

During more than 30 years of activity, the Laboratorio di
Informatica Musicale (LIM) 1 of the University of Milan
has been carrying out international projects and establish-
ing collaborations with important music institutions, such
as: Bach Archiv Leipzig, Bolshoi Theatre of Moscow, Or-
chestra Verdi di Milano, RAI Radiotelevisione Italiana, Ri-
cordi Historical Archive, RSI Radiotelevisione Svizzera,
and Teatro alla Scala of Milan.

The goal of this work is twofold: on the one side, sum-
marizing the main lessons learned during the past experi-

1 In English: Laboratory of Music Informatics.

Copyright: c©2017 Goffredo Haus et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

ences involving both technologies and music; on the other
side, showing the new possibilities and the practical impli-
cations of advanced computer-based approaches applied to
music archives.

2. THE HISTORICAL ARCHIVE OF THE
TEATRO ALLA SCALA

As a relevant example of cultural institution holding a rich
and heterogeneous archive, it is worth citing the case of
the Teatro alla Scala of Milan, often briefly referred to as
La Scala. Inaugurated on 3 August 1778, during the last
two centuries it hosted the greatest opera singers, dancers,
soloists and conductors, and it premiered renowned operas
such as Nabucco, Otello, Falstaff, Madama Butterfly and
Turandot.

In addition to pursuing artistic activities and cultural dis-
semination, the theater has also the key mission of preserv-
ing and exploiting the immense amount of music-related
materials collected during its history. Such a cultural trea-
sure embraces not only scores, but also recordings, photos,
sketches, technical drawings, fashion plates, craft-made
objects, and an intangible heritage of human skills and
competences.

In recent times, thanks to the ArchivioLaScala web site, 2

the theater has provided enthusiasts and scholars with the
opportunity to easily access its history and artistic heritage.
This initiative is the public and tangible result of a 20-
years-long effort involving a number of aspects: an exten-
sive digitization campaign for thousands of materials phys-
ically preserved in the archives, a change in the operating
procedures adopted by the technical staff in order to pro-
duce digital content, and the use of ad-hoc computer tech-
nologies to interact with the new platform, as explained
below.

2.1 La Scala DAM

In order to preserve its cultural heritage and enhance its
fruition by artists, technicians and scholars, in 1998 the su-
perintendence of the theater decided to build an integrated
asset management system, called La Scala DAM. 3

2 URL: http://www.archiviolascala.org
3 DAM was conceived as a multi-lingual acronym standing for Digital

Asset Management in English, and for Depositi, Archivi e Magazzini (i.e.
repositories, archives and warehouses) in Italian.

1

Figure 1. The Heraeus UT6200 oven used to thermally
pretreat open-reel magnetic tapes.

Figure 2. Revox B77 and Otari MX-55 tape recorders.

The idea was to create the digital archive of all available
content stored in different locations – i.e. to integrate sev-
eral uncorrelated archives of the theater – in order to cover
a timespan from the second decade of the 20th century to
the present day.

The digitization campaign began in 1996 with the preser-
vation of the phonic archive, a project carried out in col-
laboration with the LIM. As a result, about 5000 open-reel
magnetic tapes since 1950 were preserved and restored, for
a total amount of about 10,000 hours of audio. Analog me-
dia were thermally pretreated to recover the original audio
information [1] thanks to a laboratory oven with forced
convection (see Figure 1), and then digitized through ad
hoc equipment (see Figure 2). In 2000, a similar project
was carried out by the LIM in order to rescue about 200
magnetic tapes of high historical interest coming from the
phonic archive of the Bolshoi Theatre of Moscow [2].

Since 1998, the digitization project was extended with a
modular approach to all the departments of the theater, in-
cluding Scores, Costumes and accessories, Sketches and
fashion plates, Photos and playbills, Properties, and Edi-
torial archives [3].

In this context of archive integration, the LIM research

team proposed an advanced multimedia object-relational
architecture to query and retrieve musical information in a
multimodal way. The idea was to provide access to audio
recordings and to the corresponding scores within an inte-
grated environment, supporting different tools (e.g.,
queries by humming, symbolic inputs, etc.) to search in the
digital repository. This platform, called Musical Archive
Information System (MAIS), was profitably experimented
at La Scala and documented in several scientific works.
The MAIS introduced some innovative features with re-
spect to the state of the art, such as different abstraction
levels for the description of music information, multimedia
content integration, and both symbolic and audio queries to
retrieve data from the database. For further details, please
refer to [4].

La Scala DAM was initially designed as a restricted-
access application running on La Scala’s local network for
theater workers and artists, with a very limited data ex-
change from and to the official web site. The project was
internally released in 2006, making a huge amount of dig-
ital content available to technicians, artists and employ-
ees for the creation, production and documentation of each
show.

Conversely, nowadays most materials are publicly avail-
able on line. In this way, the theater not only responds to
the mission of cultural dissemination, but also tries to in-
volve and gain a new audience through multimedia content
sharing.

The management of the project was entrusted to a group
of institutional, technological and scientific partners, in-
cluding Fondazione Milano per la Scala, University of Mi-
lan, Accenture, Fastweb, Hewlett-Packard, Oracle, and
TDK.

At the moment of writing, the available digital contents
cover approximatively:

• 17,000 posters and playbills documenting all the
artistic activities of the theater, including operas, bal-
lets, concerts, recitals, and other cultural events.
These materials are scanned at a high resolution, and
their content (i.e. the schedule, the playlist, and the
cast of the show) is manually transcribed;

• more than 1,000,000 on-stage and back-stage pho-
tos, portraying renowned singers (Carlo Bergonzi,
Renato Bruson, Maria Callas, Mario Del Monaco,
Giuseppe Di Stefano, Placido Domingo, Mirella
Freni, Tito Gobbi, Luciano Pavarotti, Giulietta
Simionato, Joan Sutherland, Renata Tebaldi, etc.),
conductors (Claudio Abbado, Daniel Barenboim,
Pierre Boulez, Guido Cantelli, Victor De Sabata, Gi-
anandrea Gavazzeni, Carlo Maria Giulini, Carlos
Kleiber, Riccardo Muti, Arturo Toscanini, Herbert
von Karajan, etc.), dancers and choreographers
(Roberto Bolle, Alessandra Ferri, Carla Fracci,
Rudolf Nureyev, Luciana Savignano, etc.);

• 24,000 sketches, drawings and fashion plates signed
by great artists, including Alberto Burri, Marc Cha-
gall, Jean Cocteau, Salvatore Fiume, Piero

2

Fornasetti, Renato Guttuso, Marino Marini, Pablo
Picasso, and Mario Sironi;

• 45,000 costumes prepared by designers such as
Caramba, Emanuele Luzzati, Vera Marzot, Odette
Nicoletti, and Franca Squarciapino;

• 60,000 costume accessories, including jewelery, lin-
gerie, shoes, wigs and hats;

• 80,000 scene tools.

Since the theater is still active and the project running, the
mentioned numeric data are growing day by day.

2.2 Technical Challenges and Remarks

The technological core of La Scala DAM project is a mul-
timedia relational database, with a number of applications
attached to feed the database and to retrieve information.
Two goals guided the project: i) information entities had
to be described in the most detailed way according to the
models already in use in the theater, and ii) a network of re-
lationships as rich as possible had to be established among
those entities.

A first result is to provide a comprehensive description
of a given object from multiple perspectives. This con-
cept can be declined at different levels of aggregation and
abstraction. For instance, if we focus on a single physi-
cal good, say a costume, the concept of “comprehensive
description” may embrace its data sheet, the list of avail-
able accessories, the original fashion plate, a number of
on-stage photos, and so on. Conversely, if we take into
consideration an opera, this approach implies the possi-
bility to easily obtain a synoptic view of all information
somehow related to this work.

When the network of relationships is properly exposed
through an ad-hoc application, it can provide the user with
multiple navigation paths towards the requested informa-
tion. An example is the following list of operations: search
for a costume, retrieve the opera it was designed for, move
to the list of all on-stage representations for that opera, find
the name of the artist who played the role of the protagonist
in a given date, watch the list of all the operas he/she has
performed in the last season, choose one of those operas
and open all the related photos, select a photo, and finally
open its detailed data sheet.

These considerations guided the design of the web inter-
face to browse content from all archives in an integrated
way. Figure 3 shows some screenshots from the original
web application. Much of the interface – not only icons
and images but also most text parts – could be clicked, al-
lowing to jump to new lists of object or to other meaningful
aggregations of information.

During the project, not only technical issues but also re-
lational problems emerged, mainly related to the paradigm
shift required to the staff of “traditional” archives, as well
as to the perceived feeling of autonomy loss in sectors
managed independently so far.

Being the theater in activity, the design, implementation
and testing of the solution did not have to affect the operat-
ing procedures of the theater staff, nor it had to hinder the

Figure 3. Screenshots from La Scala DAM web appli-
cation. From top to bottom: the synoptic view of music
works, the list of playbills, the list of photos.

production environment. The risk was the realization of a
very powerful platform either unusable due to its complex-
ity or poorly used because of the extra workload required
to archive employees. For this reason, all the phases of
the project were conducted in tight cooperation with the
theater governance, archive managers, domain experts and
workers, in a continuous exchange of critical observations
and improvements.

During the digitization phase, a key problem was how
to catch and represent physical objects. Needless to say
that – in a multimedia database – only digital representa-
tions can be entered. Some archive contents were already
in digital format, for instance recent photos and record-
ings as well as computer processed texts; but other materi-
als had to undergo an analog-to-digital conversion, and in
this case the main concern was to prevent information loss,
sometimes in absence of international guidelines to follow.
The real challenge concerned the digitization of 3D physi-

3

cal objects, 4 whose appearance and features could not be
digitized with the available technologies. In this case, the
digital representation could catch only some aspects con-
sidered relevant by experts. Let us cite the example of a
stage tool or a costume, where multiple photos can capture
shapes, colors and design details from different angles, but
they do not allow a 3D reconstruction nor they provide in-
formation about materials.

Finally, the main question was how to structure informa-
tion inside the database. An opera house like La Scala runs
different kinds of performances, ranging from operas, bal-
lets, and symphonic concerts to interviews, conferences,
and public presentations; and each activity presents pecu-
liar features concerning its structure, staging, and relation-
ship with other information entities. Since the database
had to cover all possible cases, the problem of information
structuring was not a trivial one.

This issue was solved adopting a 3-tier hierarchy starting
from the concept of base version, namely a work as it was
conceived by its author(s). This definition is meaningful
for operas, ballets, and concerts, but – clearly – it makes no
sense for activities such as conferences or presentations. A
base version has a number of metadata attached, includ-
ing title, author names and roles, premiere date and place,
and ensemble. The second key concept is the one of stag-
ing, that clusters a set of performances characterized by the
same music program, belonging to the same season and
having common features about production, staging, and
cast. For example, “Le nozze di Figaro” by W.A. Mozart
and L. da Ponte is a base version, whereas the 2005/06
production of that opera is a staging. In general terms, the
same base version can have 1 to n stagings attached. Fi-
nally, the 3-tier hierarchy is closed by the concept of per-
formance, namely the instance of a base version according
to a particular staging, in a given date and place and with
a specific cast. At La Scala, performances present a biu-
nivocal relation with the corresponding playbills. Moving
from base version to staging and performance, information
becomes more and more detailed.

Such a structure is suitable to represent also non-standard
(yet frequent) cases. First, a single performance can in-
clude many independent music works, like in singing
recitals, typically made of arias from different operas. This
situation is managed by linking each subpart of the staging
to a different base version, which requires an n to m rela-
tionship between the two entities in the database schema.
Another issue is how to represent non-musical events, a
case that can be easily solved by creating dummy base ver-
sions.

After defining the 3-tier spine, other entities are put in re-
lationship with the mentioned concepts in the most proper
way. For example, librettos and synopses are naturally
linked to base versions, fashion plates and costumes to
stagings, and audio recordings and on-stage photos to per-
formances.

A simplified entity-relationship diagram for the resulting
database is shown in Figure 4. For a more detailed discus-

4 Also analog scores, photos and playbills can be considered as physi-
cal objects, but – in general – their information content can be fully cap-
tured by scanning a single 2D side.

sion, please refer to [5].

3. THE RICORDI HISTORICAL ARCHIVE

Ricordi is an Italian music publisher that has promoted fa-
mous composers and musicians over more than two cen-
turies of activity. Today, its Historical Archive is probably
the most important private music collection in the world,
including invaluable treasures such as the autograph scores
of many operas by G. Verdi and G. Puccini. The collec-
tion embraces handwritten scores, printed scores, librettos,
photographs, drawings, posters, letters, periodicals, and
administrative documents.

Compared to the case of La Scala, the “core business”
of the Ricordi Historical Archive is different: artistic pro-
duction for the former, cultural heritage preservation for
the latter. For this reason, the Archive produces no audio
content (even if a collection of historical vinyl recordings
is currently being bought), and its heritage is not going to
grow significantly over time.

In the first decade of the new millennium, the Italian min-
istry for cultural heritage and activities (Ministero per i
Beni e le Attività Culturali, MiBAC) promoted and funded
an extensive digitization project involving the most impor-
tant Italian musical institutions. The aim was to create the
Italian music network (Rete della Musica Italiana, ReMI),
a new management and diffusion data architecture focus-
ing on Italian musical heritage. This goal was achieved by
connecting peripheral repositories of music-related institu-
tions each other and providing web users with centralized
query services. On the one side, local repositories main-
tained their independence concerning the organization and
management of their own contents, receiving public fund-
ing to adhere to the project; on the other side, central-
ized web services integrated and homogenized data access,
guaranteed service continuity, optimized answering time,
and offered unified user-friendly interfaces.

Launched on 20th June 2008, the new music-search inter-
face was published within a thematic area of the Ministry’s
portal known as InternetCulturale, 5 and offered a synop-
tic view and an integrated navigation of music documents
preserved across Italy [6].

In order to support interoperability among heterogeneous
systems, the digitization and cataloging of documents had
to adhere to international standards, and specifically:

• Universal Machine Readable Catalogue
(UNIMARC) [7], Dublin Core and Management
Administrative Metadata (MAG) for metadata en-
coding;

• Open Archival Information System (OAIS) [8] and
Open Archive Initiative Protocol for Metadata Har-
vesting (OAI-PMH) [9] for preservation, interoper-
ability and sharing models.

The LIM was in charge of the scientific coordination of
the project, including the study of ad-hoc standards for cat-
aloging music-related materials, the design and implemen-

5 URL: http://www.internetculturale.it

4

Figure 4. Entity-relationship diagram of La Scala DAM database.

tation of the integrated multimedia database, and the real-
ization of the central web application.

In this context, MiBAC and Ricordi signed an agreement
to make part of the Archive’s content publicly available.
The digitization project involved a total amount of 6,586
documents (scores, texts, photos, drawings, sketches, fash-
ion plates, scenic maps, etc.) and resulted in 12,660 digi-
tal scans related to about 100 music works. Digital scans
were produced with high quality settings and saved in for-
mats adequate for preservation and publishing purposes,
and subsequently down-sampled and saved for web brows-
ing. All the materials were cataloged by experts in compli-
ance with international standards.

After the conclusion of the publicly funded project, the
digitization and cataloging campaign was carried on at a
local level, thus creating the current Ricordi digital
archive. 6

The structure of both the peripheral (Ricordi) and the
central (ReMI) database, as well as the design of the cor-
responding web applications to browse multimedia con-
tent, were clearly inspired by the experience made at La
Scala. Similitudes between the two approaches are evident
in the screenshots in Figure 5, extracted from InternetCul-
turale. The main difference concerns the kind of mate-
rials locally available, including for example handwritten

6 URL: http://digital.archivioricordi.com/

scores instead of audio content. For the sake of clarity, it is
worth underlining that – in the wider framework of ReMI
/ InternetCulturale – the idea was to integrate heteroge-
neous information and digital objects coming from differ-
ent archives, so the lack of audio resources from Ricordi
had to be filled by other institutions.

While maintaining the same approach, the design phase
of the Ricordi platform was influenced by the different
mission that a historical archive has with respect to an
opera house in activity. In the former case, the goal is
to highlight the richness and variety of the preserved her-
itage, to give new value to archive materials, to dissemi-
nate musical culture by providing easy access to sources,
also through the interoperability with other platforms; in
the latter case, the focus is on gaining new audience and
supporting the local artistic production. These different ap-
proaches influence many aspects of digitization, indexing
and browsing, from the compliance with international stan-
dards to the design of meaningful relationships oriented to
specific navigation paths.

An interesting evolution of Ricordi’s digitization project
– mainly conducted on graphic materials (see Figure 6) –
is the reliving of its tangible and intangible cultural her-
itage through international exhibitions. These initiatives
propose a mix among historical materials presented to the
public in their original form and innovative technological

5

Figure 5. Screenshots from the InternetCulturale web por-
tal.

applications to add multimedia interactivity (see Figure 7).
The availability of a digital catalog simplifies the organiza-
tion of cultural events focusing on a specific theme (e.g., an
author, a music work, a place, etc.), and a comprehensive
library of digital objects makes it particularly easy to pro-
duce promotional and editorial materials and to implement
computer-based applications.

The list of exhibitions organized by Ricordi in partner-
ship with the LIM includes Celeste Aida (November 2006),
That’s Opera (November 2008), That’s Butterfly (Septem-
ber 2009), The Enterprise of Opera (August 2013), and
Madama Butterfly - L’oriente ritrovato (November 2016).

4. LEARNING FROM THE PAST

If we look back on the experiences conducted at important
music institutions and archives, the outcomes are mainly
satisfactory. There is a number of activities that have
greatly benefited from digitization, computer-based
approaches and technological innovations. Just to name
a few examples:

• The adoption of correct procedures to ensure the
preservation of cultural heritage;

• The application (or even the pioneering research) of
standards for cataloging and sharing, with the side
effect of fostering the interoperability with other sys-
tems;

• The experimentation of new paradigms to query and
browse metadata and multimedia objects in an inte-

grated way, thus improving the access to information
and – consequently – facilitating organization, pro-
duction, and communication processes;

• The release of innovative applications based on mul-
timodal representations of music and music-related
information.

Unfortunately, the introduction of computer-based
approaches into “traditional” environments often implies
additional work and requires the investment of extra
resources, and – in these cases – long-term advantages
need to be seen over short-term disadvantages. We can
mention a number of real cases where innovation was not
retained as an opportunity but as an obstacle:

• The database management system originally
conceived by the LIM for La Scala DAM was object-
oriented (OODBMS), but it was considered too ad-
vanced and somehow experimental by the other
technological partners, so the idea was abandoned
in favor of a more standard relational model;

• At La Scala, the new procedures oriented to a digital
management of information, enthusiastically
welcomed by those archives used to work with dig-
ital objects (e.g., the Photos and playbills and the
Phonic archives), were initially rejected by some
sectors of the theater (e.g., the Sketches and fashion
plates archive);

• Sometimes, the experimentation of cutting-edge
technologies (e.g., the MAIS) was not adequately ap-
preciated, as people focused on the additional bur-
den (e.g., the encoding of scores into a symbolic
format) without seeing their potential (e.g., the pos-
sibility to query a huge archive of music works by
humming or playing a digital instrument).

Experience teaches us that one of the most demanding
tasks for computer experts is to clearly and convincingly il-
lustrate the undeniable long-term benefits of ICT
approaches and techniques.

Another cultural challenge is to explain that digitization
does not imply preserving forever. A continuous invest-
ment of resources is required to ensure that: i) the media
remain intact (the solution is to perform periodical tests
and new copies, when needed), ii) the encoding formats
continue to be known, documented and readable (open and
commonly accepted standards are the best option,
re-coding is an alternative), and iii) the devices to read
them can be kept running or – in case – replaced.

5. SETTING OUT THE FUTURE

A cultural institution such as La Scala is economically sup-
ported by the income from its multiple activities (ticket
sales, space and equipment rental, broadcasting rights and
contracts, merchandising, etc.), not to mention public and
private funding. Conversely, the economic sustainability of
an archive is often based on the exploitation of its assets.
From this point of view, the business model adopted by the

6

Figure 6. The ProServ ScannTECH 601c used to digitize
Ricordi’s materials.

Figure 7. The Enterprise of Opera exhibition in Berlin. In
the foreground, an application to interact with music con-
tent based on the IEEE 1599 standard.

Ricordi Historical Archive is paradigmatic: the organiza-
tion of exhibitions and events, the participation in national
and international funded projects, editorial initiatives and
sponsorships are the means to support the preservation of
cultural heritage and to fulfill the mission of dissemination.
This approach requires not only to showcase the available
cultural assets, but also to find new ways to relive them. In
this sense, information and communication technologies
can play a key role.

A first way to benefit from digitization and new tech-
nologies is to integrate heterogeneous information accord-
ing to a multilayer model, thus adding new value to the
original uncorrelated objects. For the mentioned archives,
aggregations led to a better access to information and to
a more comprehensive view on assets. Thanks to ad-hoc
file formats and computer applications, it is possible to ex-
tend such an approach from databases to other contexts.
For example, music-related cultural heritage can be experi-
enced adding synchronization features and interaction with
multimedia content. These concepts have been applied in
a number of Ricordi’s exhibitions, where computer-based
interfaces let the audience browse autograph scores, fol-
low music notation on different score editions, and com-

pare historical audio performances through interactive sta-
tions, designed also for musically-untrained people. To
that end, the cooperation between the Ricordi Historical
Archive and the LIM suggested the adoption of the IEEE
1599 technological framework [10]. By integrating differ-
ent and heterogeneous aspects of a music piece within a
unique document, the IEEE 1599 standard creates a sort of
local semantic network realized through a multilayer struc-
ture [11], which in turn can be integrated into a global net-
work such as the Semantic Web. This approach fosters
a more advanced music experience and allows the imple-
mentation of innovative services, such as interactive play-
bills or the augmented fruition of a music show [12].

The integration – at a local and global level – of related
content may provide new value to the original uncorrelated
entities, potentially introducing new intellectual-property
rights to be protected and exploited [13].

An interesting question for cultural heritage holders is
whether technologically advanced approaches are pure sci-
entific research and experimentation, or they can lead to
the release of marketable products. An answer is provided
by the mentioned experiences: both La Scala and Ricordi
have improved their ability to go on the market, for exam-
ple by attracting a new audience through their web archives,
offering their goods and services (staging rentals, exhibi-
tions, etc.) in a more effective way, and publishing editorial
products based on digitized materials.

Concerning the revivification of archive content, many
other successful examples could be mentioned: from inter-
active and adaptive products for music education [14], like
a textbook recently published by Pearson, to new models
to interact with live music performances [15].

By combining the efforts of cultural heritage holders and
computer scientists, it is possible not only to create new
value for music archives but also to perform a relevant cul-
tural operation based on innovative models to experience
music.

6. REFERENCES

[1] G. Haus, “Rescuing La Scala’s music archives,” Com-
puter, vol. 31, no. 3, pp. 88–89, 1998.

[2] G. Haus and M. L. P. Pajuelo, “Music processing tech-
nologies for rescuing music archives at Teatro alla
Scala and Bolshoi theatre,” Journal of New Music Re-
search, vol. 30, no. 4, pp. 381–388, 2001.

[3] G. Haus, A. Paccagnini, and M. Pelegrin, “Character-
ization of music archives’ contents. a case study: the
archive at Teatro alla Scala,” in Proc. of the 3rd Inter-
national Congress on Science and Technology for the
Safeguard of Cultural Heritage in the Mediterranean
Basin, Alcalà de Henares, Spain, 2001.

[4] E. Ferrari and G. Haus, “The musical archive informa-
tion system at Teatro alla Scala,” in Multimedia Com-
puting and Systems, 1999. IEEE International Confer-
ence on, vol. 1. IEEE, 1999, pp. 817–821.

7

[5] G. Haus and L. A. Ludovico, “The digital opera house:
an architecture for multimedia databases,” Journal of
Cultural Heritage, vol. 7, no. 2, pp. 92–97, 2006.

[6] L. Ciancio, “Le collezioni musicali nella Biblioteca
Digitale Italiana di Internet culturale,” Quaderni
Estensi, vol. IV, pp. 71–86, 2012, available at:
http://www.quaderniestensi.beniculturali.it/.

[7] B. Dimić, B. Milosavljević, and D. Surla, “XML
schema for UNIMARC and MARC 21,” The Elec-
tronic Library, vol. 28, no. 2, pp. 245–262, 2010.

[8] D. Holdsworth and D. M. Sergeant, “A blueprint for
representation information in the OAIS model,” in
IEEE Symposium on Mass Storage Systems, 2000, pp.
413–428.

[9] H. v. d. Sompel, M. L. Nelson, C. Lagoze, and
S. Warner, “Resource harvesting within the OAI-PMH
framework,” D-Lib Magazine, vol. 10, 2004.

[10] A. Baratè and L. A. Ludovico, “IEEE 1599 applica-
tions for entertainment and education,” in Music Nav-
igation with Symbols and Layers: Toward Content
Browsing with IEEE 1599 XML Encoding, D. Baggi

and G. Haus, Eds. Wiley-IEEE Computer Society
Press, 2013, pp. 115–132.

[11] D. Baggi and G. Haus, “IEEE 1599: Music encoding
and interaction,” Computer, vol. 42, no. 3, pp. 84–87,
2009.

[12] A. Baratè and L. A. Ludovico, “Local and global se-
mantic networks for the representation of music infor-
mation,” Journal of e-Learning and Knowledge Soci-
ety, vol. 12, no. 4, pp. 109–123, 2016.

[13] A. Baratè, G. Haus, L. A. Ludovico, and P. Perlasca,
“Managing intellectual property in a music fruition en-
vironment - the IEEE 1599 case study,” IEEE Multi-
Media, vol. 23, no. 2, pp. 84–94, 2016.

[14] L. A. Ludovico and G. R. Mangione, “An active e-book
to foster self-regulation in music education,” Interac-
tive Technology and Smart Education, vol. 11, no. 4,
pp. 254–269, 2014.

[15] A. Baratè, G. Haus, L. A. Ludovico, and D. A. Mauro,
“IEEE 1599 for live musical and theatrical perfor-
mances,” Journal of Multimedia, vol. 7, no. 2, pp. 170–
178, 2012.

8

MACAQUE – A TOOL FOR SPECTRAL
PROCESSING AND TRANSCRIPTION

Georg Hajdu

Center for Microtonal Music and Multimedia (ZM4)
Hamburg University of Music and Theater (HfMT)

Harvestehuder Weg 12
20148 Hamburg

georg.hajdu@hfmt-hamburg.de

ABSTRACT
This paper describes Macaque, a tool for spectral process-
ing and transcription, in development since 1996. Macaque
was programmed in Max and, in 2013, embedded into the
MaxScore ecosystem. Its GUI offers several choices for the
processing and transcription of SDIF partial-track files into
standard music notation. At the core of partial-track tran-
scription is an algorithm capable of “attracting” partial
tracks (and fragments thereof) into single staves, thereby
performing an important aspect of “spectral orchestration.”

1. INTRODUCTION
Macaque is a component of the MaxScore notation soft-
ware package for Max [1] allowing the transcription of
analysis data in the Sound Description Interchange File
Format (SDIF) into standard music notation. It has a long
history dating back to March 1996 when, during a ZKM
residency in Karlsruhe, Germany, I tried to recreate the
workflow I used for my doctoral work at UC Berkeley’s
Center for New Music and Audio Technologies (CNMAT).
At CNMAT, I took advantage of the analysis component of
the their additive synthesis tool (CAST) running on a Sili-
con Graphics Indigo computer [2][3]. In contrast, the soft-
ware available to me in Karlsruhe consisted of an applica-
tion called Lemur running on the classic Mac OS for par-
tial-tracking analysis as well as Finale by Coda (now
MakeMusic) for music notation. Lemur implemented the
McAulay and Quatieri algorithm [4] capable of modeling
non-harmonic and polyphonic sounds [5] and was further
developed into Loris, an “Open Source sound modeling and
processing software package based on the Reassigned
Bandwidth-Enhanced Additive Sound Model” [6]1. I used
Lemur for partial-tracking analysis and a Max patch to
translate the analysis data from binary into text format and,
eventually, into a MIDI file. Once imported into Finale, the
files were exported in Enigma format—Finale’s file ex-
change format until it was superseded by MusicXML. The
Enigma format (despite its name) allowed me to alter the
appearance of my scores by changing the cryptic code in
specific locations. To this aim, I developed a number of
Max patches. For instance, in the first scene of the second

1 Macaque was named after another simian whose name con-
notes the name of the platform it was developed on as well as
the tongue-in-cheek reference to “aping” real sounds with addi-
tive or instrumental resynthesis.

act of my opera Der Sprung – Beschreibung einer Oper [7]
I used the MIDI velocity information of the transcribed note
events to alter the size of their note heads so that the sight-
reading musicians had instantaneous visual feedback per-
taining to the dynamics of the music to be performed. In
other instances, I have used a technique called “velocoding”
to encode microtonal pitch deviation in eighth-tone resolu-
tion into the velocity part of a MIDI note-on message to
modify the Enigma file in such ways that the resulting score
displayed the corresponding pitch alterations. Another early
example of using Macaque is my piece Herzstück for two
player pianos from 1999 which premiered at the Cologne
Triennale in 2000. This piece was written for two of Jürgen
Hocker’s instruments which he also used to tour Conlon
Nancarrow’s compositions for player piano [8]. These
instruments had been retrofitted with a mechanism allowing
them to be controlled via MIDI. In my piece, the two pianos
were to “speak” the eponymous comical dialog by Heiner
Müller, once dubbed the world’s shortest theatre piece, with
its length well below a minute. I used an audio recording by
the Berliner Ensemble and also translated the background
noises such as the frantic applause at the end.

Figure 1. Excerpt from the first scene of the second act
from the author’s opera Der Sprung – Beschreibung
einer Oper.

9

In the early 2000s, Macaque went through several steps
until it reached its current incarnation, among these were:

• Adaption of the SDIF format co-developed by
IRCAM and CNMAT

• Switch to SPEAR and AudioSculpt as a source
for SDIF files

• Implementation of spectral transforms and time
stretching

• Development of a collapsible GUI with three
separate panes

• Integration into the MaxScore ecosystem

2. SPECTRAL COMPOSITION AND
ORCHESTRATION

At the core of Macaque is a technology intelligently
assigning partial tracks to event tracks (see section 3.3).
Partial-tracking analysis of complex sounds typically
produces more tracks than an ensemble of musicians can
handle. They typically either exceed the number of avail-
able musicians or the playable range of their instruments.
Therefore, files generated with SPEAR should be pre-
pared in advance. These preparations involve:

• Setting appropriate values in SPEAR’s Sinusoi-
dal Partials Analysis window (Figure 2) de-
pending on the source type (instrumental sounds,
music, noise, speech)

• Defining a cut-off frequency and removing par-
tials outside the range with the Frequency Re-
gion Selection tool (typically 3000 Hz)

• Removing short partial tracks (typically <=0.2”)
• Deleting soft partial tracks or “false” tracks con-

sisting of noise
• Manually editing partial tracks where a signal

has fused with noise

Figure 2. It is crucial to start with the right settings in
the Sinusoidal Partials Analysis window before analyz-
ing an audio file in SPEAR.

Still, this may not be enough to sufficiently reduce the
number of tracks. In section 3.3, I will therefore describe
an algorithm that “attracts” separate partial tracks into an
instrumental staff and thereby performs, on a rudimentary
level, a task which can be called Spectral Orchestration.

There have been a number of projects by other composers
and developers tackling aspects of spectral orchestration.
Those known to me include the works by the French
spectralists, the software Clarence Barlow’s developed
for his piece Am Januar am Nil (1980) in which non-
sense sentences are “spoken” by an ensemble, the piece
Speakings by Jonathan Harvey for which the Matlab-
based software Orchidée was developed at IRCAM [9];
more on this in a paper by Aurélien Antoine and Eduardo
R. Miranda [10]. Other projects include the soundalikes
by Michael Iber, the text compositions by Peter Ablinger,
as well as OpenMusic [11] and the bach/cage libraries
[12] capable of converting SDIF files into music notation.

3. WORK FLOW

Figure 3. An example of partial tracks in SPEAR.
These tracks were actually drawn by hand.

Including Macaque into the MaxScore ecosystem has
simplified the workflow to a great extent and allowed me
to work mainly in the Max environment. The following
sections will give an overview of the crucial steps from
SDIF import to score generation.

3.1 Importing from Spear

SDIF files such as the one displayed in Figure 3 should
be exported from SPEAR as “SDIF 1TRC – Exact Inter-
polated”. Macaque can be conveniently accessed from
within a patch called Macaque Environment, which is
part of the MaxScore ecosystem and also comprises an
instance of the MaxScore editor, a Macaque sound file
recorder (for resynthesized SDIF files) and two modules
for microtonal and multitimbral playback.

3.2 The GUI

Macaque sports three panes and four tabs for the top pane
(Figure 4). The default view displays (i) the partial
tracks in the top pane with the Transcribe button under-
neath (triggering the transcription of partial tracks into
notation), (ii) the spectral content of a vertical time slice
(spectral frame) in eighth-tone notation in the central

10

pane as well as (iii) curves for centroid (green) and sum
of amplitudes (black) in the bottom pane.

Figure 4. The Macaque GUI with its collapsible panes

These curves serve as the basis for event detection and
markup, as we will see in section 3.5. A second Tran-
scribe button triggers event transcription according to the
markers created by the user.

The other three views of the top pane display:

• Break-point functions for spectral transforms
(Figure 5)

• A tempo curve for time stretching/compression
and

• A preferences pane with over 15 parameters af-
fecting the outcome of the transcription (Figure
6)

Figure 5. Break-point functions for spectral transforms

Figure 6. Preference pane with parameters affecting the out-
come of the transcription

3.3 Partial-track transcription

Figure 7. Transcription of the partial tracks from Figure 3

Macaque relies to a great extent on the CNMAT sdif ob-
jects (sdif-buffer, sdif-info, sdif-ranges, sdif-tuples) [11].
Upon opening an SDIF file in 1TRC format and loading
stream number 0 (higher stream numbers are currently not
supported) into the sdif-buffer, relevant information about
the file is extracted and the spectral content displayed in
the top pane by reading the data from the SDIF matrix
contained in the buffer.

3.3.1 MIDIfication
Pressing the transcribe button will now pass the spectral
data to the transcriber, at the time interval defined as
MIDIfication in the Granularity preference section. This
interval is calculated by taking current meter, tempo and
beat subdivision settings into consideration (Figure 7).
Note that the quantizer offers another beat subdivision
scheme [14] which can either be aligned with the MIDIfi-
cation interval or not. When aligned the subdivision is
regular, if not the subdivision is irregular and notes may be
lumped together such as in Figure 8.

Figure 8. Transcription of the same partial tracks with mis-
aligned MIDIfication and beat subdivision scheme settings.
This may or may not be a desired effect.

11

After applying the spectral transforms (see section 3.3.3)
the partial tracks are resampled according to their index
in a 32-bit Jitter matrix. Each track is converted and ana-
lyzed according to Pitch and MIDI Velocity tolerance
thresholds, i.e. the analysis looks for leaps in the resam-
pled values exceeding a given threshold.

Figure 9. Transcription of the same partial tracks with vastly
different Pitch and MIDI Velocity tolerance thresholds.

If a value is greater than the threshold value, a new event
is assumed and the events collected in a Max coll (see
Table 1). Each track now consists of a track velocity
value (based either on the first collected amplitude value
or an average of all amplitude values), an average track
pitch value and four values for each event consisting of
time tag (in MIDIfication intervals), event frequency,
event velocity and duration (in MIDIfication intervals).

Events in track
0 0.14899 65.489636 1 62.14 31. 2 3 59.07 48. 2 5

64.84 53. 1 6 68.16 58. 2 8 67.11 65. 3 11 69.62 61.
1 12 71.21 51. 2 14 67.95 51. 1;

1 0.050958 59.706389 1 51.49 25. 1 2 53.14 33. 1 3
48.67 38. 2 5 53.91 38. 1 6 61.9 40. 1 7 64.54 39. 1
8 63.05 40. 1 9 61.18 42. 1 10 62.37 42. 1 11 65.33
41. 1 12 67.69 41. 2 14 66.28 41. 1;

Table 1. Event collection. Each track is represented by
average velocity, average pitch and a sequence of four
values denoting time tag, frequency, velocity and dura-
tion for each individual event.

3.3.2 Event Attractor
These data serve as the basis for an algorithm assigning
these events to event tracks. It works as follows: The
track velocity serves as a measure for its relevance; the
louder the track the more relevant. All tracks are indexed
according to this measure. For the first partial track (the
most relevant track), all events are written to another
Jitter matrix and now serve as an attractor to events
which exist in the other tracks. If the events of the next
track are close enough in pitch (defined by Attractor Size
in the Preference pane) and can be inserted into empty
regions of the current event track, they will be written to
this track, otherwise a new event track will be created
(Figures 10-12). This process is iterated until all events
have either been assigned to event tracks or discarded, the
maximum count being 32.

Figure 10. Transcription of overlapping partial tracks yields
separate staves.

Figure 11. Transcription of consecutive partial tracks within
attractor range yields one staff.

Figure 12. Transcription of consecutive partial tracks outside
attractor range yields two staves.

The next steps involve sorting event tracks according to
their average pitch as well as converting time tags and
durations into their respective values in seconds. This is
where time stretching and compression is applied (Figure

12

14). Finally, these values are fed into the MaxScore tran-
scriber and displayed in standard notation.
Once transcribed the original SDIF file and its companion
score file can be played back in sync by pressing the
“Sync Play” button.

3.3.3 Spectral transforms
Macaque can apply time-variant transforms to spectral
data. These transforms can be set by changing break-
point functions (BPFs) for amplitude, trajectory, spectral
stretch, reference frequency and transposition. They are
also being applied to the playback of the SDIF file. I used
Emmanuel Jourdan’s ej.function.js JavaScript object
capable of drawing multiple BPFs on top of each other
and sharing its curves with an efficient Java object called
ej.fplay for real-time processing.
While the terms amplitude and transposition don’t need
further elucidation, I’d like to explain the function and
meaning of trajectory and spectral stretching. Trajectory
refers to the path playback and transcriber take through
the SDIF file. A straight upward line causes the sample to
be played regularly, i.e. forward, a straight downward
line causes the sample to be played backwards. By using
any number of break points, playback and transcription
can be broken up into forward and backward segments.
Spectral stretching is performed according to the formula
given by Mathews and Pierce [15]. It requires the partial
index (defined as the ratio between partial and reference
frequency), a pseudo-octave (or stretch factor; 2 = no
stretch) and reference frequency (or fundamental) as
inputs.

Figure 13. The transcription of the same file with spectral-
stretching applied. The stretch factor is 2.95 at the beginning
shrinking linearly to 1.68 over the length of the file.

Figure 14. The subpatch in Macaque where spectral transforms
are applied. Note the use of the ej,fplay object which shares the
break-point functions of the Curves pane.

3.3.4 Tempo curve
Another editor can be used to warp time according to a
time-variant tempo curve, i.e. portions of the sample can
be sped up or slowed down. This tempo curve will then
be applied to transcription. This is performed by calculat-
ing the integral under the tempo curve to obtain the val-
ues for duration and onset times of the note events to be
used by the MaxScore transcriber.

3.3.5 Selection
Playback, transcription and transforms all scale to the
selection made in the partial-track pane. This affords the
user the possibility to specify select parts of the SDIF
file.

3.3.6 Effects processing
Since all transforms are also applied to the resynthesis of
the SDIF file, Macaque can also be used as an effects
processor. Two of my compositions (see Table 2) have
taken advantage of this capability.

3.4 Spectral frames

As mentioned before, the spectral slices pane displays the
spectral content at the position of the play head. Its par-
tials can be played back at once by holding the space bar
or arpeggiated by pressing the “Play Partials” button.
They can be saved as a MaxScore XML file or a Max
coll. In addition, the notes can be copied and pasted into a
MaxScore score for compositional or analytical purposes.

3.5 Event detection and transcription

The third pane is dedicated to event detection. Here, the
term event is applied to the entire analysis file, in contrast
to partial track transcription where “event” refers to the
detection of significant amplitude and frequency changes
within a single track. As automatic event detection poses
some challenges [16], I have opted to (i) offer markers
for manual event detection (for which the amplitude and

13

centroid curves lend themselves as guides) or (ii) for the
import of markers generated in AudioSculpt, whose algo-
rithm performs better than the one employed in an earlier
version of Macaque. Once an SDIF file has been marked
up with on-markers and off-markers, the obtained tempo-
ral structure serves as the basis for transcription and fur-
ther processing. Two adjacent on-markers delineate a
time interval within which the spectral frame with the
highest sum of amplitudes is searched for. From this
frame, the following events can be derived:

• Temporal structure with x-ed note heads.
• f0 pitch, applying the harmonic histogram

technique implemented in Mikhail Malt and
Emmanuel Jourdan’s zsa.fund object

• Lowest partial
• Most salient partial
• Centroid
• The nearest neighbor of the centroid, as the

latter is typically not contained in the spec-
trum

• All partials as a chord (an amplitude thresh-
old can be set in the preference pane to skim
off softer partials)

While the markup should ideally follow sharp rises or
drops in the amplitude and/or centroid curves, markers
can also be set to apply arbitrary rhythms to the spectrum
of a sounds (Figure 15-17).

Figure 15. An (arbitrary) markup of the SDIF file from Figure 3

Figure 16. The transcription of the markup displaying the

strongest partials within the delineated segments.

Figure 17. Same markup displaying f0 pitch.

4. COMPOSITIONS
After a hiatus of nearly 10 years during which I mainly
focused on networked multimedia performance, I started
to create spectral music again in 2009. Since then I have
used Macaque in the following compositions (see
http://georghajdu.de):

Composition	 Year	 Instrumentation	 SRC	 PT	 SF	 MU	 ASUP	 RSYN	
Blueprint	
	

2009	 sax,	 egtr,	 db,	 pno,	
perc,	elec	

speech,	
noises	

x	 x	 x	 x	 	

Schwer...	
unheimlich	schwer	
	

2009	 bcl,	 vla,	 pno,	 perc,	
elec	

speech	 	 x	 x	 x	 	

Swan	Song	
	

2011	 vc,	perc,	elec	 Beijing	
opera,	
noises	

x	 	 x	 x	 x	

In	ein	anderes	Blau	
	

2012	 sop,	bfl,	cbcl,	vn,	va,	
vc,	db,	perc,	elec	

music	 	 x	 	 x	 x	

noiwont	 2014	 19-tone	trp,	elec	 speech	 x	 	 x	 x	 	
aɪd	laɪk	tuː	meɪk	ə	ʃɔːt	ˈsteɪtmənt		
	

2016	 fl,	 cl,	 va,	 vc,	 pno,	
perc,	elec	

speech	 	 x	 x	 x	 	

Table 2. Compositions by the author composed with the aid of Macaque. SRC = source material, PT = partial-track transcrip-
tion, SF = spectral frame, MU = Markup and event transcription, ASUP = audio superimposition, RSYN = SDIF to audio re-
synthesis.

14

5. CONCLUSION AND OUTLOOK
Emerging from a situation in which I desperately needed
to replace software I had relied on during my doctoral
work at CNMAT, Macaque has become, over the years, a
serious tool used by me, and others, for spectral analysis
and composition. It has become fairly stable in its feature
set for the past 4 years with development mainly focusing
on bug fixes and support for 64-bit Max.
However, there are a few areas that are still worthwhile
exploring:

• Transcription and notation of glissandi for
events belonging to the same partial track

• Implementation of an efficient automatic event
detection algorithm with a “rubber-band” tempo
curve editor capable of taking tempo fluctua-
tions and microtiming into consideration (see
also [17])

• Implementation of a fast method for tempo
curve integration

• Zooming
• Improvements of the GUI

Since the code base largely emerged before the release of
Max 5, it is tempting to recreate the functionality of the
partial-track transcriber and other components in the Max
js object as well as improve control of the additive syn-
thesis as a Max gen~ script.

Acknowledgments

I would like to thank the Behörde für Forschung und
Wissenschaft Hamburg for supporting our research in the
framework of its Landesforschungsförderung.

6. REFERENCES
[1] G. Hajdu, and N. Didkovsky, “MaxScore – Current

State of the Art,” in Proceedings of the International
Computer Music Conference, Ljubljana, 2012, 156-
162.

[2] A. Freed, X. Rodet and Ph. Depalle, “Synthesis and
Control of Hundreds of Sinusoidal Partials on a
Desktop Computer without Custom Hardware,” in
ICSPAT (International Conference on Signal Proc-
essing Applications & Technology, 1992, San José,
United States. 1992

[3] http://cnmat.org/CAST/

[4] R.J. McAulay and T.F. Quatieri, “Speech
analysis/synthesis based on a sinusoidal
representation,” in IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. ASSP-34, no. 4,
1986, 744-754.

[5] K. Fitz and L. Haken, “Lemur: A bandwidth-
enhanced sinusoidal modeling system,” in The
Journal of the Acoustical Society of America, vol.
103, 1998, 2756.

[6] http://www.hakenaudio.com/Loris/

[7] G. Hajdu, “Research and Technology in the Opera
Der Sprung,” in Nova Acta Leopoldina, vol. 92, no.
341, 2005, 63-89.

[8] J. Hocker, Faszination Player Piano - Das
Selbstspielende Klavier von den Anfängen bis zur
Gegenwart. Kapitel 15 - Conlon Nancarrow und die
Renaissance des Player Pianos, Edition Bochinsky,
2009, 238-267.

[9] G. Nouno, A. Cont, G. Carpentier and J. Harvey,
“Making an Orchestra Speak,” in Proceedings of the
Sound and Music Computing Conference (SMC),
Porto, 2009, 277-282.	

[10] A. Antoine and E. R. Miranda, “Towards Intelligent
Orchestration Systems,” in Proceedings of the 11th
International Symposium on Computer Music
Multidisciplinary Research (CMMR): Music, Mind,
and Embodiment, Plymouth University, UK, 2005.

[11] J. Bresson and C. Agon, “SDIF sound description
data representation and manipulation in computer
assisted composition,” in Proceedings of the Inter-
national Computer Music Conference, Miami, USA,
2004, 520–527.

[12] A. Agostini, E. Daubresse and D. Ghisi, “cage: a
high-level library for real-time computer-aided com-
position,” in Proceedings of the Joint ICMC and
SMC conference, Athens, 2014, 308-313.

[13] M. Wright, R. Dudas, S. Khoury, R. Wang and D.
Zicarelli, “Supporting the Sound Description
Interchange Format in the Max/MSP Environment,”
in Proceedings of the International Computer Music
Conference, Beijing, 1999, 182-185.

[14] N. Didkovsky, “Java Music Specification Language,
v103 update,” in Proceedings of the International
Computer Music Conference, Miami, 2004, 742-
745.

[15] M. Mathews and J.R. Pierce, “Harmony and Non-
harmonic Partials,” in The Journal of the Acoustical
Society of America, vol. 68, 1980, 1252.

[16] N. Collins, “A Comparison of Sound Onset
Detection Algorithms with Emphasis on
Psychoacoustically Motivated Detection Functions,”
in Proceedings of AES118 Convention, 2005.

[17] http://fab.cba.mit.edu/classes/864.05/people/lieb/lev.
html

Webpages all accessed on November 23, 2016.

15

16

A MACHINE LEARNING FRAMEWORK FOR THE CATEGORIZATION
OF ELEMENTS IN IMAGES OF MUSICAL DOCUMENTS

Jorge Calvo-Zaragoza
Software and Computing Systems

University of Alicante
Alicante, Spain

jcalvo@dlsi.ua.es

Gabriel Vigliensoni, Ichiro Fujinaga
Schulich School of Music

McGill University
Montréal, Canada

{gabriel,ich}@music.mcgill.ca

ABSTRACT

Musical documents may contain heterogeneous informa-
tion such as music symbols, text, staff lines, ornaments,
annotations, and editorial data. Before any attempt at auto-
matically recognizing the information on scores, it is usu-
ally necessary to detect and classify each constituent layer
of information into different categories. The greatest ob-
stacle of this classification process is the high heterogene-
ity among music collections, which makes it difficult to
propose methods that can be generalizable to a broad range
of sources. In this paper we propose a novel machine learn-
ing framework that focuses on extracting the different lay-
ers within musical documents by categorizing the image at
pixel level. The main advantage of our approach is that it
can be used regardless of the type of document provided,
as long as training data is available. We illustrate some
of the capabilities of the framework by showing examples
of common tasks that are frequently performed on images
of musical documents, such as binarization, staff-line re-
moval, symbol isolation, and complete layout analysis. All
these are tasks for which our approach has shown promis-
ing performance. We believe our framework will allow
the development of generalizable and scalable automatic
music recognition systems, thus facilitating the creation of
large-scale browsable and searchable repositories of music
documents.

1. INTRODUCTION

Optical Music Recognition (OMR) is the branch of artifi-
cial intelligence focused on automatically recognizing the
content of a musical score from the optical scan of its source.
In comparison to similar tasks such as text recognition,
this process can be quite difficult given the complexity of
music notation and the wealth of information contained in
these documents. In addition to the musical notes that are
usually overlaid on the staff lines, music scores may also
contain several types of heterogeneous information such
as alterations, lyrics, decorations, or bibliographic infor-
mation about the piece. Therefore, before any attempt of

Copyright: c©2017 Jorge Calvo-Zaragoza et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

automatic recognition, it is important to detect and classify
these elements into their corresponding categories.

In addition to the tasks of symbol recognition and clas-
sification, there are other OMR preprocessing operations
that are less well known. For example, a common first step
in OMR workflows is binarization. This process consists
in separating the background (i.e., the superfluous part of
the image) from the foreground (i.e., the relevant content),
and is usually considered the starting point for the subse-
quent OMR steps. A typical task that follows the bina-
rization process is the detection and removal of staff lines.
Although these lines are necessary for human readability
and music interpretation, most OMR workflows are based
on detecting and removing the staff lines before doing the
classification of the remaining elements in the score.

OMR preprocessing is a complex step. In the past few
years, many researchers have proposed OMR algorithms,
workflows, and systems that deal with specific tasks on
music documents, such as binarization [1], staff-lines de-
tection [2], frontispiece delimitation [3], measure recogni-
tion [4], extraction of lyrics [5], and page border removal
[6]. These approaches were all based on heuristical rules
tailored to the music corpus at hand and achieved varying
performance. Music documents have a high level of het-
erogeneity and exhibit many sources of variability, such as
image degradation, bleed-through, different notation types,
handwritten styles, or ink differences, among others. There-
fore, if OMR systems are implemented by taking advan-
tage of specific characteristics of the documents, different
algorithms may be needed when working with sources of
different type. As a result, the implementation of these
systems will lack of generalizability and may be one of the
factors hindering the progress of OMR technology.

In order to ameliorate this situation, we propose a gener-
alized framework that allows detecting the different layers
(i.e., background, staves, music symbols, lyrics, and so on)
from the image of a music score, regardless of the specific
characteristics of the source document. Extending the idea
initially proposed by Calvo-Zaragoza et al. [7] for detect-
ing and removing staff lines by using machine learning,
we propose an approach in which each pixel of the image
is labeled according to the type of content it depicts.

In contrast to strategies based on heuristic image process-
ing, the main advantage of using machine learning rests in
its generalizability. While the former focuses on particu-
lar aspects of the scores—being therefore very difficult to

17

adapt to other documents—techniques based on machine
learning only need examples of the new type of documents
to generate a different model. In some cases, it is even
possible to reuse already trained models in documents of
similar nature, but with a different type or style, by using
Transfer Learning techniques [8].

Until a few years ago, the main disadvantage of using
machine learning systems was that they did not achieve
good results for image recognition tasks. However, since
the rise of Deep Learning [9], Convolutional Neural Net-
works (CNN) have completely changed the scenario, out-
performing traditional techniques in these tasks [10].

The rest of this paper is structured as follows: in Section 2
we detail the proposed unified framework and the rationale
behind it. In Section 3 we show examples of tasks that can
be successfully performed with the proposed framework.
Finally, in Section 4 we summarize the core ideas of our
method and gives some hints about future work.

2. DESCRIPTION OF THE FRAMEWORK

The framework we propose is based on the categorization
of each pixel of interest within the input image with the
label that illustrates to which information layer it belongs.
To perform this task, we make use of the supervised learn-
ing paradigm [11]. That is, it is assumed that there will be
enough representative examples of each type of informa-
tion layer to be able to create a model to categorize new,
unseen examples. Three elements are therefore essential
for implementing this approach: (i) a feature set for each
pixel, (ii) a classification algorithm, and (iii) training data.

2.1 Feature set

The feature set must characterize appropriately the pixel to
be classified. We assume that the region of pixels around a
specific pixel contains enough discriminating information
to classify it with success. In other words, we hypothe-
size that a pixel can be correctly categorized by using the
local information surrounding it. For example, whereas ar-
eas with staff lines may usually indicate zones where mu-
sic notation is, areas without staff may indicate that other
content, such as ornaments or lyrics, may be present. Text
and decorations are similar in the local sense, but different
ink type, color, or pen trace may have been used. Our ap-
proach exploits these local features to correctly distinguish
the categories of the different elements within a musical
document.

Figure 1 shows three examples of features sets for differ-
ent pixels of an image. The pixel to be classified is located
at the center of each window. Note that the size of the
neighborhood (i.e., the size of the window) is a parame-
ter to be tuned empirically, as the performance is highly
related to this value [7].

Depending on the task, it might be advisable to increase
the size of the window so that the features are discrimi-
native enough. For example, with a small window it is
possible that the feature set of a text sample would not be
very different from those of musical symbol. However,
increasing the size of the window too much may lead to

Figure 1. Example of feature sets from three regions of in-
terest (i.e., music symbols, staff lines, and text). The pixel
to be classified is located at the center of each window.

an increase in the complexity of the problem, which could
make the CNN not learn the task correctly. In addition, as
the size of the feature set increases, a more computational
time is needed.

2.2 Classification algorithm

In our framework, the classification process is carried out
by means of Deep Learning. Recently, Deep Neural Net-
works have shown a remarkable leap of performance in the
field of machine learning. Specifically, CNN have been
applied with great success for the detection, segmentation,
and recognition of objects and regions in images, approach-
ing human performance on some of these tasks [10].

These neural networks are composed of a series of filters
(i.e., convolutions) that allow obtaining several representa-
tions of the input image. These filters are applied in a hier-
archy of layers, each of which represent different levels of
abstraction: whereas filters of the first layers enhance de-
tails of the image, filters of the last layers detect high-level
entities [12]. The key is that these filters are not fixed but
learned through a gradient descent optimization algorithm
called back-propagation [13]. The configuration and or-
ganization of the network hierarchy (usually referred to as
topology) has to be designed or chosen by the researcher.

Since collections of music documents are a rich source
of highly heterogeneous information—usually more com-
plex than other types of documents—developing a unified
framework for OMR with a classification algorithm based
on CNN is promising.

2.3 Training data

The last component to be considered in our framework is
training data, which is dependent on the specific type of
task to be performed. For example, it is likely that data
needed to train a model to detect staff lines is different
from data needed to discriminate among other items, such
as musical symbols or text. Either way, the need of train-
ing data is the main drawback for the proposed framework,
since it has to be created by manually labeling examples of
all regions of interest in the document.

It is worth mentioning that we do not consider the possi-
bility that a pixel belongs to more than one class at a time.
We believe that from the point of view of an OMR system,
in most cases there is just a single label that is truly rele-

18

vant. For example, pixels belonging to a musical symbol
that are on a staff line should be considered as part of the
former. But if needed, new categories for possible overlap-
ping elements could be added, allowing the system to learn
these categories as well.

3. EXAMPLES

In the following we present a number of examples of tasks
in the classification of elements within musical documents.
We made use of a CNN topology consisting of three convo-
lutional layers. Although this might not be the best topol-
ogy for the problems at hand, it is illustrative of the classifi-
cation-based approach we propose. The window size of
the feature set was specifically tuned for each example by
means of informal testing.

The approach presented in this paper is directly applica-
ble to any type of document no matter the type of nota-
tion and the style of the score, as long as enough training
data is given to the network. In fact, different sources were
considered for each of the examples in order to show how
generalizable is our approach.

3.1 Binarization

Binarization plays an important role in document analy-
sis systems. This process is usually performed in the first
stages of OMR systems and affects all subsequent stages.
Therefore, it is crucial that binarization behaves in a robust
way. Traditional binarization methods, however, have not
shown consistent performance on music documents of dif-
ferent type. The degradation of music sources is one of the
reasons for the unreliability of this process, but also great
diversity in music notation is another obstacle [14].

The training data for this binarization example was com-
posed of two manually labeled folios from Einsiedeln, Stifts-
bibliothek, Codex 611(89). This manuscript is dated from
1314 and presents areas with severe bleed-through that may
mislead standard binarization algorithms. From this la-
beled data, we selected the two layers of pixels that were
labeled as background and foreground. We took random
pixels from each layer and created a window of 25×25 pix-
els to be used as input feature for each pixel. We assumed
that local information would be discriminative enough to
classify correctly the center pixel. Figure 2 shows exam-
ples of features from both classes.

Once the CNN was trained with this data, it was able to
distinguish between background and foreground pixels. As
an illustrative example, Fig. 3 shows the binarization of a
portion of a new document not seen during training that
was classified pixel by pixel by the trained network. In
spite of some spurious points that were misclassified, the
network was able to achieve a remarkable performance for
the binarization task.

3.2 Staff-lines detection and removal

The detection and removal of staff lines follow the bina-
rization step in most OMR workflows. Despite being nec-
essary for musical readability, staff lines complicate the au-
tomatic detection, segmentation, and classification of sym-

(a) Samples of background class

(b) Samples of foreground class

Figure 2. Training examples of both background and fore-
ground classes. Each window has the pixel to be labeled
at the center and also the local information to discriminate
the class of the center pixel.

(a) Original input score portion

(b) Binarization of the input score

Figure 3. Example of binarization task performance
achieved with our framework. The image was not part of
the training set.

bols because they usually interconnect the symbols, thus
not allowing their isolation.

Traditional methods for the staff-lines removal task con-
sider a binary image as input because it helps to reduce
the complexity of the problem. In addition, binarization is
mandatory for applying processes based on morphological
operators, histogram analysis, or connected components.
The binary nature of modern music scores (i.e., blank ink
on white paper) have justified somewhat this workflow.

In this example, we show how the removal of staff lines
from binary images can be performed successfully with
our framework. We trained the network with a dataset
that provided enough information to distinguish between
pixels that belong to staff or symbol classes. In this case,
we took advantage of the CVC-Muscima database [15] be-
cause it was a dataset especially designed for the evaluation
of staff-lines removal tasks and contains handwritten com-
mon modern notation scores with and without staves. Fig-
ure 4 shows windows of pixels belonging to both classes.

19

(a) Samples of staff class

(b) Samples of symbol class

Figure 4. Training data examples from staff and symbol
classes.

We trained the CNN with enough data examples of the
two classes, and then the network was able to detect and
remove the staff lines accurately, as shown in Fig. 5.

(a) Example of input piece of score

(b) Input score after staff removal

Figure 5. Staff-lines removal task with binary images
achieved with our framework.

3.3 Symbol isolation on color images

As introduced above, traditional methods for staff-line de-
tection require a binary image as input. Since binarization
processes are highly sensitive to conditions of the docu-
ments such as irregular lighting, image skewing, inkblots,
or paper degradation, the performance of the symbol iso-
lation task depends largely on the previous steps of bina-
rization and staff-line removal. Fortunately, if we detect
both background and staff-lines at the same time, the ap-
proach we propose in this paper enables complete symbol
isolation in just one step. As a result, for this task there are
three possible categories to tag a pixel: background, staff,
or symbol. The latter included both music symbols and text
characters.

In order to demonstrate the adaptability of our frame-
work, we decided to try a new set of musical documents,
and so we trained the network with pixel samples from
three full pages of the Salzinnes Antiphonal (CDM-Hsmu
M2149.l4) manuscript. Figure 6 shows examples of fea-
tures for each category. A window size of 29 × 29 pixels
was considered for this task.

(a) Samples of background class

(b) Samples of staff class

(c) Samples of text class

Figure 6. Examples of pixel windows from background,
staff, and symbol classes.

After training the network, our approach was able to clas-
sify pixels belonging to the three different categories, as
shown in Figure 7. The result is accurate but the detected
staff lines are thicker than the original ones, possibly im-
plying that the approach is over-sensitive in the local sense.
The most plausible explanation is that the CNN does not
notice too much difference amongst adjacent pixels, since
the features are practically the same. This means that a
pixel that is not on a staff line, but close to it, may be de-
tected as a staff-line pixel by the network.

(a) Original input score portion

(b) Input score after staff-lines detection

Figure 7. Example of staff-lines detection on color images
process achieved with our framework. Each layer consid-
ered is highlighted in a different color.

3.4 Music and text separation

Music symbols and text are important sources of informa-
tion in music documents. Due to their different nature, text

20

and music are processed independently, with specialized
automatic recognition algorithms. The proper separation
of these two layers of information is a key aspect in the
transcription of the whole document. We will show how
our approach performs this classification task with ease.

In order to test the generalizability of our framework, we
tested this task on a different music score, namely the GB-
AR York Antiphonal manuscript. We manually classified
pixels from one page into three different categories: back-
ground, music, and text. Fig. 8 shows a series of windows
from each of these classes. Instead of a square window,
preliminary experiments showed that a better perfomance
was achieved with a rectangular window of 40×20 pixels.

(a) Samples of background class

(b) Samples of music class

(c) Samples of text class

Figure 8. Examples of patches from background, music,
and text classes.

Analogously to previous tasks, the CNN trained with these
examples was able to produce accurate results, as shown in
Figure 9. The framework achieved good performance even
with those pixels where text and music symbols are over-
lapped. Nevertheless, as some pixels that belong to lyrics
were erroneously classified as music, it is clear that the
performance of this task is still not perfect.

This example highlights the strength of the framework
we propose. It does not only separate text and music but
it categorizes pixels at the pixel level—unlike previous ap-
proaches to this task that are devoted to just detecting zones
or blocks of each type of information. Therefore, subse-
quent algorithms will not have to be in charge of perform-
ing the segmentation of the symbols within these blocks,
since the specific pixels of interest are already detected.

3.5 Complete layout analysis

Typically, music scores contain much more information
than just music symbols. This information includes titles,
ornaments, lyrics, annotations, as well as unwanted arti-
facts such as ink bleed-through or ink blots. Therefore, a
unified framework for complete document analysis of mu-
sic documents should be able to identify and classify each
of these categories within an input image. The framework
we present in this paper is directly applicable to perform

(a) Example of input piece of score

(b) Music and text separation in the input score

Figure 9. Detail of example of music and text separation
using color images. Pixels classified as lyrics were labeled
in red and symbols in black.

this task because it only needs enough training data and an
appropriate window size surrounding each pixel.

Since the Einsiedeln manuscript contained several layers
of interest within each page, such as music symbols, text,
and ornamental letters, we tested a complete layout analy-
sis in this manuscript. In this case, the data needed to be
more discriminative and so we selected a window size of
51× 51. As mentioned above, the specific size of the win-
dows was chosen by performing preliminary experiments.
What is important to remark in this case is that the window
size needed to be larger than for the previous tasks because
otherwise it would have been difficult to distinguish all cat-
egories. Also, since there were more categories, a larger
amount of training data was required. Consequently, nine
pages of the manuscript were manually labeled by catego-
rizing their pixels into five different classes, namely back-
ground, neume, text, staff, and decoration. As a reference,
the person in charge of building the training data required
about 30 hours per page. Figure 10 shows a few examples
of features extracted from this data, which were used to
train the CNN.

Figure 11 shows an example of the categorization achieved
by our framework. It can be seen that the result was not
optimal, especially in the case of distinguishing between
music symbols and text. Given the proximity of music and
text, the feature windows for both categories were similar.
Nevertheless, this example shows that a complete layout
analysis is feasible, regardless of the categories to be con-
sidered, as long as training data is available and the feature
window size is tuned accordingly. As mentioned at the be-
ginning of this section, our intention was not to achieve the
best classification results, but to determine how the frame-
work may be applied in a different number of tasks and
music documents. Further efforts on the parameterization
of the classifier scheme (i.e., CNN topology, training data,
and features) need to be carried out to achieve a better per-
formance.

21

(a) Samples of background class

(b) Samples of neume class

(c) Samples of text class

(d) Samples of staff class

(e) Samples of decoration class

Figure 10. Examples of window patches from all the cat-
egories considered for the complete layout analysis task.

Once all the different elements within the documents have
been grouped into the corresponding categories, music sym-
bols can be classified, text can be processed by Optical
Character Recognition applications, and the positions of
the staff lines and their corresponding clefs can be used to
determine the pitch of notes. In addition, ornamental let-
ters can be either removed to not disturb recognition algo-
rithms or kept for extracting their meaning. As a side bene-
fit, the background has been detected conveniently, helping
to reduce the complexity of the recognition tasks.

(a) Example of input piece of score

(b) Input score after layout analysis

Figure 11. Detail of the complete layout analysis achieved
by our framework on a previously unseen score. Each layer
considered is highlighted in a different color.

4. CONCLUSIONS

In this paper we presented a unified framework for cate-
gorizing information contained in digitized images of mu-
sic documents. Unlike previously proposed approaches for
OMR tasks, our work presents a highly generalizable and
scalable method that allows performing any task of image
recognition in any kind of musical document.

Our system labels individual pixels of the image depend-
ing on the information they contain. To do so, the system
uses machine learning techniques, namely CNN, to learn
from examples of each category to be classified.

We showed different tasks that can be performed with
our framework, such as document binarization, staff-lines
removal in binary and color images, music symbols and
text separation, and complete layout analysis. All these
tasks can be solved directly by just changing the training
data provided to the framework and tuning the window size
considered as feature set.

We are aware that the categorization of every pixel and el-
ement in music documents is only a part of the whole OMR
problem. However, we believe that the unified framework
presented in this paper will allow the development of gen-
eralizable and scalable OMR systems, thereby enabling a
breakthrough towards large-scale automatic recognition of
heterogeneous music documents.

As future work, efforts should be devoted to overcom-
ing the problem of getting enough data to train the CNN.
For the examples showed above, training data was obtained
manually. Since this may be too costly if needed for each
new kind of document, a more efficient process must be
pursued. For instance, labeled documents depicting differ-
ent conditions—such as scale, deformations, and so on—
could be generated synthetically in order to get representa-
tive examples of each type. The use of adaptive techniques
for Domain Adaptation or Transfer Learning is another
way to deal with this issue [16]. Furthermore, it could
be interesting to consider an incremental interactive frame-
work in which the user does not have to label every single
pixel of the image but only those erroneously labeled by a
base classifier [17].

Acknowledgments

This work was partially supported by the Social Sciences
and Humanities Research Council of Canada and the Span-
ish Ministerio de Educación, Cultura y Deporte through a
FPU Fellowship (Ref. AP2012–0939). Special thanks to
Vi-An Tran for manually labeling the different layers in all
the manuscripts used for this research.

5. REFERENCES

[1] T. Pinto, A. Rebelo, G. A. Giraldi, and J. S. Cardoso,
“Music score binarization based on domain knowl-
edge,” in Proceedings of the 5th Iberian Conference
on Pattern Recognition and Image Analysis, 2011, pp.
700–8.

[2] C. Dalitz, M. Droettboom, B. Pranzas, and I. Fujinaga,
“A comparative study of staff removal algorithms,”

22

IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 5,
pp. 753–66, 2008.

[3] C. Segura, I. Barbancho, L. J. Tardón, and A. M. Bar-
bancho, “Automatic search and delimitation of fron-
tispieces in ancient scores,” in 18th European Signal
Processing Conference, 2010, pp. 254–8.

[4] G. Vigliensoni, G. Burlet, and I. Fujinaga, “Optical
measure recognition in common music notation,” in
Proceedings of the 14th International Society for Mu-
sic Information Retrieval Conference, 2013, pp. 125–
30.

[5] J. A. Burgoyne, Y. Ouyang, T. Himmelman, J. De-
vaney, L. Pugin, and I. Fujinaga, “Lyric extraction and
recognition on digital images of early music sources,”
in Proceedings of the 10th International Society for
Music Information Retrieval Conference, 2009, pp.
723–7.

[6] Y. Ouyang, J. A. Burgoyne, L. Pugin, and I. Fujinaga,
“A robust border detection algorithm with application
to medieval music manuscripts,” in Proceedings of the
2009 International Computer Music Conference, 2009,
pp. 101–4.

[7] J. Calvo-Zaragoza, L. Micó, and J. Oncina, “Music
staff removal with supervised pixel classification,” In-
ternational Journal on Document Analysis and Recog-
nition, vol. 19, no. 3, pp. 211–9, 2016.

[8] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How
transferable are features in deep neural networks?” in
Advances in Neural Information Processing Systems,
2014, pp. 3320–8.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Ima-
genet classification with deep convolutional neural net-
works,” in Advances in Neural Information Processing
Systems (NIPS), 2012, pp. 1097–1105.

[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”
Nature, vol. 521, no. 7553, pp. 436–44, 2015.

[11] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classi-
fication, 2nd ed. New York, NY: John Wiley & Sons,
2001.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Ima-
genet classification with deep convolutional neural net-
works,” in 26th Annual Conference on Neural Informa-
tion Processing Systems, 2012, pp. 1106–1114.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recog-
nition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, 1998.

[14] J. A. Burgoyne, L. Pugin, G. Eustace, and I. Fuji-
naga, “A comparative survey of image binarisation al-
gorithms for optical recognition on degraded musical
sources.” in Proceedings of the 8th International Soci-
ety for Music Information Retrieval Conference, 2007,
pp. 509–12.

[15] A. Fornés, A. Dutta, A. Gordo, and J. Lladós, “CVC-
Muscima: A ground truth of handwritten music score
images for writer identification and staff removal,” In-
ternational Journal on Document Analysis and Recog-
nition, vol. 15, no. 3, pp. 243–51, 2012.

[16] V. M. Patel, R. Gopalan, R. Li, and R. Chellappa, “Vi-
sual domain adaptation: A survey of recent advances,”
IEEE Signal Process. Mag., vol. 32, no. 3, pp. 53–69,
2015.

[17] L. Pugin, J. A. Burgoyne, and I. Fujinaga, “MAP adap-
tation to improve optical music recognition of early
music documents using Hidden Markov Models,” in
Proceedings of the 8th International Society for Music
Information Retrieval Conference, 2007, pp. 513–6.

23

24

A WEB INTERFACE FOR THE ANALYSIS AND PERFORMANCE OF
ALEATORY MUSIC NOTATION

Adriano Baratè
LIM – Laboratorio di Informatica Musicale

Dipartimento di Informatica
Università degli Studi di Milano
adriano.barate@unimi.it

Luca A. Ludovico
LIM – Laboratorio di Informatica Musicale

Dipartimento di Informatica
Università degli Studi di Milano
luca.ludovico@unimi.it

ABSTRACT

Black and White n.2 is a collection of 120 exercises for
keyboard instrument(s) written by the Italian composer
Franco Donatoni. Conceived as aleatory music, this com-
position adopts a non-conventional way to encode the score
where some parameters are fixed and others are left to
chance. In this work, we will describe a Web-based frame-
work that, after inserting user-defined scores in Donatoni’s
notation, is able to automatically produce score versions
compatible with the composer’s constraints and executable
by a human player. This application produces modern staff
notation and can perform it via the Web Audio API. The
goal is on one side to revive the interest towards aleatory
music literature, and Donatoni’s repertoire in particular,
and on the other to investigate the compositional and com-
putational process that originate a given score out of many
aleatory variants.

1. INTRODUCTION

In order to define non-conventional music notation, often
the reference is the so-called Common Western Notation
(CWN), namely the archetypical notation system used by
composers and performers when they compose, write, and
play Western music. In a strict interpretation, all the scores
generated in other cultural, historical, geographical con-
texts far from Western world contain non-conventional mu-
sic notation: this would be the case of early medieval nota-
tion [1] – including neumes, still in use for Gregorian chant
– or Indian rāgas, the melodic modes used in traditional
South Asian music genres [2]. In the mentioned cases,
scores seem non-conventional to Western non-experts only
because they appear far from modern staff notation, but
conversely there is broad agreement among practitioners
on both notational rules and score-symbol performances.

Narrowing the field to Western culture and contempo-
rary music, non-conventional notation appeared in order
to address a range of experimental concerns. For exam-
ple, during the first decades of the 20th century some in-
novations were introduced as a consequence of new com-
position and performance techniques, such as tone clus-

Copyright: c©2017 Adriano Baratè et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

Figure 1: An example of non-conventional score: Cas-
siopeia by George Cacioppo.

ters and microtonal composing. In the 1950s and ’60s –
the golden age for graphic notation – the composers of
the New York School (including John Cage, Morton Feld-
man, Earle Brown, and Christian Wolff) began experiment-
ing with indeterminacy and investigated graphic notation
as a way to restrict and reinvent the information provided
to performers [3]. Back in 1969, John Cage and Alison
Knowles collected an anthology of excerpts from hundreds
of notated musical scores [4], often non-conventional as
the one shown in Figure 1. Fourty years later, Theresa
Sauer – a musicologist who turned to studying graphic de-
sign – acknowledged this work by publishing a new col-
lection of notation examples close to the field of visual art
[5].

The need for non-conventional notation was triggered not
only by the artists’ desire to conduct aesthetic experiments
or break established rules, but also by a number of practical
issues due to the advent of electronic and tape composition:
new types of musical instruments – with unprecedented ex-
pressive potential concerning timbre, articulation, etc. –
required brand new ways to encode scores. The issue of
how to properly describe electroacoustic music has been
addressed in many works, including [6, 7, 8].

The goal of this paper is to show how the power of Web
interfaces can be leveraged to study, exploit and revive spe-
cific forms of non-conventional notation, providing
support tools oriented to both music analysis and perfor-
mance. Our case study is focused on Black and White n.2,
a collection of 120 keyboard pieces written in 1969 by the
Italian composer Franco Donatoni [9]. Noticeable example
of aleatory composition, its notation recalls the principles
of tablature, since the score indicates performance actions

25

(specifically, instrument fingering) rather than pitches [10],
thus leaving ample freedom to choose most music param-
eters.

This work is structured as follows: Section 2 addresses
the problems related to the representation of
non-conventional notation on a computer system and in a
Web environment, Section 3 focuses on Black and White
n.2 and provides details to decode this aleatory-music score,
and Section 4 discusses the Web interface implemented
and publicly released as a research result.

This paper can be somehow referred to an earlier work
entitled “Automatic Performance of Black and White n.2:
The Influence of Emotions Over Aleatoric Music”, which
was presented during the 9th International Symposium of
Computer Music Modeling and Retrieval held in London
in 2009 [11]. That proposal concerned an automatic ap-
proach to extract emotion-related parameters from the anal-
ysis of a video, and described a computer system capable
of mapping such results on the aleatory score of Black and
White n.2, thus generating a suitable soundtrack. In this
work the goals are different and varied, ranging from the
rediscovery of Donatoni’s aleatory music repertoire to the
comprehension of his notation and the analysis of resulting
computer-driven performances.

2. REPRESENTATION OF NON-CONVENTIONAL
NOTATION IN COMPUTING

According to some experts, the printed score can be seen
as a mediator of meaning. It is possible to identify two
approaches to music notation typically followed by play-
ers: a reproductive approach and an explorative one [12].
In the former case, the function of the printed score is that
of an explicitly normative document which prescribes how
to play; in the latter, the function is an invitation to seek
out implicit meaning according to the musicians’ individ-
ual judgment. Both the approaches can occur only within a
frame of agreed understanding shared with the composer,
and this process can be challenging when notation rules
are non-conventional, or their interpretation is intention-
ally left to the performer.

Due to the large variety of notations adopted in contem-
porary music, the representation of non-conventional
scores – concerning both editing and computer-driven per-
formance – is a huge and still open problem in the field of
computing.

From the former point of view, namely editing, many mu-
sic scores are far from CWN conventions and closer to fig-
urative art, and score writers such as Finale, MuseScore or
Sibelius – mainly conceived for common notation – are not
adequate. In this case, different approaches are available
in order to obtain a score in the digital domain: scanning
a manuscript version, pushing the behavior of a traditional
score editor as far as possible (e.g., by changing the de-
fault music font or inserting custom symbols as drawings),
adopting a notation style that can be generated and edited
through existing software (e.g., by using a graphics edi-
tor to combine the common notation produced by available
score writers and graphic information entered via a digital
drawing tablet), etc.

The other task, related to computer-driven performances
of score symbols entered with one of the mentioned ap-
proaches, is hard to achieve as well. Narrowing the field
to Web platforms, there are a number of experiments of si-
multaneous visualization and listening of non-conventional
scores – for instance, there are dedicated YouTube chan-
nels – but often synchronization is hard-coded into the me-
dia and consequently these experiences do not offer any
possibility of interaction. Conversely, institutions and re-
search centers are more interested in investigating music
processes, and the interfaces they design aim to highlight
such processes in music notation and make them emerge
through user interaction. From this point of view, an early
experimentation via Web was conducted by INA-GRM: 1

interactive-listening examples are still available in the sec-
tion named Portraits polychromes, unfortunately most of
them require custom browser plugins such as Apple Quick-
Time and Adobe Shockwave.

A good compromise is offered by W3C-compliant 2 for-
mats and Web platforms designed both to let untrained
users enjoy music and to support music education and mu-
sicological investigation. Examples are music-oriented
multilayer representation formats, capable to carry sym-
bolic and structural information, multiple notation styles
(including non-conventional scores), and audio informa-
tion. For instance, the IEEE 1599 format is a standard con-
ceived to describe and synchronize the information related
to a music piece in all its aspects [13]. A Web player sup-
porting IEEE 1599 documents is available at
http://emipiu.di.unimi.it. This interface
shows how non-conventional scores such as tablatures for
lute, Labanotation for ballet, neumes for Gregorian plain
chant, and even graphical scores for contemporary music
can be linked to transcriptions in modern notation and syn-
chronized with audio content, thus supporting interactive
score following [14].

From this overview on available approaches and tools to
write, edit, visualize and perform non-conventional nota-
tion, it is evident the need to design a context-tailored en-
vironment able to support a specific notation, thus releas-
ing a solution customized for a given set of semantic and
syntactic rules. This is the approach we will discuss in the
next section to revive Black and White n.2, an aleatory mu-
sic composition by Franco Donatoni.

3. AN EXAMPLE OF ALEATORY MUSIC: BLACK
AND WHITE N.2

Black and White n.2 is a collection of 120 pieces written
by the Italian composer Franco Donatoni. They can be
played on any keyboard instrument, including piano, harp-
sichord, celesta, mute controller, etc. Performances for two
and three keyboard instruments are allowed as well. This
composition belongs to aleatory music – a definition first
provided in [15] – since some primary parameters of the
composition are not predetermined, rather their values de-
pend on random processes or extemporary decisions made

1 Institut National de l’Audiovisuel – Groupe de Recherche Musicales,
http://www.inagrm.com.

2 World Wide Web Consortium, https://www.w3.org.

26

Figure 2: An exercise from the original score of Black and White n.2.

by the performer.
In the score preface, the author briefly explains the set of

rules to read the score, significantly different from mod-
ern staff notation, as shown in Figure 2. First, the two
staves usually assigned to standard keyboard notation (i.e.
the grand staff) in this case do not carry pitch and rhythm
information, but a sort of tablature for piano. Each staff
line corresponds to a specific finger, consequently only staff
lines (and not spaces) are allowed to host music symbols.
For the right hand, the lower line corresponds to the thumb
and the upper line to the little finger, and vice versa for the
left hand. A note event can be represented as either a white
or a black circle: the former indicates that a given finger
should play a white key on the keyboard, the latter forces
the corresponding finger to press a black key. Therefore,
notation is mandatory in specifying which fingers should
be used to press keys of a given color.

Conversely, the melodic, rhythmic and harmonic aspects
of the composition – the information commonly carried by
a traditional score – are left to the performer’s extempo-
rary interpretation. In order to understand the aesthetic and
technical purposes of the composition, it is worth recalling
the subtitle: “esercizi per le 10 dita”, literally 10-finger ex-
ercises.

The instructions a player has to follow, expressed by the
author himself in the work’s preface, are:

• The association among symbol positions over lines
and fingers is fixed;

• As it regards the color of note symbols, each circle
can be either empty or filled, which forces the per-
former to play either a white or a black key respec-
tively (using the indicated finger, in accordance with
the previous rule);

• Each staff system is both preceded and followed by
either an empty circle or an empty square. At the be-
ginning of the performance the instrumentalist
chooses the association of shapes to dynamics, i.e.
if circles should correspond to ppp and squares to fff
or vice versa;

• The concept of chord is associated to the vertical
alignment of circles, possibly spanning over the two
staves. In the latter case, chords will present the

same dynamics and will be grouped by a vertical
dashed line;

• Arrows pointing up or down can be specified chord
by chord, thus providing a broad indication about
the note range to use: an upward arrow for higher
octaves, no arrow for the central region of the key-
board, a downward arrow for lower octaves.

• Dashed slurs provide suggestions about optional
legato effects.

• Barlines have no specific meaning, since neither time
signatures nor rhythmic values are explicitly indi-
cated in the score. Nevertheless, barlines can be seen
as a way to embrace a set of chords together, thus
providing a sort of structural information.

Since the mentioned set of rules leaves many music pa-
rameters to chance or improvisation, for a given score count-
less score instances and performances are possible. For
example, Figure 3 shows a short excerpt from Black and
White n.2 and a number of notated instances that would all
meet Donatoni’s requirements.

4. ALEATORY MUSIC OVER THE WEB: BLACK
AND BYTE N.2

In order to achieve the goal of reviving Donatoni’s compo-
sitional intuitions and notation style, we have designed and
implemented a Web interface called Black and Byte n.2.

The idea is to provide Web users with an intuitive inter-
face specifically designed to explore notation, create new
pieces compliant with Donatoni’s rules, analyze possible
score translations into modern notation, and finally play
the resulting score. It is worth underlining that Donatoni
rejected the idea of a prepared performance, and – in accor-
dance with his ideas – our system has been conceived for
analysis and training purposes, with no aesthetic or artis-
tic goal. Nevertheless, our proposal addresses a wide au-
dience, including keyboard performers, scholars in musi-
cology, fans of contemporary music, and experts of music
technologies.

In the following the design of Black and Byte n.2 will be
analyzed and discussed in all its aspects. As a result of our
efforts, the project has been implemented and released at
http://blackandbyte.lim.di.unimi.it.

27

(a) Excerpt

4
5
32
1

21
534

4
5
3
21

4

1 2
4
3 5

31 2
4 5

5
3 21

15

8

(b) Some possible instances on a 4-octave keyboard

Figure 3: A short excerpt from Black and White n.2 (a) and some playable variants in modern notation, with the mandatory
fingering indicated above and below chords (b).

4.1 Principles of Design

The interface has been designed to take into account the
different goals of this work:

1. Supporting Donatoni’s notation, in order to redis-
cover a relevant piece of aleatory music;

2. Allowing the user to extend the original corpus of
exercises. In our opinion this is perfectly compatible
with the composer’s original idea, since his creative
and artistic work consisted in having established a
set of conventions and rules to interpret his custom
notation, and not in fixing specific instances of the
score;

3. Helping the performer and the scholar in the under-
standing of the possible translations of the score in
terms of modern notation. Since we are dealing with
aleatory music, there are virtually endless combi-
nations of pitches that are compatible with a given
original fragment;

4. Providing a raw audio feedback to make the user fa-
miliarize with the aesthetics of this kind of music.

The layout shown in Figure 4 reflects the mentioned goals.
The upper area of the interface contains some metadata
(author, title, language) and a drop-down menu to open a
multi-language description of rules, a short user guide, and
some helpful editing tools. Below, the screen has been di-
vided into two main parts: the upper one to enter Donatoni-
style notation, as explained in the next subsection, and the
lower one to show the corresponding modern staff nota-
tion. By clicking the finalize/reload button between the
two sections, a new score instance in the lower area is pro-
duced. Finally, a simple media player is displayed at the
bottom of the window.

4.2 Data Entry

All the score symbols supported by Donatoni’s notation –
well exemplified by the excerpt shown in Figure 2 – can be

entered through mouse actions over a double grand staff. 3

Clickable positions are quantized with respect to a prede-
fined grid, in accordance with the monospaced original no-
tation.

Upper and lower grand staves contain the note events to
be played ppp and fff ; the association of the former and
the latter grand staff to music dynamics is left to chance or
to performer’s decisions. As for Donatoni’s exercises, two-
hand chords cannot be placed on different grand staves, i.e.
only one dynamic level is allowed at any given time.

The main symbols to enter are the black or white circles
representing note events, so the simplest mouse action has
been assigned to this function: notes are placed through
left mouse clicks on grand staves. Left clicks on already
existing circles delete previous entries. Any click on a
grand staff deletes the simultaneous note events possibly
entered on the other. The mouse wheel lets user cycle be-
tween black and white note symbols.

Other supported symbols are: i) slurs, drawn by drag-
and-drop actions starting on the first event and ending on
the last event to tie, ii) up- or down-arrows, entered through
left clicks above or below the chord to alter, and iii) addi-
tional barlines, placed by left clicks in the area between
two consecutive grid positions.

The dashed vertical lines that connect simultaneous
chords are automatically placed by the system as soon as
two-hand chords are detected. Also the white circles and
squares that embed the grand staves are rearranged on the
fly on the basis of current entries.

4.3 Algorithmic Computation of Chords

This step can be seen as the automatic process that trans-
forms the original score, entered in the first phase, into
modern staff notation. Please note that score symbols are
not merely converted from a kind of representation to an-
other (like providing a modern transcription of neumes),
but they must be inferred from the application of a set of
generative rules. Consequently, the algorithmic computa-

3 Please remember that here the grand staff is used to represent piano
tablature instead of common notation.

28

Figure 4: The web interface of Black and Byte n.2. The upper part shows a user-defined score encoded through the original
notation by Donatoni; the lower part contains a random-generated instance of the score in common notation.

tion of chords requires to satisfy a number of non-trivial
explicit and implicit constraints.

As it regards explicit constraints, the score clearly pro-
vides the performer with some mandatory indication, for
example through instrumental fingering and arrows. Need-
less to say, not all chords formed by a compliant combi-
nation of white and black keys can be performed. Even
if in Black and Byte the pianist is a computer system, vir-
tually able to play any set of pitches, we decided to pro-
duce human-playable score instances. In order to reject
unwanted chords, we modeled the hand positions that an
averagely skilled pianist can take.

Another example of explicit constraint concerns the key-
board regions for chords, indicated in the score by up- and
down-arrows. In this case, the requirements are easier to
satisfy, thanks to suitable octave offsets for chords.

Other constraints are implicit and subtler: for example,
when both hands have to play in the same region of the
keyboard, the system has to detect possible overlaps and
crossings and establish what a pianist can reasonably per-
form.

The process that brings to the choice of a sequence of
chords is made of many steps. First, the system is provided
with a set of chord models aimed at covering all the com-

binations of pitches that a pianist can easily perform. In
order to have flexible but compact data structures, pitches
in a chord are encoded in terms of semitone distances from
the chord root, whose position is in turn movable in the
keyboard. In other words, all the values that define each
chord model are relative rather than absolute, and they can
be instanced starting from any point of the keyboard. In-
side data structures, chord models are clustered based on
the number and type of fingers required for their perfor-
mance.

Please note that the encoded models include not only “tra-
ditional” chords such as triads, sevenths and ninths in root
position and in their inversions, but also more complex
combinations of adjacent/non-adjacent piano keys, tone
clusters, etc.

A preliminary selection of candidates is based on finger-
related characteristics, that can be retrieved from Dona-
toni’s notation. The following step consists in verifying
if the selected chord model has at least one instance com-
pliant with the white/black key configuration indicated in
the score. If one of the mentioned steps fails, as there are
no candidates having the required characteristics, a back-
tracking technique is used to select a new candidate. To
adhere to Donatoni’s concept of aleatory music, the choice

29

of a specific chord model out of many compliant models,
as well as the choice of the chord root among many com-
patible start pitches are left to chance.

From a graphical point of view, it is worth underlining
that the production of a syntactically-correct and elegant
notation is not easy to achieve. For example, the current
clef has to change frequently in order to limit the num-
ber of ledger lines. Besides, the output score will typ-
ically contain a great number of accidentals, hard to be
placed on staff due to note-head overlays and to be cor-
rectly shown/hidden in terms of printed and courtesy acci-
dentals. Finally, an important part of the graphical repre-
sentation is instrumental fingering, shown chord-by-chord
either as a verification tool for the algorithm and as an aid
to human performance.

4.4 Audio Performance

In order to produce a sound feedback, the Web interface
has been equipped with a basic media player, capable of
launching a computer-based performance of the score.

For our purposes, audio output is less important than the
production of modern notation: in fact, the latter lets the
user understand how the composer’s ideas can be instanced
on different sequences of logic events, an activity that has
a high theoretical and musicological valence; conversely,
the former is a mere translation of such computed symbols
into audio events. Nevertheless, we decided to implement
this function in order to give a broad idea of how the ex-
ercises from Black and White n.2 or similar user-defined
fragments could sound.

From a technical point of view, two Web-oriented ap-
proaches were possible: i) the adoption of the Web Audio
API, and ii) the use of the Web MIDI API. At the moment
of writing, both solutions are draft under development in
the framework of W3C standardization activities.

The Web Audio API provides a powerful and versatile
system for controlling audio on the Web, allowing devel-
opers to choose audio sources, add effects to audio, cre-
ate audio visualizations, apply spatial effects (such as pan-
ning), etc. [16]. In order to obtain a high-quality output,
this approach requires to load instrumental audio samples
from the server. Sounds could be synthesized as well, e.g.
through additive synthesis techniques, but the audio output
would likely sound artificial.

The Web MIDI API specification defines an interface that
supports the MIDI protocol, thus enabling Web applica-
tions to enumerate and select MIDI input and output de-
vices on the client system and send and receive MIDI mes-
sages. The Web MIDI API is intended to enable MIDI
applications by providing low-level access to the MIDI de-
vices available on the users’ systems [17]. Like in other
MIDI-based applications, the resulting sound quality
largely depends on the characteristics of the MIDI synth
in use.

In addition to a different philosophy (i.e. server-side sam-
ples vs. client-side synthesis), an aspect to take into ac-
count concerns browser compatibility. As it regards the
Web Audio API, most of its features are now available
on all major browsers but Microsoft Internet Explorer, be-

ing supported e.g. by Google Chrome, Mozilla Firefox,
Opera and Apple Safari in their desktop and mobile ver-
sions. Conversely, the Web MIDI API is currently sup-
ported only by Google Chrome, even if rumors say that
also Mozilla and Microsoft are working on implementa-
tions and browser support should be guaranteed within the
next year or two.

Moreover, the MIDI approach requires a virtual or phys-
ical MIDI chain, formed at least by a software synth in-
stalled on the client and equipped with a sound font.

Since cross-platform compatibility from our point of view
is highly desirable, our choice fell on the Web Audio API.
However, future developments in audio browser technolo-
gies could change such a design principle.

5. CONCLUSION

In this paper we addressed the problem of reviving Do-
natoni’s Black and White n.2 through an interactive Web
platform, allowing musically untrained people as well as
an expert audience to experiment with a relevant example
of aleatory music.

Since at the moment of writing the Web prototype has just
been released, an accurate experimentation phase has not
been conducted yet, and some research questions are still
open. For example: Is this approach effective to achieve
the goals mentioned in Section 4.1? Was the interface
properly designed to support human performance? Can ad-
ditional tools be added to improve user experience, such as
a step-by-step chord navigator? In the near future we will
further investigate these aspects with the help of both un-
trained and expert users.

Even if we faced problems typical of a given composi-
tional style (i.e. aleatory music) and specific for a given
music piece (e.g., the set of rules to infer score instances,
keyboard-notation issues, etc.), we think that our general
approach and most technical solutions can be generalized
to drive the design and implementation of similar platforms.

This activity was carried out in the context of a more gen-
eral project aiming at the release of free Web tools to sup-
port music dissemination, education and analysis. Other
applications are available in the Demo section of the LIM
official Web site. 4

Acknowledgments
The author gratefully wish to acknowledge their colleagues
at LIM for their support. This project was made possible
by the 2016-2018 research funding plan of the Department
of Computer Science, University of Milan.

6. REFERENCES

[1] C. Floros and N. K. Moran, Introduction to early me-
dieval notation. Harmonie Park Pr, 2005, no. 45.

[2] R. Widdess, The rāgas of early Indian music: modes,
melodies, and musical notations from the Gupta period
to c. 1250. Oxford University Press, USA, 1995.

4 http://www.lim.di.unimi.it

30

[3] M. Nyman, Experimental music: Cage and beyond.
Cambridge University Press, 1999, vol. 9.

[4] J. Cage, Notations. Something Else Press, 1969.

[5] T. Sauer, Notations 21. Mark Batty Pub, 2009.

[6] M. Helmuth, “Multidimensional representation of
electroacoustic music*,” Journal of new music re-
search, vol. 25, no. 1, pp. 77–103, 1996.

[7] P. Couprie, “Graphical representation: an analytical
and publication tool for electroacoustic music,” Organ-
ised Sound, vol. 9, no. 01, pp. 109–113, 2004.

[8] K. Patton, “Morphological notation for interactive
electroacoustic music,” Organised Sound, vol. 12,
no. 02, pp. 123–128, 2007.

[9] F. Donatoni, Black and White N. 2 - Esercizi per le dieci
dita per strumenti a tastiera. Suvini Zerboni, 1968.

[10] M. Kennedy and J. Bourne, The concise Oxford dictio-
nary of music. Oxford University Press, 2004.

[11] S. Baldan, A. Baratè, and L. A. Ludovico, “Automatic
performance of Black and White n.2: The influence
of emotions over aleatoric music,” in Proceedings of
Computer Music Modeling and Retrieval : 9th Inter-
national Symposium, CMMR 2012, London, UK, 2012,
pp. 437–448.

[12] C. Hultberg, “Approaches to music notation: The
printed score as a mediator of meaning in western tonal
tradition,” Music Education Research, vol. 4, no. 2, pp.
185–197, 2002.

[13] D. L. Baggi and G. M. Haus, Music navigation with
symbols and layers: Toward content browsing with
IEEE 1599 XML encoding. John Wiley & Sons, 2013.

[14] A. Baratè and L. A. Ludovico, “An XML-based syn-
chronization of audio and graphical representations of
music scores,” in WIAMIS ’07 Proceedings of the 8th
International Workshop on Image Analysis for Multi-
media Interactive Services WIAMIS ’07 Proceedings
of the Eight International Workshop on Image Anal-
ysis for Multimedia Interactive Services. Santorini,
Greece: IEEE Computer Society, 2007, pp. 64–67.

[15] W. Meyer-Eppler, “Statistic and psychologic problems
of sound,” Die Reihe, vol. 1, pp. 55–61, 1958.

[16] P. Adenot, C. Wilson, and C. Rogers, “Web
Audio API,” W3C, working draft, Dec. 2015,
https://www.w3.org/TR/webaudio/.

[17] C. Wilson and J. Kalliokoski, “Web MIDI
API,” W3C, working draft, Mar. 2015,
https://www.w3.org/TR/webmidi/.

31

32

THE 3-D SCORE

First author David Kim-Boyle Third author
Affiliation1

author1@adomain.org
Sydney Conservatorium of Music

The University of Sydney
david.kim-boyle@sydney.edu.au

Affiliation3
author3@adomain.org

ABSTRACT
This paper examines attempts by composers to transcend
the two-dimensional constraints of the printed page in mu-
sical notation. The author reviews how material depth in
printed media has been explored to help create new struc-
tural forms and two of the author’s works which feature
real-time, three-dimensional scores are examined. Incum-
bent technical limitations and constraints of multidimen-
sional notational schemas are discussed and the author
concludes by arguing that the reading through of a nota-
tional schema affords a new spatial ontology for the works
represented.

1. INTRODUCTION
In many respects, music notation can be regarded as a
multi-dimensional construct that has evolved to facilitate
communication of an increasingly complex and polyvalent
musical language. The use of neumes, for example, while
perfectly satisfactory for prescribing the pitch contours of
plainchant does not suffice, nor is it intended, to convey
complex rhythmic structure. Thus, the dimensionality of
notational schemas is extended through the addition of
new symbols such as time signatures and tuplets as musi-
cal language evolves.

Despite the growing complexity of musical notation, it has
nevertheless always been bound by the constraints of the
medium upon which it is inscribed. With the transition
from parchment to paper in the mid-15th century, for ex-
ample, the use of ancillary decoration becomes less pro-
nounced.1 The growing use of screen-based scores is also
not without limitations with screen resolution, use of color,
and speed of animation all representing constraints affect-
ing communication with performers. [2] Whether paper or
screen-based, both mediums have been jointly bound by
the two-dimensional surface of the display. With the grow-
ing use of 3-D technologies in printing, imaging, immer-
sive projection, and augmented reality systems it therefore
seems natural to consider the creative potential of multi-

1 While there are obvious economic causes at play, the materiality of pa-
per ultimately did not lend itself as well to the use of colored inks. [1]

dimensional notational schema. Such an appraisal, how-
ever, needs to be framed in the broader context of efforts
to transcend the materiality of the printed surface.

2. TRANSCENDING THE PAGE
While the discovery of perspective in the 14th century al-
lowed painters to more realistically depict depth on a two-
dimensional surface, it was not until the mid-to-late 19th
century with the development of photography and stereo-
scopic images that a more convincing illusion of depth was
able to be conveyed to a viewer. Through the use of stere-
oscopic viewers to project phase shifted, and sometimes
color corrected images to individual eyes, see Figure 1,
early stereographic images created an overwhelming sense
of presence for the viewer as was noted by early enthusiast
Oliver Wendell Holmes in 1859 - “The first effect of look-
ing at a good photograph through the stereoscope is a sur-
prise such as no painting ever produced. The mind feels its
way into the very depths of the picture. The scraggy
branches of a tree in the foreground run out at us as if they
would scratch our eyes out. The elbow of a figure stands
forth as to make us almost uncomfortable.” [3]

Figure 1. The Brewster stereoscope (left) and the
Holmes stereoscope (right). Two early examples of ste-
reoscopes from the late 19th century.

The desire to immerse the viewer in a scene, which played
no small role in the early appeal of the medium, [4] has
continued to be a driving force in the development of ste-
reoscopic imagery today. This is most obviously notable
in virtual reality or immersive systems such as the Oculus
Rift [5] or, to a somewhat lesser extent, in the increasing
popularity of 360 photos.

The illusion of depth that stereoscopic images create fun-
damentally represents an effort to embed more information
about an image than can be ordinarily represented on a

Copyright: © 2017 David Kim-Boyle. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License 3.0
Unported, which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are credited.

33

two-dimensional surface. Stereoscopic images, thus by
their very nature, represent an effort to transcend the two-
dimensional materiality of the page.

Many innovations in musical notation may similarly be
framed in part as an effort to transcend the material con-
straints of the printed page. The use of colored ink in a
number of scores of Baude Cordier and other composers
from the Mannerist school of the 15th century to more
clearly delineate rhythmic layers offers an early example,
see Figure 2.

Figure 2. Detail from the score for Baude Cordier’s
(1380-1440) Belle, Bonne, Sage in which red colored
notes denote rhythmic modification.

The use of screens to display musical scores also present
many opportunities to transcend the constraints of paper-
based scores with generative processes, animation, and ex-
tended graphical schema providing rich material for musi-
cal exploration. [2] To what extent, though, has material
depth provided opportunities for creative exploration and
the development of unique musical forms?

3. THE MATERIALITY OF DEPTH
Unlike visual art-forms in which the illusion of depth is
typically motivated by a desire to immerse a spectator in a
scene, notational depth in music notations and representa-
tions is most commonly driven by a desire to embed addi-
tional layers of information in a notational schema. There
are, however, deeper ontological motivations behind these
explorations which will be touched upon later in this paper.

Perhaps the most well known early example in which the
materiality of depth plays an integral role in defining mu-
sical structures are those works of John Cage which in-
volved the use of transparencies, the most famous of which
include the Variations II (1961), III (1962), IV (1963), and
VI (1966); Fontana Mix (1958), Music Walk (1958) and
Cartridge Music (1960). In each of these works musical
structures emerge from the superimposition of preprinted
transparencies and printed sheets, see Figure 3.

Figure 3. A performance score for Cage’s Cartridge Mu-
sic (1960). The score is created by superimposing four
transparencies on one of up to twenty pre-printed sheets.

Musical form in these works is an emergent result of an
aleatoric process, a sonic assemblage or composite of dis-
crete individual prescriptive actions. [6, 7] While Cage’s
interest in the use of transparent media for musical com-
position appears to have come to a close in the 1960s, the
potentiality of depth for creating unique forms continued
to be explored in his lesser known visual art works built
from plexiglass such as, for example, Not Wanting to Say
Anything About Marcel (1969), see Figure 4, in which ran-
domly chosen words and letters are distribued across par-
allel sheets of plexiglass according to the results of a three-
coin toss. [8]

Figure 4. Not Wanting to Say Anything About Marcel
(1969).

The influence of Cage’s use of superimposed transparen-
cies was felt more strongly in Japan where, as is well
known Cage spent considerable time in the 1960s, more so
than in Europe or North America. In Toshi Ichiyanagi’s
Music for Piano No. 7 (1961), for example, the performer
is provided with ten pre-printed sheets with three options
for arranging them to form a performance score. The third
option requires the performer to – “3. Accumulate ten
sheets freely in a row. So each sheet is read only in part.
The performer may change the order or turn the score up-
side down in the same position to continue the piece.” [9]

34

Figure 5. Two pages from preparatory material of Music
for Piano No. 7 (1961) by Toshio Ichiyanagi.

Each of the ten sheets available for the performer employs
graphic notation often featuring a long thin rectangular
prism which bisects the page and is filled and surrounded
by various shadings, lines, circles and squares which in
turn designate pitches, pitch ranges and various harmonics
to be performed. The random accumulation of sheets nat-
urally creates potential musical structures which unfold as
the pianist reads through the sheets.

The creation of musical structure through material depth
also plays a fundamental role in Toru Takemitsu’s Corona
(1962). The score for this work, designed in collaboration
with graphic designer Kôhei Sugiura, [10] exists in two
versions, one for solo piano and the other for string orches-
tra. It consists of five cards and transparencies printed in
different colors which may be interlocked in configura-
tions of the performer’s choosing to form a performance
score, [10, 11] see Figure 6. Both versions of the work pre-
sent performers with a great deal of freedom although
Takemitsu does provide detailed instructions on how the
graphic shapes and symbols are to be interpreted.

Figure 6. A performance score for the Takemitsu’s Co-
rona (1962) for solo piano.

Like arrangement number three of Ichiyanagi’s Music for
Piano No. 7, and Cage’s Cartridge Music the performance

score for Corona constrains prescriptive information to a
single “page”. This is also a notable feature of many works
featuring scores created in real-time as discussed in [12]
where the concept of a page turn is an obvious anachro-
nism.

Notational depth is also a feature of Kenneth Gaburo’s Lin-
gua II: Maledetto (1967-8) and Herbert Brün’s Mutatis
Mutandi (1976) the scores for each of which are con-
structed from complex superimpositions of words, letters,
and other graphical shapes, see Figure 7.

Figure 7. Score excerpts from Herbert Brün’s Mutatis
Mutandis (top), and Kenneth Gaburo’s Lingua II (bot-
tom) both of which employ complex graphic superimpo-
sitions to create musical structure.

In each of these works the performer is not afforded the
flexibility to create their own multi-layered score from the
superimposition of pre-composed pages or transparencies.
Nevertheless, the printed superimposition of graphical and
typographical shapes presents similar authorial intentions
and interpretive challenges. Of these, Brün has written –
“The interpreter, now, is to construct, by thought and im-
agination, HIS version of a structure that might leave the
traces which the graphic displays. The interpreter is not
asked to reconstruct my computer program, the structured
process that actually generated the graphics. Rather he is
asked to construct the structured process by which HE
would like to have generated the graphics.” [13] The nota-
tional complexity of Brün’s work with its overt layering of
graphical planes, naturally encourages performers to read
through the score in addition to a more accustomed read-
ing across. The multi-dimensionality of the notational
structure is also foregrounded in Gaburo’s work for seven
virtuoso speakers with simultaneity and overlapping of vo-
cal enunciations mirrored in notational depth and textual
superimposition.

35

Multi-dimensional notational structures, especially those
exploring depth, naturally push the boundaries of what can
be represented on a two-dimensional surface. It is perhaps
not surprising then that composers such as Cage and
Gaburo moved on to explore multidimensional multimedia
forms in works such as Cage’s Musicircus (1967), Roara-
torio (1979) or Gaburo’s My, My, My, What a Wonderful
Fall! (1974) after having largely exhausted the musical
possibilities of notational depth on printed media, 2 while
contemporary artists such as Marc Berghaus [15] and Mar-
tin Daske [16] have developed three-dimensional sculp-
tural scores as a means of exploring the use of depth in
creating unique musical forms. Before closing this section,
it is also worth acknowledging a body of concrete poetry
by poets such as Jackson MacLow, bp Nichol, and Au-
gusto de Campos whose work was fundamentally invested
in exploring the relationships between typographical struc-
ture and literary expression. [17]

4. 3-D SCORES

Not surprisingly, with the rapid evolution of computer pro-
cessing power and the parallel development of program-
ming languages for real-time graphic display and pro-
cessing such as Jitter, Processing, and OpenFrameworks,
the use of transparencies, slides and other media suited to
representing multiple layers of notation has ostensibly
ceased. In the author’s own creative work, Jitter has been
a core tool that has afforded exploration of the potential of
3-D notations. As of writing, two of the author’s works,
with another in development, have featured 3-D scores. In
each of these works, the score is generated live and em-
ploys a unique graphical schema.

4.1 point studies no. 2 (2013)

point studies no. 2, for any two pitched instruments, pre-
sents performers with a series of colored nodes randomly
distributed across a three-dimensional grid. 3 The color and
relative size of a node denotes the pitch and intensity re-
spectively of a note to be performed. Performers are free
to determine the sequence of pitches performed by choos-
ing various pathways through the nodes, which are con-
nected by thin lines according to their alignment, see Fig-
ure 8. A “multi-player” computer-generated interpretation
of the score, consisting of sine tones, accompanies the per-
former’s interpretation.

2 Curiously, Jim O’Rourke’s 2006 recording of Takemitsu’s Corona, also
foregrounds multidimensionality through juxtaposing two different per-
formances of the work. [14]
3 A score excerpt is available for viewing at <http://www.davidkim-
boyle.net/point-studies-no-2-2013.html>.

Figure 8. Screen capture of the score for point studies
no. 2 (2013) for any two pitched instruments and com-
puter.

The score for point studies no. 2 is generated live at the
start of each performance but once generated, the pitches,
their intensities, and the possible navigational pathways
between them remains fixed. No position within the grid
of nodes is privileged, however, as the performers are free
to choose their starting node and respective pathways
through the score. In order to facilitate legibility of the full
distribution of pitches, a virtual camera moves around, in-
and-out of the score.4 The illusion of depth within the score
is created by distributing nodes in three dimensions where
mapping in the z-dimension is achieved by adjustments of
scale and lighting. Like any three-dimensional object pre-
sented on a two-dimensional surface, occlusion of back-
ground layers presents a challenge difficult to overcome.
To that end, the author is exploring how augmented reality
systems might offer opportunities for performers to physi-
cally engage with a score by integrating choreographed
movement around the virtual score within the interpreta-
tion.

4.2 16:16 (2016)

16:16 (2016) for prepared piano four hands, presents a dif-
ferent approach to the use of three-dimensional notation
and is the first work of the author’s to explore the use of
stereoscopic imagery. While, the work has some superfi-
cial similarities to point studies no. 2 in that colored nodes
are used to represent pitched events, 16:16 extends the
graphical schema considerably and presents the perform-
ers with a more complex range of possibilities in interpre-
tation.

In 16:16, nodes represent various pitched events with color
denoting a different type of preparation material
(red→screw, green→rubber, blue→plastic, yel-
low→metal, white→wood). To facilitate interpretation, it
has proven helpful for small colored adhesive labels to be
applied to the piano keys, see Figure 9a. Nodes are ran-
domly distributed on a rectangular grid which contains
various numbers within certain squares indicating the
number of times a note is to be repeated, see Figure 9b.
During the work, nodes rise and fall from the fixed grid

4 This virtual camera corresponds to the OpenGL camera which looks
upon a scene to be rendered within the Jitter environment in which the
work is programmed.

36

with one of the pianists interpreting those that rise and the
other those that fall. Such nodes are said to be activated
and are the only nodes eligible for performance by either
player.

Figure 9. a) Colored adhesives applied to piano keys to
facilitate score interpretation (top), b) Screen capture
from the anaglyphic score for 16:16 (2016) for prepared
piano four-hands (bottom).

Like point studies no. 2, the virtual camera through which
the displayed score for 16:16 is presented to the perform-
ers moves in three-dimensional space which not only fa-
cilitates legibility but also helps reveal and occlude partic-
ular segments of the score. The real innovation of 16:16,
however, is that it is presented as a stereoscopic, anaglyph
image requiring each of the performers to wear red-cyan
glasses. In an anaglyph, a stereoscopic image is created by
physically separating the red and cyan channels of a full-
color image. In order to ensure that each eye only receives
the filtered image intended for it, red-cyan glasses need to
be worn. The further the channels are separated, the greater
the illusion of depth that is created. In the Jitter/OpenGL
environment within which the score for 16:16 is generated,
this is achieved by rendering a scene from two different
camera angles each of which is subsequently filtered to
display discrete red (left) and cyan (right) channels, see
Figure 10.

Figure 10. Creating a stereoscopic image in Jitter.

Unlike stereoscopic images which require the use of polar-
ized light, or immersive systems which radically constrain
interaction with an instrument, the anaglyph image offers
a cheap method through which a stereoscopic effect can be
created for performers. In 16:16, it facilitates legibility of
the three-dimensional movements of nodes and helps dis-
tinguish nodes aligned along nearby axes. The use of an
anaglyph image is not, however, without constraints. It is
somewhat pointless, for example, to display such imagery
to an audience as is often done in concerts featuring works
with real-time screen scores unless members of the audi-
ence are presented with their own red-cyan glasses. Of
more concern, however, is the fact that anaglyph images
have a limited color field with which they are effective.
[18] While this has not been a tremendous constraint in
16:16 with a color field limited to red-green-blue-yellow-
white-black, it still represents a constraint affecting typo-
graphical choices.

5. CONCLUDING THOUGHTS AND FU-
TURE WORK

By promoting a reading through rather than just a reading
across within a notational schema, scores that feature jux-
taposition, superimposition, and other three-dimensional
techniques help establish a new spatial ontology for the
works they afford. [19] Through offering new ways of en-
gaging with space, these works also draw awareness to the
activity that takes place within it. Cage strongly hints at
this in his discussion with Richard Kostelanetz on Varia-
tions III where he states – “…We are constantly active; we
are never inactive. There is no space in our lives. But there
is a greater or lesser number of things going on at the same
moment; so that if I’m not doing anything other than lis-
tening, the fact that I’m listening is that I’m doing some-
thing by listening. That’s what Variations III is.” [20]

This reinvigorated awareness of the social dimension of
space was also strongly present in much of the 1950s Jap-
anese avant-garde tradition as represented in the work of
Ichiyanagi, Tone and others who explored multidimen-
sional notational schemas. [21] And in some respects, it

37

also hearkens back to what Eco was referring to in his dis-
cussion of Baroque poetics where he argues that “…the
Baroque work of art…induces the spectator to shift his po-
sition continuously in order to see the work in constantly
new aspects, as if it were in a state of perpetual transfor-
mation.” [22]

While many pragmatic issues still need to be addressed,
perhaps the area with the most potential for future devel-
opment in three-dimensional representations are those af-
forded by immersive and augmented reality systems. Con-
current with that opportunity however, is the challenge of
overcoming the isolationist tendencies inherent in most
such systems. Nevertheless, the author believes the new
spatial ontologies afforded by such systems is rich in aes-
thetic potential with exciting opportunities for new forms
of musical engagement.

6. REFERENCES
[1] R. Rastall, The Notation of Western Music. St.

Martin’s Press: New York, 1982.

[2] C. Hope & L. Vickery, “Screen Scores: New Media
Music Manuscripts,” in Proceedings of the
International Computer Music Conference 2011,
Huddersfield, pp. 224-230, 2011.

[3] O. W. Holmes, “The Stereoscope and the
Stereograph,” The Atlantic, June 1859. Accessed
September, 2016. Available at
<http://www.theatlantic.com/magazine/archive/1859
/06/the-stereoscope-and-the-stereograph/303361/> .

[4] L. Spiro, “History Through the Stereoscope:
Stereoscopy and Virtual Travel,” October 30, 2006.
Accessed September, 2016. Available at
<http://cnx.org/content/col10371/1.3>.

[5] <http://www.oculus.com/> 2016. Accessed
September, 2016.

[6] D. Kim-Boyle, “The Ontology of Live Notations
through Assemblage Theory,” in Proceedings of the
TENOR2016 Second International Conference on
Technologies for Music Notation and Representation,
Cambridge, 2016. Available at <http://tenor-
conference.org/proceedings/2016/13_Kim-
Boyle_tenor2016.pdf>.

[7] Y. Manolopouluo, Architectures of Chance.
Routledge: London, 2013.

[8] M. Perloff & C. Junkerman (Eds.), John Cage: Com-
posed in America. University of Chicago Press: Chi-
cago, 1994.

[9] T. Ichiyanagi, Music for Piano No. 7. Edition Peters:
London, 1961.

[10] P. Burt, The Music of Toru Takemitsu. Cambridge
University Press: Cambridge, 2006.

[11] C. Deupree, “Sound and Vision: Takemitsu’s
Corona,” October 7, 2009. Accessed October, 2016.
Available at

<http://neojaponisme.com/2009/10/07/sound-and-
vision-takemitsus-corona/>.

[12] D. Kim-Boyle, “Visual Design of Real-Time Scores,”
Organised Sound, Vol. 19, No. 3, pp. 286-294, 2014.

[13] H. Brün, Mutatis Mutandis. Smith Publications:
Baltimore, 1968.

[14] J. O’Rourke, Corona – Tokyo Realization. Columbia,
COCB-53573, 2006.

[15] M. Berghaus, “Some Ideas for Three-Dimensional
Musical Scores,” Leonardo Music Journal, Vol. 21,
pp. 7-8, 2011.

[16] M. Daske, <http://www.tribordstudio.de> Accessed
February, 2017.

[17] E. Williams (Ed.), An Anthology of Concrete Poetry.
Something Else Press: New York, 1967.

[18] I. Ideses & L. Yaroslavsky, “New Methods to
Produce High Quality Color Anaglyphs for 3-D
Visualization,” in International Conference ICIAR
2004, Porto: Portugal, pp. 273-280, 2004.

[19] M. Fowler, “Reading John Cage’s Variations III as a
Process for Generating Proto-Architectural Form,”
LEONARDO, Vol. 45, No. 1, pp. 34-41, 2012.

[20] R. Kostelanetz, Conversing With John Cage. 2nd Edi-
tion, Routledge: New York, 2003.

[21] C. Merewether & R. I. Hero (Eds.), Art, Anti-Art,
Non-Art: Experimentation in the Public Sphere in
Postwar Japan, 1950-1970. Getty Publications: Los
Angeles, 2007.

[22] U. Eco, The Open Work. A. Cancogni (Trans.). Har-
vard University Press: Cambridge, 1989.

38

AN ARCHITECTURAL APPROACH TO 3D SPATIAL
DRUM NOTATION

 Jeremy J Ham

RMIT University
jeremy@surfcoastarchitecture.com.au

ABSTRACT
This research has evolved from creative practice focused
on inter-disciplinary positioning between the domains of
music and architecture. Through engagement in the theo-
ries and practice of architectural representation and the
computational tools of spatial design, a new form of 3D
spatial drum notation is presented. This notation seeks to
compliment the capacities of traditional drum notation
and overcome issues inherent in a theoretical ‘musico-
perspectival hinge’ between the notation and the meaning
of the notation. A representational schema of the spatial
drum notation is discussed in the first instance in relation
to the development of a lexicon of referent drum patterns
and phrases and then in the testing of notation on a multi-
layered improvised ‘drumscape’ composition. The paper
culminates in the extension beyond notation into the
realm of music spatialization through 3D printing, digital
fabrication and Virtual Reality.

1. REPRESENTATIONS OF MUSIC AND
ARCHITECTURE

The proposition that the field of architectural representa-
tion can inform domain of musical notation draws on
creative practice PhD project work in music and architec-
ture. The research draws upon the author’s 30 years expe-
rience as an improvising drummer, as an architect with
around 30 years experience in designing buildings and
University educator researching design and representa-
tional media. By bringing together these practices in the
form of a post-Xenakian integrated ‘musico-spatial de-
sign practitioner’, here is much fertile ground for explora-
tion in both domains, and the space in-between.

This paper represents a first foray into the field of mu-
sical notation from a base expertise in architecture. From
this position, a founding question arises for this paper
directed at a musical notation conference: ‘How can the
theory and practice of architecture provide new insights
into the field of musical notation?’ In order to answer
this, one must establish an outline of what architects do,
and how they represent their creative practice.

In essence, the job of an architect is to transform a
functional design brief relating to a site and the needs of
people, generate spatial ideas, represent these ideas in the

form of a resolved building design and communicate
them to people for review; document the design using
representational media then facilitate the physical con-
struction of the design into built form on the site.

Central to the process is the use of representational
media to form representations of ideas under develop-
ment to ‘achieve situational awareness that allows for
meaningful criticism of design [1]’. Representational
media constitute analogue or physical systems (tracing
paper, graphite and ink) or digital or virtual systems
(involving scanning, Two Dimensional Computer Aided
Design (2D CAD), Three dimensional Computer Aided
Design (3D CAD) modelling, animations and rendering).
These are used during various stages of the design pro-
cess to inform design and to communicate ideas separate-
ly or in hybrid combinations [2].

Many architectural practices utilise ArchiCADTM or
similar programmes to design buildings through model-
ing and drawing. Objects (walls, roofs etc.) are generated
in plan (Figure 1, top left), edited in 3D (top right), then
worked up with notes, lines and fills to form a set of 2D
drawings (bottom left and right) for emailing or printing.
Drawings and models can be zoomed, rotated, sliced in
multiple ways in order to enable comprehensive under-
standings of the design. The modality of operation, where
a spatial object is design in three-dimensions from differ-
ent planes, is entirely natural for most spatial designers
experienced in the use of 3D CAD software such as
RevitTM, Rhino3DTM and 3D Studio MaxTM. It is this
defining characteristic that forms the basis of this re-
search.

Figure 1. ArchiCAD screen print of a building design
showing plan (top left), 3D perspective (top right), sec-
tional drawing (bottom left) and elevation (bottom
right).

Copyright: © 2017 First author et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License
3.0 Unported, which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author and source are
credited. 39

Pérez-Gómez and Pelletier [3] developed the concept
of the ‘perspectival hinge’ relating to how two-
dimensional representations in plan, elevation and section
form a hinge for understanding (or lack thereof) of the
three-dimensional objects they represent. This ‘invisible
perspectival hinge is always at work between these com-
mon forms of representation and the world to which they
refer’, thus acting to limit comprehension in design pro-
cesses. Ideas of buildings are built up between a set of
projections (plan, section, elevation, perspective). This
idea of the building is then translated into a building,
usually by a third party (builders). Thus, it follows that
the ideas under development may be limited by the two
dimensional nature of the medium of 2D drawing. Work-
ing beyond the limitations of the perspectival hinge re-
quires training and experience and is particularly relevant
for students of architecture as novice designers [4].

Many lay people cannot read architectural drawings,
just as many non-musicians cannot read musical notation.
Whereas architects spend years learning the art of repre-
sentation, the ability to read music is not intrinsic to the
playing of music. Novice architectural students often
struggle to understand the basics of their own designs,
and must work their way through the limitations of this
perspectival hinge when working in 2D. Mature practi-
tioners of architecture expertly translate two-dimensional
representations into perceptions of the three-dimensional
object being represented. Many expert musician practi-
tioners such as Jimi Hendrix, BB King have however
navigated their musical world outside of a notation sys-
tem and perform by memory and ear.

It seems plausible that the two-dimensional and sym-
bolic nature of traditional musical notation acts as a hinge
to the understanding of the music that it represents. This
‘musico-perspectival hinge’ is where ideas of music are
built up through the placement of notes on a stave, which
is then translated into a musical performance by trained
musicians. Those with sufficient training are able to ex-
pertly translate the symbolic conventions into musical
events in time, performed on an instrument. For the un-
trained or those with limited training, the symbolic sche-
ma of traditional notation is either meaningless or require
significant time and effort to interpret.

 The speculative question arises as to the relationship
between the spatiality of the instrument (i.e. the issues
inherent in the spatial engagement of the musician in
making music on the three dimensional musical instru-
ment) and the spatiality of the notation as a means of
providing instructions for musicians or in informing the
analysis of completed musical works. The playing of a
piano, for example, is confined within limited spatial
boundaries. The spatiality of the keyboard is intrinsically
linear, thus more directly translates into the linearity of
traditional musical notation than, say the drum kit.

The spatiality of the drum kit, as a set of 3D instru-
ments (drums and cymbals) positioned in physical space
played by the musician with two hands and two feet using
drum sticks, is a core consideration in the spatial drum
notation described below. For example, the digital drum
kit that forms the basis of this research comprises six
drum pads, four cymbal pads, a double kick pedal operat-

ing a bass drum and a pedal-operated hi-hat positioned
within a spatial envelope of approximately 2.0 metres
wide x 1.5 metres deep x 1.5 metres high. The kit is
played from a pivot point of a drum stool with the snare
drum, hi-hat and bass (kick) drum forming the core, with
other drums and cymbals played in linear and radial pat-
terns around the instrument (see figure 2).

The question arises as to the appropriateness of tradi-
tional notation to represent drumming. As Stone [5]
states: ‘Musical notation, after all, is not an ideal method
of communication, utilizing, as it does, visual devices to
express aural concepts. But it is all we have’. The map-
ping of these instrumental engagements into the linear
and two-dimensional spatiality of traditional notation
would seem to further any theoretical ‘musico-
perspectival hinge’ that exists between the notation and
the instrument for which the notation exists. Whilst this
may not be an issue for simple drum music, the issues
with traditional notation for the drum kit are even more
pronounced when dealing with complex, polyrhythmic
drum patterns or even non-quantized basic 4/4 beat with
the subtle slurs that constitute individual style (see Figure
3). Quantization of the MIDI file makes the traditional
drum score more readable, however removes information
related to the individual stylistic elements of play, for
example playing behind and ahead of the meter and the
dynamics of drumming.

Figure 2. Digital drum kit arrangement, indicating
some ideas of directionality and spatiality of play.

Figure 3. MuseScore score of basic 4/4 drum pattern
with accents and slurs that constitute individual playing
style.

Pérez-Gómez and Pelletier’s perspectival hinge ap-
pears to be related to the theory of ‘affordance’ put for-
ward by Gibson [6] that describes the interactions be-
tween people, objects and actions. Norman [7] applies
this concept to design, with the principal being that af-
fordances should provide users with strong clues to the
function of things. Whereas ‘the purpose of using a musi-
cal notation may be obvious, the notation’s meaning itself

40

is not always so apparent [8]’. From this foundation, an
implementation of a spatial notation for the digital drum
kit is outlined that offers an architectural approach to
drum notation that may provide affordance to the struc-
ture of improvised polyrhythmic drum music.

2. SPATIALIZING NOTATION AND THE
“Y-CONDITION”

Performed in real time, music never exists as a whole at
any given moment, but rather unfolds in a linear manner
over time, and assumes an entity only in retrospect, in the
memory of the listener or the performer. However read-
ing a compositional music score is a process closer to
perceiving space, as it exists as a whole at any given
moment but may be retained by the observer only by a
process of observation over time, walking around
through, and above it. [9].

Architects invent notation systems to support design
processes, to communicate these to others and to make
artful representations of speculative ideas [10]. Daniel
Leibskind’s ‘indeterminate spatial diagrams’ of his
chamber works act as speculative representations ‘not
regulated to site, scale, orientation, ground and other
usual architectural references [11] and as such they con-
stitute diagrammatic forms of art that describe spatiality.
Similarly, Bernard Tschumi’s ‘event notation’ and Parc
de la Villette fireworks notation ‘approach practices that
are characteristically non-notated (at least in a temporally
precise manner) with a view to codifying and communi-
cating a particular instance of those practices [12]’.

Architect-engineer and composer, Iannis Xenakis pro-
vides many examples of where unique notation was in-
vented to provide meaningful representations of design
ideas. Xenakis set the standard for musico-spatial design
creative practice modalities and the invention of notation
systems to support his electroacoustic compositions,
polytopes and other creative endeavours. His notation in
Pithoprakta, Metastasis and other examples reflected his
training as an engineer and mathematician- with lines,
vectors, points and other graphical elements directing
performers, instruments, sounds and actions. John Cage
similarly dismissed conventions of temporal structure,
repetition and proportional counting to create indetermi-
nate soundscapes. His notation reflects an approach of
‘blurring of unprescribed music, environmental sounds
and dismissal of established rules in notation and perfor-
mance [11]’. Cage’s fascination for graphical, non-
standard notation systems and random elements is evi-
denced in his book, with the book itself generated by
chance operations [13].

Many notations operate as two-dimensional represen-
tations of multi-parameter musical compositions compris-
ing multiple instruments performing complex operations
in time and space. Many composers have sought the
elusive third dimension in musical notation. Rebelo [12]
describes 3D scores as 3D objects to be viewed and inter-
preted by performers from different directions. This third
dimension is still mediated by the ‘hinge’ of the computer
screen interface, however the digital format offers a range

of possibilities to develop graphic notation practice by
incorporating colour, real time generation, video and
interactivity. A summary of approaches of visual nota-
tion in the ‘visual/sonic representation continuum’ is
offered by Hope, Vickery [14]’. Vickery’s ‘rhizomatic’
score for ‘Sacrificial Zones’ engages in the third dimen-
sion through a series of layered planes of visual represen-
tations of sound. This engagement in the third dimension
in musical notation is being explored by many music,
performance arts and other creative practitioners as they
seek new ways to engage in creative media. It is proposed
that architects may have something to offer the music
community of practice in this area.

Architects, who have long been fascinated with inter-
disciplinary connections with music [15], have sought
ways of engaging in the ‘architecture as frozen music’
paradigm. Elizabeth Martin describes the “Y-Condition”
as the theoretical intersection between domains where
‘there exists a definable membrane through which mean-
ing can move when translating from one to another [16]’
The computer has enabled this cross-fertilization whereby
the ‘reduction of all information to a binary signal, be it a
picture, a text, a space or a sound - all data is recorded as
a binary sequence allowing computation as defined by
programming languages and communication through
networks according to transmission protocols’ [17]. The
principal that ‘the byte shall be the sole building material
[18]’ acts to enable compositional, and therefore nota-
tional, opportunities within the spatial dimension.

Mediating this ‘y-condition’ in between music and ar-
chitecture computationally requires the ‘practiced hand’
of the digital craftsperson [19]. Computational processes
have been adopted by Ferschin, Lehner [20] the ‘Spatial
Polyphony’ analysis of Bach’s fugues by Christensen
[21], the shape analysis of Krawczyk [22], the many
speculative theoretical, philosophical and computational
investigations into ‘liquid architecture’ of Marcos Novak
[23] and the wide range of ‘musical sculptures’ and mu-
sic-architecture explorations of Jan Henrik Hansen [24].

My interest lies not in creating a ‘frozen music’ but
enabling ways of ‘freezing’ the process of music creation
in the spatial dimension to create a spatialized notation
system to provide meaning to elements of my creative
drumming practice.

3. SPATIAL DRUM NOTATION
Rebelo [12] defines the roles and function of notation for
performance, composition, design, choreography, gas-
tronomy and architecture as being for the purposes of
documentation, communication, for reflection and in the
production of new works. I am interested in spatial nota-
tion as a means of exploring this “Y-Condition” and to
provide an inter-disciplinary perspective on music and
music notation to engage in reflection-on-action [25] and
develop understandings of my creative practice as a
drummer.

As with Tschumi, Xenakis and many others, I have in-
vented a notation schema to serve a creative practice
agenda. In my case this spatial notation system is for the
digital drum kit using the Computer Aided Design tools I
use in my architectural practice. The spatial notation is

41

primarily directed at my own practice, however in pursu-
ing my own personal notation system it is hoped that
insights can be provided for others- with or without simi-
lar training in spatial design.

The spatial drum notation is derived from a definition
scripted in GrasshopperTM for Rhino3DTM, a parametric
CAD tool commonly used in complex and innovative
spatial design work. The ‘ImprovSpace’ definition reads
time, note, note duration and velocity MIDI data from the
digital drum kit and translated into .csv via the Sekaiju
app. Using a complex series of parametric operations,
data from the .csv spreadsheet is concatenated and sorted
into a series of points along a timeline (Figure 4). From
this multiple spatial representations such as solids and
meshes (spheres, cones, boxes and more complex forms)
velocity and note duration data can be represented sym-
bolically. All parameters are user-adjustable using nu-
meric input panels and sliders. A key attribute of the
Grasshopper definition is its flexibility, with parameters
such as spatial configuration, bar representation and
length, line thickness, note representation, velocity, dura-
tion, background and colours all able to be adjusted easily
depending on specific user requirements and purpose.

The Grasshopper plugin interfaces with the Rhino3D
programme, and all representations can be easily ‘baked’
(i.e.. transformed from flexible objects derived from
Grasshopper to solids, meshes etc. editable in Rhino3D),
exported to visualization and animation programmes,
brought into Virtual Reality environments, 3D printed,
laser cut or fabricated using robotic fabrication processes.
A defining element of the research is the mediation be-
tween notation, representation and fabrication. The same
definition in Grasshopper can be adapted, exported or
used in conjunction with other applications to achieve
multiple outcomes in the musical, spatial and physical
domains.

Figure 4. Grasshopper work space showing .csv data
being assigned to spatial parameters.

The instrument central to my solo drumming creative
practice is a Roland TD20 digital drum kit (see figure 2,
above). Although digital, the layout and playing response
is very similar to an extended acoustic drum kit. Sounds
modeled from real drum kits are enabled in the Digital
Audio Workstation through Virtual Instrument applica-
tions such as Drumasonic Luxury and BFD3. Virtual
instrument software such as BFD stylises the plan form
of the drum kit as the basis of their representation of the
workspace. This stylised representation recognizes the

radial layout that is typical for the drum kit, however the
representation is quite literal (Figure 5). The spatial drum
notation described below departs from the two-
dimensional linearity of traditional notation and the literal
representations of the BFD interface to form a symbolic,
player-centred representation of the drum kit.

Figure 5. BFD3 virtual instrument interface

The spatial notation schema presented here is the out-
come of a design process that attempted to resolve issues
inherent in representing the spatiality of the drum kit. The
schema stylizes the drum kit in the form of radiating
golden section geometric spirals in the X-Y axis (Figure
6), with drum notes represented as events in time along
the Z axis. Colour is used as a defining element to en-
hance the representation of different drums and cymbals.
Like all parameters, these are easily changeable. The key
to this schema is the practicality of the form as a way of
interpreting the drum kit, whilst enabling reading of indi-
vidual drums from plan and elevation views. The layout
is carefully designed to allow the viewing of all drums
and cymbals from top, side and bottom planes.

Figure 6. Representational schema for the drum kit
with Snare at centre, bass drum at bottom, and hi-hats,
cymbals and tom-toms arraying radially.

Whereas traditional notation is designed to be read
from one plane only, a key attribute of this spatial drum
notation is the capacity to refer to multiple viewpoints in
the Rhino3D interface in order to obtain different types of
information. The standard Rhino3D interface comprises
four viewpoints (plan, two elevations and a 3D perspec-
tive or isometric view. Each model view allows the spa-

42

tial drum notation to be zoomed, panned, rotated and
measured by the user to retrieve musical information. As
an example, Figure 7 illustrates musical information
relating to a drum solo improvisation. This particular
improvisation comprises a series of descending roll on
tom toms (blue grouped notes) accented by double-kick
bass drum notes (red notes) and groupings of hi-hat notes
as the timeline progresses. Velocities of drum strikes are
represented by the relative diameter of the balls and the
time structure is faintly represented as the grid of grey
spirals in perspective. Thus, the placement and intensity
of notes in the drum solo are given a form and shape
within this spatial notation schema and unique elements
of style or skill such as rubato can be identified through
spatial information contained in this notation.

A second drum improvisation is illustrated in four
simultaneous views in the Rhino 3D interface in Figure 8.
Each viewpoint provides a different element of this musi-
cal information and reading all viewpoints together from
the one interface provides a significant body of infor-
mation that is unavailable in traditional notation. as in
architectural representation, certain information can be
derived from the plan view (top left), that complements
understandings derived from isometric (top right), side
elevation (bottom left) and end elevation (bottom right).
Through maximizing each view and using zoom, pan and
other functions in Rhino 3D, a comprehensive under-
standing of aspects of drum performance is enabled that
is unavailable in other forms of notation.

Figure 7. Rhino 3D Representation of a 25 bar drum
pattern.

Figure 8. Rhino3D Viewport layout, showing top (plan)
view (top left), isometric (top right), side elevation (bot-
tom left) and end elevation (bottom right).

4. DEFINING A LEXICON OF REFER-
ENTS IN 3D SPATIAL NOTATION

‘The task of defining improvisation is likely impossible in view of its
having no existence outside of its practice (Brown 2006)’

Now that the theories and principles of this 3D spatial
drum notation have been established, two applications are
outlined that are outcomes of creative practice PhD (Ar-
chitecture and Design) work at RMIT Spatial Information
Architecture Laboratory in Australia. A methodology of
mass improvisation is used to generate data for the re-
search; to enable reflection on the drumming style devel-
oped over thirty years of playing and to form the basis of
drum-based compositional works.

The project involved playing a large number of im-
provisations on the digital drum kit to a basic template of
100 beats-per-minute for one minute, generally at 4/4
time, across three contexts of drumming (playing beats
and fills, free form drum solo and playing to a layered
guitar track). Playing drums to any template places intrin-
sic limitation on the outputs and it is recognized that a
multitude of different results will be enabled if the tempo,
time length or time signature is changed. Given the large
body of the author’s experience is in the jazz, funk and
rock styles this was determined as an appropriate founda-
tion for the research.

Drum improvisations were played on a RolandTM
TD20 digital drum kit and recorded in MIDI format on
the ReaperTM Digital Audio Workstation (DAW). From
the longer one minute, drum solos, beats and tracks, a set
of 200 exemplar drum patterns and phrases were extract-
ed in a process of listening, cutting and pasting, and ex-
porting to individual MIDI files. The research draws
upon Pressing [26] definition of ‘referents’ to describe
the elements of musical performance that define the play-
er- the ‘licks’ and ‘riffs’ that musicians refer to when
improvising. These improvisation processes draw paral-
lels with Schon’s notion of ‘tacit knowing in action [25]’.

A drummer’s personal drumming referents are a part
of who they are, who their musical identity is. One only
has to watch live performances by drummers such as
John Bonham to easily identify referent patterns and
phrases used, repeated and adapted to different musical
situations. The key to this research is to enable a captur-
ing of these referents, using spatial design software to
challenge Brown’s notion that improvisation has no ex-
istence outside of its practice [27].

The author’s exemplar set of 200 ‘referent’ drum pat-
terns and phrases were curated, with metadata added in
Microsoft ExcelTM and Devon Think ProTM to compli-
ment the sound sample output and spatial notation with
identifiers including sample number, a free-word descrip-
tion, complexity of playing, style of music, quality of
playing, number of bars, beats per minute and a ‘referent
rating’ that self-evaluated the degree to which they repre-
sented the author’s individual style. This process has
been reported in detail in [28] and [29].
To inform the application of a spatial drum notation, one
sample is selected from a much wider body of work (refer
figures 9 to 12). Figure 9 provides information about the
drums and cymbals used in this sample, including
metadata on the sample code and number (SM2) and
Number of bars. As all samples for this project were
performed at 100 beats per minute, this information is not
included, but can be added as required. This information
is read directly into Grasshopper from the Excel spread-

43

sheet. In this sample, the snare, bass drum, ride cymbal
and Toms 2-6 have been played to produce a pattern
described in Figure 10 as ‘snare breakout to toms and bell
ending’. This high complexity fill was self-evaluated with
a “Referent rating” of 8, where 10/10 is where the pat-
terns absolutely represents the author’s playing style in
the area of ‘Rock-Jazz’. The small-diameter spheres on
the Bass drum line indicate a series of low-velocity dou-
ble-kicks whilst the Snare line illustrates a fast set of
higher velocity strikes. The sample terminates in a de-
scending Tom Tom roll, with a double strike to the Ride
cymbal bell.

Figure 9. Drum solo Referent No. 2 end view

Figure 10. Drum solo Referent No. 2 side view with
descriptors on complexity, style, ‘referent rating’, play-
ing quality and free text.

Figure 11. Drum solo Referent No. 2 perspective view

Figure 12. Drum solo Referent No. 2 top (plan) view

As is evident from the four static representations in
figures 9-12, a complimentary information set is available
from each viewport. Representations in each viewport
can be interrogated through zooming, panning, slicing,
measuring, animating and other CAD operations. Further,
multiple representation options are available to represent
the drum events, including using cones (where cone
length represents the note duration) and other basic ge-
ometries. Sliders in Grasshopper enable quick scrolling
through the 200 referents in real-time. It is proposed that
this ability to review, analyse and reflect on musical in-
formation using multiple spatial representations, colour
and through text-based tags significantly overcomes the
issues of the musico-spatial perspectival hinge and offers
significant affordance for the understanding of the ele-
ments of musical drumming style.

These samples, and the metadata schema, provide a
large library from which to draw for electronic music
composition. The defining characteristic of these samples
is the various imperfections, velocity attenuation, micro-
timing elements and accents that define my style. When
looped, sampled and edited using virtual instrument

44

plugins in the Reaper DAW, significant unique composi-
tional opportunities have been made available (see
https://soundcloud.com/jjham/). These explorations can
occur in both musical and spatial design domains. This
initial project has fostered a reflection, using spatial de-
sign as the basis, on an established drumming practice.
The next stage of the research involves expansions of this
practice into diverse domains of music and spatial design.
One example is described below.

5. REPRESENTING ‘LAYERED RELA-
TIONSHIPS’ USING SPATIAL NOTA-

TION
In designing a building, spatial elements (walls, floors,
roofs, windows, joinery etc.) are layered on, in and
around eachother to form a complete composition in the
form of a building. Drawing upon Elizabeth Martin’s
conception of music and architecture in terms of ‘layered
relationships [16], the digital drum kit is used to build up
a series of improvised layered drum solos to that are
layered in, on and around eachother. Whereas for archi-
tecture the layering of building elements occurs in space,
in this case the layering occurs as drum events in time.

A form of ‘spatial polyrhythmic improvisation’ is ex-
plored on the digital drum kit and represented using 3D
spatial drum notation. The principal idea behind this
work follows on from view of master drummer Terry
Bozzio that the drum kit can be conceived as an orchestra
of instruments, rather than a singular instrument itself
[30]. By playing with the elements of drumset improvisa-
tion identified by Breithaupt [31] (dynamics, tempo,
accents, rests, hand to foot distribution and motion) and
the ‘levers of control’ in drum kit practice identified by
Bruford [32], the digital drum kit becomes a working tool
to enable diverse creative output.

The work also extends the concept of ‘drumscapes’
coined by David Jones [33] by bringing the drum solo
fully into the digital realm. Through sound sampling
(including environmental sounds sampled from land-
scape, the city and buildings), virtual instruments
(through Kontakt MassiveTM, BatteryTM and other virtual
instrument plugins), spatial polyrhythmic improvisation
explores the continuum of music and architecture in both
the sonic and spatial dimensions through mixed modali-
ties of improvisation and composition.

 ‘Layered Relationships’ is a drum-based composition
based on five layers of improvisations from the digital
drum kit (see https://soundcloud.com/jjham/). Each layer
was recorded on the digital drum kit in the Reaper DAW
using a metronome with a visible MIDI piano roll provid-
ing visual cues as to the setout of each previously record-
ed layers. Processed sounds from the Massive synthesizer
library were assigned to each layer of drums, with each
layer becoming more abstracted and spatial. The compo-
sitional intention was thus to build a complex layered
drumscape of counterpointed layers of drum improvisa-
tions. Although this composition is recorded initially in
stereo, research is ongoing in the area of spatial sound,
and an adaptation of the spatial notation to incorporate
dynamic panning. The five layers of ‘Layered Relation-

ships’ are illustrated separately in perspective view in
Figure 13, below. From this viewpoint, the first few bars
of each layer can be viewed providing evidence of the
composition of drum selection and relative velocities.

Figure 13. ‘Layered Relationships’ one point perspec-
tive of 5 layers in spatial notation

The layers that constitute a polyrhythmic and multi-

layered drum improvisation can be analysed in three
dimensions and through multiple viewpoints through
spatialized drum notation. Each viewpoint offers different
musical information, and all are used to construct com-
plimentary understandings of the composition from a

45

perspective of the notation as three-dimensional spatial
elements within a framework of notes and a grid of time.

Referring back to the theory of affordance, spatial no-
tation using CAD tools is particularly helpful in revealing
the relationships between layers by using CAD layers to
place musical events on. Figures 14 and 15, below illus-
trate all five layers (represented by different colours)
from two different perspectival viewpoints. It is im-
portant to note that model views are not static, but can be
dynamically panned in and around drum events in time
and space. This immersion into, around and through the
spatial notation provides opportunities to reveal the de-
tailed interactions between layers, relative velocities,
slurs and accents and timing relative to the meter.

Returning to the principles of orthographic projection,
‘multiviews’ of plan, elevation and section ‘help us accu-
rately examine geometric configurations, spatial relation-
ships, and the scale and proportion of a design’ for picto-
rial depth expression, ‘single view drawings termed para-
lines and perspectives are needed [34]. In orthographic
representation, certain information is provided on one
projection that is complemented by other projections.
Together, these projections provide a spatial information
set that offers a comprehensive definition of the object
under review.

Figure 14. ‘Layered Relationships’ composition im-
mersive view

Figure 15. ‘Layered Relationships’ composition im-
mersive view

6. FROM SPATIAL DRUMS NOTATION
TO SPATIALIZATION

Within an integrated ‘Musico-Spatial Design’ creative
practice, opportunities abound for the extension of en-
quiries beyond the area of spatial notation into the spati-
alization of drum-based music. The capacity exists to a
represent digital drumming improvisations, referent pat-
terns or improvised compositions as notation, 3D spatial-
ization, in Virtual Reality, Augmented Reality and as 3D

printed objects and through digital fabrication. Whereas
the spatial notation described above utilizes a basic styli-
zation of drum notation, speculative explorations take the
creative practice research into more abstract and diverse
realms.

Figures 16 and 17 illustrate two different ways of ab-
stracting the composition ‘Layered Relationships’. Figure
16 draws on the ‘massing representations’ used in the
field of urban design where clusters of data are brought
together to form a representation of the mass of, in this
case, drum events in time. By representing in this man-
ner, one can determine the drums most used along the
timeline of the composition/ improvisation. In this case,
the dominance of use of the snare, bass drum and hi-hats
is evidenced by the solid continuous block along the
timeline. These clustered representations remove velocity
information and thus enable a focus on larger-grained
compositional aspects.

Figure 16. Compacted block representation of ‘Layered
Relationships’

Extending the abstraction of musical data further, Fig-
ure 17 illustrates a lofted representation of the first layer
of ‘Layered Relationships’ and a composite image of all
layers (Figure 18). This model was built by setting out
drum notes in 3D space (X-Y plane) and velocities in the
Z axis. This creates a set of data points in three-
dimensional space where a mesh surface can be draped to
create a complex curved lofted mesh. As a 3D object, this
representation can be exported into different modeling
formats for virtual reality, augmented reality, 3D printing
and digital fabrication.

Figure 17. Lofted spatial representation of Layer 1 of
‘Layered Relationships’

46

Figure 18. Lofted spatial representation of all layers of
‘Layered Relationships’

3D printing potentially extends the affordance of un-
derstanding the elements of digital drumming by bringing
the notation into being a real object. 3D printed notation
allows haptic and physical engagement that overcomes
the limitations of the computer screen interface. Alt-
hough, the concept of 3D printed scores has been ex-
plored by Tess [35] to facilitate music reading for sight-
impaired people, these 3D printed scores appear to simp-
ly operate as a braille form of traditional notation, with
raised notes be read by touch. The procedure to build a
quality 3D printed score is time-consuming. Drum im-
provisations and scores written in MIDI are ‘baked’ in
Rhino3D, then exported to Meshmixer and ReplicatorG,
then printed with a 3D printer.

Figure 19, below, illustrates an early stage prototype
3D model of a 2-bar drum referent. Longer scores can be
built by cutting up a larger model and gluing together.
Further potential is enabled by the use of laser cutters or
Computer Numerically Controlled (CNC) routers build
large scale 2D or 3D musical scores. Work in this area is
at the early stages, and ongoing.

Figure 19. 3D printed score of a drum solo referent.

Virtual Reality offers another way in which to afford
insights into spatial notation to explore the complexities
of polyrhythmic drumming. Working with the University
of Stuttgart High Performance Computing Centre Virtual

Reality 5-sided CAVE (Cave Automated Virtual Envi-
ronment), we have conducted early experiments into
ways of achieving immersion in spatial notation. VRML
models derived from Rhino3D can be ‘walked through’
using a headset and directional pointer, thus providing a
full spatial experience of the score (Figure 19). This
overcomes the interface limitations of interrogating spa-
tial notation through the computer screen.

The aim to 3D VR musical notation is noted by
Hmeljak [36] to be ‘the most intuitive representation of
music’, and should include ‘an appropriate use of sym-
bology and geometry…(and) the use of colours and col-
our mapping’. We have tested both static 3D VR notation
and dynamic 3D VR notation. Whereas static notation is
derived from a ‘baked’ rendered CAD model, the dynam-
ic notation is generated directly from MIDI drum files
and, potentially, can be generated through live play in the
CAVE. Dynamic notation animates velocities by sending
notes into a gravity-simulated virtual environment.

Initial review of this early research work suggests that
static notation is a more effective way of enabling reflec-
tive understandings of creative practice. Baking and
freezing metaphors render the dynamic act of creation
into a static object, enabling deeper levels of review and
reflection. The dynamic VR system, however, holds
much potential for creative practice centred on the spatial
design domain. Through our early experiments in Virtual
Reality, we affirm the potential uses of the system cited
by Hmeljak [36] for computer-aided music analysis,
music composition and music education. It is evident that
further potential uses are available of CAVE-based
drumming in the areas of collaborative CAVE-to-CAVE
performance, engagement for non-musicians and explor-
ing an integrated musico-spatial design creative practice
wherein the musician-architect is able to create space at
the same time as creating music.

Figure 20. Dynamic VR inside the CAVE.

7. CONCLUSIONS AND FUTURE RE-
SEARCH

This research presents a framework for spatializing drum
notation founded on the principles and theories of archi-
tectural representation using the tools of architectural
practice. The creative research project work presented
here: the reflection on a lexicon of referent drum patterns
and phrases; a multi-layered ‘drumscape’ composition
and extension beyond notation into abstracted representa-
tions, 3D printed scores and into Virtual Reality envi-

47

ronments are intended to demonstrate the potential of that
the domains of architecture and spatial design can bring
to that of musical notation.

Clearly, this research offers potentials that compliment
or extend traditional notation and the area of 3D notation.
The point of interest is how this spatial notation system
affords insights into the complexities of polyrhythmic
playing, and enables a spatial mapping and representation
of the elements of individual drummer’s musical styles.
The focus of this paper has been the author’s reflective
and compositional work and the development of a system
primarily intended for internal use. If a theoretical ‘mu-
sico-perspectival hinge’ indeed exists and notation that is
limited to two dimensions offers less affordance of musi-
cal knowledge, this spatial notation system may provide
the basis for many further explorations.

One such exploration that will be reported in future re-
search is the use of spatial notation to compare the im-
provisation of different drummers improvising over the
same ‘template’. A reversal of the Grasshopper definition
is underway that will allow the exploration of composi-
tion using spatial notational, with resultant output in
MIDI format. These are just some of the fertile areas
available for exploration within an integrated musico-
spatial design creative practice.

Acknowledgments

This research is supported by an Australian Government
Postgraduate Research Scholarship. The author would
like to acknowledge Daniel Prohasky and Awnili Shab-
nam for their fine work on the Grasshopper script and
Uwe Woessner and Joachim Kieferle for their work in-
side the CAVE.

8. REFERENCES
1. L. Kalisperis and A. Pehlivanidou-Liakata.

Computers in Design Studio Teaching’. in
EAAE-eCAADe International Workshop
Architectural Design Studio: Digital and
Traditional. 1998.

2. J. Bermudez and K. King, Media interaction and
design process: Establishing a knowledge base.
Automation in Construction, 2000. 9(1): p. 37-
56.

3. A. Pérez-Gómez and L. Pelletier, Architectural
Representation and the Perspective Hinge.
Cambridge, Massachusetts & London. 1997,
The MIT Press.

4. J. J. Ham, On Representation and Construction
in a Tectonic Design Studio, in School of
Architecture and Building. 2004, Deakin
University: Geelong, Australia.

5. K. Stone,, Music notation in the twentieth
century: a practical guidebook. 1980: WW
Norton.

6. J. Gibson, The Theory of Affordances in the
Ecological Approach to Visual Perceptual.
1979, Houghton Mifflin.

7. D. Norman, The design of everyday things:
Revised and expanded edition. 2013: Basic
books.

8. N. Weinberg, Guidelines for Drumset Notation.
Percussive Notes, 1994: p. 15.

9. M. Muecke and M.S. Zach, Essays on the
Intersection of Music and Architecture. Vol. 1.
2007: Lulu. com.

10. N. Goodman, Languages of art: An approach to
a theory of symbols. 1968: Hackett publishing.

11. C. MacNaughtan, Indeterminate notation and
sound in the space of architecture. The Journal
of Architecture, 2006. 11(3): p. 335-344.

12. P. Rebelo, Notating the unpredictable.
Contemporary Music Review, 2010. 29(1): p.
17-27.

13. J. Cage, Notations. 1969, New York: Something
Else Press.

14. C. Hope, L. Vickery, A. Wyatt and S. James,
The Decibel scoreplayer–a digital tool for
reading graphic notation. in International
conference on technologies for music notation
and representation (TENOR 2015). IRCAM,
Paris. 2015.

15. R. Wittkower, Architectural principles in the
age of humanism. 1971: WW Norton &
Company.

16. E. Martin, Pamphlet Architecture 16:
Architecture as a translation of music. 1994:
Princeton Architectural Press.

17. Lab-au.com. The shape of sound. 2015
[accessed 24th April 2015]; Available from:
http://lab-au.com/theory/article_soundscapes/.

18. A. J. Levy, Real and Virtual Spaces Generated
By Music. International Journal of Architectural
Computing, 2003. 1(3): p. 375-391.

19. M. McCullough, Abstracting craft: The
practiced digital hand. 1998: MIT press.

20. P. Ferschin, D. Lehner, and Y. Oka, Translating
music into architecture, in The third
International Mathematics and Design
Conference M&D2001: digital, hand, eye, ear,
mind. 2001, Mathematics & Design Association:
Deakin University Geelong, Australia.

21. P. Christensen and M. A. Schnabel, Spatial
Polyphony: Virtual Architecture Generated from
the Music of J.S. Bach, in CAADRIA 2008
[Proceedings of the 13th International
Conference on Computer Aided Architectural
Design Research in Asia] 2008: Chiang Mai
(Thailand). p. 501-509.

22. R. J. Krawczyk, Exploring the Visualization of
Music. in Proceedings of Bridges 2012:
Mathematics, Music, Art, Architecture, Culture.
2012. Tessellations Publishing.

23. M. Novak, Liquid Architectures in Cyberspace
(1991). Multimedia: From Wagner to Virtual
Reality, 2002: p. 272.

24. J. H. Hansen, Musical Sculptures, 2012:
[accessed 24th April 2015];

48

https://www.youtube.com/watch?v=uxYHlZQS
ADQ&t=71.

25. D. Schön, The reflective practitioner: How
professionals think in action. Vol. 5126. 1983:
Basic books.

26. J. Pressing, Improvisation: methods and models.
John A. Sloboda (Hg.): Generative processes in
music, Oxford, 1987: p. 129-178.

27. D. Brown, Noise orders : jazz, improvisation,
and architecture. 2006, Minneapolis: University
of Minnesota Press. 159 p.

28. J.J. Ham and D. Prohasky, Developing a
parametric spatial framework for digital
drumming, in 13th Sound and Music Computing
Conference, R.G.a.G. Hajdu, Editor. 2016,
Zentrum für Mikrotonale Musik und
Multimediale Komposition, Hochschule für
Musik und Theater Hamburg Germany. p. 197-
202.

29. J. Ham, M. A. Schnabel, L. Harvey and D.
Prohasky, 'Starting with Nothing' and 'Ending
up with Something' - Musical Improvisation and
Parametric Spatial Design Improvisation, in
Complexity & Simplicity - Proceedings of the
34th eCAADe Conference, A. Herneoja, Editor.
2016: University of Oulu, Oulu, Finland. p. 377-
386

30. D. Zulaica, Terry Bozzio: An Interview From
The Vault Part I. 2013 [accessed 2015 29th
March]; Available from:
http://www.drummagazine.com/features/post/ter
ry-bozzio-interview-from-the-vault-part-i/.

31. R. Breithaupt, Musical Considerations for
Drumset Improvisation. Percussive Notes, 1987.
26(1): p. 15-16.

32. W. Bruford, Making it Work: Creative music
performance and the Western kit drummer, in
School of Arts, Faculty of Arts and Social
Sciences 2015, University of Surrey: Surrey UK.

33. D. Jones, Drumscapes Solo Concert recorded at
Melbourne Recital Centre. 2013, Independent
Release: Melbourne.

34. R. Yee, Architectural drawing: a visual
compendium of types and methods. 2012: John
Wiley & Sons.

35. P. Tess. 3D printed Tactile Stave Notation helps
visually impaired to better read music notations.
2015 Nov 9, 2015 [accessed 2016 30th
September 2016]; Available from:
http://www.3ders.org/articles/20151109-3d-
printed-music-notation-system-for-the-visually-
impaired.html.

36. D. Hmeljak, 3D Musical Notation-Providing
Multiple Visual Cues For Musical Analysis, in
Unknown. Unknown.

49

50

A CAP for graphic scores
Graphic notation and performance

Benny Sluchin
EIC-Ircam

sluchin@ircam.fr

Mikhail Malt
Ircam

Mikhail.Malt@ircam.fr

ABSTRACT
Many graphic scores use the pitch versus time
presentation, as a natural extension of the usual notation.
In the general case, it displays discrete pitches, in a fixed
timeline. Nevertheless, graphic scores use a lot of
continuous lines, and the vertical dimension can be
adapted to a particular performance. In such a way, the
instrumentation is free, and the actual range of a
particular instrument can be adapted according to the
notation. The present article is initiated by a search to
provide the performer with adequate tools to approach the
execution of such works. A computer assisted
performance approach helps the player in the preparation
process for both: the time and the pitch approximations.
The simulation can enhance the performance in
approaching the graphical notation.

.

1. INTRODUCTION
The starting point of the present research was a
performance issue; works of the 20th century, aimed at
concerts and recordings, were approached seriously. The
player searched for tools that will help him attain the
composer’s intentions as proposed by the printed
(graphical) scores. Curiously enough, such tools did not
exist, and the precision of the performance was quite
lacking. Our work focuses on this category of works and
a CAP (Computer Assisted Performance) approach, that
is in fact help in preparing the works for performance, in
the same way a metronome is.

2. PREVIOUS WORK
Since several years now, works having a generic
presentation, that is to say, open form, has occupied us.
Three examples were discussed: Domaines (1968) by
Pierre Boulez, Duel (1959) and Strategy (1962) and
Linaia Agon by Iannis Xenakis and Concert for Piano
and Orchestra (1958) by John Cage ([1], [2], [3]). Other
works by Cage, part of his late “number pieces” were

also accessed [4]. In all these cases, a computer interface
that assist the performer in preparing and performing the
works were developed.
The two main compositions we discuss here, present
performance notation difficulties. Conversely to previous
work [5]1, our aim is to develop solutions, in a computer-
assisted performance study, for trombone version, and
offer aural guides to attain a performance, as close as
possible to the graphical notations used.

3. TWO EXAMPLES, TWO PROBLEMS

3.1 Alvin Lucier’s Panorama (1993)

Scored for Trombone and piano, Panorama (1993) [6] is
a work whose shape is traced by the sliding trombone
part (Figure 1).

"During the course of the work, the trombonist slides
continuously, outlining the shapes drawn

by the diagonal lines." [6]

Figure 1: Alvin Lucier’s Panorama, original manuscript
score, first 25 seconds

The musician may stop sounding his instrument at any
time but his slide moves continuously. The pitches are
notated with great precision within microtonal tunings.
Alvin Lucier uses a half, quarter, third and sixth note
notation he also adds a shift notation, in cycles on some
pitches (Figure 2) and give exact onset time (minutes and
seconds).
As quoted by Volker Straebel [7], “Alvin Lucier mapped
the panorama of the Swiss Alps to the pitches of a slide
trombone. He worked from a reproduction of a panorama
drawing by Fritz Morach after a landscape photo by
Hermann Vögeli”.

1 Enrico Francioni develops a technical solution for one-man
Ryoanji performance, in the contrabass, percussion and vocalize
version.

Copyright: © 2017 First author et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License
3.0 Unported, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source
are credited.

51

Figure 2: Alvin Lucier’s Panorama, microtonal notation

3.2 John Cage’s Ryoanji (1983-84)

Ryoanji (1983-4) [8] is a series of works based on the
celebrated rock gardens in Kyoto. The contours of the
fifteen different rocks are the basis of the graphic
notation. J. Cage’s instructions are typical; they give the
poetic atmosphere for the performance: “Each two pages
are a ‘garden’ of sounds. The glissandi are to be played
smoothly and as much as is possible like sound events in
nature rather than sounds in music. (…) The score is a
‘still’ photograph of mobile circumstances.” [8]
The solo instrument parts (there are versions for oboe,
flute, trombone voice and double bass) appear all in the
same form. The original score presents a frame where
continuous and complex gestures were drawn. For each
page, in the left upper part, we can remark a small stave
with the page register (Figure 3). On the abscissa, the
time (the length of a system) is represented on 24 cm.
The height, the register used, is represented on 6 cm and
subdivided, according to the register, in semitones.

Figure 3: Cage’s Ryoanji first trombone version page

In Figure 3 the range is precise (from B0 to F#1), and the
durations are to be determined by the performer.
Concerning the duration, only in the voice version Cage
was explicit (ca. 2 minutes for a "garden", composed of
four systems, engraved on two pages). For the
instrumental versions, musicians generally apply this
same duration. Each "garden" is using a specific range,
which is shown in Figure 4.
The vertical span (which is the same for all the pieces)
indicates a variety of intervals going from a semi tone (J3

in the flute version, J6 in the double bass version) to a
twelfth (J8 in the oboe version).

Figure 4: Ryoanji Trombone Gardens Registers

The form of the curves is very precise, but hard to
perform on the instruments. Both, the time factor
(horizontal abscissa) and pitches (vertical) are to be
approximated with maximal precision.

4. THE PERFORMANCE ISSUE

4.1 Pitch discrimination threshold

According to some authors ([9], [10]) the pitch interval
discrimination for trained musicians is around a semitone
tenth or 10 cents at 500 Hz (around B4) and increases to
lower pitches (100 Hz), until a half-tone. Two main
aspects present difficulties in these pieces. The first is the
difficulty to control slow glissando, where the
discrimination of pitch change is challenging, as in
Panorama. Lucier himself says:

“The player is not expected to be able to hear these finer

tunings, but may perceive them as beats per seconds
against the piano tones” [6].

The second, mainly related to Ryoanji, is to evolve in a
very low instrumental register. Ryoanji, trombone
version, evolves between F-1 (21,83 Hz) and G#0
(51,91 Hz). In this register the pitch discrimination is far
to enable the fine-tuning of the notated glissando curves.
In addition, the performer physical control, lips vibration
and slide position, is difficult and uncertain.

t œ#
t œ
t œ#
t œ
t œ
t œ#
t œ
t

œ#
t

œ
t

œ
t

œb
t

œt
œ#t

œt
œ#t

œt

©

 J1 J2 J3 J4 J5 J6 J7 J8

Trombone

52

4.2 The Glissando

Defined as a glide from one pitch to another, the term
contains much more than the physical change of the
frequency. There are musical examples (ethno-musical
and contemporary) based exclusively on it. Its musical
performance, even on very adapted instruments (i.e.
unfretted bowed strings, slide trombone), is far from
simple. Traditional orchestration books, that discuss
glissandi, miss a practical approach which therefore
follows.
A glissando has two primary features: the start and
ending points, and the duration. A secondary character,
the form of the sliding is particularly important, can be
defined as the speed. A glissando can be linear (having a
constant speed) or not linear (having a varying speed).
Performing a glissando on a trombone2 (the instrument
related to this research) is strongly related to the register
involved. For middle and upper registers the execution is
determined by the slide position taken as a starting point.
Naturally, one will be unable to perform an ascending
glissando if the starting slide position has the shortest
slide length. Alternate slide positions for the same note
are then needed. Another problem, concerning the
doability of a glissando, is related to the fact that a
trombone slide can execute a maximum interval of an
augmented fourth (the span of seven positions a Bb
trombone slide has). In many cases, a glissando has to be
tiled from two or more simple ones.
The slide length modification needed to perform a
glissando may be of some help to measure the speed of
the glissando. The modification to perform a given
interval changes according to the trombone position. For
example, an interval of a half tone needs a greater slide
length modification in lower positions than in higher
ones.
The slide is not the only way to control the pitch.
Particularly in the low register, the lips can operate
important frequency changes. These changes are though
accompanied by a loss of the particular timbre. As the
lips are vibrating in a different frequency from that
corresponding to the instrument length.
When performing a glissando, the starting pitch is often
just a floating moment. The pitch has to start moving
immediately, though the ear won’t perceive a change
initially. The same holds for the ending point of a
glissando.
Another way to measure a glissando, lies on the notion of
differential beats. Having a reference pitch, close in
frequency to the moving one, will create this
phenomenon. Controlling the relationship between two
close frequencies, based on the number of differential
beats in time, is an approximate and quite effective
method.

2 It seems that some of these points may be generalized to string
instruments.

5. COMPUTER SIMULATION
As pointed previously the performance of Alvin’s Lucier
Panorama and Cage’s Ryoanji presents some difficulties
mainly related to glissandi control, pitch discrimination
and extreme low pitch control. The leading idea using
simulation was to produce an exact and precise guide for
a performance study.

5.1 Alvin Lucier’s Panorama (1993

Before building the computer simulation a first step was
intended. Panorama was transcribed in a Cartesian space,
in a break point function presentation. Each page is
having the same duration of one minute (Figure 5).

Figure 5: Graphic score containing pitches

This representation brought a better score awareness of
both pitch versus time evolution.
The second attempt, to improve and help performance,
was to transcribe the original manuscript (Figure 1) in a
time proportional musical notation score. In the original
there is not a clear correlation between time and graphic
space. Each system lasts for one minute (Figure 6) and
the dashed measure bars represent regular 10 seconds
time span.

Figure 6: Alvin Lucier’s Panorama, transcribed score,

first page

Even if it could seem minor, it is not. This transcription
improves the readability over the manuscript and a good
time versus graphic space proportionality helps the
performer to better evaluate the linear time span.
Controlling the slow pitch change over time is one main
difficulties for Panorama. For example, at 1’43”, the
trombone evolves over 7 seconds with a pitch change
from a C4 plus 1 Hz to a C4 minus 2 Hz. This change
only can be made (as in Xenakis pieces) by referring to

B
?

Trombone

Piano

w
0w

w↑
10"

1/2

ww

w#
25"

w#

B
?

w# ↑

1'
1'00" w#

w#
1'14"

1/2

ww#
w#

1'16"

-2

w#
w↑

1'32"

1/2

w
w

w
1'43"

+1

w

w
1'50"

-2

w

B
?

w# ↑
2'

1/2

2'00" w
w#

w↓
2'06"

1/2

wwb

wn
2'18"wn

w#↑
2'29"

1/2

ww#

w#
2'40"

-2

w#

B
?

w#
3'

-3

3'00" w#
w#↓

3'18"

1/2

wwn#
w

3'33"

+2

w

wn↓
3'49"

1/2

ww

w↓
3'51"

1/2

ww#

Panorama
Alvin Lucier

53

the differential beats produced between the trombone C4
fundamental and the piano C3 octave harmonic. But it
still presents a 0.4286 Hz/sec variation. Another moment,
from 14’02” to 14’14”, presents a 0.1667 Hz/sec
variation on a Bb3. In general, the pitch slope is very
small, in relation to the pitch discrimination interval. In
addition to these four crucial points (1’43”, 6’12”, 9’37”
and 14’02”), the piece presents other problematic pitch
slope variations. For Example, the smallest slope is to be
found from 7’05” to 7’32”, where the performer is asked
to control a descending glissando (from a G4 to a G4
minus a sixth tone), over 27 seconds. A 0.59 cents/sec
variation.
These points lead us to provide a simulation to help the
performer with the tuning and the duration. Event if the
pitch changes is still below the pitch discrimination
hearing range. The performer, playing together with the
simulation, can refer to the beating as a way to adjust the
pitch.
From graphical data inferred in the precedent steps, a
three columns table with time (in seconds), MIDI pitch
and the shift in Hz (Figure 7) was created.

Figure 7: First seven trombone events (time in sec,

MIDI pitch and shift in Hertz)

Plotting the table data from Figure 7 we obtain a
glissando curve displaying the Alps landscape (Figure 8)
[7].

Figure 8: Alvin Lucier’s Panorama glissando curve

(Time x MIDI pitch)

The synthesis simulation was done with Csound3 in the
OpenMusic environment4. The Csound orchestra was
simplest as possible (Figure 9) just a single oscillator
(<oscili>) where the frequency (k1), is driven by a <f2>
score function5.

3 http://www.csounds.com
4 With two external Libraries, OM2Csound and Chroma. See:
http://repmus.ircam.fr/openmusic/libraries. For OpenMusic
information: http://repmus.ircam.fr/openmusic/home
5 This table, <f2>, is indicated as being the last <oscili>
parameter (2).

Instr 1
k1 oscil1 0, 1.0 ,p3, 2
asig oscili p4,k1,1
 out asig

Figure 9: Csound orchestra for Panorama synthesis
simulation

The <f2> score function is built from the table data
(Figure 8). And the spectral content is set via a <f1> table
in order to have a 5 partials harmonic sound (Figure 10)

Figure 10: Alvin Lucier’s Panorama, first 3minutes, 5

harmonic sound sonogram

As the aim of the simulation is to be a guide to a
performance study, the use of a 5 partials harmonic sound
is intended to help the performer to tune and to follow
more precisely the glissando. Beating between higher
partials are more perceptible than beating between lower
partials.
Another simulation performance guide was built using a
sample of Eb4 ordinario trombone sound (from the SOL
sound, Ircam data base). This 4 seconds real sound was
stretched until to reach 16’40” using Audiosculpt
(© Ircam)6. The stretched sound was then continuously
transposed using the data from Figure 7, with the
SuperVP Kernel (© Ircam)7. As the mean pitch from all
the performance is 63.31 MIDI pitch and the median
63.24 MIDI, we choose Eb4 to minimize the
transpositions of the original sound, keeping as possible
its concrete character.
A Max (© Cycling74)8 patch was built then, to allow the
performer to browse in the simulation to use the
transformed sound as a guide to study (Figure 11).

5.2 John Cage’s Ryoanji (1983–84)

For Ryoanji, the main idea was, likely to Panorama, to
build a simulation, a guide to be used in the study
performance phase, but the basic approach was
completely different. The glissandi here are not linear but
freely drawn by Cage.
The first step was to find a strategy to retrieve the pitch
versus time information from Cage score.

Some strategies were studied, like border detection in the
picture file, as a methodology to identify the curve. But
for all of them the preprocessing step (cleaning the
original score, erasing the frames, etc.) was to much time
consuming. Instead of that we adopted an old computer
technic, “hand digitalization of plotted data” (as done in

6 http://anasynth.ircam.fr/home/english/software/audiosculpt
7 http://anasynth.ircam.fr/home/english/software/supervp
8 https://cycling74.com/

54

the 70’s). This technic involves having a background
image and with another tool to identify points
(coordinates) in the background image. It was broadly
used in sea waves digitalization.

Figure 11: Computer interface to browse Panorama

simulation

Using the OpenMusic (© Ircam) environment, we firstly
reconstructed the scanned score to have each garden on
one linear page to proceed afterwards to hand
digitalization.
As the original score was scanned from a manuscript, all
the frames, from the same garden, has not exactly the
same height. The bottom and upper border were not
exactly parallel and the semi-tone subdivisions were not
aligned across all the garden frames. To say that the
alignment was not so easy (Figure 12).

Figure 12: Tree intersections, from Cage’s Ryoanji first

trombone garden

To resolve this drawback, we chose to align the different
frames focusing on the continuity of the line describing
the gesture (Figure 13).
From the reconstructed garden, we proceeded to “hand
digitalization”, with the help of the <bpf> OpenMusic
object (Figure 14), trying to work as precisely the zoom
allow us to do. Compare with curves in Figure 3.

Figure 13: From first to second frame, Cage’s Ryoanji,

first trombone garden

Figure 14: Digitalized curves, inside OpenMusic <bpf>

object

Following the curves digitalized (Figure 15), it was easy
to isolate them and use each one as a frequency data
curve to a Csound synthesizer as used previously for
Panorama simulation.

Figure 15: Extracted glissando curves

With this last figure one can imagine the stone outlines,
Cage used for the score generation [12].
While the registers are given, the time scale is up to the
performer. We choose to give to each garden a two-
minute duration.
All the gestures were synthesized as for Panorama, but as
the fundamental frequencies were to low we used a seven
harmonics spectra to help the tuning (Figure 16).
The final simulation sound file, would be imported in an
interface (as for Panorama), to allow the performer to
browse and use it for preparing his performance.

Figure 16: Ryoanji, first trombone garden, first 16 sec

sonogram

55

6. CONCLUSIONS
The two pieces treated here take advantage of graphical
notation but present essential difficulties in performance.
We propose here a computer strategy, simulation based,
to assist the musician in the preparation and performance.
Concerning Panorama, while we found a way to bring a
possible assistance for the glissando control and fine-
tuning, the optimization for the glissandi position changes
still is to do. We look forward to deal with it mainly with
a constraint system. Concerning Ryoanji, the main
problem (glissando control and fine-tuning) still
unsolved. As pointed previously, main parts from this
work still impracticable, from cognitive and instrumental
reasons. Ryoanji evolves in the extreme lower register
what makes very difficult to control and listen to the
small microtonal waves. For the first garden (where
Cage’s register is from B1 to F#1) the gestures
(according with our hand digitalization) evolve between
C1 minus 19 cents (32.35 Hz) and a F#1 minus 14 cents
(45.88 Hz).
We have two pieces mainly based on glissandi, but with
two different performance goals. While in Panorama
Lucier expects for a precise pitch and time performance,
in Ryoanji, the graphical notation has not only a score
function, but also an inspirational and poetic purpose. As
stated in the Ryoanji instructions:

“The glissandi are to be played smoothly and much as is

possible like sound events in nature
rather than sounds in music.” [8]

Composers, inspired by extra musical facts or concepts
can use sonification as an inspiration way. Translating
graphic or visual aspects in musical notation can be
source of novelty and challenge, but sometimes it can be
source of difficulty.
The notation graphic space does not have the same
properties as the basic pitch versus time real space. If in
the graphic space, we can represent any pitch interval
size, it is just a scale question dependence. In hearing
world, humans are bounded by their cognitive pitch
thresholds. While in the graphic space, we can navigate
in the time line, jumping from future to past and vice-
versa, in the real world the time appears to be
irreversible.
These two musical compositions were recorded based
upon the present research [14].

7. REFERENCES
[1] B. Sluchin, M. Malt, “Open form and two

combinatorial musical models: The cases of
Domaines and Duel”, 3rd International Conference
on Mathematics and Computation in Music, Paris,
June 15-17, 2011, p. 211-217.

[2] M. Malt, B. Sluchin, “Théorie des jeux et structure
formelle dans Duel (1959) et Stratégie (1962) de
Xenakis”, L’influence des théories scientifiques sur

le renouvellement des formes musicales dans la
musique contemporaine, Symposium, organized by
M. Grabócz, CDMC, Paris, 28 november 2014.
https://www.youtube.com/watch?v=ZixIYc7iL84&f
eature=youtube_gdata

[3] B. Sluchin, “Linaia-Agon Towards an Interpretation
Based on the Theory”, International Symposium
Iannis Xenakis, M. Solomos, A. Georgaki, G. Zervos
(Ed.), Athens, May 2005, 1–16.
http://Cicm.Mshparisnord.org/ColloqueXenakis/

[4] B. Sluchin, M. Malt, “Interpretation and Computer
Assistance in John Cage’s Concert for Piano and
Orchestra (1957-58)”, SMC - Sound and Music
Computing Conference, 2010, pp. 1 – 8.

[5] E. Francioni, “Csound for Cage's Ryoanji”, Csound
Journal, vol. 18, 2014, 1 – 20.
http://www.csounds.com/journal/issue18/francioni.h
tml

[6] A. Lucier, Panorama for trombone and piano,
manuscript score, 1993.

[7] V. Straebel, “The Sonification Metaphor in
Instrumental Music and Sonification’s Romantic
Implications”, The 16th International Conference on
Auditory Display (ICAD-2010), 2010, pp. 1 – 8.

[8] J. Cage, Ryoanji for Trombone Solo, Henmar Press
Inc., 1985.

[9] J. H. McDermott, M. V. Keebler, C. Micheyl, A. J.
Oxenham, “Musical intervals and relative pitch:
Frequency resolution, not interval resolution, is
special” The Journal of the Acoustical Society of
America, vol. 128, no 4, 2010, pp. 1943 – 1951.

[10] F. Bianchi, S. Santurette, D. Wendt, T. Dau, “Pitch
discrimination in musicians and non-musicians:
Effects of harmonic resolvability and processing
effort” Journal of the Association for Research in
Otolaryngology: JARO, vol. 17, 2016, pp. 69 – 79.

[11] J. Cage, “Ryoanji: Solos for Oboe, Flute,
Contrabass, Voice, Trombone with Percussion or
Orchestral Obbligato (1983-85)”, PAJ: a Journal of
Performance and Art, vol. 31, no 3, 2009, pp. 58 –
 64.

[12] M. Fowler, “Finding Cage at Ryōan-ji Through a
Re-Modelling of Variations II.” Perspectives of New
Music, vol. 47, no 1, Winter, 2009, pp. 174 – 191.

[13] K. Schöning, “Ryoân-ji: oder die Gärten der Leere”,
Neue Zeitschrift Für Musik (1991-), vol. 155, no 5,
1994, pp. 24 – 27.

[14] J. Cage, Ryoanji, Benny Sluchin – trombone,
Sylvain Rappaport – percussion, CD produced by
ut_performance@hotmail.com, 2015, Paris, France.

56

ARE SCORES MAPS? A CARTOGRAPHIC RESPONSE TO GOODMAN

Daniel Miller
Dartmouth College

daniel.j.miller.gr@dartmouth.edu

ABSTRACT

Nelson Goodman’s theory of notation attempts to provide
an ambitious, unified account of how systems of symbolic
representation preserve and transmit information and how
they differ from pictorial depiction. However, Goodman’s
account of music and dance notation has proven unpop-
ular, with some critics objecting to the rigor with which
scores and musical symbols are assumed to designate mu-
sical works and their constituent elements. This paper re-
considers a Goodmanian account of a music notation sys-
tem in the light of recent philosophical work on maps and
map-like cognition. Specifically, I propose that scores do
not act as compound symbols that uniquely designate mu-
sical works. Instead notational components of scores are
better understood as contingent surface-level features lever-
aged by an underlying map-like representational structure.
On this account, scores are seen to be highly convention-
alized maps, and the notational symbols of scores consti-
tute just one of multiple modes of representation and de-
piction harnessed by this framework. Finally, I consider
several contemporary examples of music notation and dis-
cuss how a cartographic theory of notation may provide
novel insights into the graphic design considerations of
these scores, particularly those that rely on new notation
platforms such as graphic design software or animation,
where depictive and symbolic strategies are frequently hy-
bridized.

1. INTRODUCTION

Music in the European tradition has frequently been com-
pared with language, and insofar as the score and nota-
tion are assumed to be the primary communicative vehi-
cle of a work of music or dance, scores have also been
compared to the written word. Nelson Goodman’s theory
of notation represents a highly refined version of this ar-
gument; music notations are analyzed as having the same
form and function as the symbolic representations of lan-
guages. In this paper I propose that a cartographic sys-
tem of representation is a plausible alternative to a senten-
tial theory of music scores. I follow Elisabeth Camp, who
has argued on both philosophical and neurological grounds
that a map-like form of cognition is an alternative model
to the “Language of Thought” argument, which holds that

Copyright: c©2017 Daniel Miller . This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 Unported License, which per-

mits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

thought must be language-like [1]. In what follows, I will
first summarize Goodman’s theory of notational scores and
objections to the theory. I will then provide an outline for
a cartographic theory of scores (although space does not
permit a complete exposition of the argument), and I will
conclude with several practical examples of score design
problems that might benefit from an analysis of the logic
of and graphic design in maps.

1.1 Languages of Art

Nelson Goodman’s theory of music notation arises from
his broader interest in symbols, which is mainly set forth in
his 1968 book, Languages of Art. Subtitled “An Approach
to a General Theory of Symbols,” this ambitious project
sought to establish a unified analytic theory of symbols that
would be broad enough to encompass the many disciplines
in which they function, including natural languages, visual
arts, music, dance, and the sciences.

Although appealing in its scope and explanatory power,
Goodman’s project has been unpopular with philosophers
as a theory of music or dance notation and has been largely
dismissed by music theorists and composers as well. In
part, this resistance stems from the rigidity by which Good-
man believed scores identify compositions. According to
the theory, only strictly notational 1 elements of a score are
preserved with accuracy over successive reproductions of a
score, and only performances that comply fully and exactly
with the notational parts of a score can count as valid per-
formances of a work. Experimental or graphic notations,
which do not rely primarily on notation “scheme,” cannot
be trusted as preserving a work in a strict sense

Goodman’s theory in fact sets such a high bar to work
identification (the presumed purpose of scores) that on Good-
man’s account we likely never hear a genuine performance
of any musical work or score, a fact not lost on many of
his critics. In separate papers Paul Ziff and William Web-
ster have convincingly argued that Goodman’s theory of
music notation failed to reflect the meaning and practi-
cal usage of scores, with Ziff additionally suggesting that
Goodman overlooked the degree to which scores can only
be accurately interpreted within the context of a particu-
lar performance-practice tradition [2, 3]. James Elkins has
questioned whether the marks (the specific manifestations
of notation on the printed page, as apposed to the inter-
changeable symbols) of music notation are truly indiffer-
ent, that is, whether the shape of the score elements, apart

1 Goodman’s use of the term “notation” refers to a strict usage of the
term that differs substantially from the vernacular meaning. This distinc-
tion will be elaborated in section 1.2.

57

from their symbolic meaning, might have a significant ef-
fect on how musicians interpret a score [4]. Composer
Jean-Charles Franois takes issue with Goodman’s assump-
tion that scores identify works (at least in the modern era)
at all, preferring to consider the realization of a work alone
to constitute that work [5]. Virginia Anderson notes that
Goodman’s rejection of graphic scores as non-notational
leaves them in a kind of limbo, being far too score-like
in their usage to be considered improvised compositions,
while also apparently serving no work-preserving function,
according to Goodman [6].

Despite its seeming shortcomings and paradoxes, Good-
man’s theory of music notation deserves reevaluation. Good-
man brings attention to several often-overlooked questions:
what kinds of information can be preserved in scores with
fidelity? Is some score information more critical to the
essence of a musical work than other information? And
can studying notation give us insights into what musical
parameters composers mean to preserve and which, if any,
are contingent parameters? Additionally, Goodman’s the-
ory of notation allows music notation to be evaluated in
the context of a general practice of notation in all disci-
plines, including, for example, scientific notation and data
visualization. As composers increasingly make use of new
tools for notation, including vector-based graphic design
software and computer animation, it is important to de-
velop philosophical paradigms for analyzing these works
in a multidisciplinary graphical context.

While a purely notational account of contemporary scores
may be implausible for reasons that will be elaborated in
section 1.3, recent philosophical work on map semantics
suggests that Goodman may have been right in his account
of notations but mistaken about the fundamental represen-
tational modality of scores. In a discussion of maps, Good-
man observed that road maps rely on a mix of analog and
digital symbology. In a similar vein, John Kulvicki has
observed that maps are “picture-language hybrids.” It is
striking that Goodman did not explicitly draw a parallel
between the hybrid representation strategy of maps and
that of scores. In emphasizing the notationality of scores,
Goodman downplays the importance of other modalities
of representation in scores, claiming that music notation
“comes as near to meeting the theoretical requirements for
notationality as might reasonably be expected of any tra-
ditional system in constant actual use, and that the exci-
sions and revisions needed to correct any infractions are
rather plain and local.” This is not plausible, especially in
the case of most contemporary scores where pictorial rep-
resentations often significantly supplement or even replace
traditional notation symbols.

In reframing music notation as a contingent feature of
scores, a certain rigid conception of score-preservation and
work-preservation must be sacrificed. However, if scores
are in fact highly conventionalized maps, this account gains
the ability to explain many special cases of contemporary
score-making, use, and interpretation while revealing ways
in which the syntax and semantics of maps function to rep-
resent a musical work through a sophisticated multimodal
scheme.

1.2 Notation

For Goodman, notational systems are systems of symbols
that represent things with a particular kind of fidelity. No-
tations section off and label certain parts of the universe,
allowing information to be preserved without loss of ac-
curacy due to subjective evaluation or imperfect reproduc-
tion. This distinction is the difference, for example, be-
tween recording a particular geometric angle in degrees or
radians versus recording that same angle as a line draw-
ing of an angle. Given consistent measuring equipment, an
angle notated in radians can be reproduced with absolute
fidelity, whereas an image may be degraded by subsequent
reproductions.

An example of a strictly notational system is chess no-
tation. At least one type of contemporary chess notation
completely eliminates ambiguity from the recounting of a
chess match. According to the “Figurine Algebraic Nota-
tion” (FAN) system of chess notation, each square on the
board has a unique and discrete Cartesian coordinate. Fur-
thermore, a unique pictogram represents each piece on the
board (with the exception of pawns which are described
by their rank and capture history). For example, moving
the white queen two squares forward from her starting po-
sition is indicated in FAN by her symbol and destination
coordinates, Qd3.

Although we commonly refer to many kinds of symbolic
depictions as notations, Goodman restricts this term to sym-
bolic systems that fulfill strict criteria. The importance
of defining a technical sense for the word notation, which
may depart from the vernacular use of the word, is to ex-
plicate how and in what cases we can be confident that a
symbol refers without ambiguity.

In order to be notational, the symbols that comprise a no-
tational scheme must fulfill five criteria. Goodman’s first
two criteria relate to the syntax (or representational form)
of symbols, while the remaining three criteria relate to the
semantics of the symbols (or the content of these expres-
sions). As Camp points out, this distinction between form
and content is normally associated with linguistic expres-
sions, but in the present case, it applies to any notational
scheme and, as we will see later, is also relevant to the rep-
resentational modality of maps. Goodman’s five criteria
for notational systems are as follows:

1. The constituent symbols of a notational system
must be disjoint (or “character indifferent”). In
other words, marks that stand for equivalent symbols
in a notational system must be capable of being ex-
changed without syntactic consequence. For exam-
ple, in Figurine Algebraic chess notion, no symbol
ever counts as an instance of more than one sym-
bol in the system; e.g., there is no mark that stands
in for both the symbol for the white queen and the
symbol for the black queen. What matters is not that
two characters be easily differentiated in practice—
symbols may still be disjoint even if they are diffi-
cult to distinguish; such a notation would simply be
an inconvenient notation, not an invalid one—rather
it is the quality of belonging to only one class of

58

marks, (containing instances of a single symbol) that
makes a notation disjoint or not.

2. Symbols must be finitely differentiable, and such
symbols are said to be “articulate.” That is, it must
be theoretically possible to ascertain whether any
two symbols in the scheme are disjoint. Goodman
uses the example of a notation system composed of
straight lines where lines are different symbols if and
only if they differ in length to any degree. Since no
test can ever guarantee that two lines do not differ
in length by an unascertainably small margin, it can
never be determined whether the lines are disjoint.
Hence such a system is not articulate.

3. The extension (or compliance-class) of a symbol
must be unambiguous. That is, the semantic ref-
erent of a symbol must be uniquely picked out by
that symbol. In other words, regardless of when or
in what context a symbol is used, the object rep-
resented by that symbol will always be consistent.
For example, in Figurine Algebraic chess notation,
the white queen is always referred to by the symbol
Qregardless of time or context.

4. The semantics of the notational symbols must also
be disjoint. The set of objects to which a symbol
refers may not overlap with the set of objects re-
ferred to by another symbol, e.g., redundancy within
the field of reference is not permissible within a no-
tation system.

5. The compliants of a symbol within a notational
system must be semantically finitely differentiated.
That is, it must be theoretically possible to deter-
mine that an object fails to comply with any given
symbol in the notation.

Syntactically, symbols within a notation system may be
composed of an indivisible unit (“atomic symbols”) or com-
posed of multiple atomic symbols (“compound symbols”).
On Goodman’s account, a musical score as a whole is a
compound symbol that uniquely identifies a particular mu-
sical work. The purpose of a score is therefore to identify
a particular musical performance with the musical compo-
sition of which it is an instance.

“A score, whether or not ever used as a guide
for a performance, has as a primary function
the authoritative identification of a work from
performance to performance” [6].

In order to uniquely identify a performance as an instance
of a work, the score, as a notational symbol, must con-
form to Goodman’s five criteria, which further entails that
at least some relevant portion of the score must itself be
based on notational symbols. For example, Goodman iden-
tifies pitch and rhythmic notation (the latter only in prac-
tice rather than in terms of its theoretical syntax) as being
notational, at least as far as can be expected for a nota-
tional system in “traditional, actual use.” On the other hand
tempo indications (and presumably dynamics, glissandos,

Figure 1. Without “stipulation of minimal significant units
of angle and distance,” p. 53 from John Cage’s Concert for
Piano and Orchestra from 1960 is not syntactically differ-
entiated on Goodman’s account. 2

and much else), being syntactically dense, cannot be used
to uniquely identify a score. Work identification cannot
hang on any of these properties therefore, neither can any
graphic score (Figure 1 in Goodman’s own example) count
as a score, since it contains no notational information.

1.3 Critical Response to Goodman

Although Goodman’s economy of means is elegant, his
conception of a score requires that, strictly speaking, we
must reject the authenticity of any performance of a mu-
sical work that fails to conform to the minutiae of the rel-
evantly notational elements of the notation. An imperfect
performance of a work is not, in a strict sense, a perfor-
mance of that work, because the score only represents per-
formances that fall within its compliance class. Although
we are free to speak casually of a performance being a per-
formance of such and such a work, in a strict sense Good-
man is adamant that a performance of a composition is
only a realization of that composition if it is an exact re-
alization of the score’s notation.

Since complete compliance with the score is
the only requirement for a genuine instance of
a work, the most miserable performance with-
out actual mistakes does count as such an in-
stance, while the most brilliant performance
with a single wrong note does not. [...] If
we allow the least deviation, all assurance of
work-preservation and score preservation is lost;
for by a series of one-note modifications, we
can go all the way from Beethoven’s Fifth Sym-
phony to Three Blind Mice [6].

The strict sense in which a score identifies a work accord-
ing to the score-as-symbol theory leads to some counterin-
tuitive results. For example, since tempo marks are syntac-
tically dense and hence not one of the relevant notational
elements of a score on which work identification hinges, a

2 Page 53 from John Cage’s Concert for Piano and Orchestra is repro-
duced by permission of Edition Peters.

59

performance may still be an instance of a work even if it is
played vastly faster or slower than the composer intended.
The score for Beethoven’s Ninth Symphony would theo-
retically still identify a performance of that work as an in-
stance of the work even if the Ode to Joy were played over
the course of an entire week or as a blur of nearly unrecog-
nizable noise lasting only seconds, so long as the perform-
ers didn’t actually miss or change the notes and rhythms of
the work relative to each other.

It is also unclear exactly what it would mean for a musical
work to be played according to the notational elements of
the score. Although pitch and rhythm (in practice) are no-
tational (at least in common-practice period notation) both
of these parameters vary considerably depending on the
performer, the circumstances of the performance, and the
musical context in which the relevant passage occurs. For
example, pitches in piano scores designate 12-TET tem-
pered pitches, some of whose intervals are “out of tune”
when compared to Pythagorean intervals. String players
generally tune to Pythagorean intervals, except when they
are playing with a keyboard instrument. Perhaps pitch no-
tation is only notational in the context of a specific ensem-
ble or for a specific player, but this too is challenged by
the ubiquity of small pitch variations within even a short
passage of music; in tonal music there is a tendency to
raise the “leading tone” slightly; diminished tones are often
played flat. Analyses of phonograph recordings of violin
music found that violinists deviate from tempered pitches
by 0.05 tones about 60% of the time and by 0.1 tones about
32% of the time [7].

The problem is not that notation requires absolute pre-
cision; semantic finite differentiation is sufficient to allow
some tones to be identified as complying with no pitch in
the notation (or at least this was the case before the ubiq-
uity of microtonal music). Rather the problem for a no-
tational conception of scores is that the symbolic repre-
sentation of pitch seems to mean different things at differ-
ent times, certainly between different instruments, but also
even within a single phrase of music.

Imprecision in performed rhythms is pervasive and well-
documented as well. Gabrielsson reports deviations of be-
tween 10-20% from the notated rhythm within two phrases
of a Mozart piano sonata [8]. Various hypotheses are pro-
posed for this variation ranging from expressivity to per-
ceptual compensation or motorcontrol factors [9], but cer-
tainly such large rhythmic deviations bring the semantic
disjointness of the notation into question.

Goodman gives us few hints as to how these problems
might be reconciled. His project is fundamentally premised
on providing a strict definition of score compliance, the cri-
teria by which a performance may be judged to have been
a performance of a specific musical work. Insofar as it is
merely impractical to comply with all the notational infor-
mation conveyed by a score, this is not a challenge to the
theory. There is value, perhaps, in demonstrating the futil-
ity of ever actually performing a work of music according
to a notation. (Some authors have in fact taken Goodman
to have demonstrated that every musical performance is a
kind of improvisation in a sense [10].)

Beyond various problems with the Godmanian notation-
ality of music notation, the account doesn’t seem to capture
something important about the way musicians and com-
posers interpret scores. A conception of score interpre-
tation premised on producing precisely the correct refer-
ent of every notational symbol in a score seems stiff and
contrived, what musicians refer to as “playing the notes”
as apposed to performing music. Score interpretation has
much more to do with context, finding how all the parts fit
together or following a musical line or phrase. A change
in tempo influences not only how we interpret the tempo-
ral symbols in the marked passage but also how we think
about other passages of music, the purpose of that part of
the music in relation to others, perhaps even how we think
about the representational strategy of the score as a whole.
Each symbol in a score affects the symbols around it and
the work as a whole. This codependency of spatially and
temporally representative abstract parts is a key feature of
maps which will be discussed further in section 2.

2. A CARTOGRAPHIC THEORY OF SCORES

In arguing that scores are maps, I wish to make a claim
about their syntactic and semantic strategy of representa-
tion rather than about the historical purpose or usage of
maps. A “map” is therefore a broadly construed class of
representations that may overlap in certain cases with what
we might be more inclined to call graphs, infographics, di-
agrams, schematics, and charts. Camp argues that maps
fall somewhere between pictorial and sentential modes of
representation, and with some important qualifications, scores
strike a similar balance.

Scores are maps that are isomorphic with the spatial and
temporal structures of the musical works they represent,
while other graphical features may be purely contingent or
incidental. This highlights an interesting property of maps:
they need only be isomorphic with regard to a subset of the
properties of the space they represent. A true subway map
must be isomorphic to the order and correlation of subway
stations, but almost every other property of the landscape
can be omitted or abbreviated symbolically. What aspects
of the world are represented and what aspects are omit-
ted or stylized would seem to have a great deal to do with
the power of maps to expand and clarify our understand-
ing of specific spatial relationships. Camp highlights that
the choice of features depicted is connected to the practical
function of a map.

“[...] typically this spatial isomorphism itself
only captures functionally salient features of
the represented domain: for a road map, say,
only streets and buildings and not trees and
benches.[1]

Unlike road maps which represent a certain geography,
albeit from a “disengaged, ‘God’s eye’ perspective” [1],
scores represent an array of highly structured acoustic mor-
phologies and performative actions through two-dimensional,
visual conventions. In essence, scores translate a specific
subset of acoustic and temporal features of their referents

60

Figure 2. Charles Minard’s 1869 graphic representing Napoleon’s disastrous Russian campaign and an excellent example
of a cartographic representation of spatial and temporal events (months, shown with Roman numerals, are correlated to
temperature and spaced according to the distance between landmarks).

to a visual representation. Because of this, what constitutes
isomorphism is far more conventionalized in scores than
in most maps, depending on cognitive metaphors to trans-
late back and forth between spatial and temporal domains
rather than simple visual similarity. Within these conven-
tions, isomorphism is preserved however. “Higher” pitches
appear visually higher on musical staves; rhythms are or-
dered as they occur in time from left to right; in percussion
music, instruments are grouped as they appear before the
performer, with each instrument in a collection assigned to
a line on a special staff (or a syntactically disjoint symbol,
e.g. a notehead of a certain shape).

As in many maps, scores can use sentential representa-
tion, and through the map-like structure of the score, these
expressions gain the ability to refer to specific temporally
and spatially locatable features. Performance directions
can be far more conceptual than can be easily expressed ei-
ther through pictures or diagrams, with Pierre Boulez, for
example, calling on the performer of his Second Sonata to
play in an “exasperated” or “strident” manner or, later, to
“pulverize the sound.” Through the map-like scheme, these
abstract invocations are applied only to certain sections of a
work, thereby increasing the expressive power of language
beyond the contents of the sentential expression.

Scores are not themselves sentential in structure how-
ever, since they lack the extremely hierarchical and abstract
structure of language. Disregarding aesthetic or stylistic
concerns, the discrete parts of a score can generally be re-
arranged with a great deal of freedom, and musicians even
refer to these parts in spatial terms. A musical line can
be “inverted”; melodic lines are said to be “close” or to
“cross” or contain too many “leaps”; harmonies are said to
“revolve” around a “harmonic center.”

2.1 Representing Objects and Events

The most striking characteristic of scores—that they rep-
resent objects and events with regard to time—is an un-
common but not wholly neglected, feature of maps. Gail
Langran and Irina Vasiliev have documented cartographic
practices of depicting time, with Vasiliev dating the earli-
est examples back to at least the 18th century [11, 12]. We
are most familiar with temporal map-like depiction from
animated maps such as weather maps, traffic maps, or an-
imated subway maps (although it is debatable in what cir-
cumstances animated maps represent time or whether they
actually depict time through a real-time change in the im-
age). 3 Among printed maps, excepting scores, represen-
tations of temporal processes are generally only achieved
crudely. Maps of historical battles often depict the move-
ments of military units with arrows. Maps of population
growth and migration show the expansion of species or liv-
ing organisms over geography in a very general way.

A notable early exception to this is Charles Joseph Mi-
nard’s illustration of Napoleon’s 1812 invasion of Russia
(Figure 2). Unusually for a map, this illustration correlates
time with multiple other domains of information, showing
landmark dates during the disastrous fall and winter retreat
correlated to both temperature and geographical movement
of the army. Something similar usually occurs in scores,
where musical time flows differently according to circum-
stances, being modified by tempo indications or rubato,
for example, while at the same time, temporal events are
tightly bound to a vast array of spatial and performative
information.

In a brief survey of the philosophical literature on the
spatio-temporal analogy, Robert Casati and Achille Varzi

3 Further research is needed to establish a theory of animated maps
that might inform the design of animated scores.

61

note two schools of thought [13]. Bertrand Russell [14],
Alfred Whitehead [15], and Willard Quine [16] generally
held that physical objects and temporal events are highly
analogous, while the disanalogies stance is tokened by David
Wiggins [17] who objected that the boundaries of spatial
objects may be explored while this is not obviously true of
temporal objects. If true maps are admitted as a means by
which a continuant is explored, then temporal maps, and
particularly scores, offer an interesting challenge to Wig-
gins’ contention. Perhaps scores do not offer insight into
specific events, but they do allow inferences about planned
or hypothetical events such as the performance of a partic-
ular piece of music. Casati and Varzi outline a “formal
map,” which is to informal maps as formal logical lan-
guages are to vernacular language. A temporal referent
would not appear to be any barrier to the creation of a “for-
mal score” with an analogous form.

As with a cross that represents a church on a road map,
expressive or technical directions in scores are represented
by arbitrary designators (symbols or words) that stand in
complex relationship to numerous other features of a mu-
sical work. These designators fall before or after other fea-
tures; they apply to specific instrumental parts; and they
last for finite durations, dividing up the temporal space of
a work as a map is divided between “land” and “water.”
As with symbols on a road map, we may even be unaware
of the meaning of a symbol, but as long as we are familiar
with the isomorphic, spatial strategy employed by the map,
we can make valid statements about that symbol in relation
to others in its vicinity.

Interestingly, Gennady Andrienko, et al., note a tempo-
ral corollary for “Tobler’s first law of geography” (“every-
thing is related to everything else, but near things are more
related than distant things” [18]). Referred to in its spa-
tial manifestation as “autocorrelation,” the principle that
closely spaced spatial features are dependant on one an-
other is seen in the temporal domain as well in the connec-
tion between past, present, and future. Temporal features
run forwards and backwards through time, with experience
of the past and anticipation of the future both informing
the present [19]. This principle certainly holds for scores,
where for example “courtesy accidentals” are used to con-
firm the cancellation of a change in pitch that occurred ear-
lier in a passage of music.

2.2 Conventions of Representation in Maps

Goodman denied that pictures depicted through resemblance
with their subject. Rather, Goodman believed that depic-
tion was almost entirely a matter of artistic convention.
Without wishing to take a position on this question here,
the same cannot hold true for maps. Maps may be conven-
tionalized to a very high degree in their non-semantically
relevant properties. A 2012 New York City subway map
redesigned by Max Roberts uses only sections of concen-
tric circles, abstracting away nearly all information about
absolute distance or geographic movement vector [20]. The
interaction between the syntactically relevant representa-
tive components of a map must still stand in an isomorphic
relationship with the depicted properties of the landscape

however, or else the map is inaccurate. In the case of a
subway map, the subway stations must occur in the correct
order, although a wide variety of symbols and labels may
stand in for the stations and the subway lines themselves.
Concerning the symbolic constituents of a map, Camp has
observed that they too exhibit some limits to their abstrac-
tion:

“[A]lthough maps employ discrete syntactic
constituents with a significantly convention-
alized semantics, there’s still a significant in-
teraction between their formal properties and
mode of combination and what they represent.
Nonetheless, the only strong constraint on the
icons employed by cartographic systems, and
on their potential semantic values, is that the
icons’ own physical features can’t conflict with
the principle of spatial isomorphism. Thus,
one can’t represent a street with a circle, not
because it would be too arbitrary, but because
this would make it impossible to place the icon
in a spatial configuration that reflects the spa-
tial structure of the represented content: for
instance, one couldn’t depict two streets as par-
allel, or as intersecting” [1].

Maps differ from pictures in that they abstract away much
of the detail of pictures, increasing comprehension by re-
placing complex depiction with symbolic representations
while preserving certain relevant spatial relationships be-
tween these constituents. Cities and towns are replaced
with pictograms or labels. Roads and highways are lines
of different colors. Colored patches represent areas of wa-
ter or forest.

Different types of maps abstract different features and
range in their level of detail from, as Camp points out,
Google Maps renderings that allow for satellite and street-
view images to be overlaid over roadways (at the less ab-
stract end of the spectrum) to subway maps and seating
charts (some of the most abstract maps in common usage).
By depicting certain properties as highly isomorphic while
others details are omitted or stylized, map designers affirm
the importance of certain kinds of information and rela-
tionships while downplaying other details. It is vital to the
success of a map that it be isomorphic in the properties
most vital to a map’s intended usage. A nautical map must
reflect the depths of oceans and waterways, while a road
map need only show the location of water. Depicting the
depth of water on a road map would only serve to distract
from the map’s intended purpose.

Similarly, composers adopt a position on what criteria are
vital to the essence of a musical work when they priori-
tize certain types of representation in their scores. These
choices, which I refer to as “work-preserving criteria” and
“score-preserving criteria,” suggest a different model of
work preservation from that advocated by Goodman. In-
stead of basing work preservation on a score functioning as
a compound notation for a work, works preserve only rel-
evant isomorphic features, and these are used to navigate a
temporal and acoustic space suggested by the composer.

62

Figure 3. Two hypothetical scores committed to two different scales and exhibiting very different score and work-
preserving criteria.

3. SCORE DESIGN CONSIDERATIONS

Although the philosophical underpinnings of a cartographic
theory of scores require a more thorough exposition else-
where, my intention here is to consider a practical theory
of cartography that can yield insights into notational prac-
tices. In what follows I will discuss two aspects of map
idioms: scale and coverage.

3.1 Scale and Preservation

Regarding score preservation in graphic systems such as
Figure 1, Goodman worries that “however small the in-
accuracy of reproduction, a chain of successive reproduc-
tions can result in departing to any degree from the origi-
nal.” Finitely differentiated symbols do preserve informa-
tion better across successive reproductions; while as the
symbols that comprise the notation are identifiable, their
compliance class is fully intact.

Slight imperfections of reproduction have less semantic
significance on a score-as-map conception. The accuracy
of a map is only valued according to how it is used. A key
to informational density, the scale of a map is intended to
give some indication of what kinds of uses a map might
be good for. If we wish to know the travel time required
to drive from Bremen to Stuttgart, we may be happy with
a map that represents distance in kilometers. On the other
hand, if we must know the location of the gas line entering
a house, only a map or diagram representing distances in
inches or centimeters will suffice. The degree of inaccu-
racy we are willing to accept in a map depends on what
we want to do with the map. Similarly, different musical
works accept different levels of inaccuracy, and according
to the conventions of the style, we may or may not be in-
clined to accept a particular performance as a genuine in-
stance of a work depending on the degree to which the per-
formance departs from the score.

The representational scheme chosen by the composer al-
ways necessarily prioritizes certain kinds of accuracy of
reproduction while deemphasizing other less salient syn-
tactic components. Furthermore the choice of a particu-
lar scheme implies that certain syntactic components will
receive more consideration in making judgments of work
preservation than others.

For example, Figure 3 represents two hypothetical scores.
“Score 1” leverages Cartesian graph notation and allows

for nuances at least down to tens of cents. By choosing to
represent this kind of detail, the composer implicitly takes
a position on the “scale factor” for the score, which in turn
has implications for the score-preservation criteria for the
work. The score is not fully notational by Goodman’s stan-
dards. For that we would need a syntax for the contour line
including notation for angles, path lengths, etc. However,
we can infer that an existential threat to the score would
be one that prevents us from interpreting the contour paths
with accuracy on the order of tens of cents. We can also
make map-like intuitions that will constrain the inaccuracy
of the contour paths within the limits of the scale factor.
For example, we can note that the first contour in the work
(beginning between 0 and 100 milliseconds) is in the third
space up from the bottom of the graph and is just touching
the third line up from the bottom.

It is true that over successive reproductions of the score,
the exact path traced by the contour line may be affected
by successive inaccuracies in the reproduction process (as
in Goodman’s score-preservation challenge to Cage, Fig-
ure 1). However, by not defining the contour line’s path
more strictly, we should understand that the composer is
implicitly assenting to the proposition that score preserva-
tion still holds so long as the contour line does not depart
too far from the constraints of the scale. In other words,
a change of 20 cents in contour line morphology would
destroy score preservation. A change of 3 cents (hardly
visible on the score) does not threaten score preservation,
and any change much more than this will be rapidly de-
tected in relation to the graph. The graph lines, like carto-
graphic symbols for longitude and latitude, are notational
and therefore limit the degree to which the analog parts of
the score could conceivably deviate from the manuscript.

In Figure 3, “Score 2,” the composer has implied a differ-
ent scale and hence very different score-preservation cri-
teria. Here our only indication of pitch is a range be-
tween high and low. By constraining pitch only loosely,
the composer implicitly assents to the proposition that pre-
cise pitch is not a factor that affects score preservation.
Rather, the map-like syntax implies that the ordering of
pitches is mandatory, and changing the order of high and
low pitches would pose an existential threat to score preser-
vation. Similarly, by not providing a graph by which to
compare note lengths in milliseconds, the composer is as-
senting to a scale factor that requires performers to follow

63

Figure 4. Detail of freeway map of Los Angeles re-
designed by Peter Dunn. 4

only very approximate note durations. In this case, playing
a notated short note for a longer duration than a notated
long note would pose an existential threat to score preser-
vation, but minor inconsistencies in note duration are tac-
itly permitted.

3.2 Coverage and Degrees of Freedom

The notation in Figure 3, “Score 2,” differs from “Score
1” in another important regard: the use of a third color
(in fact a color gradient) allows this notation to refer to
an additional “degree of freedom,” perhaps dynamics or a
timbrel effect.

Kulvicki refers to degrees of freedom as features of a
map that, once introduced, have communicative signifi-
cance across the relevant portion of the map [21]. In Kul-
vicki’s example, for instance, a simple map may be silent
as to whether a green “land” area of a map is flat or moun-
tainous, but once a squiggly line is introduced to repre-
sent hilly terrain, then unblemished green has an additional
meaning within the degree of freedom that encompasses
the binary “hilly” versus “relatively flat” terrain. Each de-
gree of freedom a map represents commits that map to rep-
resenting the null value for that degree of freedom wher-
ever a space is left unmarked; if a map commits to repre-
senting towns symbolically, the absence of a “town” sym-
bol commits the map to an absence of a town at that loca-
tion.

Like maps, scores are agnostic with regard to all degrees
of freedom save the ones introduced into the score by the
composer. Scores that represent only pitch information say
nothing at all about rhythms, or rather they imply that dura-
tional information must be improvised up by the performer,
either by relying on conventions or through other, perhaps
sentential, instructions. (This is the case for some of John

4 Detail of Greater Los Angeles Freeway System Map
reproduced by permission of Peter Dunn. Image from
http://www.stonebrowndesign.com/

5 OpenStreetMaps cartography is licensed under Creative Commons
Attribution-ShareAlike 2.0. Image from http://www.openstreetmap.org/

Figure 5. A typical color scheme for road maps is based
on a highly isomorphic representation of locatable features
but may be disorienting for wayfinding 5

Cage’s freer “Number Pieces,” such as Four3, for exam-
ple.) Once a notation for rhythm is introduced into a score,
however, passages without rhythmic notation imply a spe-
cial significance; The scale of a score, the level of detail
it commits to representing (i.e., its score-preservation cri-
teria) are degrees of freedom, because they represent the
detail that a composer has represented as important for the
particular work of which the score is a map. In contem-
porary notation where performance practice fills in very
little for a performer, a score that is agnostic as to note
durations implies that the composer is explicitly declaring
durational plasticity to be a score-preserving feature of the
work. To represent specificity with regard to some features
in conjunction with agnosticism about others is to make a
statement about what features of a work are valuable to the
composer of that work.

Kulvicki also defines an “incompatibility constraint”: for
well-formed maps “incompatible locatable features repre-
sent incompatible qualities.” For example, yellow lines can
be used for interstate highways and purple lines can be
used for county highways. The incompatibility of these
colors (no road can be both yellow and purple) is in accor-
dance with the incompatibility of their referents no road
can (ordinarily) be both an interstate highway and a county
highway. If however, green is then introduced to indicate a
toll road, then the incompatibility constraint will possibly
be violated, since a county highway may be a toll road as
well.

Although colors don’t admit much granularity due to the
impracticality of perceiving different similar shades of a
single color, within degrees of freedom represented through
other symbolic means, complex information can be filled
out extensively without risk so long as the locatable fea-
tures of the referents are all incompatible.

Mountain marks pair with smooth texture as
mutually incompatible, but syntactically sig-
nificant, aspects of a map. Once mountain
texture is on the menu, it is easy to add more
textures for different kinds of land: alps, pied-

64

mont, hills, bumps, etc. Each of those textures
is incompatible with the others, and what each
represents is incompatible with what the oth-
ers represent. Untextured, smooth areas are
the zero value along this degree of freedom.
Being smooth carries representational weight
just as the marks do [21].

In practice, when symbolic schemes violate their incom-
patibility constraints, redundant representational strategies
can sometimes prevent a critical failure of coverage from
occurring. In Peter Dunn’s beautiful redesign of the LA
freeways system map (Figure 4), the Santa Monica Free-
way (blue) briefly passes through and co-designates a short
stretch of the Golden State Freeway (yellow). Dunn solves
the incompatibility of the color designators by replacing
the solid line of the Santa Monica Freeway with a dotted
line for the portion of the two highways in which they over-
lap.

Similar ambiguity is frequently encountered in scores.
“Hairpins,” which indicate a change in volume, have an
ambiguous meaning when they pass under rests (Figure 6).
Although several incompatibilities seem to be at work here,
the most promising way to explain the problem is that hair-
pins refer to an interpolation of sound intensity over the du-
ration of one or more sounds. A hairpin under a rest may be
syntactically sound but semantically flawed. Certain com-
posers, notably Brian Ferneyhough, have adopted a dotted
notation that clarifies this ambiguity. As in Dunn’s map, a
redundant symbol (the dotted hairpin) is incorporated into
the map only in case the primary symbol encounters in-
compatible features.

Dunn’s use of color gradients to symbolize transition points
between symbols within a single degree of freedom (rep-
resented by colored solid lines—highways) is particularly
notable. Color and abstraction of vectors is a key to a de-
sign that illuminates opaque aspects of a more traditional,
highly isomorphic OpenStreetMap visualisation (Figure 5).
In Dunn’s map a gradient indicates an exit or on-ramp whereas
a mitered join indicates an overpass or underpass. This lay-
ering of representational strategies through color, shape,
and spatial organisation is a key to the ability of maps to
represent numerous dimensions of information in an ab-
stract gestalt unit.

Whereas traditional notational strategies for “extended
techniques” (atypical means of producing sound on an in-
strument) conventionally rely on introducing different sym-
bols along different degrees of freedom for each new spec-
ified extended technique, a more idiomatic cartographic
representation would represent incompatible extended tech-
niques as symbols featuring incompatibility constraints.

For example, a traditional symbolic notation for col legno
tratto (bowing a string instrument with the wood of the
bow) potentially yields an impossible map when it is erro-
neously layered with a symbolic notation for scratch tone
(playing with extreme pressure of the bow hair) (Figure 7).
Since playing heavily with the bow hair is largely incom-
patible with bowing with the wood of the bow, these two

7 Score excerpt from this will be changed and made solid II used by
permission of the composer.

Figure 6. Hairpin with dotted-line notation to resolve am-
biguity created by passing under rests.

Figure 7. Traditional notation of extended techniques of-
ten exhibits poorly formed incompatibility constraints that
allow for impossible layering effects. Too many types of
representation, including words, symbols, and spatial dis-
tribution, are used simultaneously leading to difficulties in
viewing the notation as a gestalt.

Figure 8. A hypothetical notation with well-formed in-
compatibility constraints and a more isomorphic graphic
approach.

65

8
4

4

17

� 11:8

.
Ó

9:8 9:8

. 5:6

18

. ®

. .
Ó

13:8

Ó . 7:8

��	������������������������

��� �� ��
���

��

������

��

��

Figure 9. An excerpt from this will be changed and made solid II for string quartet by James Bean. Color represents bow
placement; colored-line thickness represents bow pressure; colored-lined vector represents bow movements; vertical, stri-
ated rectangles represent the string to be bowed, while the height of these “string indicator boxes” represents the maximum
bow pressure; black or dashed vectors and filled or open circles/diamonds represent finger movements along the strings
with the indicated amounts of pressure; rhythms above the staff indicate temporal placement of right-hand information
while rhythms beneath the staff are for the left-hand. 7

techniques should be represented through an “incompati-
bility constraint” in the score. In Figure 7 the extensive
layering of different symbolic strata is difficult to perceive
as a gestalt, and it is nearly impossible to tell how and when
the scratch tone becomes col legno tratto or normal tone. A
separate degree of freedom has been introduced for pitch,
bow placement, and two different degrees of freedom are
used to notate bow timbre. Yet another degree would be
required to show dynamics, although this too might be in-
compatible with the overpressure which is difficult to exe-
cute softly.

Figure 8 shows the notation of a similar passage to that
shown in Figure 7. However, incompatibility-constrained
symbols (the colors cyan and magenta) are used to show
col legno tratto and scratch tone respectively. As in Dunn’s
map, the use of semantic incompatibility to show syntac-
tically incompatible features entirely clarifies the smooth
transition between the timbrel techniques. Additionally, to
aid in the formation of a gestalt representation, line thick-
ness is here used to show bow pressure and vertical spatial
distribution (isomorphic to the body of a string instrument)
is used to notate bow placement. 6

An example of interesting and well-designed spatial-temporal
scheme is found in this will be changed and made solid
II for string quartet by James Bean (Figure 8). Written
in 2012 and relying on extensive unconventional graphics
created in the Adobe Illustrator software environment, the
score is an interesting and complex type of tablature. By

6 Although inspired by Helmut Lachenmann’s “bridge clef,” the spatial
depiction of the string instrument is here modified to be visually discrete
in its vertical layout. The use of Frutiger typeface, a high-visibility font
designed for signage in Charles de Gaulle Airport, is also an innovation
borrowed from “wayfinding” design. Space does not permit a discussion
of the interesting parallels between wayfinding and cartographic modes
of representation. The letter abbreviations are inspired by a system of
bow placement indications used by Timothy McCormack.

notating only the movements and actions of the right and
left hands, the score remains consistent in its field of ref-
erence. There is no need to switch between perceptual de-
scriptors (dynamics, expressive bowing, etc.) and physi-
cal actions (the absolute pressure of the bow on the string,
its placement on the instrument, the movement of the left
hand fingers, etc.). At the same time, by placing all tac-
tile information in the center of the staff and reserving the
extremities for rhythmic notation, the eye is better able to
track a melodic gesture as a single multidimensional con-
tour.

Bean’s score takes the form of several maps layered on
top of one another within the same representational space.
For vectors relating to the movement of the left hand, the
top of the staff is to be considered the bridge while the bot-
tom of the staff symbolizes the nut. For vectors relating to
the movement of the right hand, the top of the staff rep-
resents the frog of the bow while the bottom of the staff
is the tip. Further research should consider what effect
this multilayered scheme might have on map perception,
coverage, and incompatibility of degrees of freedom and
whether there are examples of multilayered representations
in other fields.

4. CONCLUSIONS

The practice of score-making in the 20th and 21st cen-
turies has become so varied and complex that it is imprac-
tical for a single theory of representation to encompass
all cases. Certainly there are scores, such as Karlheinz
Stockhausen’s Aus den sieben Tagen, that operate on an
entirely sentential basis. It is harder to think of scores that
very closely approximate Goodmanian notation, but piano
rolls—the long perforated paper scrolls that are the con-

66

trol interface for a mechanical player piano—might count
if they are in fact a kind of score.

In Cage’s 1969 book Notations, Jean-Charles Franois finds
a hint of the doubts Goodman sought to answer in Lan-
guages of Art.

“As soon as there is a necessity to demonstrate
unequivocally that there is something to show,
one has to persuade oneself that there is some-
thing to be shown. Here we find an infinite
nostalgia for an ancient world in which the
question of representation would never have
been asked or considered in the first place.”

Notations, a collection of pages from scores in a wide va-
riety of graphic styles, signaled a change in the tradition-
ally held view of scores [22]. No longer were music scores
to be regarded as the “crystal goblet,” as Beatrice Warde
famously said of good type in her 1955 essay (“The book
typographer has the job of erecting a window between the
reader inside the room and that landscape which is the au-
thor’s words.” [23]). Instead, Notations is premised on a
very modern conception of the score as a multimedia, mul-
timodel object whose relation to the musical work is com-
plex, often abstract or indirect, and highly conventional-
ized but nevertheless capable of expressing complex rela-
tions between objects and events in space and time that
would not easily be conveyed in sentential form.

The increasing adoption of new software paradigms for
notation combined with highly specific, systematised, or
graphic notations developed by composers such as Tim-
othy McCormack, Aaron Cassidy, and Cat Hope suggests
the importance of developing a philosophical approach that
can better analyze multiple modes of representation as func-
tioning simultaneously within a temporally and spatially
isomorphic representation. A cartographic theory of scores
gets us a little bit closer to untangling that complexity.

5. REFERENCES

[1] E. Camp, “Thinking with maps,” Philosophical Per-
spectives, vol. 21, no. 1, pp. 145–182, 2007.

[2] P. Ziff, “Goodman’s languages of arts,” The Philosoph-
ical Review, vol. 80, no. 4, pp. 509–515, 1971.

[3] W. Webster, “Music is not a ’notational system’,” The
Journal of Aesthetics and Art Criticism, vol. 29, no. 4,
pp. 489–497, 1971.

[4] J. Elkins, The domain of images. Hackett Publishing
Company, Inc., 1999.

[5] J.-C. Franois, “Writing without representation, and un-
readable notation,” Perspectives of New Music, vol. 30,
no. 1, pp. 6–20, 1992.

[6] N. Goodman, Languages of Art. Hackett Publishing
Company, Inc., 1976.

[7] A. Small, “An objective analysis of artistic violin per-
formance,” University of Iowa Studies in the Psychol-
ogy of Music, vol. 4, pp. 172–231, 1936.

[8] D. Deutsch, The Psychology of Music (Cognition and
Perception). Academic Press, 1998.

[9] A. Penel and C. Drake, “Timing variations in mu-
sic performance: Musical communication, perceptual
compensation, and/or motor control?” Perception Psy-
chophysics, vol. 66, no. 4, pp. 545–562, 2004.

[10] D. Ake, Jazz Cultures. University of California Press,
2002.

[11] G. Langran, Time in Geographic Information Systems.
Taylor and Francis, 1992.

[12] I. Vasiliev, “Mapping time: An analysis of the carto-
graphic problem of representing spatiotemporal infor-
mation,” Ph.D. dissertation, Syracuse University, 1996.

[13] R. Casati and A. Varzi, Parts and Places. MIT Press,
1999.

[14] B. Russell, The Analysis of Matter. Spokesman
Books, 1927.

[15] A. Whitehead, Process and Reality. Free Press, 2010.

[16] W. Quine, “Identity, ostension, and hypostasis,” The
Journal of Philosophy, vol. 47, pp. 621–633, 1950.

[17] D. Wiggins, Sameness and Substance. Harvard Uni-
versity Press, 1980.

[18] W. Tobler, “A computer movie simulating urban
growth in the detroit region,” Economic Geography,
vol. 46, pp. 234–240, 1970.

[19] G. Andrienko, N. Andrienko, U. Demsar, D. Dran-
sch, J. Dykes, S. I. Fabrikant, M. Jern, M.-J. Kraak,
H. Schumann, and C. Tominski, “Space, time and vi-
sual analytics,” Journal International Journal of Ge-
ographical Information Science, vol. 24, no. 10, pp.
1577–1600, 2010.

[20] M. Roberts. (2013) The story of circles maps.
[Online]. Available: http://www.tubemapcentral.com/
circles/NY Circles a.jpg

[21] J. Kulvicki, “Maps, pictures, and predication,” Ergo,
vol. 2, no. 20161109, pp. 149–174, 2015.

[22] J. Cage, Notations. Something Else Press, 1969.

[23] B. Warde, “The crystal goblet,” in The crystal goblet :
sixteen essays on typography, H. Jacob, Ed. World
Pub. Co, 2056, ch. 1, pp. 11–17.

67

68

HOW CAN MUSIC VISUALISATION TECHNIQUES REVEAL DIFFERENT
PERSPECTIVES ON MUSICAL STRUCTURE?

Samuel J. Hunt
University of The West of England
Department of Computer Science

& Creative Technologies.
Samuel.hunt@uwe.ac.uk

Tom Mitchell
University of The West of England
Department of Computer Science

& Creative Technologies.
Tom.mitchell@uwe.ac.uk

Chris Nash
University of The West of England
Department of Computer Science

& Creative Technologies.
Chris.nash@uwe.ac.uk

ABSTRACT

Standard western notation supports the understanding and
performance of music, but has limited provisions for re-
vealing overall musical characteristics and structure. This
paper presents several visualisers for highlighting and pro-
viding insights into musical structures, including rhythm,
pitch, and interval transitions, also noting how these el-
ements modulate over time. The visualisations are pre-
sented in the context of Shneidermans Visual Information-
Seeking Mantra, and terminology from the Cognitive Di-
mensions of Music Notations usability framework. Such
techniques are designed to make understanding musical
structure quicker, easier, less error prone, and take better
advantage of the intrinsic pattern recognition abilities of
humans.

1. INTRODUCTION

Standard western notation serves as a strict, formal set of
instructions for the performance of composed music. How-
ever, it omits explicit representation of a rich amount of
hidden data that exists between individual notes, and the
location of the notes within an overarching musical struc-
ture. One way to understand this structure is to analyse the
music: either manually, requiring an experienced musicol-
ogist; or via computer, resulting in several multi-dimensional
data fields, which may be difficult to represent and com-
prehend. Representing this data visually utilises the brains
pattern detection abilities, supporting easier and faster com-
prehension of material to enable insight and speculation
that can inform further formal analysis.

Visualisation presents non-visual data in a visual format,
usually as 2D/3D images or video. Shneiderman [1] intro-
duces a framework for guiding the design of information
visualisation systems, known as the Visual Information-
Seeking Mantra (VISM). The framework consists of seven
tasks for presenting information in a visual form to a user
(Table 1). Craft and Cairns [2] elaborate on this by stating
the VISM serves as inspiration and guidelines for practi-
tioners designing visual information systems. /par

Copyright: c©2017 Samuel J. Hunt et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

Task Description
Overview Gain an overview of the data.
Zoom Zoom in on items of interest.
Filter Filter out uninteresting items.
Details-on-
Demands

Selected an item or group and get
details when needed.

Relate View relationships between items.
History Keep a history of actions to sup-

port undo, replay, and progressive
refinement.

Extract Allow extraction of sub-collections
and of the query parameters.

Table 1. The 7 tasks of the VISM.

Shneiderman emphasises that humans have remarkable
perceptual abilities, allowing them to easily detect changes
of and patterns in size, colour, shape, movement or texture
in visual media. Such advanced and robust feature extrac-
tion capabilities are considerably more difficult to encode
as automated analysis using computer systems.

In a musical context, visualisers also enable rapid, auto-
mated methods for visualising not only a single piece of
music, but an entire corpus - allowing understanding and
comparisons of musical material at a higher and more gen-
eralised level to that of manual score analysis.

The level meter which features in the majority of con-
sumer audio products, represents a ubiquitous visualisation
method, whereby the current sound level is visualised us-
ing vertical bars, and for the majority of situations a more
useful presentation than a display of audio sample values
(amplitudes). Digital audio is stored as a series of num-
bers, a sequence of amplitude measurements with respect
to time. Sonograms convert this information to visualise
the distribution of frequency content. An example of this
is illustrated in Figure 1, whereby the musical score has
been synthesized using piano samples on a computer and
analysed with a sonogram.

This paper focuses on visualizing scores at the note-level
(e.g. MIDI), avoiding the many difficulties of audio feature
extraction. Sequenced music, encoded as MIDI, by con-
trast allows for rapid and reproducible analysis [3]. The
aim of the paper is to present novel techniques that support
the analysis of music.

The remainder of the paper is broken down as follows.

69

Figure 1. Sonogram plot of the score.

Section 2 presents relevant prior work and theory, followed
by a brief discussion in Section 3 of the software system
developed to support this research. Section 4 reviews visu-
alisation techniques for pitch, contours, intervals and key,
followed by Section 5 looking at rhythmic elements. Sec-
tion 6 discusses visualisation techniques that integrate both
pitch and rhythmic elements. The final section consid-
ers future work for the area and proposes evaluation tech-
niques.

2. RELATED WORK

Prior work in music visualisation can be broadly categorised
into two groups: those exploring sampled audio data and
those exploring sequenced music data (scores and MIDI).
Soriano et al [3] present methods for browsing an audio-
based music collection, using graphical metaphors designed
to convey the underlying song structure. This analysis is
performed via feature extraction from MIDI files, enabling
easy identification of simple and meaningful musical struc-
ture, such as pitch and rhythm.

Foote [4] and Wolkowicz & Brooks [5] both used self-
similarity matrix visualisations to reveal similarity in mu-
sic. This visualisation approach relies on the measure-
ment of pitch content at quantised time intervals, and plot-
ting this against all other intervals. Figure 2 shows a self-
similarity matrix visualisation, whereby the music proceeds
through time from the bottom left to the top right, with re-
gions of similar patterns appearing as clusters of squares.
Both axes represent the same input vector. The music ex-
ample uses a repeating motif of one bar, with a modulation
at bars 2 and 4.

Bergstrom [6] presents several visualisers that convey in-
formation about interval quality, chord quality, and the chord
progressions in a piece of music, helping users to compre-
hend the underlying structure of music. Feedback from
engagement with the system revealed users who having

Figure 2. Self-Similarity visualisation of the score.

quickly understood the basics, wanted to compare music
from multiple genres and composers. Holland [7] presents
a similar system (Harmony Space) to allow beginners to
interact with harmony using a visual grid.

Jeong and Nam [8] discuss a system that visualises au-
dio streams, to show audio features such as, volume, onset
density, and dissonance. The authors also state that as mu-
sic is an auditory art, visual representations can contain
information that cannot be transferred or perceived accu-
rately with sound. Herremans and Chew [9] use visualisa-
tion to highlight tonal tension in music, creating an explicit
representation of something that is not easily quantifiable,
presenting graphics alongside the scored elements.

Established analytical frameworks for music, such as the
Generative Theory of Tonal Music (GTTM) [10] and Schenke-
rian analysis [11], also present ways to annotate music and
reveal structure. The GTTM proposes a series of prefer-
ence rules for determining the different musical structures
that underlie the perception of western music. Schenkerian
analysis is an established musical analysis technique that
aims to explicitly reveal hidden dependencies and struc-
tures implicit in the music. This analysis primarily aids
score reading by marking it with elements of musical struc-
ture. Both of these theories have been mechanised in soft-
ware [12][13].

Nash [14] presents research that adapts the Cognitive Di-
mensions of Music Notations framework (CDMN) [15],
for use in designing and analyzing music notations and
user interfaces for digital and traditional music practice
and study. This paper utilises the framework as a vocabu-
lary for comparing visualised music content and metadata
against western notation and other forms of visualisation.
However not all of the 16 core dimensions originally spec-
ified are of relevance here. A list of the terms and their
definitions relevant in this research are listed in Table 2.

Using the self-similarity visualisation in Figure 2 as an

70

Dimension Description
Visibility How easy is it to view and find ele-

ments of the music during editing?
Juxtaposabillity How easy is it to compare ele-

ments within the music?
Hidden Depen-
dencies

How explicit are the relationships
between related elements in the
notation?

Hard Mental
Operations

How difficult is the task to work
out in your head?

Conciseness How concise is the notation?
Provisionality How easy is it to experiment with

ideas?
Consistency Where aspects of the notation

mean similar things, is the similar-
ity clear in the way they appear?

Viscosity Is it easy to go back and make
changes?

Role Expres-
siveness

Is it easy to see what each part of
the notation means?

Error Prone-
ness

How easy is it to make annoying
mistakes?

Closeness of
mapping

Does the notation match how you
describe the music yourself?

Table 2. Terms of the Cognitive Dimensions of Music No-
tations framework used in this paper [14].

example of the terms used in the table, the visibility of the
figure is good, showing a clear overview of the entire piece,
likewise the juaxtaposability scores highly as the patterns
can be compared much more easily than sequences in the
score. There are high hidden dependences as the original
information has been transformed, with each square rep-
resenting a smaller amount of information. The simplistic
nature of the visualiser scores high on provisionality, con-
sistency and conciseness. The visualisation does not have
any meaning unless related to the score, with the under-
lying notated elements looked up, so has a poor closeness
of mapping. Comparing sequences using just the notation
would require both hard mental operations, and would be
prone to error (error proness), whereas the automated anal-
ysis used to build the self-similarity visualisation is easily
reproducible and more accurate.

A core concept of visualisation for notated music is its
ability to reduce the hard-mental operations arising from
manual score analysis [14]. Computer aided analysis also
reduces the error proneness of operations. Visualisation
can remove un-needed details (filtering [1]) from the score,
for example performance markings, therefore improving
the conciseness of the results.

Temperley [16] [17] uses visualisation to inform, explain,
and evaluate formal analysis by computer. Often using
these techniques when analysing a large corpus of music,
to immediately show data that would otherwise be difficult
to extract from looking directly at the score, or in fact thou-
sands of individual pieces. Temperley also uses these as a
way of comparing and refining models for music analysis.

3. INTERACTIVE VISUALISATION

This paper discusses visualisers developed for an original
software package (Figure 3), the design of which has been
influenced by the seven principles of the VISM (listed in
Table 1). In general, it allows different pieces of music in
MIDI format, to be opened and visualised quickly, in order
to support high provisionality and enable rapid experimen-
tation with analysis techniques. The software can analyse
and compare entire corpora or individual pieces, as well as
sub-sections or voices (tracks). A historic list of analyses
is kept so these can be recalled and modified, retaining low
levels of viscosity and commitment, therefore further fa-
cilitating experimentation and evaluation (provisionality).

Software and automated analysis has the advantage of
processing large amounts of data quickly (compared to man-
ual techniques), but takes considerable amounts of time
and care to design and implement. Visualisation tools,
such as that described, allow a user to speculatively inter-
rogate data, before committing to more detailed and formal
music analysis methods, be they traditional (e.g. Schenke-
rian) or computer-based (e.g. machine learning see Section
4.4).

4. VISUALISING PITCH

The set of visualisers presented in this section focus on el-
ements of pitch, contour, and melodic interval. Some tech-
niques present the material as overviews of the piece as a
whole, others present excerpts in time. For the purposes of
discussion and comparison, the majority of visualisations
present Bachs Two-part Invention No. 1 (BWV 772) [18],
but can be applied to many other examples and genres of
music, including non-Western.

4.1 Melodic Contours

A contour representation of music can simply be defined as
information about the up and down pattern of pitch changes,
regardless of their exact size [19]. Melodic contours are
also a key psychological part of music, one that aids the
recollection of musical themes [20].

Melodic contours themselves can be illustrated using a
score, where it is usually clear in which direction the pitch
is going (Figure 4, top). However, once accidentals are in-
troduced (Figure 4, bottom), it becomes less visually dis-
tinct. A piano roll (Figure 5) provides a clearer representa-
tion of melodic contour. This provides improved closeness
of mapping [14], and increases the ease with which se-
quences can be compared (improving juxtaposability).Piano
rolls provide ways for shapes, patterns and contours to be
identified. Wood [21] presents related research in which
the standard note head is visually modified to show the
pitch degree in a more role expressive way, and reports im-
proved speed for sight-reading when compared with stan-
dard note heads.

This type of visualisation can also be used to reduce a
search space, allowing sequences represented as contours
to be visually clustered. The items in Figure 6 show a se-
ries of monophonic melodies extracted from Bachs BWV
772. Visually, we can see that the first two patterns are

71

Figure 3. Software created to support visualisation tasks.

Figure 4. Score with clear melodic contour (top) and ob-
fuscated melodic contour (bottom).

Figure 5. Piano roll representation of Figure 4.

similar, and that pattern 14 is the same pattern inverted.
This kind of visualisation allows the viewer to employ the
gestalt principles of visual perception, in this case similar-
ity, to group together similar shapes [22]. In this situation
the data has filtered out everything but the contour, giving
a better overview of the types of contours, which can then
be easily related against one another.

Figure 6. Selection of melodic contours from Bach’s
BMW 772.

4.2 Intervals

The contour plots provide an overview of the melodic pat-
terns present in the music, but reduce the visibility and
role expressivity of the intervals. Temperley [16] uses a
histogram of melodic intervals to show the distribution of
interval leaps between melodic note sequences within an
entire corpus of music material, revealing wider patterns
and trends in music. In-so-doing, this hides dependencies
in the music, such as the local context and note-to-note re-
lationships (i.e. certain pitches are more unlikely to transi-
tion to those depicted in the figure because of their relation
to the home key and sensitivity to tonal context). The dia-
gram in Figure 7 shows the interval profile for Bachs BWV
772.

72

Figure 7. Interval distribution over two octaves in Bach’s
BWV 772.

Figure 8. 2D Markov plot of Bach’s BWV 772.

A different way to analyse this data, in a way that al-
lows interpretation of pitch, intervals and range, is to use
a Markov type model, defining the transition probability
between any given notes, in a numeric table format. This,
however produces a data table of size 127x127 elements,
which is difficult to comprehend in a numeric format, but
easily visualised to reveal musical trends and characteris-
tics as illustrated in Figure 10. The design of this once
again takes an overview of the data, filtering out the timed
elements of the music, to give a detailed overview of the
pitch and interval elements. Parts of the plot can be further
inspected to reveal exact transition probabilities (details on
demand).

From the plot, it can be noted that the intervals in the up-
per ranges are more likely to jump down in interval, while
the opposite effect can be observed in the lower range.
Towards the middle the width of the melodic jumps are
slightly larger. The blue line along the leading diagonal
represents the unison interval (repeated notes), the hori-
zontal deviation from which reflects transitions to subse-
quent notes. The darker the marker, the more likely the
transition. The diagram can also be thought of as a lay-
ered series of melodic interval distributions (as in Figure
7), given different starting notes (y-axis).

Figure 9. 100 randomly-selected common repertoire
Baroque pieces.

Figure 10. 100 randomly-selected common repertoire Jazz
pieces.

Two more plots are shown in this style, but illustrating
trends in, and differences between, larger corpora of music:
respectively, a collection of 100 pieces of baroque music
(Figure 9) and jazz music (Figure 10), selected randomly
from a larger corpus. The visualisation process helps to
reveal differences between the corpora that would other-
wise be harder to discover or articulate. For example, the
range of intervals in the jazz corpus is far wider, whereas
the baroque is limited to mostly to an octave, and multiples
thereof and appears more uniform throughout the range.

4.3 Pitch Distribution

It is instructive to consider pitch usage in general terms.
Temperley [16] considers the distribution of pitches within
a piece to be an intrinsic element that grounds the overall
tonality and key in western music. Key is something that

73

Figure 11. Major Key Profile.

Figure 12. Pitch distribution in Bach’s BWV 772.

musicians are trained to detect [16], but for which Temper-
ley has developed automated methods. To illustrate, Figure
11 shows an ideal key profile describing the average distri-
bution of pitches within a piece in C major, which can also
be considered a coarse measure of pitch-class appropriate-
ness in relation to key. For comparison Bachs BWV 772
(Figure 12) is also visualised. It is easy to visually infer the
similarity of the distribution within the piece (known to be
in the key of C) and the generalised representation (Figure
11). Smaller more nuanced details are also visible, such as
the fact that the piece, although in C major, has more in-
stances of D than the tonic C. Such details can be enough
to fool automated analysis, as detailed in the next section,
but things are clearer to the eye.

Other metadata can also loosely be inferred. A less pro-
nounced distribution may indicate a piece that uses several
different keys or tonalities beyond the diatonic. Atonal mu-
sic, such as serialism, may confound such analysis and ap-
pear entirely different when visualised, such as Schoenberg
Op.11-1 (Figure 13).

4.4 Key

Visualisation can help guide and test formal analysis. For
example, a machine learning algorithm was developed that
could infer the key based on the pitch profile of a piece.
Bachs Well-tempered Clavier (Book 2) [24] was chosen
as a test set, as it has two pieces in each of the 24 keys,
providing an ordered pattern of tonality.

Figure 13. Pitch Distribution in Schoenberg Op.11-1 [23].

Figure 14. Pitch Distribution for Bach’s BWV 870.

Figure 15 presents the detection results of the model, for
each piece, ordered by their BWV number. The results of
this experiment show that the algorithm is mostly able to
predict each of the keys, and the graph can be inspected
to find the relative confidence of each prediction as well
as identify anomalies and deviations from the expected re-
sults. Bachs methodical progression through alternating
major and minor keys within the collected work produces
a visual pattern in the plot (discernable from the gestalt law
of good continuance [22]), the deviations from which iden-
tify errors in the key detection model and, in turn, nuances
in Bachs approach to key.

The algorithm makes three mistakes, out of a total of 48
predictions, corresponding to the anomalies circled in the
figure. In one instance, the algorithm has predicted a key
of D minor when the nominal key is C-Major. By visual-
izing the pitch profile of the piece (Figure 14), using the
techniques suggested in Section 4.3 it can be observed that
the overall ratio of pitch D, is higher than the tonic and
5th compared with an ideal plot (Figure 11), Indeed, this
detection anomaly is attributable to Bachs actual use of D
minor (and other keys) in the piece. This indicates a limi-
tation of the analysis technique, in conflating the pitch pro-
file of an entire piece without sensitivity to modulation, but
nonetheless raises an interesting musicological question of
why this and not other pieces from the set fall foul of this
limitation.

74

Figure 15. Visualisation of a machine learning algorithms prediction of the 48 pieces of Bachs well-tempered clavier book
2 [24]. The 3 mistakes are BWV numbers 870 part 1, 871 part 1 and 880 part 1. The red highlighting shows the mistakes
and the green shows the actual keys.

Figure 16. Distribution of rhythm for Bach’s BWV 772.

5. VISUALISING TIME

Visualisation can also be used to reveal patterns in mu-
sical time, as in the case of rhythm, tempo, and density.
Time also provides the metrical structure to a sequence of
pitches. Taking the Bach piece BWV 772 as before, and
visualizing the rhythmic aspects of the piece, several pat-
terns are revealed. The elements under consideration are
Note Onset, Note Length, and Density should be merged.

5.1 Note Onset

The basic rhythmic plot, note onset (Figure 16) shows the
ratio of note onsets in each position of the bar for the entire
piece. The events are first quantised to 1/32nd of a note,
to remove noise caused by micro variations in time. The
plot shows us, that simpler divisions of the bar are more

Figure 17. Distribution of rhythm for Beethoven’s Op.
53..

likely to contain notes than more complex ones, shown
by the regular distribution and preponderance of quavers
and semi-quavers. The middle of the bar has the least note
activity in general, whereas the 1st quaver beat, and 4th
quaver beat have the most. Comparing this to Beethovens
piano sonata No.21 Op. 53 (Figure 17), a piece from a
much later period, shows a complete contrast in the struc-
ture, with a much more uniform distribution of note onsets,
with the second semi-quaver bar position (3/32) being the
most likely place for a note to be played.

5.2 Note Length

Note length visualisation (Figure 18) does not reveal as
much information as some other techniques, but confirms

75

Figure 18. Software created to support visualisation tasks.

Figure 19. Distribution of note length in Bach’s BWV
772.

this piece uses mostly note lengths of a semi-quaver in
length. Roughly four times as many as using a quaver note.
However, comparing this with other examples of music,
for example Beethovens piano sonata No.21 Op. 53 (Fig-
ure 19), shows for example the use of a dotted semi-quaver
(3/32) note length is more common than either a quaver or
crotchet, and a value not even used in the Bach piece.

5.3 Rhythmic Density

Rhythmic density can be defined as the number of note on-
sets that happen during a beat or other window of time.
The analysis is computed by calculating the number of on-
sets in each density window, and plotting the changes over
time for each voice (note that only the first 12 measures are
shown in Figure 20). Using Bachs BWV 772 again, sev-
eral repeating patterns are visually observable between the
two voices.

Figure 20 shows that only three of 48 windows have both
voices indicating a density reading of 4 simultaneously.
The sharp peak in Voice 1 at 23-24, is indicated as the most
intense, a result of the piece using demi-semi-quavers (see
figure 21). From windows 25 to 41, the voices are alternat-

Figure 20. Distribution of note length in Beethoven’s Op.
53.

ing in a strict pattern. This representation provides a con-
cise overview, but does not differentiate between chords
and rapid melodic phrases, reducing the visibility and jux-
taposability of data. However, while a finer resolution could
reveal more detail, it would also reduce conciseness, with
four times as many data points. This represents a common
trade-off between the dimensions, as observed in other no-
tations [14].

In general, the techniques discussed in this section show
that one method will reveal certain information at the sake
of obscuring others, and that sometimes multiple perspec-
tives are needed to fully understand the data.

6. INTERGRATED VISUALISATIONS

Previous sections considered elements of music in isola-
tion, but visualisations can also reveal relationships be-
tween different dimensions of music. The ability to in-
tegrate musical characteristics and model the complex in-
terwoven principles between them is a prime objective of
music analysis and visualisation. The diversity and variety
of such interconnections makes this difficult, but it is pos-
sible to combine multiple dimensions of characteristics to
reveal more complex and interesting patterns.

76

Figure 21. Demi-semi-quavers in bars 6. Relative to
points 23-24 on figure 20.

Two related elements of music that can be integrated for
visualisation and analysis are rhythm and pitch. A se-
quence of notes can be considered a pitch change after a
given length of time, and it is possible to build up the fre-
quency of these different event combinations and display
the result. Given a standard composition the number of
options is vast, and represents a complex problem. How-
ever, this is relatively easy to visualise (Figure 22) by plot-
ting the change in interval against the difference between
note onset, with the colour level (brightness) showing the
ratio. In the example (Figure 22), a visualisation of Bachs
Brandenburg concerto BWV 1046 [24] is shown, using this
method.

Looking at the analysis, it is clear how consistent the
timing of the piece is, with most events falling on quaver
note divisions. There is some evidence of quaver-triplets as
shown between 12 TPQ (Ticks Per Quarter Note or Crotchet)
equivalent to a semi-quaver and 24 TPQ (Crochet), with
these taking a value of 16 TPQ. Looking at the overall
pitch range the widest range of pitch intervals is a note
following on a quavers length after the previous note, with
events ranging from +24 semitones, to -17 semitones. This
is also where the most events are likely to be played, shown
by the density of red dots. At the 1 and 2 semi-quaver
duration (12 and 24 TPQ) the pitch is more likely to in-
crease, on any value greater than this, the pitch is likely to
decrease. At the semiquaver difference, almost all inter-
vals are present, but compare this to longer duration differ-
ences, and intervals start to disappear. An interval change
of +4 semitones (major 3rd) does not happen following a
previous note whose duration was a quaver. This is quite
possibly linked to the rules of strict counterpoint, a tech-
nique regularly employed by the composer, but further in-
vestigation is subsequently required before drawing spe-
cific conclusions. Finally, at the 3-semi quaver duration
(32 TPQ) interval, a pitch increase is more likely, but at
the crotchet level (48 TPQ) a pitch decrease is more likely.

7. CONCLUSIONS

This paper has reviewed a variety of basic music visual-
isations to demonstrate their utility to reveal implicit de-
tails, patterns, and structures in musical phrases, pieces and
broader corpora. Although the visualisations have been
informally evaluated with reference to the CDMN frame-
work, another way to evaluate the use of visualisation is to
establish whether or not it revealed something that was ei-

Figure 22. Visualisation of change in interval vs time be-
tween note onsets for Bachs BWV 1046. TPQ is defined
as the number of ticks per quarter (crotchet) note.

ther not known before or complicated to reveal using other
methods. As several of these techniques have made such
novel observations about musical structure, they can there-
fore be considered successful.

Other further types of studies are also planned in this area,
including embedding these visualisation techniques inside
music composition software. Such investigations will ex-
plore the pedagogical benefits of alternative visual repre-
sentations of music, looking at how visualisations can in-
form students understanding of musical process and struc-
ture.

Visualisation techniques can also inform the design of
generative musical techniques. They allow the identifica-
tion of characteristics that can become factors of a com-
puter composition models, such as the parameters of a ma-
chine learning process. It also allows a degree of quan-
titative evaluation and comparison between music gener-
ated algorithmically and the target musical result. Vick-
ery [25] advocates re-sonifying visualised music represen-
tations, formed through analysis of the original music.

While this review of visualisation techniques only scratches
the surface of both visual and musical possibilities, it is
clear the visual domain can be exploited to provide dif-
ferent perspectives on musical patterns and structures, and
make hidden information and insights more accessible to
musicians and scholars.

8. REFERENCES

[1] B. Shneiderman, “The eyes have it: A task by data
type taxonomy for information visualizations,” in Vi-
sual Languages, 1996. Proceedings., IEEE Symposium
on. IEEE, 1996, pp. 336–343.

[2] B. Craft and P. Cairns, “Beyond guidelines: what can
we learn from the visual information seeking mantra?”

77

in Ninth International Conference on Information Vi-
sualisation (IV’05). IEEE, 2005, pp. 110–118.

[3] A. Soriano, F. Paulovich, L. G. Nonato, and M. C. F.
Oliveira, “Visualization of music collections based on
structural content similarity,” in 2014 27th SIBGRAPI
Conference on Graphics, Patterns and Images. IEEE,
2014, pp. 25–32.

[4] J. Foote, “Visualizing music and audio using self-
similarity,” in Proceedings of the seventh ACM inter-
national conference on Multimedia. ACM, 1999, pp.
77–80.

[5] J. Wolkowicz, S. Brooks, and V. Kešelj, “Midivis: Vi-
sualizing music pieces structure via similarity matri-
ces,” in Proceedings of the 2009 International Com-
puter Music Conference, ICMC’09, 2009, pp. 53–6.

[6] T. Bergstrom, K. Karahalios, and J. C. Hart, “Iso-
chords: visualizing structure in music,” in Proceedings
of Graphics Interface 2007. ACM, 2007, pp. 297–
304.

[7] S. Holland, K. Wilkie, A. Bouwer, M. Dalgleish, and
P. Mulholland, “Whole body interaction in abstract do-
mains,” in Whole body interaction. Springer, 2011,
pp. 19–34.

[8] D. Jeong and J. Nam, “Visualizing music in its en-
tirety using acoustic features: Music flowgram,” in
in Proceedings of the International Conference on
Technologies for Music Notation and Representation
- TENOR2016, Anglia Ruskin University. Anglia
Ruskin University, 2016, pp. 25–32.

[9] D. Herremans, E. Chew et al., “Tension ribbons: Quan-
tifying and visualising tonal tension,” in in Proceed-
ings of the International Conference on Technologies
for Music Notation and Representation - TENOR2016,
vol. 501, Anglia Ruskin University. Anglia Ruskin
University, 2016, pp. 8–18.

[10] R. Jackendoff, A generative theory of tonal music.
MIT press, 1985.

[11] A. Forte and S. E. Gilbert, Introduction to Schenkerian
analysis. Norton, 1982.

[12] M. Hamanaka, K. Hirata, and S. Tojo, “Implementing
“a generative theory of tonal music”,” Journal of New
Music Research, vol. 35, no. 4, pp. 249–277, 2006.

[13] A. Marsden, “Schenkerian analysis by computer: A
proof of concept,” Journal of New Music Research,
vol. 39, no. 3, pp. 269–289, 2010.

[14] C. Nash, “The cognitive dimensions of music nota-
tions,” in in Proceedings of the International Confer-
ence on Technologies for Music Notation and Rep-
resentation - TENOR2015, Institut de Recherche en
Musicologie. Institut de Recherche en Musicologie,
2015, pp. 191–203.

[15] T. R. G. Green and M. Petre, “Usability analysis of
visual programming environments: a ‘cognitive di-
mensions’ framework,” Journal of Visual Languages
& Computing, vol. 7, no. 2, pp. 131–174, 1996.

[16] D. Temperley, Music and probability. The MIT Press,
2007.

[17] ——, The cognition of basic musical structures. MIT
press, 2004.

[18] Y. Tomita. (2016) The inventions and sinfonias. [On-
line]. Available: http://www.music.qub.ac.uk/tomita/
essay/inventions.htm

[19] T. Fujioka, L. J. Trainor, B. Ross, R. Kakigi, and
C. Pantev, “Musical training enhances automatic en-
coding of melodic contour and interval structure,”
Journal of cognitive neuroscience, vol. 16, no. 6, pp.
1010–1021, 2004.

[20] R. Aiello and J. A. Sloboda, Musical perceptions. Ox-
ford University Press Oxford, 1994.

[21] M. Wood, “Visual confusion in piano notation,” in
in Proceedings of the International Conference on
Technologies for Music Notation and Representation
- TENOR2016, Anglia Ruskin University. Anglia
Ruskin University, 2016, pp. 230–309.

[22] K. Koffka, Principles of Gestalt psychology. Rout-
ledge, 2013, vol. 44.

[23] imslp. (2016) Schoenberg op.11. [Online].
Available: https://imslp.org/wiki/3 Pieces, Op.11
(Schoenberg, Arnold)

[24] D. J. B. Page. (2016) Dave’s j.s. bach page. [Online].
Available: http://www.jsbach.net/midi/

[25] L. R. Vickery, “Hybrid real/mimetic sound works,”
in in Proceedings of the International Conference on
Technologies for Music Notation and Representation
- TENOR2016, Anglia Ruskin University. Anglia
Ruskin University, 2016, pp. 19–24.

78

MELODY RETRIEVAL AND COMPOSER ATTRIBUTION USING
SEQUENCE ALIGNMENT ON RISM INCIPITS

Jelmer van Nuss
Utrecht University

j.l.vannuss@students.uu.nl

Geert-Jan Giezeman
Utrecht University

G.J.Giezeman@uu.nl

Frans Wiering
Utrecht University

F.Wiering@uu.nl

ABSTRACT

The RISM A/II database contains metadata and incipits of
more than a million compositions. The Monochord search
engine can retrieve incipits that are similar to a query using
several alignment methods based on pitch raters, weight-
based raters and duration-based raters. The performance
of all 27 search methods is evaluated using Mean Average
Precision metrics and the TREC framework for retrieval
performance analysis. The difference in exact pitch be-
tween melodies turns out to be the best factor to search
with for musical similarity retrieval.

All melodies have metadata such as a composer name,
but a portion of the database is labelled as Anonymus. A k-
Nearest Neighbours algorithm is optimised for the purpose
of deanonymisation and used to classify several Anonymus
songs to test the applicability of this classifier for com-
poser labelling. Using a classifier as a first selection step
for deanonymisation purposes turns out to be viable with
human correction.

1. INTRODUCTION

The RISM A/II database is a collection of melodies that are
stored as incipits, excerpts from the beginnings of notated
music in manuscripts collected from libraries, archives, monas-
teries and schools [1, 2]. This database is not only a use-
ful tool for information look-up on one song, but also to
collect similar melodies that give a broader context of the
researched melody. As over a million melodies have been
stored in this database, having an effective search engine
is crucial. While the RISM website 1 has a search func-
tion for both metadata and music notation, the power of
the search method is limited since it cannot take musical
similarity into account. This is why an alternative search
engine, Monochord 2 , employing more advanced and pos-
sibly more accurate search techniques, has been developed.

Monochord is a music retrieval system that is able to find
melodies in the RISM A/II database [3]. Monochord com-

1 The RISM database can be queried on:
http://www.rism.info/

2 As an alternative to the RISM search engine, Monochord can
be queried on: https://www.projects.science.uu.nl/
monochord/risma2/

Copyright: c©2017 Jelmer van Nuss et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

pares two melodies by aligning them and calculating a sim-
ilarity score. The higher this score is, the better the match
between the melodies. This search engine has several re-
trieval methods at its disposal. The performances of these
methods have not been researched previously, yet these
have to be known before any claims about the performance
relative to RISM’s search engine can be made.

The goal of this research is twofold. Our first problem is
finding an optimal combination of settings that finds simi-
lar melodies. Second, after having determined this combi-
nation of settings, we use it in an experiment to deanonymise
a part of the RISM database.

We begin with an evaluation of the search methods pro-
vided by the Monochord search engine. In testing the work-
ings of this engine, we not only gain better understanding
of the capabilities and limits of the music similarity re-
triever, but also gain insights in how to improve the search
methods. This part is modelled on previous research con-
ducted by Typke [2], who used similar techniques to create
a ground truth set and to evaluate the retrieval results.

Of the 1.148.478 melodies currently stored in the Mono-
chord database, 214.162 have an unknown composer: these
are labelled Anonymus. Some of these melodies might ac-
tually be composed by a composer whose name is impos-
sible for us to retrieve. Others are similar to melodies of
which the composer is known. A third type of Anonymus
songs is that of traditional material that has no single ap-
parent composer. It is desirable to know the true composer
of a melody to give credit to the musician, but also to place
the works in their context, which may lead to new insights
in music history. Using the metadata of similar melodies,
we create a classification procedure to determine the com-
poser of the anonymous incipits.

This experiment has a preparation phase and an analytical
phase. First off, it is important to understand the mecha-
nisms behind Monochord, how it uses alignment of melodies
and several raters to determine melodic similarity, and which
aspects differ from the RISM search engine [3]. The re-
trieval results have to be compared to a ground truth set,
which is an expanded version of the one created by Typke
[2]. This comparison is made based on precision-recall
curves created by means of standard retrieval evaluation
tools. The Monochord engine resembles the top k selection
used by a k-Nearest Neighbours algorithm. A k-NN model
is thus prepared to suggest composer labels for Anonymus
melodies.

Next, a quantitative comparison of the methods results in
the best retrieval method in this experiment. All methods

79

are used in determining which method is best suited for the
purpose of deanonymising melodies using a k-NN. After a
quantitative analysis, the best deanonymisation method is
qualitatively evaluated by manually checking the plausibil-
ity of the composer labels given to Anonymus incipits.

2. METHODS

2.1 Pairwise alignment of melodies

Several methods have been researched for modelling melodic
similarity. Some examples of these are n-gram methods [4]
and geometric methods [5], each with their merits and dis-
advantages. Alignment of melodies has been implemented
before by Kranenburg et al.[6]. Their method compares
two sequences x and y by taking two symbols from each
sequence. These symbols can either be aligned, or there is
a gap between the two. Using a substitution score and a
gap score, the total alignment score of the two sequences
is calculated. This alignment score is to be minimised, as
the two most aligned sequences have the least difference
in notes and the smallest gaps between two elements of the
sequences.

Before alignment, the melodies are transposed using a
histogram approach where the pitch shift that maximises
overlap in histogram bins is chosen [3]. The Monochord
search engine employs these techniques to retrieve similar
melodies [3]. All melodies are represented in the base40
representation.

2.2 Querying with the RISM engine

RISM shows the graphical notation of the incipits to the
user, but internally represents these incipits in the Plaine&Easie
encoding, with strings such as
’4F8-FA’’C/4F8.At3GA’’’4C/’F8-F’’D/4F de-
noting an incipit [7]. A melody is found by first creating a
corresponding FAST-index of the Plaine&Easie encoding,
where the code is reduced to only pitch values. The engine
can then search with or without transposition. In the lat-
ter case, only the created FAST-index is used in the search.
In the case of transposition, all transpositions of the origi-
nal search string are added to the FAST-index. This search
index is then matched on the existing RISM database [7].

2.3 Querying with the Monochord engine

Potential matches between two melodies are tested for their
similarity using a similarity score. This score denotes how
well two melodies match, where a higher score is a better
match between the melodies. The similarity score of two
melodies is calculated during their alignment. The calcula-
tion of the scores is where the selected search method plays
a role. A search method in the Monochord search engine
consists of three types of raters that calculate a subscore
by deciding how well the melodies match in the area the
rater is specialised in. The sum of these subscores is the
overall score that is used for the ranking of the results. The
melodies with the highest similarity score will be placed at
the top of the list.

Figure 1. Graphs showing the score assigned to a differ-
ence in pitch in base40 representation for the exact pitch
(pi2), zigzag pitch (pi3) and Kranenburg pitch (pi1) raters.

Monochord works with search methods that are a combi-
nation of three factors with three settings each. First, there
is the category of pitch raters that return a value between
−1.0 and 1.0. The settings are exact pitch (pi2), zigzag
pitch (pi3) and Kranenburg pitch (pi1). The simplest one
is exact pitch, which returns a score of 1.0 if aligned notes
have an equal pitch, or a score of−1.0 if they differ. A dif-
ference of one or more octaves is assigned a score of 0.5.
The zigzag pitch rewards notes that are close to each other
and punishes notes that differ more. Notes of equal pitch
return a score of 1.0. This score decreases linearly to −1.0
when the notes are most different at a distance of 20 in the
base40 representation and then increase to 1.0 where the
notes differ by an octave at a distance of 40. The Kranen-
burg pitch is described by Peter van Kranenburg [6, 8]. For
this rater, the score decreases linearly from 1.0 to 0 for in-
tervals up to a fifth; large intervals up to the octaves receive
a score of −1.0.

Graphs of the score assignment for each difference in
pitch is shown for these raters in Figure 1 [3].

Secondly, there is the category of raters based on met-
ric weight. The settings for this rater is no weight rater
(mw0), ima weighted (mw1) and ima combined (mw2). The
metric weight for these raters are computed with the inner
metric analysis (ima) method by Volk [9]. With the ima
weighted method, the influence of a note depends on its
metric weight. The weights of the notes of each melody
are scaled such that the average weight is 1. The value
computed by the pitch rater is multiplied by the average
of the weights of the two notes that are compared. The

80

effect is that pitch difference on stressed notes have more
influence than differences on less stressed notes. The ima
combined method the metric weight has a more indepen-
dent character than in the previous method. The absolute
difference between the two metric weight values is con-
sidered and multiplied by the value produced by the pitch
rater.

Thirdly, there is the category of duration-based raters.
The settings are duration not included (dur0), fixed du-
ration (dur1) and scaled duration (dur2). With no dura-
tion, the duration of the notes are not taken into account.
With fixed duration, the difference in duration is taken as
notated per incipit without any duration scaling. The scaled
duration method uses histograms of the duration of notes.
We use the duration scaling factor for the query melody
that maximises the overlap of the histogram bins [3].

Each search method produces a result file that contains
the first 50 ranked search results per query in the ground
truth file. A search request consists of a search method
and a query ID. Monochord aligns the query melody with
all other melodies in the database and calculates the sim-
ilarity score between the two melodies in a pair based on
the search method. A higher score means more similar-
ity to the query and thus a more relevant search result.
The resulting melodies are ranked based on their similarity
score. All of this is done automatically with a script. A per-
fect retrieval system will include all the result documents
from the ground truth file as the highest ranked retrieved
melodies [10]. In practice, we’ll encounter melodies that
are ranked lower, or melodies that do not appear in the re-
sult file at all. Misranking or missing a document affects
the performance of a retrieval system.

2.4 Creating a ground truth

The 27 query methods are analysed with a ground truth set
[11]. This set contains all relevant result melody RISM
signatures per query signature. The retrieval results should
show pairs that correspond with those in ground truth: this
means that the search method is a good retrieval system.
The 2005 MIREX evaluation set of Typke [2] is used for
this purpose. Human experts on music were asked to find
matches in the 2002 RISM database for a given melody.
The participants didn’t sift through the whole old database
of half a million incipits. Some selective filtering excluded
all but 300 incipits per query melody. This filtering was
based on for instance large differences in pitch range, du-
ration of the shortest versus the longest note, maximum
interval between subsequent notes and editing distance be-
tween rhythm strings. This number of incipits was brought
down to 50 by manually excluding the remaining incipits
that were perceived as too different. Finally, the human ex-
perts ranked the 50 incipits based on their similarity to the
query melody.

This ground truth data set contains 11 queries with about
10 resulting signatures per query. At the time of construc-
tion of Typke’s data set, the RISM database contained about
half a million melody incipits. The database that powers
Monochord has doubled in size since the original ground
truth research. It is reasonable to assume that some of the

Figure 2. These two melodies are similar and the Similar
button should be pressed in this case. Note how the query
melody is the beginning of the result melody which has
four additional notes.

additions may be truly relevant to one of the ground truth
queries. Therefore, this ground truth set needs to be up-
dated before a meaningful analysis of the query methods
can be conducted. We update the set by manually check-
ing all query-result pairs that appear in the ranked search
results, but not in the original ground truth. These pairs
are potential ground truth candidates, because the match-
ing incipit could have been added after Typke’s research
was conducted. In total 6006 candidate items remain to be
cross-checked for similarity by hand.

For this purpose, we create a comparison procedure for
the query-result pairs. A computer program splits the can-
didates in batches of 1001 pairs and shows one pair at a
time. The query is shown in musical notation on top, with
the result below it. A human evaluator can press one of
three buttons to confirm its comparison. The Similar but-
ton marks the pair as relevant (a line ending in a 1) and
adds it to the ground truth file, then the pair is removed
from the program’s queue. Figure 2 shows a situation in
which the Similar button must be pressed. The Not-similar
button stores the pair as not relevant (a line ending in a 0)
and removes the pair from the queue. The Unsure button
is pressed whenever the evaluator can’t make a decision
at the moment, for whatever reason, and would like to go
on with another pair. The pair is then added to the end of
the queue and will return after all other pairs have been
checked. The evaluator is shown a new pair after pressing
one of these three buttons. Not all images of the musi-
cal notation are available on the RISM website, and thus
they are unavailable in Monochord. Whenever such a pair
comes by, it is handled as Not similar. All pairs without a
definitive conclusion are handled as Not similar as well.

Completing one batch takes around 15-30 minutes and is
less prone to learning effects that Typke described as pos-
sible shortcomings of the experiment [2]. Sequence effects
might still occur, as all queries in sorted order. Filtering
the pairs as Typke did is not necessary, because checking
6006 pairs manually is feasible. Yet some of the filtering
techniques are subconsciously applied, such as rejecting
absurdly long incipits or incipits with a greater pitch range
instantly.

81

The ground truth has been expanded by adding 117 new
relevant pairs. The new ground truth that is based on the
original queries, but with additional results, is published
and available for other researchers 3 .

2.5 Search method analysis

In evaluating the search methods, we are interested in the
Mean Average Precision or area under curve (which are
interchangeable terms). The search method with the best
Mean Average Precision is designated as the best search
method for this incipit database[12, 10, 13]. The methods
are not only compared amongst each other, but also relative
to an approximation of RISM’s innate search engine. A
reasonable approximation of RISM’s retrieval method is
using method pi2mw0dur0, as this uses only exact pitch
in rating the melodies. This method can be seen as the
baseline with which the other methods are compared.

Every search method is tested for precision and recall,
which are plotted in the precision-recall curves. An im-
portant feature of our TREC files is the ranking of results.
This ranking must be used in the evaluation of the search
method. Several TREC evaluation tools have been made
that utilise ranking (trec eval[14], trec eval online[15, 16],
pytrec eval[17]). We use the Python library pytrec eval be-
cause the previously written scripts can be transferred to
this task.

This evaluation tool requires two types of input: one file
containing the expected results (the ground truth) and one
file containing the retrieved results. The ground truth file
and the result files are stored in the conventional TREC
format. The TREC version of the ground truth file is filled
with tab-separated lines that contain the RISM signature
of the queried document, an iteration number Q0, its result
signature and a relevance rating [18]. Each line has the
following format:

squery Q0 sresult relevance

with squery ∈ RISMSignatures, Q0 = 0, sresult ∈
RISMSignatures and relevance ∈ {0, 1}. The result
file is similar to the ground truth file, but instead of a rele-
vance rating, it returns a ranking for the document found.
Additionally, each line contains a score, representing how
well the result matches to the query, and a constant Exp.
Both the score and Exp are ignored in this experiment by
setting them to zero. A line in the result file has the follow-
ing format:

squery Q0 sresult rank score Exp

with squery ∈ RISMSignatures, Q0 = 0, sresult ∈
RISMSignatures, rank ∈ N, score = 0, Exp = 0.

The evaluation tool uses TREC files, thus we need to con-
vert the information stored in Typke’s HTML files to this
format. The ranking is not taken into account, all incipits
ranked as relevant are used as is. Every melody is referred
to with its RISM signature, which is precisely the format
needed for our TREC files. For every incipit perceived as

3 The revised ground truth is available here:
http://www.projects.science.uu.nl/music/resources/

relevant with signature sresult in a file for a query with
signature squery, we create a line

squery 0 sresult 1

where the 1 at the end signifies this pair of query and result
is a relevant pair, or a match.

2.6 Deanonymisation of melodies

Once the best-performing search method for retrieval based
on melodic similarity has been determined, we can use this
method to create data for the deanonymisation classifica-
tion algorithm. We use a k-Nearest Neighbours algorithm
to classify the anonymous melodies. A k-NN retrieves the
label for the k elements that are most similar to the element
that is to be classified. The most occurring label is said to
be the classification of the unknown element. In the case
of deanonymisation of melodies, the labels are composer
names. As the search results provided by Monochord are
ranked from most similar to least similar, we can simply
take the top k results as the neighbours and use their meta-
data to get their composers.

The composer names are available in the RISM database
as metadata of the melodies. This forms a mapping be-
tween all RISM signatures and their composers or an Anony-
mus label. The correct classifications are thus easily gener-
ated: it consists of looking up the melody signature in the
mapping and then returning the composer-part in the meta-
data. If none of the neighbours have a composer label, the
classification of the melody will simply be Anonymus.

Training and test data for the classification algorithm is
widely available. Of the 1.2 million melodies, about a
million have a known composer. We randomly sample an
amount of incipits with known composer and split the sam-
ple 50%-50% in a training and test set.

During the training phase, we use cross-validation to get
the best value for k. Here, we use a smaller set of 40 in-
cipits, which is split in a training and test set. The cross-
validation consists of testing a k-NN with a certain k on
the provided training data. We perform hyperparameter
optimisation for k by using a grid search to test all val-
ues k ∈ {1, 2, 5, 10, 20, 50, 100} and all n = 27 search
methods [19, 12]. This takes O(k × n) trials and the com-
putation is quite costly, thus we would like to minimise the
amount of trials. We first test the k-values only on the best
retrieval method and find a good value for k. Then, we use
this k to trial all the search methods. Only O(k + n) trials
have to be completed in this manner. The performance of
all such k-NNs are compared, after which the combination
of k and search method of the best k-NN is selected.

These best k-NN settings are used to initialise the final
classifier. A full set of 100 incipits, split in a training and
test set, is used for this phase of the experiment. The per-
formance of the classifier is determined using the test data
set. It is important to test on a set different than the training
set, as overfitting could occur. Overfitting is visible when-
ever there is great performance on the training set, but poor
performance on the new test data. The classifier is stable
whenever the performance of the training and test sets is
similar.

82

Figure 3. The precision-recall curve for retrieval method
pi2mw2dur1. The area under curve, or mean average pre-
cision is 0.42, the highest in the series.

This trained classifier can in principle now be used to de-
termine the composer of an anonymous song. This could
be done for the 200,000 occurrences, but we randomly
sample 100 melodies and evaluate some of the generated
labels manually.

3. RESULTS

3.1 Search method analysis

Each of the 27 search methods produces a precision-recall
curve from which the mean average precision is calculated.
The mean average precision ranges from 0.03−0.42 in the
plots. The best method seems to be pi2mw2dur1 (exact
pitch, ima combined, fixed duration) with an area under
curve of 0.42. The results are plotted in Figure 3.

Using exact pitch (pi2) gives the best results, with an
average AUC of 0.38 in a range of 0.31 − 0.42. The Kra-
nenburg pitch (pi1) is the worst performer with an aver-
age AUC of 0.21 in a range of 0.03−0.32. The exact pitch
curves are plotted in Figure 8(b) in Appendix A, and the
Kranenburg pitch as a comparison is shown in Figure 8(a)
in Appendix A.

The best duration to use is fixed duration (dur1) with an
average AUC of 0.33 (see Figure 10(b) in Appendix A).
The best use of weight-based raters is by using none (mw0)
with an average AUC of 0.35 (see Figure 9(a) in Appendix
A).

These findings correspond with the best overall method,
except for the weight-based rater factor. After a closer
look, the method pi2mw0dur1 seems to be a close runner-
up with an AUC of 0.41 (see Figure 4). The overall per-
formance of the ima combined (mw2) methods is not that
different from mw0 either, with an average AUC of 0.33.

The baseline approximation of the RISM search engine
by using pi2mw0dur0 results in an AUC of 0.35. Many
of the search methods produced worse results than the base-
line, but most of the exact pitch family produced equal or

Figure 4. The precision-recall curve for retrieval method
pi2mw0dur1. The area under curve, or mean average pre-
cision is 0.41, the runner-up in the series.

Figure 5. The accuracy of a k-NN for different values of
k. The accuracy decreases with an increase in k.

better results.
A full table of AUCs for all search methods is specified

in Appendix B.

3.2 Deanonymisation of melodies

Using 40 melodies as training set, we test the seven differ-
ent values for k ∈ {1, 2, 5, 10, 20, 50, 100} with the best
retrieval method pi2mw2dur1 to gain insight in the ef-
fect of the k-value on composer classification accuracy.
Removing the Anonymus songs based on their ID is falli-
ble process, as the existing set of IDs of known Anonymus
songs turned out to be incomplete. There are still a few
melodies with the Anonymus label hidden in the known
data set. After filtering these out of the 40 melodies, we
are left with 38 incipits.

The accuracy curve in Figure 5 shows that the accuracy
decreases as k increases. This seems to have an intuitive

83

reason, as with an increasing k, the share of wrong neigh-
bours also increases. As the most similar songs are placed
on the top, a low k will more likely consist of melodies
with the wanted composer. The algorithm with a higher k
will desperately try to come up with matches at the bot-
tom, even when all the matching pairs have already been
found. These bottom suggestions are more likely to be un-
interesting, or even counterproductive, for composer clas-
sification. And yet the voting power of all these incipits is
equal in a k-NN. If some composer turns up in the bottom
results often enough, it will overthrow the correct decision
made by the top results.

The best retrieval method might not be the best method
for composer classification. Therefore another run is per-
formed using k = 1 for all 27 search methods.

Method Accuracy Method Accuracy Method Accuracy
pi1mw0dur0 0.211 pi2mw0dur0 0.263 pi3mw0dur0 0.263
pi1mw0dur1 0.158 pi2mw0dur1 0.158 pi3mw0dur1 0.158
pi1mw0dur2 0.211 pi2mw0dur2 0.211 pi3mw0dur2 0.158
pi1mw1dur0 0.053 pi2mw1dur0 0.263 pi3mw1dur0 0.158
pi1mw1dur1 0.000 pi2mw1dur1 0.263 pi3mw1dur1 0.053
pi1mw1dur2 0.000 pi2mw1dur2 0.316 pi3mw1dur2 0.106
pi1mw2dur0 0.211 pi2mw2dur0 0.316 pi3mw2dur0 0.263
pi1mw2dur1 0.158 pi2mw2dur1 0.263 pi3mw2dur1 0.211
pi1mw2dur2 0.158 pi2mw2dur2 0.316 pi3mw2dur2 0.316

Table 1. Table of accuracies per method, trained on the
smaller set of 40 items. Bold numbers signify the highest
accuracy.

The methods with the highest accuracy are pi2mw1dur2,
pi2mw2dur0, pi2mw2dur2 and pi3mw3dur2 (see Ta-
ble 1). The best retrieval method pi2mw2dur1 has the
second-highest accuracy, which will therefore also be con-
sidered in the possible parameters.

The k-NN is now trained on values for k ∈ {1, 2, 5} and
on the methods pi2mw2dur1, pi2mw1dur2, pi2mw2dur0,
pi2mw2dur2 and pi3mw3dur2. The data consists of
100 incipits randomly selected from the known melodies.
These items are split in a 50% training set and a 50% test
set.

The best classifier parameters turned out to be k = 1 with
the pi2mw2dur1 method (see Table 2). These settings
resulted in a maximum accuracy of 0.375 on the test set.

k=1 k=2 k=5
pi2mw1dur2 0.354 0.292 0.271
pi2mw2dur0 0.354 0.313 0.271
pi2mw2dur1 0.375 0.354 0.313
pi2mw2dur2 0.354 0.316 0.271
pi3mw2dur2 0.354 0.333 0.271

Table 2. Table of accuracies per parameter setting, trained
on the full set of 100 items. The bold number signifies the
highest accuracy.

Of the 100 melodies, 58 were given a non-Anonymus la-
bel. The guessed composers of the first eight such entries
are given below in Table 3.

Using RISM’s search engine [1], we find that incipit
450.202.307-1.1.1 classified as Sperger, Johannes indeed
contains that name in the list of previous owners of the

Signature Composer
450.202.307-1.1.1 Sperger, Johannes
851.002.964-1.1.1 Werner, C.
702.020.071-1.1.1 Simonis, Ferdinando
240.006.107-1.1.1 Spohr, Louis
650.007.101-1.1.2 Meyerbeer, Giacomo
500.195.253-1.2.1 Paisiello, Giovanni
150.204.949-1.1.1 Gräfe, Johann Friedrich
454.013.591-1.1.1 Kluger, Johann Florian

Table 3. Table of deanonymised incipits and their com-
poser labels in random order.

Figure 6. The incipit for 650.007.101-1.1.2, which is the
original query (by Anonymus).

manuscript. The manuscript was put together by Joseph
Michael Zink. This label seems plausible.

Incipit 851.002.964-1.1.1 classified as Werner, C. con-
tains limited information besides the musical notation, thus
a check is impossible.

Incipit 702.020.071-1.1.1 classified as Simonis, Ferdinando
is called Les noces? and is part of a collection of French
and Italian songs produced during Simonis’ lifespan. The
incipit is said to be arranged by the Frenchman André Jean
Baptiste Bonaventure Dupont, and its manuscript is stored
in Saint Omer’s (France) public library. It seems more
likely that Dupont is the composer of this song. The la-
bel of this incipit is questionable.

Incipit 240.006.107-1.1.1 classified as Spohr, Louis is called
Da wir uns niemals wieder finden in B-Dur and is part of a
collection of principally German melodies. The collection
originated in 1808, which is during the German Spohr’s
lifespan. While this contextual evidence seems to make the
attribution of this incipit to Spohr plausible, using any of
the other search methods shows an abundance of related in-
cipits by Mozart. Indeed, this incipit is a piece by Mozart.
This example shows that contextual and music notational
inspection are complementary methods of composer attri-
bution analysis.

Incipit 650.007.101-1.1.2 classified as Meyerbeer, Gia-
como is called Falsibordoni in Phrygian mode and is part
of a homonymous collection of the same melody in dif-
ferent modes. This collection was put together in 1880,
while Meyerbeer died in 1864. Still, it is possible that a
piece Meyerbeer wrote was transposed in all modes after
his death. Meyerbeer started studying music in Italy in
1816 [20], which explains the Italian name and the collec-
tion is stored in the Italian Archivio diocesano. The context
seems to make the composer classification plausible, but
once more music notational analysis shows otherwise. The
query for 650.007.101-1.1.2 is shown in Figure 6, while
the resulting Meyerbeer composition 452.020.643-1.2.1 is
shown in Figure 7 for comparison.

Incipit 500.195.253-1.2.1 classified as Paisiello, Giovanni
is called Tenebre e pianto siamo in F-Dur and is part of a

84

Figure 7. The incipit for 452.020.643-1.2.1, which is the
resulting incipit (by Giacomo Meyerbeer). Notice how the
incipit differs from the one in Figure 6.

collection of two other Italian melodies, produced in 1770.
This is halfway through the Italian Paisiello’s life, which
makes this attribution plausible.

Incipit 150.204.949-1.1.1 classified as Gräfe, Johann Friedrich
titled Ich hab’ es oft gesagt in G-Dur is part of a collec-
tion that was produced during Gräfe’s life, and his name
appears next to one other melody in this collection: Get-
rost mein Sinn erheitre dich in F-Dur. Furthermore, the
University of California owns another collection [21] that
includes melodies of Gräfe, along with one called Ich hatt’
es oft gesagt in B-Dur. The RISM ID of this collection is
000.114.155, which indeed gives us the melody with signa-
ture 000.114.246-1.1.1 that is an identical, but transposed,
copy of our original incipit. This is a confirmed label.

Incipit 454.013.591-1.1.1 classified as Kluger, Johann Flo-
rian contains limited information besides being a part of
a collection with dances exclusively written by Friedrich
Joseph Kirmair and Josef Gellert. This collection contains
solely German titles and storage locations, while all of the
collections in the RISM database including Kluger’s works
are located in Czech libraries. The only information in
favour of this label is the overlap in timespan of the three
composer’s lives and the 1800-1824 timestamp of the col-
lection. The correctness of this label is questionable.

Three out of eight labels turned out to be quite plausible
guesses. This precisely corresponds with the accuracy of
the best k-NN classifier found using a test set. This finding
makes the classifier results more convincing.

It took a fair amount of time to manually check these la-
bels, but it takes significantly less time than having to come
up with an initial guess via human effort. An effective
strategy proved to consist of three stages. First, the col-
lection the incipit is from can be scanned for similarities in
composers or titles. Next, the timespans of the composer’s
lives and song publications should correspond. Another
strategy is to compare languages, storage locations of the
manuscripts, and country of birth or other important lo-
cations in the life of a composer. A final (or perhaps first)
check is to analyse the matches by musical notation, as this
will sometimes conflict with the results found in the con-
textual analysis. A good amount of music historical knowl-
edge is necessary for this manual effort of label checking.

4. CONCLUSION

The search method pi2mw2dur1 gives the best melodic
similarity retrieval results. The method pi2mw0dur1 is
a good second choice, and might even be preferred when
computation cost is factored in, as the ignored factor doesn’t
need to be calculated. Using exact pitch seems to be much
more accurate than any other pitch rater, while the other

settings do not matter as much and can be toggled off for
an increase in speed.

Whether the best scoring methods are truly nearly equal
in results is an interesting topic for further research. We as-
sumed the RISM search engine uses a search method that
is equal to pi2mw0dur0, it only uses exact pitch, and
used that method as a baseline for the other search meth-
ods. To provide a true comparison with RISM’s search en-
gine, we would have to request the results for our ground
truth queries and use this as the baseline. This is an oppor-
tunity to make our findings more reliable, yet under our as-
sumption we expect that our claims will remain the same.
Another point of improvement would be to look at the
complementarity of search methods. Whereas the search
methods are analysed in isolation, it might be possible that
certain methods are suitable for one type of melody, while
another method covers other types. Together, the range of
accurate retrievals might be greater than they would be in
isolated methods.

The deanonymisation process with a k-NN as described
above has an acceptable accuracy (three out of eight plausi-
ble labels in the manual check), but the procedure is not ac-
curate enough to become automated. A suggestion for fur-
ther research would be to check the resulting labels more
vigorously, and to do this for more classifications than the
eight offered in this paper.

The accuracy of a stand-alone program for deanonymi-
sation of incipits is questionable, but we’ve shown that
using computerised suggestions from classification algo-
rithms can help reduce the manual labour of labelling the
songs. The most cost-efficient approach seems to be a
combined effort of a computer scientist reducing the search
space and offering composer suggestions to a music histo-
rian who analyses only a handful of possible composers,
instead of the thousands the problem originally started with.
For the purpose of giving suggestions, or narrowing the
possible composers down to merely a few names, inter-
esting follow-up research would be to test the accuracy of
a k-NN that returns multiple labels. Instead of returning
the best label, such a k-NN could return the top N com-
poser suggestions. Whenever the true label is in this set
of N labels, it is marked as correct. This will result in
an equal or higher accuracy as the original k-NN used in
this paper (a multiple label k-NN with N = 1), as the
first result is always the same, with the multiple label k-
NN having the benefit of having additional guesses. Such
a classifier could conceivably achieve an accuracy that is
worth automatising, whose result would be a set of possi-
ble composers that the music historian has to inspect for
each incipit.

Points for further research include using the manual ver-
ifying strategies as features in machine learning applica-
tions, such as a k-NN. Perhaps using the collection an in-
cipit is in, the title and composer’s language, and the times-
pans to make a labelling decision can increase the accuracy
of deanonymisation classifiers.

This research suggests that improving RISM’s innate search
engine is worthwhile, as the performance of alternative
search techniques was found to be better than the baseline.

85

Computerised suggestions for composer labels are found
to be a promising topic with room for improvement.

5. REFERENCES

[1] RISM, [accessed 2016-07-01]. [Online]. Available:
http://www.rism.info/

[2] R. Typke, M. den Hoed, J. de Nooijer, F. Wiering, and
R. C. Veltkamp, “A ground truth for half a million mu-
sical incipits,” Journal of Digital Information Manage-
ment, vol. 3, pp. 34–38, 2005.

[3] Monochord, [accessed 2016-07-01]. [Online]. Avail-
able: http://www.projects.science.uu.nl/monochord/

[4] J. Wolkowiczand and V. Keselj, “Analysis of impor-
tant factors for measuring similarity of symbolic mu-
sic using n-gram-based, bag-of-words approach,” Ad-
vances in Artificial Intelligence Lecture Notes in Com-
puter Science, pp. 230–241, 2012.

[5] G. Toussaint, “The geometry of musical rhythm,” Dis-
crete and Computational Geometry Lecture Notes in
Computer Science, pp. 198–212, 2005.

[6] P. van Kranenburg, A. Volk, F. Wiering, and R. C.
Veltkamp, “Musical models for folk-song melody
alignment,” Proceedings of the International Confer-
ence on Music Information Retrieval, pp. 507–512,
2009.

[7] J. Diet and M. Gerritsen, “Encoding, searching, and
displaying of music incipits in the rism-opac,” Music
Encoding Conference Proceedings, 2013 and 2014, pp.
11–14, 2015.

[8] P. van Kranenburg, “A computational approach to
content-based retrieval of folk song melodies,” Ph.D.
dissertation, Utrecht University, 2010.

[9] A. Volk, “The study of syncopation using inner metric
analysis: Linking theoretical and experimental analysis
of metre in music,” Journal of New Music Research,
vol. 37, no. 4, pp. 259–273, 2008.

[10] C. D. Manning, P. Raghavan, and H. Schtze, Introduc-
tion to Information Retrieval. NY, USA: Cambridge
University Press New York, 2008.

[11] J. Urbano and M. Schedl, “Minimal test collections for
low-cost evaluation of audio music similarity and re-
trieval systems,” International Journal of Multimedia
Information Retrieval, vol. 2, no. 1, pp. 59–70, 2013.

[12] J. Bergstra and Y. Bengio, “Random search for hyper-
parameter optimization,” Journal of Machine Learning
Research, vol. 13, pp. 281–305, 2012.

[13] M. B. Kelly, “Evaluation of melody similarity mea-
sures,” Master’s thesis, Queens University, 2012.

[14] Text Retrieval Conference, “trec eval,” 2009, [ac-
cessed 2016-07-01]. [Online]. Available: http:
//trec.nist.gov/trec eval/index.html

[15] S. Chatzichristofis, K. Zagoris, and A. Arampatzis,
“trec eval online,” 2011, [accessed 2016-07-01].
[Online]. Available: http://thetrecfiles.nonrelevant.net/

[16] ——, “The trec files: the (ground) truth is out there,”
Proceedings of the 34rd Annual International ACM SI-
GIR Conference on Research and Development in In-
formation Retrieval, 2011.

[17] “pytrec eval,” [accessed 2016-07-01]. [Online]. Avail-
able: http://www.github.com/XI-lab/pytrec eval

[18] B. Peddi, H. Xiong, and N. ElSherbiny, “Trec eval:
Ir evaluation,” 2010, [accessed 2016-07-01]. [Online].
Available: http://curric.dlib.vt.edu/modDev/package
modules/MidtermModuleTeam5-TRECevalFinal.pdf

[19] A. B. Hassanat, M. A. Abbadi, G. A. Altarawneh, and
A. A. Alhasanat, “Solving the problem of the k param-
eter in the knn classifier using an ensemble learning
approach,” International Journal of Computer Science
and Information Security, vol. 12, no. 8, pp. 33–39,
2014.

[20] H. Becker, Giacomo Meyerbeer in Selbstzeugnissen
und Bilddokumenten. Reinbek: Rowohlt Verlag,
1980.

[21] “University of California collection,” [accessed 2016-
06-25]. [Online]. Available: http://beta.worldcat.org/
archivegrid/collection/data/830325643

86

(a) All retrieval methods using Kranenburg pitch. The average AUC of the meth-
ods is 0.21.

(b) All retrieval methods using exact pitch. The average AUC of the methods is
0.38.

(c) All retrieval methods using zigzag pitch. The average AUC of the methods
is 0.31.

Figure 8. The precision-recall curve for all methods from
the pitch rater family. The average AUC of the methods is
shown in the titles.

A. PRECISION-RECALL CURVES PER SETTING

87

(a) All retrieval methods using no duration rater. The average AUC of the meth-
ods is 0.28.

(b) All retrieval methods using the fixed duration rater. The average AUC of the
methods is 0.33.

(c) All retrieval methods using the scaled duration rater. The average AUC of
the methods is 0.30.

Figure 10. The precision-recall curve for all methods from
the duration rater family. The average AUC of the methods
is shown in the titles.

(a) All retrieval methods using no weight-based rater. The average AUC of the
methods is 0.35.

(b) All retrieval methods using the ima weighted rater. The average AUC of the
methods is 0.23.

(c) All retrieval methods using the ima combined rater. The average AUC of the
methods is 0.32.

Figure 9. The precision-recall curve for all methods from
the weight-based rater family. The average AUC of the
methods is shown in the titles.

88

B. AUC TABLE FOR THE SEARCH METHODS

Method AUC Method AUC Method AUC
pi1mw0dur0 0.30 pi2mw0dur0 0.35 pi3mw0dur0 0.33
pi1mw0dur1 0.31 pi2mw0dur1 0.41 pi3mw0dur1 0.36
pi1mw0dur2 0.32 pi2mw0dur2 0.38 pi3mw0dur2 0.35
pi1mw1dur0 0.06 pi2mw1dur0 0.31 pi3mw1dur0 0.22
pi1mw1dur1 0.12 pi2mw1dur1 0.41 pi3mw1dur1 0.31
pi1mw1dur2 0.03 pi2mw1dur2 0.39 pi3mw1dur2 0.24
pi1mw2dur0 0.24 pi2mw2dur0 0.39 pi3mw2dur0 0.29
pi1mw2dur1 0.27 pi2mw2dur1 0.42 pi3mw2dur1 0.35
pi1mw2dur2 0.26 pi2mw2dur2 0.38 pi3mw2dur2 0.33

Table 4. Table of the AUC for each of the search methods.

89

90

FORMALIZING QUALITY RULES ON MUSIC NOTATION – AN
ONTOLOGY-BASED APPROACH

Samira Cherfi, Fayçal Hamdi, Philippe Rigaux
CNAM

firstname.lastname@cnam.fr

Virginie Thion
IRISA

virginie.thion@irisa.fr

Nicolas Travers
CNAM

nicolas.travers@cnam.fr

ABSTRACT

We address the issue of expressing and evaluating quality
rules on music notation. Since music engraving is a highly
flexible process that can hardly be constrained by universal
principles and rules, score production still heavily relies on
the user expertise in order to make context-dependent de-
cisions. We therefore propose a quality management ap-
proach based on a formal modeling of this expertise. We
show how to use such a model to express context-aware
rules that can be evaluated either a priori to prevent the
production of faulty notations, or a posteriori to assess
quality indicators regarding a score or a corpus of scores.
The paper proposes a simple ontology for musical notation,
shows how quality rules can be formally stated and eval-
uated, and illustrates the approach with examples drawn
from a large digital library of scores.

1. INTRODUCTION

Music production is now strongly assisted by sophisticated
and powerful computer softwares. They allow to com-
bine all the elements of the notation language, and can in
most cases make appropriate decisions regarding quality-
sensitive aspects such as, e.g., layout or spacing. We could
therefore expect that computer technology would guaran-
tee the production of high-quality scores, validated with
respect to a set of well-accepted engraving principles that
constrain the notational language [1].

1.1 Quality issues

However, it is well-known that this language is highly flex-
ible, due to many cultural and historical contexts where
each one presents their own idiosyncrasies. There is an
inherent, context-dependent freedom in the adjustment of
the common graphic and symbolic elements that constitute
a specific score, and this prevents the enforcement of even
the most widely accepted principles which can turn out to
be inappropriate in some specific cases. To take one ex-
ample, transcribing a manuscript, in particular for ancient
music, raises trade-off issues between the necessity to pre-
serve the original intent of the author, and the adaptation of

Copyright: c©2017 Samira Cherfi, Fayçal Hamdi, Philippe Rigaux et

al. This is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original author

and source are credited.

handwritten notation to the custom knowledge of today’s
performers.

The authors of the present paper have been confronted
with the need to address issues related to the consistent
production of high-level quality corpora encoded in XML-
based formats (i.e., MusicXML [2] or MEI [3, 4]), and had
to deal with the poor support offered by existing tools. The
current, ad-hoc solution adopted so far is to publish a book-
let of editorial rules prior to the production of the corpus
scores. They often take the form of a textual, informal
document that enumerates guidelines regarding the encod-
ing of music and helps the editor(s) to find a consistent
approach balancing the need to both preserve the sources
and to deliver a consistent material to users (musicologists,
performers, librarians) who access the corpus.

Author

Editor

Score
repository

Editorial
rulespublishes applies to

interprets

Score
engraver

score

??

Figure 1. Editorial rules

The approach is not fully satisfying. As shown by Fig. 1,
there is no direct nor formal association between the rules
and the encoded scores. The link depends on both the in-
terpretation of a user, and the specific features of the score
engraver. Even though we assume that the scores are edited
by expert authors, keen to comply with the recommenda-
tions, nothing guarantees that they are not misinterpreted,
or that the guidelines indeed result in a satisfying encod-
ing. Moreover, rules that are not backed up by automatic
validation safeguards are clearly non applicable in a col-
laborative context where un-controlled users are invited to
contribute to the collections.

1.2 Formalizing editorial rules

Editorial rules are based on two important assumptions.
First, they assume that both the editor and the author share
a common expertise on music notation, and that this ex-
pertise supports rules, conveyed by sentences in natural
language whose meaning is expected to be unambiguous.

91

Second, the author is assumed to “process” the rules while
creating a new score, and guarantees that the resulting en-
coding fulfills them.

In the present paper we propose to formalize these as-
sumptions, in such a way that expertise, rules, and rules
fulfillment can all be explicitly stated and automatically
validated. The main components of the approach are sum-
marized by Fig. 2. Its foundations consists of an ontology
of music notation, representing the concepts and domain-
specific knowledge. Rules can be expressed (by an editor,
possibly helped by experts) as formal sentences built from
these concepts, and validation can be carried out by a rea-
soner that, given an instance of a score (interpreted as an
instance of the ontology concepts), checks the rules fulfill-
ment.

Figure 2. Formalization of rules

The rules might differ from one corpus to another, e.g.,
there is no reason to assume that the same set of constraints
hold for a corpus of Renaissance music and for the Com-
plete Works of Anton Webern. This approach therefore al-
lows to specialize the definition of what a correct engraving
is in a specific context, and can be seen as a complement
of Finale, Sibelius or MuseScore that deliberatley aim at
proposing full-featured, non specialized engraving options.

The rest of the paper intends to demonstrate the promis-
ing perspective brought by associating a sophisticated en-
coding of music notation (say, using the MEI format) with
knowledge-based management tools. We use as a driving
motivation the expression and control of editorial rules on
music scores corpora. Section 2 gives an overview of the
approach, along with background notions. Section 3 pro-
poses a simple ontology, and Section 4 examples of edito-
rial rules. We discuss how the methodology can be used in
a broader perspective in the concluding section.

2. BACKGROUND AND MOTIVATION

Let us first develop why, in our opinion, current technol-
ogy falls short to support quality assessments on score en-
coding. We then provide some background on the field of
formal ontologies and reasoning, and explain how this field
can be used in the context of music notation.

2.1 Dealing with quality issues

The flexibility of music notation is such that it is difficult
to express and check quality constraints on the representa-
tion that would universally hold. For instance, many for-
mats we are aware of do not impose that the sequence of
notes/rests in a measure exactly covers the measure dura-
tion defined by the time signature. As another example, in
polyphonic music, nothing guarantees that the parts share
common signatures and durations. So, even with the most
sophisticated encoding, we may obtain a score presenta-
tion that does not correspond to a meaningful content (the
definition of which is context-dependent), and will lead to
an incorrect layout (if not a crash) with one of the possible
renderers.

Besides, scores are being produced by individuals and in-
stitutions with highly variables motivations and skills. By
“motivation”, we denote here the purpose of creating and
editing a score in a digital format. A first one is obvi-
ously the production of material for performers, with var-
ious levels of demands. Some users may content them-
selves with schematic notation of simple songs, whereas
others will aim at professional editing with high quality
standards. The focus here is on rendering, readability and
manageability of the score sheets in performance situa-
tion. Another category of users (with, probably, some over-
lap) are scientific editors, whose purpose is rather an accu-
rate and long-term preservation of the source content (in-
cluding variants and composer’s annotations). The focus
will be put on completeness: all variants are represented,
editor’s corrections are fully documented, links are pro-
vided to other resources if relevant, and collections are
constrained by carefully crafted editorial rules. Overall,
the quality of such projects is estimated by the ability of
a document to convey as respectfully as possible the com-
poser’s intent as it can be perceived through the available
sources. Librarians are particularly interested by the search-
ability of their collections, with rich annotations linked to
taxonomies [5]. We finally mention analysts, teachers and
musicologists: their focus is put on the core music mate-
rial, minoring rendering concerns. In such a context, part
of the content may be missing without harm; accuracy, ac-
cessibility and clarity of the features investigated by the
analytic process are the main quality factors.

Finally, even with modern editors, qualified authors, and
strong guidelines, mistakes are unavoidable. Editing mu-
sic is a creative process, sometimes akin to a free drawing
of some graphic features whose interpretation is beyond
the software constraint checking capacities. A same re-
sult may also be achieved with different options (e.g., the
layer feature of Finale), sometimes yielding a weird and
convoluted encoding, with unpredictable rendering when
submitted to another renderer.

92

2.2 Knowledge formalization with OWL ontologies

One of the major achievement of the Semantic Web ini-
tiative [6] is the development of OWL, a language to rep-
resent ontologies. 1 An ontology is a set of axioms and
rules that provide formal statements about the concepts (or
“classes”) and concept occurrences (or “individuals”) of
some knowledge domain. For instance, Note is a basic
concept, which can be represented by a class in an OWL
ontology, and some A4 in a score is an occurrence of the
concept which can as well be represented in the ontology
as an individual.

OWL supports inference mechanisms that derive new facts
from those explicitly present in the ontology. As a trivial
example, since A4 is a Note, which itself is a sub-class of
Sound, a reasoner can infer that A4 is a Sound.

Ontologies have been recognized as an essential compo-
nent for representing knowledge. An ontology commonly
agreed to in a given domain constitute an essential basis
to express formal statement that represent some domain
knowledge, and to build sound reasoning and inference
mechanisms related to this knowledge. The formalization
of ontologies and reasoning also allows to automatically
and safely validate facts, rules and constraints. As such, it
constitutes an invaluable support to make sense to massive
amounts of semi-structured data that would otherwise be
hardly interpretable. While the initial purpose of seman-
tic web technology is the mastering of Web data, its use
has now spread to highly specialized knowledge domains.
We make the case here for applying this approach to music
notation.

The ontology proposed here is formalized using the frag-
ments of OWL 2 [7] corresponding to the description logic
SROIQ(D) [8]. The use of OWL 2 is privileged be-
cause it provides a high expressiveness allowing seman-
tic reasoners to verify the consistency of data, to derive
new knowledge or to extract information already present.
In addition, rules can be added to the ontology to express
complex knowledge and provide more inference possibil-
ities. A language of choice is SWRL, the Semantic Web
Rule Language [9], which is brefly introduced in Section 4
along with rules examples.

2.3 Ontology-based quality assessment

Axioms and rules that compose an ontology can be used
to assess the quality of music notation, assuming the latter
is represented in some structured format (e.g., Kern, Mu-
sicXML, MEI, etc.). We can then interpret the content of
a score in terms of the ontology concepts (see Fig. 3 for an
illustration). This helps to reduce the conversion of nota-
tion elements from a score into facts representing concepts
occurrences such as, e.g., “in this voice, in this measure,
and for this duration, we find this chord.” The set of facts
that we obtain together represent the notational knowledge
encoded in the score, and we can then confront this knowl-
edge to rules that state what are the fair facts.

In formal terms, new facts are produced and a reasoner
can check if the ontology, augmented with facts and rules,

1 https://www.w3.org/TR/owl-features/

Formal
rules A

Ontology
for music notation

supports

Reasoner

Validation /
inference

Formal
facts

supports

scores (MusicXML, MEI)

Encoding to
Facts

Figure 3. Representing a score as ontology facts

is still consistent and hence provide an information about
the notation quality (e.g. accuracy, correctness, etc.). For
instance, a fact which states that an event is at the same
time a lyric and a rest, introduces an inconsistency when
the ontology contains an axiom that says that an event is a
disjoint union of these two classes. As another example, a
rule stating that time intervals of two different events can’t
overlap, helps to detect imprecisions in the expression of
intervals related to voice events.

As illustrated by Fig. 3, the only non-standard component
in this validation process (assuming a well-accepted on-
tology of music notation) is the converter that takes some
score encoding as input and produces facts (usually en-
coded in RDF) as output. Implementating such conversion
is definitely easy, and this makes the approach a quite at-
tractive one, given its potential benefits.

3. THE ONTOLOGY

We now present a concrete application of the above prin-
ciples, based on an ontology of music notation specifically
designed as a support for expressing quality constraints.
Some preliminary words of caution are here in order.

3.1 Goals and Restrictions

The popularity and advantages of ontologies led to their
usage in managing musical information. We can find hight
level or meta data oriented ontologies to manage metadata
about musical works [10]. For more content oriented us-
age, Raimond and al. proposed the Music Ontology [11] to
manage basic information about musical works and artists.
The objective is to integrate musical works in the Seman-
tic Web and the ontology is consequently used as a base
for many music-oriented web services. A similar work
is the Kanzaki Ontology [12], a music vocabulary which
describes classical music and performances. These on-
tologies describes music at a work level and are suitable
to describe general informations such as music categories

93

Figure 4. The music notation ontology (OWL modeling)

(Chamber music, Choral music etc.) and performances
(musicians, instruments etc.). To handle musical content
descriptions, to enhance and facilitate their sharing among
communities of both novices and experts, there is a need
for more content oriented ontologies. We do believe that
such a model would be of invaluable help to let the com-
munity formalize discussions and proposals and address
issues related to the topic. We hope that the present work,
although quite limited in its scope, can serve as an encour-
agment to initiate such an endeavour.

The proposed ontology is by no means intended to cover
the whole knowledge of music notation throughout ages;
this would be an extremely ambitious task (at least for the
paper’s authors) which, at the very least, would require a
long, collaborative process. The part of music notation that
we aim at modeling here deliberately ignores issues related
to the graphical layout of score. This aspect is major in es-
timating the quality of a score, as witnessed by the count-
less recommendations that can be found in reference such
as [1]. However, it also constitutes a part of quality as-
sessment which can hardly be evaluated from the encoding
found in MusicXML or MEI formats. For the sake of sim-
plicity and validation of our approach, we therefore chose
to focus on the part of the notation that relates to “music
content” in the following. Separating content from layout
is not trivial, and to the best of our knowledge there does
not exist a common agreement on this issue. We do not
pretend to solve it here, but used the intuitive distinction
between layout and content as a guideline to support the
following decisions:

• All pure graphic instructions: paper size, margin,
fonts, glyphs and positioning coordinates, are not
considered.

• Directions regarding the assignment of voices and
parts on staff are also ignored; this include the clef
and textual annotations associated with staves.

This essentially lefts elements that organize the music
content are parts, parts in voices and voices as sequences
of events. This is elaborated next.

3.2 The MusicNote Ontology

Fig. 4 shows the main concepts of our ontology 2 . The fig-
ure is produced by the Protégé editor 3 . The explanations
that follow should make the major features clear event to
non-experts. Essentially, a score is modeled as a hierar-
chical structure, where leaves consist of voices, and inner
nodes of parts. A voice is a sequence of events, occur-
rences of the abstract class Event which is refined in sev-
eral sub-classes. We detail first the structural aspect, then
the voice representation.

3.2.1 Structural aspects

Let us explain the structural aspect first by taking as an
illustration the sketch of a piano concerto score (Fig. 5).

GroupPart

SinglePart
Top-level = score

piano (soloist)

Orchestra

Strings Winds

violin 1 cello oboe
… …

flute

Voice

Figure 5. Structure of a score (GroupPart and
SinglePart concepts)

2 http://cedric.cnam.fr/isid/ontologies/files/MusicNote.html
3 http://protege.stanford.edu/

94

A score is made of parts. Class Part represents an ab-
stract concept which is refined in two sub-concepts:

1. GroupPart. A group (of parts) consists of a set
of subparts, and mostly serves the organisational as-
pect of the score. For instance (Fig. 5), the orchestral
material of a concerto score typically defines a group
for wind instruments, another one for string instru-
ments, etc.

2. SinglePart. A single part encapsulates the mu-
sic notation elements assigned to an individual per-
former (instrument or vocal). Fig. 5 shows for in-
stance a single part for the soloist (piano), another
one for the violins, cellos, etc.

The content of group part may actually consist of an het-
erogenous association of single and group parts, as illus-
trated by the top-level node of Fig. 5 that associates a group
(the orchestra) and a single part (the soloist). This is re-
flected in the modeling of the ontology.

Note that we do not explicitly introduce a score concept.
In our model, a score is simply the root of the tree of parts,
and everything it contains. Such a concept would however
be useful to introduce score-level metadata (composer, ti-
tle, etc.) that would come as siblings of the parts hierar-
chy. Since we focus on the music content representation,
we safely keep the model simple.

3.2.2 Core concepts: events and voices

A single part is a container for the core elements of music
notation: events and voices. An event denotes the produc-
tion of a noise artifact during a specific time period, called
the duration of the event. Note that duration in this context
has an absolute meaning, and corresponds to an open time
interval fully contained in the temporal coverage of the
score. The event concept can be refined based on the nature
of the produced noise: it can be a sound (SoundEvent),
text or syllables to be sung (SyllEvent) or a silence ().
The SoundEvent concept itself is decomposed as fol-
lows:

• Note denotes a simple, non-decomposable sound
that can be represented by the well-known attributes
pitch, octave and accidental. A more radi-
cal choice would be to simply represent a note by its
frequency.

• Chord is an event composed of at least two notes
that all share the same duration.

The status of RestEvent is debatable. A rest can be
interpreted as an absence of event for a certain duration,
and, in a radical perspective that would try to forget the id-
iosyncratic aspects of music notation, there is a priori no
need to supply such a concept. One could also argue that
rests are first-class notational objects that deserve to be ex-
plicitly represented. We can probably find contexts where
a half rest is more appropriately represented as two quarter
rests. A true, complete modeling of music ontology would
have to carefully examine such cases in order to reach a
large agreement.

A voice is a sequence of events whose durations do not
overlap. A voice extends over a time range that can (op-
tionally) be decomposed as a sequence of measures. A
property of a measure is the time signature, the value of
which can (extreme case) vary from one measure to an-
other.

In summary, a score can essentially be seen, in our model,
as a synchronization of an unbounded number of parts,
each defining an internal organization of a finite time range
split in measures.

3.2.3 A full example

{
�

�
Ah,�

� �

�

�

�

�� �
de !

�

�
que
�

��
sens

��
je

�

�{ �

�
� � � �

��

� �
23� 	

�

�

�

23
{ tu

�

�
é

��

�

�
d'in qui

�

��

Figure 6. A full example

Let us consider as a full example the score shown in Fig. 6,
and its modeling. It consists of two parts, lets’ call them
“vocal” and “accompaniment”. The vocal part consists (in
our modeling) of two voices, the first one (called “sopr”)
composed of sounds, and the second one (“lyrics”) of syl-
lables (note that there is no one-to-one rythmic correspon-
dence between syllables and notes, as some syllables cover
several notes). The second part consists of a single voice,
“bass”. The structure is summarized by Fig 7.

Top-level = score

Sopr.

bass lyricsmelody

Acc

Figure 7. Structure of the example score

Consider now the details of each voice (summarized by
Fig. 8). Voice “sopr” is a monophonic voice, instance of
SoundVoice, each event being either a single note or a
rest. Voice “lyrics”, instance of LyricsVoice, consists
of syllables. Finally, voice “bass”, instance of SoundVoice,
contains a few complex events, instance of Chords.

This example shows the main feature of how we can in-
terpret a score notation as fact stated with respect to the on-
tology context. Those facts can automatically be extracted
from the MusicXML or MEI encoding, represented in a
convenient form (typically as RDF triples) and sent, along
with ontology and rules, to a reasoner that will determine
the consistency of the whole. Among other motivations,
this can serve as a setting to validate quality rules, as dis-
cussed in the next section.

95

vsopr(t) =

⊥, t ∈ [0, 12[
D5, t ∈ [12, 20[
⊥, t ∈ [20, 22[
E5, t ∈ [22, 23[
F5, t ∈ [23, 24[
D5, t ∈ [24, 28[
C#5, t ∈ [28, 32[
⊥, t ∈ [32, 34[
A4, t ∈ [34, 36[

vlyrics(t) =

⊥ t ∈ [0, 12[
Ah, t ∈ [12, 20[
⊥, t ∈ [20, 22[
que, t ∈ [22, 23[
je, t ∈ [23, 24[
sens, t ∈ [24, 32[
⊥, t ∈ [32, 34[
d’in, t ∈ [34, 36[

vbass(t) =

D4, t ∈ [0, 8[
C4, t ∈ [8, 12[
< B3es,D4 >, t ∈ [12, 16[
A3, t ∈ [16, 20[
G3, t ∈ [20, 24[
< A3, C4is >, t ∈ [24, 30[
G3, t ∈ [24, 32[
F3, t ∈ [32, 36[

Figure 8. Voices as sequences of events (measures 1 to 3)

4. QUALITY RULES

Rules express constraints that music scores should respect.
A language of choice to express rules is SWRL [9] which
is briefly introduced first. We then enumerate some of the
quality rules that can be expressed in this OWL+SWRL
framework and conclude the section with few examples.

4.1 SWRL

SWRL is a language that allows to express rules that take
the form of an implication: a body is a list of statements
which are interpreted as true or false depending on the con-
text, and head is a statement whose truth value is inferred
from the evaluation of the body. It is basically similar to
rules in Datalog [13]. Let’s take a simple example: the
following rules define a MajorChord as a Chord with
three notes a, b, c such that the interval between a and b
is a major third (4 semi-tones) and the interval between b
and c is a minor third (3 semi-tones) 4 .

Chord(?x), hasNote(?x, ?a), hasNote(?x, ?b),
hasNote(?x, ?c),
gap(?a, ?b, 4), gap(?b, ?c, 3)

-> MajorChord(?x)

Symbols of the form ?x denote variables. The interpre-
tation of this rule is essentially: if we can find an instantia-
tion of the variables x, a, b and c such that the body of the
rule is evaluated as true, then we can infer that the head is
true as well, i.e., x is an occurrence of the new, intentional
concept MajorChord.

This simple example shows the kind of reasoning that al-
lows to produce new knowledge about a set of facts (taken
from a score encoding), and given a modeling of the do-
main supplied by a generic ontology. The MajorChord
can now be reused just as any other concept, and we can
thus build sophisticated reasoning chains that can be eval-
uated by a reasoner on a score or a corpus of scores. Let us
examine the application of this idea for quality assessment.

4.2 Quality dimensions

Quality measures are commonly organized according to
the following quality dimensions [14]: accuracy, complete-
ness, trust and consistency. We give below, for each di-
mension, some possible examples of quality rules for mu-
sic notation.

4 For the sake of illustration, the example rely on obvious simplifying
assumptions.

Accuracy measures in what extend data values correspond
to their considered correct representation. Classically, two
kinds of accuracy are considered: the syntactic accuracy
and the semantic one. The syntactic accuracy measures the
adequacy of data to its expected format. A typical syntac-
tic accuracy rule could check that (AccR1) each note is an
existing one (roughly speaking in the domain {C, D, E, F,
G, A, B, C}), or that (AccR2) a voice nomenclature is re-
spected, for instance with voices in the domain {Superius;
Cantus; Altus; Contratenor}, or that (AccR3) at most one
syllable is associated with a note.

The semantic accuracy measures the closeness of a value
to a considered true real-world value. Its measurement
supposes that there is somewhere a reference for the con-
tent to be checked, namely a business expert knowledge
or another source to compare to. A syntactic accuracy
rule could check that (AccR4) the birthdate associated with
each compositor corresponds to the birthdate of a trusted
other internal or external given source (e.g. Wikipedia if
considered as trustable enough).

The Completeness measures in what extent the score con-
tains all the required information, concerning data and meta-
data. A syntactic completeness rule could check that (Comp-
R1) a figured bass is present, or that (CompR2) at least one
syllable is associated with each note, or that (CompR3)
each measure is complete according to the figured bass,
or (CompR4) the presence of some meta-data.

The Trust dimension concerns the trust-worthiness of each
dataset, for instance by (TrustR1) checking the provenance
information and the confidence in the provider.

The Consistency measures the adequacy of data to se-
mantic rules. Such semantic rules may concern any ele-
ment of the music score. A consistency rule could check
that (ConstR1) each note can be played by the instrument
(or voice) it is associated with, or that (ConstR2) the musi-
cal instruments were created before the compositor date of
death.

4.3 Rules expression

Rules such as those above can be expressed with SWRL
according to the ontology defined in Section 3. For in-
stance, the rule (AccR1) may be expressed by the follow-
ing formula.

Note ≡ {A} t {B} t {C} t {D} t {E} t {F} t {G} (1)

96

As another example, the following rule specializes (Con-
stR1) by stating that if a measure (?m) includes several
notes (?e1) and (?e2) played at the same time (?i1 =?i2)
then it belongs to a part (?pt) to which is associated a poly-
phonic instrument (?inst).

Part(?pt) ∧ hasInstrument(?pt, ?inst)

∧Measure(?m) ∧ hasPart(?m, ?pt)

∧ SoundEvent(?e1) ∧ SoundEvent(?e2)

∧ differentFrom(?e1, ?e2)

∧ hasMeasure(?e1, ?m) ∧ hasMeasure(?e2, ?m)

∧ during(?e1, ?i1) ∧ during(?e2, ?i2) ∧ equals(?i1, ?i2)

=⇒ Polyphonic(?inst)

(2)

As shown by the complexity of this last rule, this requires
either a close cooperation between a domain expert (e.g.,
a musicologist, a librarian) and a OWL/SWRL expert, or
advances interfaces that let users build their own rules and
control their meaning. This constitutes therefore both an
exciting and promising axis for interdisciplinary research.

5. CONCLUSION

We presented in this paper an approach that aims at manip-
ulating the content of music notation at a high level of ab-
straction, using concepts, knowledge and rules that lever-
age traditional encoding formats. The proposed method-
ology relies on OWL / SWRL, and we outlined the main
steps: formal domain modeling with an OWL ontology,
production of facts from the content of MusicXML or MEI
documents, expression of rules, and production of new facts
and knowledge thanks to a reasoner.

The work presented here is in progress, and is intended
both to demonstrate to the TENOR community what can
potentially be achieved with techniques that, as far as we
know, have not yet been investigated in the music nota-
tion domain, and to encourage feedback or direct participa-
tion. Building an ontology requires all kinds of expertise,
and aims at reaching the largest possible agreement. The
present proposal is a step in this direction.

We are currently implementing a platform that focuses
on quality evaluation rules. This is motivated by practical
needs (we maintain on-line cooperative corpus for which
quality issues are a primary concern). This restriction also
makes investigations and experiments easier. We expect
to be able to demonstrate the platform features during the
conference, and hope that it will encourage discussions
with the TENOR participants beyond notation quality is-
sues.

Acknowledgments

This work is partially supported by the GioQoSo project 5 ,
and the ANR MuNIR project 6 .

6. REFERENCES

[1] E. Gould, Behind Bars. Faber Music, 2011.
5 http://gioqoso.irisa.fr/
6 http://cedric.cnam.fr/index.php/labo/projet/view?id=41

[2] M. Good, MusicXML for Notation and Analysis. W.
B. Hewlett and E. Selfridge-Field, MIT Press, 2001,
pp. 113–124.

[3] P. Rolland, “The Music Encoding Initiative (MEI),” in
Proc. Intl. Conf. on Musical Applications Using XML,
2002, pp. 55–59.

[4] “Music Encoding Initiative,” http://music-encoding.
org, Music Encoding Initiative, 2015, accessed Oct.
2015.

[5] J. Riley and C. A. Mayer, “Ask a Librarian: The Role
of Librarians in the Music Information Retrieval,” in
Proceedings of the International Conference on Music
Information Retrieval (ISMIR), 2006.

[6] T. Berners-Lee, J. Hendler, and O. Lassila, “The Se-
mantic Web. A New Form of Web Content that is
Meaningful to Computers will Unleash a Revolution of
New Possibilities,” Scientific American, vol. 284, no. 5,
pp. 34–43, May 2001.

[7] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-
Schneider, and S. Rudolph, “OWL 2 Web Ontology
Language Primer (Second Edition),” World Wide
Web Consortium, W3C Recommendation, December
2012. [Online]. Available: http://www.w3.org/TR/
owl2-primer/

[8] I. Horrocks, O. Kutz, and U. Sattler, “The Even More
Irresistible SROIQ,” in KR, 2006, pp. 57–67.

[9] I. Horrocks and P. F. Patel-Schneider, “A proposal for
an owl rules language,” in In Proc. of the Thirteenth In-
ternational World Wide Web Conference (WWW 2004.
ACM, 2004, pp. 723–731.

[10] L. Dodds. (2004) Musicbrainz metadata vocabulary.
[Online]. Available: http://www.ldodds.com/projects/
musicbrainz/schema/mb.html

[11] Y. Raimond, S. Abdallah, M. Sandler, and F. Giasson,
“"the music ontology",” in Proceedings of the Interna-
tional Conference on Music Information Retrieval (IS-
MIR), 2007, pp. 417–422.

[12] M. Kanzaki. (2003) Music vocabulary. [Online].
Available: http://www.kanzaki.com/ns/music

[13] S. Abiteboul, R. Hull, and V. Vianu, Foundations of
Databases. Addison-Wesley, 1995.

[14] C. Batini and M. Scannapieco, Data Quality: Con-
cepts, Methodologies and Techniques, ser. Data-
Centric Systems and Applications. Springer, 2016.

97

98

SMARTVOX – A WEB-BASED DISTRIBUTED MEDIA PLAYER AS
NOTATION TOOL FOR CHORAL PRACTICES

Dr Jonathan Bell
Composer

Paris, France
belljonathan50@gmail.com

Benjamin Matuszewski
CICM/musidanse EA1572, Université Paris 8,

STMS Lab IRCAM-CNRS-UPMC
Paris, France

benjamin.matuszewski@ircam.fr

ABSTRACT

The present paper describes the features and implementa-
tion of SmartVox, 1 an application designed to help vocal
ensembles learn and perform polyphonic music.

Technically, SmartVox is a distributed web application
that delivers audiovisual scores through the performer’s
mobile devices. From a singer’s point of view, this setup
allows for the synergy between visual and acoustic stim-
uli, which facilitates the interpretive and performative pro-
cesses, particularly in polyphonic passages. It also enables
spatial separation of the performers (cori spezzati), and
speeds up the learning process of unfamiliar musical mate-
rials (e.g. microtonal tuning, texts in a foreign language).

The ubiquity of smartphones makes such a distributed
system affordable and allows the use of SmartVox in mul-
tiple contexts, from professional ensembles to pedagogical
and recreational practices.

Introduction
Related Work

Many composers in the twentieth century have designed
audio systems in order to conduct performers. The first ex-
tensive use of technology-assisted conducting dates back
to the 1920s, when click tracks were used in order to sync
the orchestra to silent movies. 2 In the domain of experi-
mental music, the first and most explicit research is found
in Emmanuel Ghent’s Programmed Signals to Perform-
ers, a New Compositional Resource [1], where the author
proposed a system derived from the click track technique.
This system, the Coordinome, was able to send audio sig-
nals pre-recorded on a magnetic tape individually to each
performer.

During the second half of the century, many systems were
developed to guide performers with multiple click tracks in

1 https://github.com/belljonathan50/SmartVox0.1 – the term SmartVox
was coined by Laurence Brisset from the De Caelis Ensemble.

2 The invention of the click track is usually credited to Max Steiner,
although other sources have attributed it to Scott Bradley or Carl Stalling.

Copyright: c©2017 Dr Jonathan Bell et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

order to realize complex polytempo pieces (Elliot Carter’s
2nd String Quartet, Brian Ferneyhough’s Mort Subite, Karl-
heinz Stockhausen’s Helicopter Quartet, Iannis Xenakis’
Persephassa to name just a few).

More recently, Phillipe Kocher developed a technology-
assisted conducting system for the realisation of polytempo
networks [2]. Similarly, the Latvian composer Rytis Ma-
zulis used in many pieces equivalent systems, sending to
performers extremely slow glissandi generated electroni-
cally [3].

Figure 1. Au Commencement (J. Bell, 2016), performed
by the Mangata ensemble using SmartVox.

Performance-Centrism

In most of the above-mentioned cases, technologies of as-
sisted conducting were created to solve composition-cente-
red issues: concerned with the realisation of a specific mu-
sical material. This focus on composition, to the detriment
of its performative counterpart, draws attention to difficul-
ties that can be encountered by the person who plays/sings
the music. Indeed, the use of click tracks (audio) or an-
imated notation (visual) changes the traditional relation-
ship established between composer, conductor, and per-
former. In a musical ensemble, these forms of extended
notation often imply the replacement of a human conduc-
tor by a technological solution. The improvements in pre-
cision that accompany the use of such systems do not come
without drawbacks. For example, polytempo and micro-
tonal passages become simple to realize, even with musi-
cians placed around the audience, but the stimulation of
the player by a live conductor is not guaranteed any more.
The challenge for the composer therefore consists of find-

99

ing ways for these new forms of notation to remain as
efficient as more conventional setups. According to this
performance-centric point of view, the singer’s reception,
appropriation and feedback play an essential role in the as-
sessment of the application.

1. AUDIO-SCORES AND ANIMATED NOTATION

SmartVox is characterised by the use of audiovisual (i.e.
multimedia) notation. This recent development was initi-
ated by preliminary research on audio-scores [4] and ani-
mated notation (screen-scores). 3

1.1 Audio-Scores

Microtonality and polytempo are two realms of investiga-
tion which often lead composers to extend their notation
with an acoustic element (such as click track, sine-tones,
or any other auditory information) [1][2][3][4]. These sig-
nals are generally sent through an earpiece, so that they
only concern the performer and not the audience. Such
audio cues can be particularly helpful for vocalists. In-
deed atonality and microtonality impose even more chal-
lenges to singers than to instrumentalists, because singers
cannot rely on gestural automatisms to find their pitch and
adjust their intonation to others. Writing microtonal music
for a cappella voices, or placing musicians in the perfor-
mance space therefore present difficulties that audio-scores
attempt to solve, using audio technologies as a means to
’augment’ the traditional notation. This compositional re-
search was initially motivated by the intuition that the cou-
pling of auditory and notational media would give the per-
formers access to new and expressive situations, thus in-
vestigating the fields of computer-aided composition and
computer-aided performance. 4

In comparison to traditional sheet music, an audio-guide
is often initially surprising for the singer, but quickly be-
comes a very useful cue which one can rely on. The per-
former is not only asked to reconstruct his part from the
symbols he reads, but also to imitate what is heard through
the earpiece. The notational input is therefore not only vi-
sual, but also auditory, hence the term audio-score. In pre-
vious work with the De Caelis ensemble over a period of
ten years, 5 audio-scores have proved to convey an invalu-
able tool for the learning process of a piece of microtonal
music. Audio-scores can also be very effective in perfor-
mance since they simplify the task of the singers, free them
from tuning forks and from the anxiety of getting lost in a
difficult passage, both in terms of intonation or temporal
coordination.

In this work however, audio-scores were always thought
of as an extension of, rather than an alternative to nota-
tion. One of the greatest assets of musing-reading is that
it allows the performer to preempt upcoming difficulties,
whereas audio fluxes do not.

3 http://animatednotation.com/composers.html
4 The term of ’Computer-Aided Performance’ was coined by M. Malt

for the realisation of John Cage’s Concert for Piano and Orchestra [5].
5 The De Caelis ensemble has actively supported the project and com-

missioned five pieces using such systems.

1.2 Screen-Scores

In both experimental music and classical repertoire, tablets
are increasingly replacing sheet music. However, the size
of phones or tablet screens rarely matches that of large
printed scores, and screen-based notation typically requires
large font sizes and more page turns than its printed coun-
terpart. A balance must therefore be found between dis-
playing what is executed in the moment, and what is com-
ing next, so as to always convey the most useful informa-
tion to the performer. Indeed, problems may arise if a dif-
ficult passage (e.g. a high pitch or a long phrase) suddenly
pops up at the start (at the left-end) of the page: breathing,
or preparing an attack on a certain pitch, in sight-reading
situations particularly, can require a few seconds of prepa-
ration that must be taken into account when creating the
animated score.

In screen-based animated notation, the representation of
time often contrasts with traditional sheet music. SmartVox
for instance, uses notation realised in bach.roll, a Max ob-
ject for proportional notation, with a cursor moving from
left to right. This unfolding of time, inspired by digital au-
dio workstations, offers an intuitive representation of speed
and duration of musical events. Although it differs drasti-
cally from the classical "bars and beats" notation of rhythm,
this solution proved to be very useful for singers since they
need to anticipate the duration of a musical phrase to come
in order to control their breath accordingly.

This proportional representation of time also profoundly
simplifies temporal coordination between performers, par-
ticularly in non-pulsed music. For an inexperienced singer
for instance, the main advantage of having his part dis-
played on a dedicated screen is the fact that he cannot get
lost. Indeed, the screen score typically displays at any
given moment only what is happening in his own part.

Such forms of augmented notation are therefore very con-
venient when singers have long parts to learn, when they
are distanced from one another in the performance space
(e.g. around the audience), or if the piece requires singing
with microtonal intervals.

1.3 Early Prototypes

The SmartVox system was preceded by a series of proto-
types with similar functionalities, developed over the past
years.

Wired Cable Systems

The piece Deserts (2007) 6 used a computer to send audio-
scores realized on a digital audio workstation. In this setup,
each performer received two types of audio cues through
an earpiece:

• A sequence of microtonal pitches.
• A series of clicks in an individual tempo.

Several techniques were investigated to distribute the in-
dividual audio cues to the performers, including mp3 play-
ers and wireless systems such as infra-red and high-fre-
quency headphones as well as Bluetooth-based systems.

6 Composed by J.Bell and commissioned by the De Caelis Ensemble

100

However, these systems were not robust enough to be de-
ployed in concert performances so that wired systems, that
usually consisted of a multichannel sound-card wired to
headphones, were always preferred in such situations. The-
se systems therefore locked the number of performers to
the available output channels and impeded the ability to
distribute the performers in the concert area.

Wireless Native Application

The piece De Joye Interdict (2014), also commissioned by
the De Caelis Ensemble, used iVideoShow, a commercially
available iOS application. The wireless setup was robust
enough to guide performers in a concert situation. The
application allowed the playback of individual video se-
quences on the iOS devices remotely controlled through
Open Sound Control messages sent over a Wi-Fi network.
This allowed the performers to be placed at a significant
distance from each other. However, however iVideoShow
presented several limitations:

• The system was difficult to improve and to deploy
over cross-platform devices (iOS only).

• The synthesized audio cues, realized on a digital au-
dio workstation, were difficult to control.

• The graphical notation captured as static screenshots
from a notation software remained very close to tra-
ditional sheet music.

2. TECHNICAL SETUP / DESCRIPTION

The SmartVox application is based on the Soundworks fra-
mework [6]. The audiovisual scores – distributed as simple
video files – are produced using the Bach (Bach Automated
Composer’s Helper) [7] environment in Max. 7

2.1 Generating Audiovisual Scores Using the Bach
Environment

The audiovisual scores used in the application are real-
ized with Bach, a Max library for real-time computer-aided
composition. In this environment (bach.roll or bach.score),
each note of the score can be associated with metadata.
Here, the feature is used to configure and control the syn-
thesizer 8 that creates the audio cues, directly from the no-
tational environment.

During the composition process, this particular setup al-
lows for a workflow that consists in sculpting each vocal
line with its appropriate pitches (in eighth-tones), text, in-
tensity curves, formants, elocution velocity, glissandi, with
a real-time audio feedback (see Fig. 2, 3).

The audio-score often only sounds when the performer
should sing, yet some useful information can be provided
to the performers during long silences: these audiovisual
cues can deliver in advance the musical phrase that is com-
ing next. In Figure 4, the lower stave is an anticipatory
cue (the performer just listens), and the upper stave is an
audio-guide (the performer sings along with the earpiece).

7 https://cycling74.com/
8 The psych module for Max - this module performs high quality pitch

correction (auto-tune) and polyphonic harmonizing of monophonic audio
sources.

Figure 2. A sample of spoken text stored inside the file-
name slot of each note (or group of notes) of the bach.roll
object.

Figure 3. Excerpt from a Max patch showing the
cage.ezsampler object retrieving metadata stored in the
Bach score. The extracted information is then sent to the
psych object, which transposes the given sample of spoken
text to the defined microtonal pitch.

Figure 4. Screenshot of the video captured from the ren-
dering of the Bach environment and played back by the
mobile application based on the Soundworks framework.

2.2 Distributing Individual Scores to the Performers
Using the Soundworks Framework

The system that distributes the audiovisual scores created
with Bach is entirely based on web technologies, and more
specifically on the Soundworks framework. 9 Soundworks
provides a set of services – such as synchronization, net-
work messages, distributed states, creation of groups of
clients – that aims to solve problems common to distributed
and synchronized web applications centered on multime-
dia rendering. The framework is written in Javascript, with
a server side based on NodeJS. 10

The SmartVox application consists of two web clients, the
player and the conductor, that can be executed in any re-
cent web browser on mobile devices (e.g. smartphones,
tablets) and laptops. The real-time communication between

9 Soundworks has been developed in the framework of the CoSiMa
research project funded by the French National Research Agency (ANR)
and coordinated by Ircam.

10 https://nodejs.org/en

101

/player

/player

/player

/env

/conductor

server

controls

feedback

Figure 5. Architecture of the SmartVox application.

clients is achieved through the WebSocket protocol 11 (see
Fig. 5).

The player client

This client, dedicated to the performers, is essentially a re-
motely controlled and synchronized video player.

Figure 6. Screenshot of the player client - drop-down
menu showing the available parts of the score.

When entering the application, the performers are requi-
red to choose their part among the available ones (see Fig.
6). Once done, the corresponding audiovisual score is sent
to the performers by the server. When the video is received
on the device, further interactions with the score are locked
in order to prevent the performers from accidentally chang-
ing the temporal position in the video, and thus ensure cor-
rect temporal coordination among all performers.

Additionally, this client can be used for the rendering of
audio files (mp3) and/or videos (mp4) dedicated to the au-
dience, through loud speakers and projectors.

The conductor client

The second client is dedicated to the choirmaster (see Fig.
7). Its role is to control the global and distributed state of
the application. Through this interface, the conductor can
therefore control the playback of the audiovisual scores:

• Start, pause and stop the video.

11 https://www.w3.org/TR/websockets/

Figure 7. Screenshot of the conductor client.

• Jump to a labeled section of the piece or to a specific
playback time.

• Change the playback rate (i.e., the speed) of the video
without altering the pitch.

• Change the volume of all connected clients.

The interface also provides feedback (e.g., number of con-
nected clients) to the choirmaster - information that proved
to be of primary importance in concert situations.

Configuration

The application can be configured through a data structure
that defines the path to the video files as well as the posi-
tions and labels of the sections of the piece. This allows
for easily adapting the application to the content of a given
piece:

c o n s t s c o r e = {
d u r a t i o n : 20 ∗ 60 , / / s e c o n d s

/ / d e f i n e t h e d i f f e r e n t p a r t s
p a r t s : {

’ soprano−1’ : {
f i l e : ’ v i d e o s / soprano −1.mp4 ’ ,

} ,
’ soprano−2’ : {

f i l e : ’ v i d e o s / soprano −2.mp4 ’ ,
} ,
/ / . . .

} ,

/ / d e f i n e t h e d i f f e r e n t s e c t i o n s
s e c t i o n s : {

a l p h a : {
t ime : 0 ,
l a b e l : ’ F i r s t s e c t i o n ’ ,

} ,
b e t a : {

t ime : 117 ,
l a b e l : ’ Second s e c t i o n ’ ,

} ,
/ / . . .

} ,
} ;

Both interfaces are dynamically generated according to
this configuration, the list of sections in the conductor in-
terface, and the list of available parts in the player inter-
face.

102

2.3 Case Report: Au commencement

The application has been prototyped in parallel with the
composition and rehearsal of the piece Au Commencement
by the Mangata ensemble. One of the objectives of the
project was to help the singers to tune-in (i.e. match spec-
trally) with the fixed-media electronics. The wireless and
cross-platform system allowed singers to do so, while be-
ing placed around the audience (see Fig. 8).

Figure 8. Spatial configuration of performers, lightings
and loudspeakers.

A first public rehearsal of the piece revealed several is-
sues with the user interface design. Indeed, the setup was
already stable in rehearsals, but the challenges that arose
in the public performance still required several modifica-
tions. Discussions with the choirmaster and the performers
revealed the source of these problems: the most significant
feedback concerned the lack of information about the cur-
rent state of the system (in both player’s and conductor’s
interfaces). As a result, several features were introduced in
the next version of the application:

• On the conductor interface, display of the number of
connected players, and addition of a button allowing
to reinitialize all connected players.

• On the player interface, display of the name of the
chosen part, and removal of the video controls.

The premiere of the piece took place in the Notre Dame
de Bon Secours church in Paris 12 . Four groups of singers
were situated at a significant distance from each other. Each
of the twelve singers had a smartphone and earphones.
Four additional computers, acting as generic player clients
and connected to loudspeakers and projectors were placed
in the four corners of the area (see Fig. 8). The tech-
nical setup confirmed the convenience and cheap cost of
wireless cross-platform web technology: in spite of the
disparity of the users’ devices, communication was estab-
lished quickly through the web browser, between Android
phones, iPads, iPhones (the singer’s devices), OSX and
Windows (environmental videos).

12 A recording of the premiere of the piece is available at:
https://youtu.be/uVGPa1Z6Ji8

Acoustically, from an audience point of view, the ex-
treme spatial separation between sources produced an im-
mersive feeling and clarified the listening experience. This
panoramic sonic image nevertheless let voices and elec-
tronics blend together successfully, thanks to the harmon-
ic/spectral match between the two, and because of the nat-
ural reverberation of the church.

3. DISCUSSION

3.1 Pros

Technically, in its current state, the application demon-
strates promising assets:

• Using web standards and Node.js, the application
can be executed on a large range of platforms and
devices.

• The architecture of the application allows for easily
adapting it to different pieces by modifying its con-
figuration.

• The application can be setup effortlessly and quickly
in rehearsals and concerts using a laptop running the
server and a Wi-Fi router.

• During rehearsals, the conductor client allows for
flexibly navigating within a given piece.

From the performer’s point of view, SmartVox is perceived
as a useful device which combines acoustic and visual stim-
uli to help interpret challenging polyphonic scores, wether
in rehearsals, performance, or pedagogical contexts. Also,
experience proved that audiovisual scores surprise groups
of performers in a positive way, which can be used as an
impulse for challenging and imaginative musical/perfor-
mative experiments.

Finally, from a compositional point of view, the piece
Au Commencement demonstrated that the setup accelerates
the learning process, facilitates the realisation of micro-
tones, and allows to place performers at a large distance
from one another, without putting them at risk in perfor-
mance.

3.2 Cons

Feedback from the singers showed that audio cues sent
through earpieces, while being useful in difficult passages,
can tend to impede mutual listening. Further experiments
will therefore propose visual cues only (or audio cues only),
depending on the musical passage, in order to optimize the
quality of the information given to the performer. 13

Also, the clock synchronization between clients provided
by the Soundworks framework [8] should be integrated in
the application. Such precise time control among clients
would thus allow for more complex rhythmical writing.

3.3 Use Cases

SmartVox owes its development to professional ensembles
(De Caelis and Mangata) who tested the prototype in re-
hearsals and concerts, and gave invaluable feedback at each

13 The exact delimitations of these cues could be defined iteratively
from discussions with the singers and choirmaster together with an A/B
testing strategy to speed up the process.

103

stage of its development. Since then, however, the applica-
tion has also been used in different contexts:

Pedagogy

Recent experiments in conservatoires 14 demonstrated that,
for children, a distributed mobile application can be evoca-
tive of a multiplayer game. This playful aspect helps to
focus their attention on challenging music theory notions
(solfege). In a pedagogical piece composed for this sys-
tem, the notation purposefully conveyed the same pitch in-
formation in four different ways:

• Sound frequency: a synthetic voice sings on a given
pitch, e.g., A = 440 Hz (audio).

• Spoken words: the synthetic voice pronounces the
corresponding phoneme ’La’ (audio).

• Symbolic notation: the corresponding pitch is showed
on the musical stave (visual).

• Written text: the phoneme ’La’ is written below the
stave (visual).

After a few sessions, groups of ten to twenty children
were able to sing in tune complex three-parts polyphonies.

For older students (undergraduates), SmartVox has been
used to sing extracts of a motets of the Ars Nova, psalms of
the Renaissance, as well as examples of early solmisation.

Amateur Choirs

A cappella choral singing requires competencies such as
vocal skills, intonation and music reading. This often re-
stricts ancient and contemporary repertoire to a small group
of specialists. The audio and visual guides provided by
SmartVox therefore seek to give accessibility and exposure
to works otherwise judged too difficult (e.g., motets of the
Renaissance or atonal music), for choirs of all levels.

Conclusion and Future Work
The present article described SmartVox, a web-based ap-
plication specifically designed to help choristers in the re-
alization of challenging pieces (i.e. including intricate per-
formative aspects such as microtonality and unusual place-
ment of performers in space). The application proved to be
succesful in rehearsals, performances, as well as in peda-
gogical contexts.

Currently, the application is deployed over a private wire-
less local area network through Wi-Fi. The connected cli-
ents therefore require the physical presence of the server
where the performance takes place. However, the appli-
cation being completely implemented based on standard
web technologies, it could be easily hosted on a public re-
mote server and thus accessed over the Internet. While
not suitable in concert situations, this feature will make an
important difference in terms of spontaneous access and
dissemination of the application, especially in pedagogical
contexts.

14 The recording of a SmartKids reading session is available at:
https://youtu.be/hlHAeiWT28Y

In future versions, the application could also be expanded
to allow for a better appropriation by the performer. The
audiovisual score could then be used by the choirmaster
during the rehearsal process, to make notations about the
playback of the video (e.g. accel., fermata, crescendo...).
This would then be communicated to the performers.

The positive results thus far encourage us to believe that
SmartVox will continue to be an innovative and useful form
of musical notation.

Acknowledgments

We are deeply grateful to the following people for their
precious support and advice: Andrea Agostini, Julian An-
derson, Richard Baker, Eric Daubresse, Stefano Gervasoni,
Daniele Ghisi, Marisa Gupta, Bryn Harrison, Gregoire Lo-
rieux, Paul Newland, Hector Parra, Nye Perry, Norbert
Schnell, and James Weeks.

References
[1] E. Ghent, “Programmed Signals to Performers: A New

Compositional Resource,” Perspectives of New Music,
vol. 6, no. 1, pp. 96–106, 1967.

[2] P. Kocher, “Polytempo Network: A System for
Technology-Assisted Conducting,” Institute for Com-
puter Music and Sound Technology, Zurich University
of the Arts, 2014.

[3] G. Daunoraviciene, “Sound architecture of Rytis
Mažulis’ microstructural canons (from 100 to the
3,448275862 cents),” Menotyra, vol. 30, no. 1, 2003.

[4] J. Bell, “Audio-Scores, a Resource for Composi-
tion and Computer-Aided Performance,” Composition
Doctorate, Guildhall School of Music and Drama,
2016.

[5] B. Sluchin and M. Malt, “Interpretation and Computer
Assistance in John Cage’s Concert for Piano and Or-
chestra (1957-1958),” in 7th Sound and Music Com-
puting Conference Proceedings, 2010.

[6] S. Robaszkiewicz and N. Schnell, “Soundworks
– A playground for artists and developers to
create collaborative mobile web performances,”
http://architexte.ircam.fr/, 2015.

[7] A. Agostini and D. Ghisi, “Real-time Computer-Aided
Composition with BACH,” Contemporary Music Re-
view, vol. 32, no. 1, April 2013.

[8] J. P. Lambert, S. Robaszkiewicz, and N. Schnell, “Syn-
chronisation for Distributed Audio Rendering over
Heterogeneous Devices, in HTML5,” in Proceedings
of the 2nd Web Audio Conference (WAC-2016), 2016,
pp. 6–11.

104

NOTATED CONTROL AS COMPOSED LIVENESS IN
WORKS FOR DIGITALLY EXTENDED VOICE

Kristina Warren

University of Virginia
kmw4px@virginia.edu

ABSTRACT

This study argues that learning of varying control map-
pings in digitally extended voice works imbues body and
memory into liveness. First, the author’s extended voice
practice is discussed. The Abacus, a unique, microphone-
mounted, Arduino Teensy-based musical interface, con-
trols granulation of live vocal samples. There are sixteen
pre-composed mappings of Abacus control data (eight
toggle switches) to granulation parameters, and mapping
changes regularly. An animated screen score provides
manual toggle control instructions, which didactically
supply information on current mapping. Subsequently,
discussion turns to works by other extended voice practi-
tioners and to a larger context of screen scores and musi-
cal games. Building outward from notions of vocal inti-
macy and presence, extended voice uses technology for
temporal exploration of timbre. Screen scores and musi-
cal games highlight learning, but typically utilize an un-
changing control mapping throughout the piece or game.
My work constitutes a novel intersection of these prac-
tices, arguing that repeated, notation-driven learning of
the action-sound relationship thematizes complex interac-
tions between body, temporality, memory, and presence.

1. INTRODUCTION
Voice is a complex phenomenon, but embodied presence
is usually considered a crucial part [7, 17, 19]. Recent
scientific-musical studies of voice begin to address con-
nections between embodiment and liveness, but frequent
division of labor between technologists and vocalists
hinders integration of performative and technological
methodologies. By contrast, extended voice practitioners,
including Andrea Pensado, Ami Yoshida, and the author,
synthesize technological, compositional, and improvisa-
tional methodologies and thus directly address liveness
during electroacoustic performance.

This study discusses two of the author’s recent compo-
sitions for extended voice: “couldn’t” (2016) and “for
ami” (2016).1 First, the extended voice setup is discussed
in the context of “couldn’t.” Subsequently, I discuss the

1 Excerpts at http://kmwarren.org/tenor17.html

use of a screen score of control instructions as a method
of composing liveness in “for ami” (2016). Finally, these
compositions are related to other extended voice works
and to larger discussions of screen scores and musical
games. I argue that screen score works for extended voice
create a novel form of liveness by employing the live-
ness-through-didacticism of screen scores and by ques-
tioning the connotations of intimacy, embodiment, and
presence typically ascribed to voice.

2. VOICE, ABACUS, MAX/MSP

2.1 Live Vocalization

My vocalization in my voice-electronics compositions
includes normative singing, occasional speech, and fre-
quent extended vocal techniques. Typically, the voice
provides fodder for the granulation system and tries to
achieve a dialogue with the electronic sounds, but feature
extraction can impart structural importance to particular
vocal sounds as well. For instance, “couldn’t” uses under-
tone singing, or vibration of the false vocal folds at one-
half or sometimes one-third of the fundamental fre-
quency, to trigger changes between the two patch states.
Feature extraction in MaxMSP identifies undertone sing-
ing through its distinctive ratio (2.1-2.6) of spectral cen-
troid to fundamental frequency.

Pitched
Harmonics slow alternation [u] (har. 1-2 above)
Undertone sing false vocal folds (har. 1-2 below)
Ululation fast chest-head register alternation
Inhale sing pure / noisy (resembles bitcrush)
Lip squeak upper teeth, moist lower lip, inhale
Pursed lips pitched squeak, (sub)audio rate
Pressed squeak high in vocal tract / post-nasal

Unpitched
Duck call air against mid-back hard palate
Glottal stop beginning / end of note
Lip buzz usually sub-audio rate / bursts
Press / fry bursts, can merge into audio rate
Epiglottal click in- / egressive, single or sequence

Table 1. Extended vocal techniques (selected)

Many extended vocal techniques are very quiet. These
non-normative vocal sounds frequently originate from
non-larygneal oscillators such as lips with teeth, air

Copyright: © 2017 Kristina Warren. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License
3.0 Unported, which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author and source are
credited.

105

against the hard palate, or saliva against cheeks. My work
increasingly tries to attend to the mouth as origin of these
tiny, detailed sounds. The novel control interface called
the Abacus is mounted directly on the microphone clip;
the necessity of bringing the hand near the mouth in order
to control draws audience attention toward the mouth and
its small sounds. “Couldn’t” and earlier works include
dense electronics, while the voice purposefully struggles
to co-exist by imitating the electronics’ rhythm or timbre.
While this voice-electronics competition is evocative, it is
not ideal for drawing attention to small, mouth-
originating sounds. Thus, “for ami” and more recent
works use primarily less-dense electronic textures and
aim for a gentler or more subtle sound world.

2.2 Abacus

The Abacus is a novel interface used for controlling digi-
tal processing of voice. It consists of an Arduino Teensy,
which sends Serial information via USB connection,
along with eight toggles, four potentiometers, one button,
and one LED. Thermoplastic affixes the Abacus to a
Shure SM-58 microphone clip. Crucially, this interface
permits simultaneous vocalization and control.

Figure 1. Abacus interface

Toggle 1 Toggle 2 Toggle 3 Toggle 4
listen for
undertone
singing

solo one
processed
voice

live voice:
random
processing

record live
voice/ proc-
essed sound

Toggle 5
(voice 1)

Toggle 6
(voice 2)

Toggle 7
(voice 3)

Toggle 8
(voice 4)

State 1 granular/ not | State 2 follow/ ignore rhythm

Table 2. Abacus, control mapping in “couldn’t”

The streamlined design of the Abacus is conducive to
varied control mappings. Within my piece “couldn’t,” the
mapping of Toggles 5-8 varies with patch state; in one
state they control timbre, and in another state, rhythm and
density.

An early control mapping scheme, developed in 2015-
2016, is much more parametric. In this mapping scheme,
Rhythm, Pitch, and Noise are three control spaces which
route toggle pairs 3-4, 5-6, and 7-8 to distinct sub-
parameters such as Meter, Interval, and Timbre. Extended
vocal techniques, identified through feature extraction,
trigger navigation among the three overarching control

spaces [16]. This mapping yielded musically dissatisfying
results; complexity prohibited control fluency and ex-
pressivity. This led to ongoing research into streamlining
control mapping, as in “couldn’t,” while still varying
mappings during the composition, attempted initially in
“couldn’t” and more meaningfully in “for ami.”

2.3 Real-Time Processing in MaxMSP

Real-time processing of live vocal samples occurs in
MaxMSP. Several types of processing occur: rhythmic
granulation, pulsar granulation (i.e., streaming an alterna-
tion of grain and silence [11]), and wavetable synthesis.

Processing of the live signal, rather than live samples, is
also possible, using techniques such as transposition,
distortion, and delay. The patch is modular, such that any
signal (voice, granulation, or wavetable synthesis) can be
heard ‘clean’ or sent to live processing and/or subsequent
granulation. The overall aesthetic goal is to explore simi-
larities between vocal and digital sound worlds, particu-
larly the shared noise potentials of each.

My piece “couldn’t” is fairly rigid in its implementation
of pulsar granulation. A few possible values exist for
grain start time and length, and wait time between grains
is always 10 ms. Slight, probabilistic jitter in grain start
time, length, and playback speed, calculated independ-
ently for every grain, provides some musical interest.
Nonetheless, this rigidity of pulsar granulation settings
contributed to a desire for more flexibility in later works.

Start time
(0 - 4000 ms)

Len
(ms)

Wait
(ms)

ST, len
jitter

Speed
jitter

400 1800 30 10
1000 2100 80
1500 2200 100
1700 2800 140

10%
chance
+- 3% ST
and/or len

67%
chance
+- 2%
speed

Table 3. Pulsar granulation parameters, "couldn't"

3. NOTATED CONTROL
My recent piece “for ami” employs vocalization, Abacus,
and live sample granulation in MaxMSP, with frequent
variations in the Abacus control mapping. The Abacus
makes it easy to vocalize and control at once, so the pri-
mary goal in this piece was to go a step further and at-
tempt to learn the changing control mapping in order to
explore liveness.

“For ami” is nine minutes long and consists of a series
of miniatures (durations 0:15-2:00) separated by pauses.
Each miniature represents a different control mapping.
Some miniatures have a pre-composed duration, and
others have a free duration such that I trigger the end of
the miniature ad lib. The piece is inspired by and named
for extended voice practitioner Ami Yoshida. Her album
Tiger Thrush, consisting of 99 untitled miniatures, is a
meditative, inspiring exploration of vocal and electronic
timbre.

106

3.1 Mappings

There are sixteen pre-composed control mappings. Each
allows control of some parameters of pulsar granulation,
and assigns other parameters uncontrolled values (either
constant, or simple LFO-varied). Most mappings do not
map control data directly or uniformly to parameter val-
ues, but rather to LFO parameters for regular temporal
variation of granulation parameters. This sculpting of
complex LFOs yields fine control of timbre. In addition,
mappings incorporate variable gain gating on the granu-
lated signal, yielding a more ‘human’ sound which in-
cludes rests. Finally, each mapping also includes some
associated toggle instructions for the screen score.

(values in ms unless otherwise noted)
 tog 1-2 tog 3-4 tog 5-6 tog 7-8
1 live vox,

pan alt. =
0.5, 1, 4, 10
Hz

ST =
400, 1600,
2800, 3800

len =
3, 10, 25,
41

wait =
5, 30, 70,
90

2 live vox, # transposed
versions = 0, 1, 2, 3;
cents = -75, -20, 35, 60

ST =
200, 320,
3520, 2640

len =
2, 8, 12, 18

alternate ST_1,2 3
ST_2 =
0, 480,
1200, 2000

alt. time =
80, 300,
500, 1200

len, alt.
(5-12)
time =
160, 600,
980, 2300

wait, alt.
(20-30)
time =
140, 550,
900, 2000

len, wait LFO ring mod. on LFO 4
rate =
3, 20, 47,
80 Hz

depth =
1, 10, 50,
100 Hz

rate =
5, 8, 10, 20
Hz

depth =
0.01, 0.1, 1,
4 Hz

ST, len LFO (alt. slow-fast) 5
duty cycle
= 0.5, 0.6,
0.7, 0.9

rate_fast =
1.9, 5.4, 11,
36 Hz

depth =
2, 10, 20,
40 Hz

alt. long-
short wait,
duty cyc =
0.6, 0.8,
0.9, 0.95

4/4, 48 bpm (mute, un-mute alternating beats) 6
beat 4 ST
= 800,
1600, 2400,
3600

beats 1,3
len =
1, 4, 8, 16

beats 2,4
len =
3, 5, 10, 30

b. 2,4 time
til mute =
10, 50, 100,
300

4/4, 132 bpm 7
beat 1 ST
= 0, 400,
600, 800

beat 2 ST
= 1200,
1400, 1600,
2000

beat 4 ST
= 3200,
3400, 3680,
3960

beat 3
wait_short
= 5, 10, 18,
36

4/4, 21.6 bpm (muted, occasional 16ths sound)
alt. ST_1,2 every 40 ms

8

ST_1 =
40, 360,
560, 720

ST_2 =
800, 960,
2440, 2720

len_1,2,3
(alt. every
152 ms) =
1-2-3, 2-4-
6, 4-8-12,
8-16-24

wait_2 (alt
every 600
ms) =
10, 20, 50,
100

Table 4. Control mappings 1-8, "for ami"

In all mappings, the eight toggles are treated as four
pairs, each outputting values 0-3. Mappings 1-2 scale
toggle-pair values more or less directly to values of live

vocal signal processing and grain start time, length, and
wait. In the other mappings, however, toggle-pair values
contribute mostly to time-based variance of parameters,
for instance through low frequency oscillators (LFOs) or
rhythmically metered variance.

This routing of control data to rate of change rather
than to discrete parameter values comprises a second-
order treatment of control data. This yields a more com-
plex and musically pleasing sound. Often, processing
changes are only discernible after several seconds of
listening. This is a purposeful compositional decision
which slows the performance pace, lends a meditative
quality, and creates time for purposeful decision-making
about exact content and timing of vocalization.

On loading the patch, a random order of the sixteen
mappings is generated, including possible nonconsecu-
tive repetition. The unpredictable order of the sixteen
mappings renders them surprising enough to require re-
learning during performance.

3.2 Screen Score

An animated screen score presents real-time instructions
for manual operation of the Abacus toggles. These in-
structions are didactic in nature, uniting with the audio
result to progressively reveal information about the cur-
rent mapping. The large central toggles report current
state and show toggle instructions, with a red-yellow-
green countdown to enable performer preparation. The
smaller toggles in the upper right corner provide redun-
dant information, namely the summation of a few recent
and upcoming toggle steps. This animated score is
viewed on a laptop screen during performance and, if
circumstances permit, may also be projected onto a larger
screen visible to the audience.

Figure 2. Video score screen capture, "for ami"

In combination with the audio output, the screen score
serves a didactic function. Each mapping carries associ-
ated video instructions which indicate the content of the
mapping. For instance, in mapping 7, the tempo and me-
ter are rapidly audible. The first instructions might re-
quire toggles 1-2 = 0 then 2 (as binary numbers, sepa-
rated only by one flip of toggle 1) to illustrate the sonic
difference on beat 1. Next, similarly, the instruction
might require toggles 3-4 = 0 then 2, demonstrating the
sonic change on beat 2.

Some randomization of instructions occurs, so that
even miniatures using the same mapping are distinct.

107

Recording of live samples also complicates matters.
There are up to twenty distinct granulation voices which
may be processing different buffers, in any combination.
Typically, I record several new buffers during the piece,
where audio source can be either the vocal signal or,
cyclically, the granulation output.

To clarify, the screen score only notates manual control
gestures. Vocal material, including techniques shown in
Table 1, is fully improvised. I do not enjoy realizing
vocal notation because I feel that accuracy takes prece-
dence over expressivity. Thus, “for ami” notates control
gestures and utilizes vocal improvisation.

4. COMPOSED LIVENESS
Liveness in “for ami” is premised on several key assump-
tions. First, Abacus-based control gives a greater sense of
presence in the moment than would a non-interactive
system. Second, varying the control mapping several
times during the piece constitutes an opportunity for
performer learning, which further enhances liveness.
Third, as in many musical systems and idioms, some
improvised deviation from the score is possible once the
rules are well enough understood, comprising yet another
layer of liveness.

It is widely acknowledged that digital interfaces are
uniquely powerful because they allow myriad relation-
ships between physical action and sound. “For ami” acts
directly on this possibility space. Cyclical learning –
starting afresh with each miniature – foregrounds live-
ness, and learning is incentivized by the possibility of
improvisation with the learned mapping.

Extended voice is unique in treating memory as a part
of liveness. Granulation of live vocal samples, for in-
stance, is intended partly to confuse listeners’ short-term
memory of vocal utterance. A noisy sound which initially
seems very remote from voice may, through variation in
granulation parameters, be gradually revealed to be vocal
in origin. In other words, timbral evolution makes elec-
tronic timbres present, while the acoustic voice, which
traditionally connotes intimacy and presence, becomes a
thing of the past.

Timbral similarities between voice and electronics
emerge despite the time-lag implicit in live sample-based
work. Unlike parallel processing of voice, for instance
vocal pitch-following to yield fundamental frequency of
an oscillator, live samples take a few seconds to record,
and then several more seconds to process using manual
control. In other words, liveness in extended voice is a
dialogue with a digitized version of oneself from several
seconds ago, and control of this digitization may in turn
influence the live vocalization.

5. DISCUSSION
This section addresses Ami Yoshida’s album Tiger
Thrush (2003) [18], which inspired the author’s composi-
tion “for ami,” and Andrea Pensado’s album Without
Knowing Why (2015) [9]. Yoshida varies pauses and

durations within and between miniatures to create novel
temporal interactions between extended vocal techniques
and electronics, while Pensado’s work is unique among
extended voice for its rapid variation among noise tim-
bres. Thus, both Yoshida and Pensado dually explore
temporality and timbre. Similarly, extended voice at large
links timbre and temporality by including memory within
performative liveness. The voice has the potential to be
digitized at any moment, making it an instrument of the
past, while electronics indicate the present.

This section will also address studies of screen scores
and video games. Whereas these two media aim for con-
trol consistency and transparency, extended voice em-
ploys varying control mapping, which unsettles intuition
and renders the body strange, just as voice is rendered
strange through timbral exploration and digital process-
ing.

5.1 Yoshida, Tiger Thrush

Ami Yoshida’s album Tiger Thrush consists of 99 unti-
tled miniatures. Yoshida’s self-defined style of “howling
voice,” or quiet speaking and screeching sounds often
produced through inhalation or high-pressure exhalation,
joins found objects and environmental background
sounds in this album.

Tiger Thrush manifests the timbral-temporal explora-
tion common in extended voice. Some tracks, such as #8,
are single vocal utterances of only a few seconds’ dura-
tion. Though such tracks initially seem to function as
non-structural palate cleansers, their presence throughout
the album suggests that something more is at play. By
contrast, other tracks, such as #5, loop a single vocal
phrase, either mono- or polyphonically, for several min-
utes. At first blush, these longer tracks seem important
formal anchors within the album. Nonetheless, the still-
ness and persistence of Tiger Thrush gradually suggest an
inversion: micro-tracks come to read as intense sound
bytes which eschew embellishment, while longer looped
tracks provide a sense of familiarity and pad the more
concise vocal statements.

Yoshida’s temporal exploration of timbre is also appar-
ent in the non-vocal tracks, of which #45 is a prime ex-
ample. This track, consisting of looped, high-frequency
background noise, follows shortly on the heels of the
previous track and lasts almost five minutes. Track #45
utilizes the same room noise present in Track #44, which
contains several substantial pauses, but articulates a new
musical statement because of its length and subtle varia-
tion of loops. Through slight manual adjustments to the
time bounds of the loop, the listener begins to question
whether the sound is changing or if this is in fact a per-
ceptual mirage. Yoshida’s intermingling of silence and
continuity serves to make timbre strange and to unsettle
short-term sonic memory.

Delicate reverb and some reversed sounds subtly re-
mind listeners of the presence of technology. Unlike
many extended voice practitioners, Yoshida is minimal in
her demonstration of technological control. The subtle

108

compositional decision of whether to conclude a track
partway through or at the end of a loop is one point of
engagement with the technology. Other tracks underscore
the sonic role of the technology itself. For instance, in
Track #49 Yoshida performs a melody consisting of dis-
torted microphone pops.

5.2 Pensado, Without Knowing Why

In her 2015 album Without Knowing Why and her recent
live performances, Andrea Pensado explores a variety of
voice-noise interactions. The titular character in “Rondo
con Andreita” is likely the doll with which Pensado
sometimes performs (e.g., Back Alley Theater, Washing-
ton DC, Sep 20142) and which is mentioned in the album
liner notes. “Rondo” and the Back Alley performance are
distinct versions of the same material, where the A sec-
tion of the rondo form consists of quiet speech, little
processed, while the alternating contrasting sections are
much noisier. These noise sections are characterized by
rapid timbral changes (rate of change = 2-4 Hz). The
noise initially follows the melodic and/or rhythmic con-
tour of Pensado’s voice but in later non-A sections grows
more independent and increasingly masks the voice.

The humor and weirdness of Andrea Pensado’s use of,
apparently, a doll named “little Andrea” augment the
questions of control raised by the work. The voice can be
used for both expression and control, and these functions
sometimes become indistinguishable in Pensado’s sound.
The apparent spectral following which drives synthesis is
evidence of hands-free vocal-control work. Yet Pensado
also uses her hands to animate the doll as though it is
speaking or listening, and these motions seem to trigger
sonic changes. The doll may contribute to the sense of
hand-sculpted rhythmic detail, or this audio-visual link
may be completely imagined. The rapidity of timbral
changes further obscures control source.

Notably, although harsh noise timbres prevail, compo-
sitionally-trained phrasing is also apparent. Gestures are
not random, but rather occur within some structure. For
instance, the garbled, chorused speaking voice beginning
at 3:07 in the left channel uses quantized, almost vo-
coded, frequencies emphasizing a range of about a minor
sixth. Noise sections do not begin abruptly, but are in-
stead prepared by brief, growing interruptions often
panned centrally.

Pensado’s frequent changes in electronic timbre are
unique in the landscape of extended voice. This protean
quality may arise in part from deep familiarity with the
capabilities of her technology. Though Pensado identifies
as an improviser who takes a “highly intuitive” approach
to "using Max as her main programming tool” (from
Pensado’s professional bio), her utterances nevertheless
seem tailored to what the patch does well, for instance
speech with larger than normal frequency range to pro-
vide interesting fodder for noise synthesis.

2 https://www.youtube.com/watch?v=KspVGrJrhpg

5.3 Screen Score Works and Musical Games

Screen scoring is valued for its unique musical possibili-
ties, including audience interaction [2], novel methods for
representing time and texture [4,13], and conduciveness
to formal re-combination and material generativity [15].
Screen scores innovate in musical expressivity, but, like
traditional notated music of the Western canon, they
often make certain assumptions about time and liveness,
or lack direct connections to physical action. For in-
stance, Kim-Boyle praises screen scores’ performative
and compositional metaphor of navigation along a path-
way [6], but this seems to rely on assumptions of time as
a simple forward flow.

Musical games take a related approach. Pichlmair and
Kayali’s taxonomy of musical video games includes two
overarching types, Rhythm and Instrument, and seven
important features, including Active Scores, Synesthesia,
and Play-as-Performance [10]. Game-salient types of
learning, such as “just in time” learning, are a novel syn-
thesis of past, present, and future: instructional content,
tailored to past experience, is delivered to aid completion
of a near-future task [3]. Similarly, game pieces by com-
poser-researchers treat games as toys; by learning the
physical rules, or affordances, of these toys, players can
achieve a flow state of creative interaction [5, 14].

Though screen scores and video games may employ
different objects – acoustic instruments versus game
controllers – both emphasize unchanging action-screen
relationships throughout the piece or game. For instance,
“natural mapping” of video game control, i.e., similarity
between control action and animated game result, aims to
create a smooth progression through states of learning,
improvement, and expertise within the single control
mapping [12]. On the rare occasion when control map-
ping does vary, for instance variation in control degrees
of freedom to allow fluid motion through game space,
this is treated as ‘under the hood’ algorithmic information
unnecessary to the performer [8].

In contrast to the control transparency intended in
screen scores and video games, extended voice is moti-
vated by a desire to make the body strange. This exists
first in exploration of vocal timbre through electronic
extension of the voice, but also in varying control map-
ping. Many extended voice practitioners use minimal
electronic setups such as laptop with one controller,
where digital patch states govern variation in control
mapping. Thus, the same physical action – pressing a
particular button or flipping a particular toggle switch –
could yield very different sonic results at different mo-
ments in the performance. This counteracts embodied
intuition. The body is decentralized and becomes a thing
of the past, and focus goes instead to digitized sound in
the present.

Notated control is a form of choreography intended to
inspire novel performance temporalities. In the context of
my interface the Abacus, this choreography is seemingly
minute in that it primarily addresses the fingers, but it has
much broader ramifications. Bringing the hand close to

109

the mouth draws attention to the mouth, an often over-
looked musical site (distinct from the larynx). This re-
newed attention to mouth serves to thematize the com-
plex interactions of embodiment and temporality. The
frequent and repetitive vocal digitization in extended
voice practice places body in the near past. The body is
an input to, rather than an acting agent within, the present
moment.

6. FUTURE DIRECTIONS
Extended voice practitioners explore novel forms of live-
ness and performance temporality, often through com-
posed but improvisation-conducive technical methods,
e.g., varying digital patch state to re-map control infor-
mation. This is particular to extended voice because prac-
titioners work within and against traditional assumptions
that voice is intimate and present. They undertake promi-
nently temporal variation of vocal timbre and explore
voice-electronics as novel instrument.

Ongoing performance work will clarify the interactions
between vocal expressivity, digital noise, and non-verbal
communicative acts. My vocal work rarely uses text, so
text-based theoretical precedents, including Barthes’
notion of the ‘grain of the voice,’ are not directly rele-
vant. Instead, I build upon physical vocal research which
treats the voice itself as technology which is malleable
for creative purposes [1].

Further research is needed into intersections between
extended voice, screen scores, and musical games. Ex-
tended voice offers a novel response to notions of em-
bodiment and presence, but research is needed regarding
the responses of other musicians or of gamers to control
mapping variation. By contrast, screen scores and game
pieces offer the advantage of expertise through repetitive
learning. While these media yield exciting possibilities of
musical expression, continued study is needed into the
contributions of complex forms of embodiment and live-
ness.

7. REFERENCES
[1] D. Z. Borch, J. Sundberg, P.-Å. Lindestad, and M.

Thalén, “Vocal fold vibration and voice source
aperiodicity in ‘dist’ tones: a study of a timbral
ornament in rock singing,” Logoped Phoniatr Vocol,
vol. 29, pp. 147-153, 2004.

[2] J. Freeman, “Extreme Sight-Reading, Mediated
Expression, and Audience Participation: Real-Time
Music Notation in Live Performance,” Computer
Music J., vol. 32, no. 3, pp. 25-41, 2008.

[3] A. C. Y. Hung, The Work of Play, Peter Lang
Publishing, 2011.

[4] D. Jackowski, F. Melendez, A. Bauer, P. Hendrich,
and C. Duchnowski, “Computer Game Piece:
Exploring Video Games as a Means for Controlled
Improvisation,” Proc. Int. Computer Music
Conference 2014, Athens, 2014, pp. 88-92.

[5] D. Kanaga, “Intro to Ludic Ecologonomy (Pt. 1),”
wombflash forest [online journal], Apr 2015,
http://wombflashforest.blogspot.co.uk/. Accessed 11
Nov 2016.

[6] D. Kim-Boyle, “Visual Design of Real-Time Screen
Scores,” Organised Sound, vol. 19, no. 3, pp. 286-
294, 2014.

[7] C. Lane, “Voices from the Past,” Organised Sound,
vol. 11, no. 1, pp. 3-11, 2006.

[8] J. Laszlo, M. van de Panne, and E. Fiume,
“Interactive Control for Physically-Based
Animation,” Proc. Conference on Computer
Graphics and Interactive Techniques, New Orleans,
2000, pp. 201-208.

[9] A. Pensado, Without Knowing Why, FTR203, LP,
2015.

[10] M. Pichlmair and F. Kayali, “Levels of Sound: On
the Principles of Interactivity in Music Video
Games,” Proc. Digital Games Research Association
Conference, Tokyo, 2007, pp. 424-430.

[11] C. Roads, Microsound. MIT Press, 2001.

[12] P. Skalski, R. Tamborini, A. Shelton, M. Buncher,
and P. Lindmark, “Mapping the road to fun: Natural
video game controllers, presence, and game
enjoyment,” New Media & Society, vol. 13, no. 2,
pp. 224-242, 2011.

[13] R. R. Smith, “[Study No. 50] [Notational Becoming]
[Speculations],” Proc. Int. Conference on
Technologies for Music Notation and
Representation, Cambridge, 2016, pp. 98-104.

[14] P. Turowski, “Digital Game as Musical Notation,”
PhD dissertation, University of Virginia, 2016.

[15] L. Vickery, “The Evolution of Notational
Innovations from the Mobile Score to the Screen
Score,” Organised Sound, vol. 17, no. 2, pp. 128-
136, 2012.

[16] K. Warren, “Composing and Performing Digital
Voice Using Microphone-Centric Gesture and
Control Data,” in Proc. Int. Computer Music
Conference 2016, Utrecht, 2016, pp. 439-442.

[17] A. L. Woloshyn, “The Recorded Voice and the
Mediated Body in Contemporary Canadian
Electroacoustic Music,” PhD dissertation, University
of Toronto, 2012.

[18] A. Yoshida, Tiger Thrush, IMJ-504, CD, 2003.

[19] M. Young, “Latent body – plastic, malleable,
inscribed: The human voice, the body and the sound
of its transformation through technology,”
Contemporary Music Review, vol. 25, no. 1-2, pp.
81-92, 2006.

110

NOTATING ELECTROACOUSTIC MUSIC FOR
PERFORMERS FROM A PRACTITIONER’S

EXPERIENCE

Terri Hron
Wesleyan University

thron@wesleyan.edu

ABSTRACT
This paper discusses notation practices and experiments
within the electroacoustic performance and composition
practice of the author. These spring from a performer-
and performance-oriented position towards notation in a
field that has traditionally catered more to notation for
analysis and description. As such, the works and experi-
ences discussed offer hybrid solutions and multiple for-
mats to satisfy specific needs for the effective rehearsal
and performance of electroacoustic music. The adaptation
of tools specific to electroacoustic practice for more con-
temporary classical performers is discussed using exam-
ples from works written for and by the author in collabo-
ration with other performers and composers.

.

1. INTRODUCTION
This short paper presents a field report of my experi-

ences and experiments in the notation of electroacoustic
music both as a performer and composer. As such, it is
more of an artist statement than a description of method-
ology and results. In the last ten years, I have commis-
sioned fifteen new works for recorder and electronics,1
co-composed large-scale works for the same with Monty
Adkins and Hildegard Westerkamp and written a dozen
works for other performers/instruments and electronics.
In the course of these collaborative experiences, notation
has always been a puzzle, which I approach in a very
practical way, with the performer’s experience and needs
very much at the forefront of my concern. My relation-
ship to the score is predicated by my first vocation as a
performer of early music, deciphering scores where clear-
ly so much information about performance practice, aes-
thetics and poetics is not available. This affected my own
notational practice in two ways: (a) an attachment to a
performance score as the simplest possible mnemonic
device to jog pre-existing knowledge of style, affect,
technique, etc. and (b) a desire to create/have access to a
repository of all that pre-existing, accumulated
knowledge and detail about a work as part of notational
practice. Clearly these are familiar issues that in my case

are coloured by involvement with electroacoustic prac-
tice, whose multiplicity of technology evades normaliza-
tion in notation. My approach is also very much affected
by the blurring of roles and duties between composer and
performer. The first part of this paper, then, will focus on
multiple score formats in the transmission of electroa-
coustic music for specific instrumentalists and the second
will discuss more recent scores I created as a specific
performer within co-composition. My goal is not to pro-
pose any conclusive method, but to present some solu-
tions drawn from a multi-faceted practice that has grap-
pled with notation within electroacoustic music for some
time. 1

2. MULTIPLE SCORE FORMATS
I began my musical life as an early music performer at a

time when historical performance practice still largely
pledged allegiance to the Romantic notion of werk-
treue.[1] Over time, I came to realize, however, that the
only road to discovering how to successfully decipher
early scores and whatever ‘intention’ might lie behind
them was through performance knowledge and experi-
ence with playing original instruments. Though this per-
former’s perspective and background seems to me fun-
damental, as Lydia Goehr and others have made abun-
dantly clear the Romantic ideal – carried over and magni-
fied in Modernism – has also necessarily permeated my
understanding of a contemporary score’s function as
carrier of intentionality. I feel, however, that there is a
twist: since my work – and that of so many working in
electroacoustic music – is the result of collaboration,
perhaps a score can carry a multiplicity of intentions. And
perhaps it can also remain what it was in the very begin-
ning: not the closest thing to the “work itself” but the
simplest possible mnemonic device. In trying to reconcile
these divergent aesthetics and needs, I started to experi-
ment with the idea of multiple score formats: one to carry
intentions, another to use practically in performance, and
a third to satisfy the simplest practice needs. A hyper-
score, a videoscore and a paperscore.

1 Composers include: Jim Aliteri, WL Altman, Daniel
Blake, Ronald Boersen, Juan Parra Cancino, Jorrit Dijks-
tra, Peter Hannan, Jenny Olivia Johnson, Emilie LeBel,
Paula Matthusen, Darren Miller, Robert Normandeau,
Laurie Radford, Elliott Sharp, Peter Swendsen.

Copyright: © 2017 Terri Hron. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License
3.0 Unported, which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author and source are
credited.

111

2.1 Hyperscores

In the context of my doctoral thesis, Composing idio-
matically for specific performers: collaboration in the
creation of electroacoustic music [2], I wrote a piece for
solo piano and electronics in collaboration with three
pianists. My goal was to examine whether each performer
would lead me to write differently for the same instru-
ment, based on their particular interests, abilities and
proclivities. When it came time to notate the work enti-
tled Maly velky Svet (2013), I searched for a medium that
would allow me both to document some of these differ-
ences in extra-musical form and to acknowledge the crea-
tive contribution these specific performers had made to
the process. Basically, I was looking for a way to house
the performance practice of the work, which had started
with the first ideas and sketches, within the score itself.

Over time, a few other considerations came to light.
The first was that a performance-practice repository with-
in the score could be open-ended, in the sense of Eco’s
open work [3]. A hypertext document, where links could
be added as comments without necessarily altering the
source could encourage future performers to complete the
work after their own fashion. Following from this after a
fashion, a second consideration was a vision of the
work’s provisionality, in William Kentridge’s definition:
“There is not a script or a storyboard. There is a contin-
gency to meaning and what can be gleaned from frag-
ments coming together. A construction rather than a dis-
covery. As with a drawing, a meeting of the world half-
way. Only in retrospect does anything have determined
inevitability” [4]. The choice of hypertext is a commit-
ment to the non-linear experience of learning a musical
work. It has always struck me that the end result of the
activities of a musical interpreter is a temporally-defined
performance with a beginning and an end, yet its prepara-
tion is a series of rabbit-holes and practice loops. A
hyperscore encourages and recognizes this contemplative,
out-of-time relationship to the score. Finally, I realized
that Maly velky Svet, a work whose poetic side revolves
around childhood and games (with musical references to
other pedagogical/children’s musical works such as Bar-
tók’s For Children and Schumann’s Waldszenen), and
that is technically not forbidding, could be a good intro-
ductory work for young players. If it were to fulfill such a
role, it would have to be explicit and explanatory.

So, practically, what kind of information can be housed
in such a hypertext version of the score? To give exam-
ples, I will refer to the second and third part of Maly
velky Svet, entitled FATE and KNOCKING [5]. A hyper-
score can include everything from biographical infor-
mation about the collaborating artists (click Katherine in
FATE or Luciane in KNOCKING), inspirational, poet-
ic/aesthetic explanations about the movements (click on
the titles FATE or KNOCKING), specific information
about sounds and events in the fixed media parts of the
electronics (click on F in FATE and B or highlighted
section in D in KNOCKING), or explanations of specific
techniques (highlighted sections of B and F in FATE).
All of this information is of interest and is thus easily
available to performers yet does not need to appear on the
page during practice or performance. In the past, such

information often resided in the preface or legend to a
score, yet those predicate a linear experience of such
information and seldom include video or audio material
pointing specifically to certain events.

2.3 Videoscores

One of my ongoing concerns as a composer of electro-
acoustic music is providing performers with tools that
allow them to rehearse with the electronics as often as
possible. The reality is that most performers do not have
access to studio monitors or a PA system that would
allow them to practice with the electronic part at a vol-
ume resembling that of performance. But even more
disturbingly, there is often a disconnection between the
written score and the electronic part, often with chronom-
eter markings being the only indication of a link between
the two. All of the pianists involved in the creation of
Maly velky Svet were highly experienced chamber music
players, and I wanted to tap into their skill set in creating
a unified sound between their actions at the piano and the
electronic part. Clearly I needed an interface that would
allow them to rehearse with the electronics as often as
possible, even if without the ideal sound reproduction
setup. At the bottom of each hyperscore, there is there-
fore a link to the videoscore of the work, which integrates
the different parts of the piano notation with a timer and
the fixed audio part, which includes a mockup of the live
electronic elements. Two of the three performers were
very enthusiastic about this tool, which allowed them to
incorporate the sonic landscape of the work in their eve-
ryday practice. They reported that they did not miss a
visualisation of the electronic part because the timings
that were shown were always accompanied by the sonic
event to which they referred, eschewing the need for a
visual explanation. At some point we experimented with
the integration of a waveform or spectrogram, but since
these performers were not adept at or interested in read-
ing these and found their presence more obtrusive than
helpful, I kept the information on the screen at any mo-
ment as reduced as possible. The notion of showing the
minimum information needed came from interviews I had
conducted with performers of electroacoustic music in
2012 abot notation and collaboration [6]. Since then,
however, I have started wondering whether there is not a
potential instructive value to including notation that has
become conventional to musicians working with digital
media. Subsequent videoscores, discussed in the next
section, which I created for my own use flip the type of
information included around: instead of traditional nota-
tion and a timer, I favour the use spectrograms and wave-
forms.

2.3 Paperscores

At this point, a conventional score that can be printed
is still necessary for most performers. While an increas-
ing number are using tablets or digital devices, most
performers still want to have a copy to mark up and use
for technical practice of isolated passages. To my sur-
prise, when we came to the final rehearsals for Maly velky
Svet, several months after the pianists had received the

112

various score formats, one of the three arrived with a
tattered printed copy that she had been consistently using
and admitted that she only rarely gave the videoscore a
go. Clearly some habits – and notational media – die
hard.

3. SCORES FOR ELECTROACOUSTIC
PERFORMERS/IMPROVISERS/

COMPOSERS
On some level I understand the reluctance by classi-

cally-trained instrumentalists to learn to interpret a new
form of notation. I had been looking at spectrograms and
waveforms for several years in my electroacoustic com-
positional practice before I thought to use them as a form
of notation. Perhaps this springs from the fact that elec-
troacoustic notation and the software available, ranging
from audio editors to musical analysis tools, all work on a
descriptive model: they aim to visualize the sound rather
than prescribe what to play. There seem to be few options
for doing both at the same time, which means that users
such as myself, who want to have access to the visualiza-
tion of fixed media elements while at the same time show
prescriptive (Western) instrumental notation, and who do
not want to develop new software, resort to hacking or
combining. Perhaps this is because there are not that
many instrumental performers (and/or composers) versed
or interested in learning and using such tools, or because
such combined visualizations might become very messy
or complicated for works with more than just a few per-
formers.

In any case, it was only when I wanted to notate works I
would play myself, where I did not have to worry about
any one else’s learning curve, that I began to experiment
with including prescriptive notation within descrip-
tive/analytical software such as the GRM Acousmogra-
phe or Pierre Couprie’s EAnalyis. The creation of two
long works for recorders and electronics with Monty
Adkins and Hildegard Westerkamp seemed the perfect
opportunity to try out some new strategies without having
to worry about transmitting all the small details of per-
formance practice. Both Adkins and Westerkamp were
more than happy to leave the bulk of the decisions and
most importantly the notation of the live recorder part to
me. This was entirely logical since these works were
largely focused on sounds and playing techniques that
were highly specific to my instruments and idiomatic to
my way of playing them. In both collaborations, it was
also clear that these were not works intended for any
other performer to play, they relied on my creating them
in the moment every time anew, my playing being an
integral part of the work itself. I was therefore in the best
position to know how to create the right mnemonic de-
vice.

3.1 Lepidoptera

In Lepidoptera (2014-15), a 40 minute, five-part work
I wrote with Monty Adkins, we shared the recording,
editing, processing and putting together of the electronic
material. Once that was established, I largely improvised
the live recorder part and the playback and processing
was often determined with some degree of aleatory by the
computer. The indeterminacy was highly controlled by
predetermined sets of playing techniques, samples, and a
fixed timeline. Each movement relied on a different strat-
egy and what I played live evolved and became increas-
ingly specific – though not fixed – over the course of the
compositional and performance process. At first, when
we were composing the work, I needed a score simply for
cues and the simplest instruction, since I could remember
most of my decisions from one time to the next. Right
after we finished this intensive compositional period, we
recorded the work, thus creating a document that would
then end up serving as my aide-memoire for the bulk of
our performances a year later. I was very thankful for that
recording, since it allowed me to reconstruct the work –
and create a first real score for performance.

This score was a hybrid between an electronic perfor-
mance patch in Ableton Live and five videos, one for
every movement. For each movement I needed different
information – sometimes just a descriptive score of the
fixed media in the works where my part was entirely free,
other times screen shots of the pertinent parts of the patch
in action. The second movement, Lepidoptera, has the
most “fixed” recorder part, meaning that I play specific
fingerings and techniques at determined moments (to
align with the automated parameters of the live pro-
cessing). I had made the live processing in studio using a
mockup of my live part and so I used an Acousmographe
of that same mockup to make the performance score. I
used the Acousmographe because I liked the control I had
over the visual aspects of both the waveform and spec-
trogram. I read the waveform to give me information
about the timing and shape of the notes I was to play and
the spectrogram to show what harmonic content/richness
I should aim for in the multiphonic/overblown fingerings.
The pitch content was determined by the note fingerings I
marked, as seen here in figure 1.

Figure 1. Screenshot from videoscore for Lepidoptera.
@ 2015 Terri Hron.[7]

113

The Acousmographe is used here simultaneously as a
descriptive and prescriptive tool: it shows what I have to
do by using an example of what I have done in the past.
Clearly I do not recreate the waveform exactly, but as I
perform and rehearse it, I have learned to become in-
creasingly exact. This has then led me to question wheth-
er I actually intended such exactitude in the first place, or
whether the tool has led me to become so.

3.2 Beads of Time Sounding

The next score for which I used the Acousmographe
was Beads of Time Sounding (2016), a piece which I
wrote with Hildegard Westerkamp that can range from
ten to sixty minutes. This collaboration with Westerkamp
was based on a series of recordings that she made of me
in 2010, improvising in locations significant to her child-
hood in Osnabrück, Germany. I defined the material I
played over the course of the three recording sessions in
terms of instrument choice and technique, placing myself
as a set of soundmarks in these different locations. When
it came time to create the work, I let myself be guided by
Westerkamp’s deep experience of soundscape composi-
tion, and her preference for fixed pieces.
In the beginning, Westerkamp assumed I would simply
improvise over and within the soundscape “beads” we
would create, since she was at a loss for how to set down
or notate anything more specific. She met my suggestion
that I use the Acousmographe to create a more detailed
score – even if I were to be largely improvising my live
part – with enormous enthusiasm, since it was a tool that
allowed us to discuss and talk about the sound in a very
specific, electroacoustic way. Unlike the score for Lepi-
doptera shown above, the score for Beads does visualize
the part I should play, but rather the output of the fixed
audio part. In Lepidoptera, the electronics are different
every time, since they are put together in real time from a
discrete sets of samples, and the fixed part is what I play.
In Beads, I am responding to the fixed electronics in the
space with the instruments and techniques specified in the
score, as shown below.

Figure 2. Screenshot from videoscore for Beads of
Time Sounding. @ 2016 Terri Hron.[7]

One of the features of this piece is the echoing of my
playing as recorded in the original field recording by
what I play live. As such, the harmonies/spectra and
textures that I am creating with the (overblowing of)

fingerings shown are implicit in the sound I am playing
with. What I need to see are the important and less im-
portant cues to synchronize with and the general form
and progress of the piece.
The performances of Beads of Time Sounding have con-
vinced me of the viability and power of reading the fixed
part in this way (and the videoscore is perfect for practice
with the integrated audio as well), since it offers me very
precise synchronicity.

3.3 CARDIAC

The ease and simplicity of using the Acousmographe to
sync with a fixed audio part motivated me to use it in my
latest work, CARDIAC (2016), for other performers expe-
rienced in playing with electronics: the violin/piano duo
Wapiti. After discussing various options that ranged from
a videoscore integrating a Beads-like Acousmogrpahy
with traditional staff notation (like the Maly velky Svet
videoscores) to a simple paperscore with cue timings, we
settled on a hybrid system with a videoscore Acousmog-
raphy that showed a visualisation of the fixed audio with
cues referred to by the paperscore. The performers chose
this option since they can read the video on their small
phone or tablet devices while still having a full-size staff
notation. On my side, it gives me a chance to provide
both a reliable cuing/sync mechanism and a description
of the electronics. The performers have already been very
enthusiastic about how much information this dual sys-
tem provides. In a sense, we are back at a kind of multi-
ple – or in this case hybrid – format for the different
needs, practical and technological, of performers working
with media.

4. CONCLUSIONS
Electroacoustic music for instrumental performers has

catalyzed the use of notation beyond the staff or the page
to deal with the issues that digital media offers and im-
poses. These include a relationship to fixed (digital) time-
lines and a greater focus on the extended exploration of
spectra and texture. Conversely, the performer and her
need for effective rehearsal tools force electroacoustic
practice to develop adequate means as well. The non-
standardized nature of the relationship between performer
and media has eluded a single notation tool, favoring
instead a flexibility and fluency with many. It is my hope
that the experiences and ideas described here can be a
springboard for discussion of performer-oriented electro-
acoustic notation practice.

5. REFERENCES
[1] L. Goehr, The Imaginary Museum of Musical

Works: An Essay in the Philosophy of Music.
Oxford, 1992, especially 243-286.

[2] T. Hron, Composing idiomatically for specific
performers: collaboration in the creation of
electroacoustic music. DMA dissertation, University
of Montreal, 2015.

114

[3] U. Eco, “The Poetics of the Open Work,” in C. Cox
& D. Warner (Eds.), Audio culture: readings in
modern music. Continuum, 2004, p. 172.

[4] W. Kentridge, Six drawing lessons. Harvard
University Press, 2014, p. 87.

[5] T. Hron, Maly velky Svet: FATE,
http://www.birdonawire.ca/mvs-fate-hyperscore/ and
Maly velky Svet: KNOCKING,
http://www.birdonawire.ca/mvs-knocking-
hyperscore/

[6] ibid. Personal interview with Dana Jessen, April 24,
2012. Discussed in “Exploring the nexus of
collaboration, notation and meaning in mixed
electroacoustic music,” in in Proc. Electroacoustic
Music Studies Conference, Stockholm, 2012.

[7] INA-GRM. Acousmographe. Computer software,
2014.
http://www.inagrm.com/accueil/outils/acousmograp
he.

115

116

PERFORMER ACTION MODELING IN REAL-TIME NOTATION

Seth Shafer
University of North Texas

sethshafer@my.unt.edu

ABSTRACT

This paper discusses the application of action-based music
notation, and in particular performer action modeling, to
my real-time notation (RTN) work, Terraformation (2016–
17), which uses a combination of common practice notation
(CPN), fingerboard tablature, and color gradients.

1. INTRODUCTION

Physical gestures are perhaps the oldest form of human
communication, predating vocal language. Recent anthro-
pological research points to the universal phenomenon of
manual sign languages and their ease of adoption by infants
to suggest that such gestures were the primary communi-
cation mode of early bipedal hominins [1]. Similarly, the
notation of manual action precedes any notation resembling
common practice notation (CPN). Clay tablets dating to the
Old Babylonia period (ca. 2000–1700 B.C.E.) depict scales
on a four-stringed lyre using cuneiform tablature notation,
arguably making action-based music notation the oldest
form of music notation [2].

While tablatures for specific instruments (lute, guitar, or-
gan, etc.) [3] have existed for centuries, a generalized
approach to action-based music notation has only been at-
tempted in the twentieth century. For centuries before, CPN
focused on notation suitable for describing the resultant
sound. Action notation is typically subsumed under the
more general category of graphic music notation or text-
based music notation, both of which act as extensions or
replacements of CPN. These additions and expansions de-
veloped concurrently with similar trends in the visual art
world. This paper will describe several ways composers
have notated performer action rather than resultant sound.

Action-based music notation is a viable solution for a
major problem in real-time notation (RTN), namely the
need for efficient notation in order to facilitate quick and
accurate sight-reading. “Pure action-based scores in fact
utilize images that suggest clear instructions at first sight
and need no further explanation. Such scores could literally
be sight-read” [4, p. 67]. My RTN work, Terraformation
(2016–17) for viola and computer, uses a combination of
action-based notation and CPN [5]. The action-based ele-
ments are generated from a model of the physical actions
required to produce sounds on the viola. The notation is de-

Copyright: c©2017 Seth Shafer . This is an open-access article distributed under the

terms of the Creative Commons Attribution 3.0 Unported License, which permits un-

restricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

signed to evoke complex and expressive musical outcomes
while being as visually efficiently as possible. In this way,
I propose that the application of action-based notation to
RTN is both a fruitful extension of the action-based experi-
ments in notation and a solution to one of the key problems
of real-time composition.

2. NOTATING ACTION

Music notation mediates the relationship between composi-
tion and performance. Expansions of notational language
correspondingly expand and modulate those relationships.
The following discussion explores different expansions of
CPN through the addition of abstract graphics or textual
direction and their effect on compositional process and per-
formance practice.

2.1 Resultant Sound Notation

Many notations have been developed through the twenti-
eth and early twenty-first centuries, but not all of them
refer to action. Like CPN, some notations invent new ways
of notating resultant sound. John Cage’s score for Aria
(1958), for instance, uses line contours plotted on a Carte-
sian pitch/duration axis colored in such a way as to represent
different styles of vocalization [6]. The notation uses sym-
bols distilled from CPN to address traditional parameters
of music rather than performer action.

Karlheinz Stockhausen’s Plus Minus (1963) is another
example of new notation that only addresses the resultant
sound [7]. The score for Plus Minus asks the performer to
construct the details of the piece by reconciling a complex
set of instructions with several pages of abstract graphics.
The work is a set of instructions for making an indeter-
minate number of compositions based on the number of
performers and order in which the graphics are combined.
Like Aria, Stockhausen’s use of graphics and text is directed
toward musical parameters like pitch, duration, tempo, dy-
namics, and articulation rather than performer action.

2.2 Performative Action in Notation

One of the earliest forms of performative action in CPN can
be traced to textual stage directions in theatrical works [8].
Before that, several types of action-based notation existed
for the purpose of communicating and preserving dance
choreography [9]. Many experimental notation systems in
the twentieth and twenty-first centuries ask the performer to
engage in detailed bodily or instrumental action. The range
of action techniques and notational language demonstrates
the variety of reasons for such use: music as theater, sound

117

Figure 1. Line contour notation in Luigi Russolo’s Risveg-
lio di una città (1913–14) indicating the crank speed, pres-
sure, and resulting dynamic of intonarumori instruments.

production, indeterminate parameters, notational efficiency,
intentional complexity, or performer freedom to name a
few.

The notation of some actions is directly correlated with
playing. This is often the case when writing for a new in-
strument without an established tradition of performance
practice. Luigi Russolo in Risveglio di una città (Awakening
of a City) (1913–14), for example, notates the speed, pres-
sure, and resulting dynamic of his crank-driven intonaru-
mori instruments [10] (Fig. 1). Russolo combines familiar
CPN elements like five-line staves and time signatures with
graphic line contours similar in appearance to Cage’s line
contours for Aria. The difference, however, is that Cage’s
contours implicitly rely on the interpretation of musical
parameters while Russolo’s notations act as instrumental
tablature.

Like Russolo, Helmut Lachenmann graphically notates
action in his scores for the purposes of sound production.
His Pression (1969, rev. 2010) [11] and Gran Torso (1971–
72) [12] employ a mixture of CPN and tablature notation
in order to explore new instrumental sounds in his pursuit
of musique concrte instrumentale [13]. Lachenmann’s in-
troduction of the “bridge clef” and “string clef” enable the
notation to directly mediate a non-standard action on the
instrument. The resulting sounds of Lachenmann’s actions
are innately connected with the action required to produce
the sound. The sound of ricochet bowing, for example, is
impossible to produce using any other technique. Actions
themselves are sometimes unintuitively related to the re-
sulting sound. In his 2010 revision of Pression, “action
dynamics,” notated as dynamics in quotation marks, sug-
gest the physical force of an action required to produce a
sound with a disproportionate dynamic outcome.

The discrepancy between action and sound and the dis-
covery of new modes of sound production is a hallmark
of Aaron Cassidy’s work [14]. He accomplishes this by
decoupling and modulating a large set of action parameters
in tablature notation. In his indeterminate string work The
Crutch of Memory (2004) [15] and his Second String Quar-
tet (2009–10) [16], Cassidy loosely specifies pitch informa-

Figure 2. Decoupled string tablature in the second violin
part from Aaron Cassidy’s Second String Quartet (2009–
10).

tion by providing the performer with a graphic contour of
left hand position, variable finger width, and fingerboard lo-
cation. Hand positions, fingerings, and pitches become less
precise and more gestural as a consequence of this unusual
approach to notating the left hand (Fig. 2).

2.3 Cognitive Attention Balancing

One reason a composer might employ action-based notation
is for the purpose of cognitive attention balancing. This
constitutes an admission by the composer that each pa-
rameter addressed in the notation requires a portion of the
performer’s finite cognitive function. The more parameters
specified in the notation, the higher demand required of the
performer’s brain.

Due to the limitations of CPN, action-based notation is a
potential solution to simplifying performance instructions.
One might imagine how cumbersome Juraj Kojs’s direc-
tions in Revelations (2005) to scrape, bounce, and roll a
variety of circular toys across resonant plates would be if no-
tated in CPN [17]. The opposite position, that action-based
notation requires more attention from a performer, is also
plausible. Take, for example, Lachenmann’s use of invented
clefs. Tablature notation such as the bridge clef or string
clef has the potential to ignore or subvert a performer’s
highly developed skills of reading CPN and playing their
instrument. In some regards, very little prior knowledge
of notation and performance technique is required or even
relevant. Contemporary experiments in tablature intend to
question the validity of CPN and traditional performance
practice itself; this posits a potentially oppositional rela-
tionship between composer and trained performer, which is
itself a determinant of the musical result.

It comes as no surprise, then, that through notation some
composers purposely create a work of staggering difficulty,
overwhelming the performer with a multitude of (some-
times contradictory) tasks. This is often the case in the
works of Brian Ferneyhough, Richard Barrett, and oth-
ers composing so-called complex scores, and is almost
inevitable in the decoupled notations of Cassidy and others.
The opposite situation of requiring very little specific param-
eter control from the musician leaves room for performers
to interpret, improvise, and interact with other performers.
There is evidence of this in the text-based works of John
Cage — such as Empty Words (1974) [18] —, the group
improvisation pieces of Christian Wolff — such as For 1, 2,
or 3 People (1964) [19] —, and jazz lead sheets. Here the

118

Figure 3. Line contour notation in Gerhard E. Winkler’s
Hybrid II (NetWorks) (1996, rev. 2001) indicating glissandi,
bow contact position, and dynamic profile.

composer relies on the performer’s creative abilities to col-
laboratively complete the music. A wide breadth of creative
work lies between the extremes of notational vacuum and
parameter overload, with composers often attempting to
balance one difficult parameter by making the other remain-
ing parameters correspondingly easier. This is my approach
to action-based notation in my work Terraformation.

3. PERFORMATIVE ACTION IN REAL-TIME
NOTATION

3.1 Purposes of Action-Based Notation in Real-Time
Notation

Many of the earliest works using RTN are action-based.
Gerhard E. Winkler’s Hybrid II (NetWorks) (1996/2001),
for example, uses several real-time line contours to direct
the solo violist’s glissandi, bow contact position, and dy-
namic profile (Fig. 3) [20]. Likewise, Karlheinz Essl’s
Champ d’Action (1998), uses descriptive on-screen text to
direct a group improvisation [21]. The choice to use text
and moving line segments was no doubt partially due to
computer limitations. However, these early works reveal
an attempt to streamline the notational elements in order
create compelling music that is efficient to sight-read. As
Winkler states, “In general a mixtures of symbolic (e.g. a
“main-pitch”) and graphic elements (e.g. Glissando-lines)
has turned out to be the clearest way of Realtime-notation.
It depends on the idea of the piece and the aesthetics of the
composer, which elements these will be. . . . Which aspects
of playing have to be notated up to which extend of preci-
sion (The range goes from full realtime-notation, — using
all the “in-time” — possibilities of the computer-screen —,
to partly fixed and prenotated elements, — e.g. rhythmic
patterns, which can be prepared in advance —, up to fully
notated score-fragments) [22, p. 3].” These first RTN works
demonstrated efficient notation methods and prefigured a
fascination with directing performer action in real-time.

Composers currently writing RTN pieces continue to use
the techniques established by Winkler, Essl, and others.
The radial scores of David Kim-Boyle [23] and Ryan Ross
Smith [24], for example, which display a clock hand-like
play head sweeping over attack points situated on a clock

Figure 4. Radial notation indicating attack and sustain
points in Ryan Ross Smith’s Study no. 40.3 (2014).

face, The intersection of two graphic elements is an imme-
diately clear paradigm for complex rhythmic actions (Fig.
4). In their simplest form, these radial scores tell the musi-
cian when to perform an action. When duplicated to direct
large ensembles, the radial score efficiently notates dense
polyrhythmic textures.

When musical parameters are decoupled through an ef-
ficient graphical language, the performer is freed to focus
their attention on the most musically challenging elements
on a momentary basis. As described above, decoupling per-
formative actions has the potential for revealing new modes
of sound production. One drawback is that it also has the
potential for increasing strain on the performer. Finding
the equilibrium between these two objectives in RTN is a
delicate task.

3.2 Performer Action Modeling in Terraformation

Terraformation for viola and computer uses action-based
notation for the following purposes: for efficiency in sight-
reading, to enable an interactive formal structure, and to
reveal new modes of sound production. The performative
actions required in the piece are based on a study of physical
and psychological mechanisms at work in the musician’s
manual contact with the instrument. The resulting notation
is carefully designed to ease the cognitive translation from
graphic representation to bodily action.

The notation used in Terraformation resulted from an
active collaboration with violist Michael Capone. His expe-
riences and reactions in reading early versions of the work
helped determine the present state of the piece. In particular,
Capone helped me rank the difficulty of left hand positions
and balance the weighting applied to the algorithm when
moving the left hand from one position to another. He also
narrated his sight-reading thought process as he correlated
the different forms of notation used in Terraformation, re-

119

Figure 5. The aggregate notation and performance interface
for Terraformation (2016–17).

lating when certain notations were beneficial and when they
were extraneous. His guidance regarding an open-ended
parameterization of the physical actions required to play the
viola helped determine the parameters I chose to address in
the work.

3.2.1 Overview of Notation Used in Terraformation

There are three distinct forms of notation in Terraforma-
tion (Fig. 5). One type of notation is a five-line staff with
standard clefs capable of showing common music nota-
tion symbols. Elements of this staff can be hidden so that
one of three different modes can be displayed at any given
time: specific pitches and rhythms using standard symbols,
specific pitches with proportionally spaced rhythms, or ap-
proximate pitches (displayed as stems without note heads)
with specific rhythms.

The second type of notation is a tablature depiction of
the viola’s fingerboard. Instead of fret-like gradations of
position, just the one-, two-, and three-octave positions and
the approximate end of the fingerboard are marked. Each
of the musician’s fingers is notated on the fingerboard as a
color-coded encircled number. An open or unplayed string
is shown as a grayed out zero at the far left-hand side of the
diagram. In addition, the lowest string with a finger down is
marked with the letter name of the specific pitch for quick
reference.

The third type of notation is two sets of color gradients.
The first stretches across the horizontal width of the five-
line staff and is used to indicate bow contact position. The
specific position at any given moment corresponds to the
color sharing the same vertical alignment as the current
rhythm on the five-line staff. The color blue indicates molto
sul tasto, green is normale, red is molto sul ponticello, and
yellow is behind the bridge. Any gradient between those
colors represents a bow contact point between the endpoints
of that continuum. The second color gradient is applied to
each of the note heads on the five-line staff. Ranging from
black to light green, these indicate a continuum between
normal left hand finger pressure to light finger pressure (as
light as possibly makes a difference, slightly lighter than
harmonic finger pressure).

Figure 6. The algorithm for generating new chords in
Terraformation.

These three types of notation comprise an aggregate nota-
tional system, although two of the three types are subject
to display at any given moment. While the five-line staff
system remains on-screen throughout the piece, the fin-
gerboard and color gradients can be independently hidden
when not required. Additionally, two aggregate systems of
notation occupy the performer’s screen-based score. The
top aggregate system shows the notation for the current mu-
sical activity and the bottom system shows the subsequent
material. Between the two aggregate systems is a graphic
indicating the performers current location in the form.

3.2.2 Fingering Positions on the Fingerboard

The algorithm driving musical material in Terraformation is
built on a series of constraints that model the physical action
required to produce a quadruple stop on the viola, referred
to hereafter simply as a “chord.” The general sequence of
chord creation is illustrated in Fig. 6.

This sequence of operations iterates a number of times
to generate a pool of potential chord candidates. At the
end of the process, the algorithm proposes the best possible
choice to follow the current chord based on inputs governing
the model. The action-based logic behind each of these
subroutines is explained below.

3.2.3 “Fret” Selection and Maximum Finger Stretch

The term “fret” is used here as a method of conveniently
locating the finger on the fingerboard and also as a way to
avoid more conventional position-based string pedagogical
practice. The model first randomly selects a fret and assigns
it to the lowest-fretted finger (see Fig. 7). For all practical
purposes, the lowest-fretted finger in a quadruple stop is
always the first finger. Similarly, the highest-fretted finger is
always the fourth finger. The exact fingers are not specified
in the algorithm so as to allow for non-quadruple stopped

120

Figure 7. The range of possible “fret” positions and maxi-
mum finger stretch in those positions.

Figure 8. All twenty-four unbarred left hand positions
ranked by difficulty.

possibilities where an open string or rest on the first or
fourth fingers changes which finger is playing the lowest
fret.

The possible range for the lowest-fretted finger is bounded
on one end by the open strings at fret-0 and at the other end
by fret-18. Based on the selected fret, the algorithm ran-
domly chooses the distance between the lowest- and highest-
fretted fingers. At the lowest end of the fingerboard, the
maximum stretch between the lowest- and highest-fretted
finger is five semitones. This stretch increases to thirteen
semitones at fret-18, extending approximately to the end of
the fingerboard [25].

3.2.4 Hand Shape Selection

A parallel process chooses a hand shape from a predeter-
mined set of twenty-one options ranked by difficulty. A
total of twenty-four (4! = 24) hand positions are theoreti-
cally available, but three are physically impossible (see Fig.
8).

The hand positions are selected based on a weighted tran-
sition table that prefers easier hand positions. Once cho-
sen, the hand position is coupled with the fret selection
and finger stretch parameters described above to generate
a specific finger and fret combination for the lowest- and
highest-fingered frets. The two central fingers’ exact posi-
tions remain to be determined. In addition, a corresponding
penalty is applied to the chord’s overall fitness score based
on the difficulty of the hand position. This score is tallied
and ranked at the very end of the process.

3.2.5 Open Strings

Before fixing the exact fret positions of all of the fingers, the
algorithm randomly allows for the selection of open strings.
Open strings are applied to both finger and string, ignoring
the fret parameter in the subsequent routines related to fin-
ger spacing. An input value governs the percentage chance
of open strings at each chord request.

3.2.6 Evenness of Finger Spacing

The remaining two central fingers’ positions are determined
in connection with an input value that corresponds to finger
spacing evenness. At low-fretted positions on the finger-
board, little variation is possible for the central fingers due
to the limitations of the maximum finger stretch. At higher-
fretted positions, a higher concentration of pitch possibili-
ties in condensed physical space yields more options. Two
factors govern the evenness of the finger spacing. The first
is a decreasing amount of flexibility between adjacent pairs
of fingers from the first-second pair to the third-fourth pair.
In other words, the variation in finger spacing is most flexi-
ble between the first and second fingers and least flexible
between the third and fourth fingers. The second factor is
that asking the player to stretch the space between one pair
of fingers inhibits stretching in other fingers.

On the whole, even spacing of the two central fingers
between the outer fingers is the most comfortable and there-
fore the more playable solution. Increasing the uneven input
value randomly deviates away from even spacing using the
two-factor model of finger spacing just described.

3.2.7 Barring Evaluation

At this point, the algorithm has generated a complete chord
with specific finger and fret locations. Many chords are
still highly impractical from a physical perspective and
undesirable from a musical perspective. Several evaluation
processes examine the fitness of the chord and assign it a
score that when tallied rates its viability.

The first evaluation looks for chords with two fingers on
the same fret, commonly referred to as barring. An input
value controls whether or not two adjacent strings can be
barred. Chords with three or more fingers on the same
fret or with two non-adjacent strings on the same fret are
immediately rejected.

3.2.8 Chord Transition Evaluation

The second stage of evaluation examines the transition be-
tween the current chord and the proposed subsequent chord.
The algorithm tracks the movement of each finger from
the current chord to the proposed chord and generates a
score that considers the following: whether or not a finger
changes strings, the direction of the move up or down the
fingerboard, and the dexterity of each finger. Moving a
finger from one string to another incurs a significant scoring
penalty, with changes going from a higher-numbered string
to a lower-numbered string being more severe than a lower-
to higher-numbered string (to be clear, a lower-numbered
string, ie. String I, produces higher pitches than a higher-
numbered string, ie. String IV). The reason for this is that
it is more difficult to contract a finger to a new position
than to extend a finger. Next, the average fret positions
of the current and proposed chord are compared. More
distant average fret movement acquires a higher scoring
penalty. Finally, each of the scoring mechanisms accounts
for differences in finger dexterity by using a finger-specific
weighting, with movements in the fourth finger generat-
ing higher penalties. This finger-specific weighting reflects

121

an overall ease of movement in the first finger with each
subsequent finger diminishing in dexterity.

3.2.9 Pitch Evaluation

The third stage in the evaluation process scores each chord
according to a specified pitch-class, pitch-class set, or com-
bination of both. Chords that contain one or more matches
are given a higher ranking as more desirable. Each evalua-
tion routine — pitch-class, pitch-class set, or both — can
be activated or deactivated. In any given iteration of the
algorithm, the pitch-class evaluator finds the most matches
and the both evaluator finds the least. By requesting that
chords fulfill both pc and pcs requirements, the algorithm
will sacrifice ease of chord transition and playability for
more desirable pitch content.

3.2.10 Fitness Score Tallies

Following generation and evaluation, a list of proposed
chords are finally collected and their corresponding fitness
scores tallied. The list is sorted first by chords that fit the
requested pitch requirements. Within that list, chords are
arrangement by the difficulty of the chord’s physical pro-
duction. The chord with the top score (ie. the least amount
of penalties) is displayed for the musician to perform and
is fed back into the chord algorithm for comparison with
subsequent chord candidates. In addition, the fitness score
follows the chosen chord through the creation of the re-
maining musical parameters — rhythmic figures, dynamic
contour, bow contact position, and left hand finger pressure,
to name a few. The difficulty of these parameters is in-
versely related to the chord’s fitness score. So, for example,
as the difficulty of the chord increases, the difficulty of the
rhythmic figure decreases. In this way, the fitness score
mediates the amount of attention that the performer is likely
to spend on any single parameter.

3.3 Efficiency in Hybrid Notation

The performative action model in Terraformation attempts
to balance the cognitive demands on the musician by us-
ing a hybrid combination of notation types. The aggregate
notation display is designed to give the performer instruc-
tions that are immediately readable while also providing a
depth of detail. Comments from violist Mike Capone fol-
lowing a rehearsal of Terraformation revealed the specific
sequence of information gathering that he executes each
time the display is refreshed. The performer first deduces
the hand position from the fingerboard diagram. While he
generally replicates the hand position on the instrument he
is assessing the position of the lowest-fretted finger. He
then finalizes hand position by checking it against the CPN,
making small adjustments where necessary. The moment
he spends looking at the CPN also gives him an approxi-
mate understanding of the rhythmic character of the current
staff system. As he begins to perform the material, he is
constantly correlating the four-color gradient that repre-
sents bow contact position and the two-color gradient that
represents left hand finger pressure with the current rhyth-
mic figure, pitch, and dynamic. Finally, in moments of
minimum cognitive strain — in rests or during repeating

figures, for example — he may look below the current ag-
gregate staff system to the upcoming system in order to read
ahead. In this way, through efficiency of a hybrid notation
display, the musician is able to link information gleaned
from different types of notation into a cohesive, continuous
performance.

4. CONCLUSION

While my work modeling the physical actions required to
play the viola led to the creation of Terraformation, this
research also yields a general tool for composers writing
for violins and violas. Composers, especially those without
a background in string playing, spend considerable time
determining the feasibility of double, triple, and quadruple
stops. To solve this problem, I am developing a general
tool for assessing the difficulty of any given multiple stop
for violin or viola and suggesting alternative or subsequent
multiple stops based on the pitch-filter criteria described
above. This utility will incorporate the performative action
modeling research explained in this paper to aid composers
writing multiple stops in their own music.

The fascination with action-based music notation in the
twentieth and twenty-first centuries has yielded a variety of
alternate ways of mediating musical performance. Some
of the key benefits of this category of notation include
clarity of sound production techniques and immediately
recognizable instructions that reduce cognitive strain on
the performer. These are important factors when asking a
musician to sight-read during performance as in the case
of RTN. While incorporating action-based music notation
into a work using RTN is not a new endeavor, the methods
and benefits of doing so are still an incredibly rich area for
exploration. In Terraformation, an algorithm modeling the
physical actions required to produce sound creates, ranks
based on difficulty and pitch content, and notates musical
material. Finally, by using several types of notation to
instruct the performer — a combination of action-based
notation and CPN — the musician is able to efficiently
extract and unify the instructions into a cohesive musical
gesture.

Acknowledgments

I would like to thank violist Mike Capone for his guidance
concerning the physical actions required to play the instru-
ment and his insight into the mental processes involved in
fast sight-reading.

5. REFERENCES

[1] M. C. Corballis, “Did language evolve from manual
gestures?” in The Transition to Language, A. Wray,
Ed. Oxford: Oxford University Press, 2002, ch. 8, pp.
161–179.

[2] The Schoyen Collection. (2016) Ms 5105:
Oldest known music notation. [Online].
Available: http://www.schoyencollection.com/
music-notation/old-babylonia-cuneiform-notation/
oldest-known-music-notation-ms-5105

122

[3] C. F. A. Williams, The story of notation. Detroit:
Singing Tree Press, 1968.

[4] J. Kojs, “Notating action-based music,” Leonardo Music
J., vol. 21, no. 1, pp. 65–72, Dec 1, 2011.

[5] S. Shafer. (2016) Terraformation. [Online]. Available:
http://sethshafer.com/terraformation.html

[6] J. Cage, Aria. New York: C. F. Peters, 1958.

[7] K. Stockhausen, Plus Minus. London: Universal Edi-
tion, 1963.

[8] K. Syer, “From page to stage: Wagner as Regisseur,” in
Richard Wagner and his world, T. S. Grey, Ed. Prince-
ton: Princeton University Press, 2009, pp. 3–22.

[9] A. H. Guest, Choreo-graphics: a comparison of dance
notation systems from the fifteenth century to the present.
New York: Gordon and Breach, 1989.

[10] L. Russolo, The art of noises. New York: Pendragon
Press, 1986.

[11] H. Lachenmann, Pression. Wiesbaden: Breitkopf &
Härtel, 1969 rev. 2010.

[12] ——, Gran Torso. Wiesbaden: Breitkopf & Härtel,
1971 rev. 1988.

[13] ——, “Paradiese auf zeit,” in Musik als existentielle
Erfahrung. Wiesbaden: Breitkopf & Härtel, 1993, pp.
205–212.

[14] A. Cassidy, “Determinate action/indeterminate sound:
Tablature and chance in several recent works,” in Facets
of the second modernity, ser. New music and aesthetics
in the 21st century. Hofheim: Wolke Verlag, 2008,
vol. 6, pp. 17–32.

[15] ——. (2004) The crutch of memory. [Online]. Available:
http://aaroncassidy.com/music/crutchofmemory.htm

[16] ——. (2010) Second string quartet. [Online]. Available:
http://aaroncassidy.com/music/secondquartet.htm

[17] J. Kojs, “The language of action and cyberaction-based
music: Theory and practice,” J. of New Music Research,
vol. 38, no. 3, pp. 285–294, Sep 1, 2009.

[18] J. Cage, Empty words: writings ’73–’78. Middletown,
Conn.: Wesleyan University Press, 1979.

[19] C. Wolff, For 1, 2, or 3 people. New York: C.F. Peters,
1964.

[20] G. E. Winkler, “Hybrid II (NetWorks)—or: At the edge
of musical self-organization,” in Electronics in New
Music. Hofheim: Wolke Verlag, 2006, pp. 236–249.

[21] K. Essl. (1998) Champ d’Action: Realtime composition
environment for computer-controlled ensemble. [On-
line]. Available: http://www.essl.at/works/champ.html

[22] G. E. Winkler, “The real-time score: A missing link in
computer-music performance,” in Proc. of the Sound
and Music Comp. Conf., Paris, 2004, pp. 9–14.

[23] D. Kim-Boyle. (2012) Point studies no. 4. [On-
line]. Available: http://www.davidkimboyle.net/
point-studies-no-4-20141.html

[24] R. R. Smith. (2014) Study no. 40.3 [pulseven]. [Online].
Available: http://ryanrosssmith.com/study40 3.html

[25] P. Rolland, The teaching of action in string playing: De-
velopmental and remedial techniques. Urbana, Illinois:
Illinois String Research Associates, 1974.

123

124

EXPRESSION MARKS FOR PROGRAMMING INTERACTIVE MUSIC

Juan Carlos Martinez Nieto
Georgia Tech Center for Music Technology

jcm7@gatech.edu

Jason Freeman
Georgia Tech Center for Music Technology

jason.freeman@gatech.edu

ABSTRACT

The present work uses common Western music notation to
represent logical and systematic behaviours of computer
music processes in the context of score-oriented interac-
tive music. The algorithmic representation is described
by adding programming annotations in a controlled nat-
ural language to a musical staff as expression marks in
the score. We implemented a computational environment
that is able to translate these expression marks into cod-
ing instructions and execute them in real-time during a live
performance of an interactive-music piece. A collection
of short interactive music exercises for MIDI-controlled
piano based on the proposed notation was composed and
edited using music engraving software. During the compi-
lation stage, an encoded version of the score in MusicXML
format is translated into scripting code, and during live
performance the computational environment executes the
code in real time in sync with the human-performed parts.
This paper introduces the syntax of expression marks for
programming interactive music through a classic “Hello
World” example in the context of interactive music and ex-
plains the technical details behind the implementation of
the computational environment. The main motivation be-
hind this work was to evaluate the viability of creating a
cohesive symbolic representation of interactive music that
is independent of specific software and hardware frame-
works, and is strongly connected with the western music
tradition.

1. INTRODUCTION

In the context of score-oriented interactive music, creating
and preserving repertoire is not straightforward. One rea-
son is that performance information regarding an interac-
tive piece is not entirely represented in a musical score, so
an important part of the information resides inside the com-
putational framework on which the piece runs. This issue
creates strong dependencies with a particular technology, a
factor that has made some composers move away from the
computer music genre [1].

In this paper, we propose to create a cohesive represen-
tation of an interactive music piece by keeping both per-
formance instructions for human/acoustic musicians and

Copyright: c©2017 Juan Carlos Martinez Nieto et al. This

is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

performance instructions for a computational process in a
single music score. Logical descriptors are added as ex-
pression marks in a musical staff (see section 4) and inter-
preted in real time by a programming engine during a live
performance. This work presents a novel approach that
fuses algorithmic thinking and traditional Western music
notation. This approach is particularly well suited for mod-
eling incremental music processes that usually are present
in minimalist aesthetics [2].

This work is a first step in extending the technology in-
dependent representation of music, a common ground for
pure instrumental music, into the field of interactive mu-
sic. Selfridge-Field asserts that “since the representation
of music is entirely independent of the use of comput-
ers, there is every reason to expect that codes designed for
the representation of music in computer applications will
eventually be entirely independent of both hardware con-
figurations and software processes” [3].

Expression marks in common Western music notation ha-
ve been used in musical scores since the eighteenth cen-
tury to represent variations of tempo, intensity, and artic-
ulation [4]. The term is misleading as the scope goes be-
yond expressiveness in music performance [5]. In connec-
tion with the extensibility of expression marks, it is use-
ful to bring the definition of the Harvard Dictionary of
Music “Symbols and words or phrases and their abbrevi-
ations employed along with musical notation to guide the
performance of a work in matters other than pitches and
rhythms” [6]. The multi-purpose implicit characteristic of
expressive marks, along with the fact that they are text-
based signs, makes expression marks well suited for the
purpose of extending a musical score with an algorithmic
descriptor.

In regards to score-oriented interactive music, sometimes
referred as score-driven interactive music [7], temporal re-
lationships between human-performed musical events and
automatic music processes play a fundamental role when
creating interactive music [8]. In musical scores represent-
ing time-relationships among discrete-time events is sim-
ple and accurate. This fact motivates us to employ common
Western music notation to represent systematic behaviors
in interactive music. From this perspective, the score acts
as a symbolic source code where the composer abstracts
and clearly records structural relationships in time among
the different musical entities (human performed instruments
or automatic computer processes).

In summary, we propose to extend common Western mu-
sic notation to describe systematic procedures by adding
programming annotations as expression marks. The pro-
posed approach allows representation of both the instru-

125

Figure 1. Score of the interactive exercise ‘Hola Mundo’.

mental music and the algorithmic process in a single and
well-understood standardized document such that the mu-
sic is readily readable by a human, processable by a ma-
chine, and recreatable in other systems into the distant fu-
ture. In the following sections we first discuss some related
work, then walk through a simple example to introduce
the basic concepts behind programming-expression marks,
and finally the software implementation and a case study
will be detailed in section 6.

2. BACKGROUND

The present work is loosely related to score languages,
which have a long tradition in the field of computer mu-
sic [9]. Score language refers to a text-based list of ac-
tions arranged in absolute or symbolic time. In that sense
Score language is more related to a data structure with ba-
sic programming functionality. Max Mathews developed
at Bell Labs a series of score languages known as MUSIC-
N in the field of audio-synthesis; the first one of those
languages appeared in 1957, and the last one MUSIC-V
around 1969 [10]. MUSIC-V became popular in the aca-
demic and scientific world and was extensively used in the
computer music field during the second half of the twenti-
eth century.

The Score Language pattern paradigm has been used in
many music programming languages since then; mainly
in the field of audio-synthesis. Common Lisp Music [11]
and Csound [12] are direct descendants of MUSIC-V lan-
guages. Nowadays, Antescofo [13], one of the most popu-
lar environments for interactive music that runs embedded
on Max/Msp and Pure-data environments [14], provides a
text-based Score Language for describing customized ac-
tions.

Score Languages are essentially sequences of events in
their core conception, so modeling high level interactions
among music entities can only be done at a very basic
level. Dannenberg in his survey of Music Representation
Systems states that:“This approach is straightforward, but
it makes it difficult to encode structural relationships be-
tween notes” [15]. Modern Score languages address this
issue by embedding custom-language programming scripts.
For example, RTCmix, a score language started by Lan-
sky, includes MinC, a C-style scripting language [16] and
Antescofo enables the combination of score based instruc-
tions with data structures and control-flow logic all within
a single script, but with a score-following paradigm [13].

However, from the symbolic representation perspective,

these approaches create two different and simultaneous mod-
els of the same music that is represented. One is the score-
representation for performance and the other one is the
logic-representation for the computational framework. Our
work addresses the representation of music interaction in a
different way, by keeping the representation of the music
in a unique and cohesive symbolic source and taking ad-
vantage of the multiple semantic connotations of common
Western music notation for modeling structural relation-
ships among musical entities.

This work provides a written representation that models
automatic music processes in interactive music as an ex-
tension of common Western music notation. From the ma-
chine perspective, it implies building a programming en-
gine that is able to interpret the programming-expression
marks notated in the score.

Thanks to open standards for encoding a musical score,
such as MusicXML [17] or MEI [18], an encoded file ver-
sion of a musical score can be understood by a machine.
For the purpose of this research, the composer can model
and record an interactive process directly in the score by
adding programming-expression marks during the editing
phase using a third-party notation software, and the en-
coded version of the score is interpreted by a specific pur-
pose programming engine.

3. HELLO WORLD

This section presents the basics of expression marks for
programming interactive music using the classic “Hello
World” approach as a walk-through example. Figure 1
shows the score of Hola Mundo, a very short interactive
exercise for MIDI-controlled piano and synthesized voice.
The bottom staff represents the synthesized voice part that
is played automatically in Supercollider [19], and the top
staff shows the human-performed part that is played on the
piano. The score uses square shaped note-heads only to
emphasize visually the algorithmic character, and they do
not have semantic meaning.

Figure 2 shows the script library that is imported by the
interpreter engine at the compilation stage. The techni-
cal details about how all different levels of information are
connected to be able to synchronize and execute the in-
structions during a live performance will be explained later
in section 6. Here we will present the underlying concepts.

126

v a r words = [] ;
words [0] = ’h ’ ;
words [1] = ’o ’ ;
words [2] = ’ l ’ ;
words [3] = ’ a ’ ;
words [4] = ’m’ ;
words [5] = ’u ’ ;
words [6] = ’n ’ ;
words [7] = ’d ’ ;
words [8] = ’d ’ ;
words [9] = ’o ’ ;

Figure 2. JavaScript code for ‘Hola Mundo’

3.1 Roles in Interaction

Note that each part plays a different role in the interac-
tion (see Figure 1). The piano part acts as control signal
(input) used by the programming engine to estimate the
current symbolic time-position in the score (i.e. measure
and subdivisions) during a live performance. In this paper,
we label this interaction type as control role, as the input
controls the pace at which the instructions are executed.
Furthermore, the human-performed part acts as an exter-
nal synchronization clock that adjusts the internal clock of
the programming engine every time that a control signal is
received.

The second staff plays two simultaneous and different
roles in the Hola Mundo exercise. First, it increments a
variable in steps of one. In other words, it defines a system-
atic behavior, which in this Hello World exercise is con-
strained to increment the variable n every time a quarter
note appears on the bottom staff. We named this interac-
tion type as logic role. The second role of the bottom part
is derived from the ‘sent’ expression mark text. This mark
is translated in sending a message to the speech machine
(synthesized voice) every time a quarter note is notated.
This type of interaction represents the input parameters of
an external computer music process (Supercollider in this
case). We labeled this interactive role as process role.

3.2 Programming-Expression Marks

The programming-expression marks in the bottom staff of
Hola Mundo are entered in a controlled natural language.
As an example, take the expression “send nth word to speech
machine”. When the encoded version file (e.g. MusicXML)
of the music score is compiled (i.e. transpiled is the proper
term for describing a translation among different source
codes), the compiler looks for the following syntactic text
structure: action [expression] to [output], then a text dis-
ambiguation operation is applied to the string literal to get
each part of the text. Next, the compiler checks if the ex-
pression is a key that maps to a stored script literal and if so
replaces the original expression by the mapped script ver-
sion. In this Hello World exercise, the string “nth word” is
mapped to the script variable words[n].

This text-to-code mapping mechanism strongly contributes
to the ease of building and preserving interactive music

repertoire for the following reasons. First, the symbolic
representation (staff notation) acts as a descriptor of an
algorithmic behavior at a higher level, allowing the com-
poser to abstract and record the logic of the interaction,
which along with the instrumental parts should be suffi-
cient to recreate the piece in the future without the partici-
pation of the original performers and technicians. Second,
an ambiguity is introduced in the symbolic representation
as the technical implementation details are not recorded
in the musical score. Thus, the music can be adapted to
technological and aesthetic changes in the future, avoiding
that the piece being frozen in time, in a similar way as ex-
pression marks work in the context of instrumental music
performance.

4. THE MEANING OF
PROGRAMMING-EXPRESSION MARKS

In a general sense, a programming-expression mark is a
text-based descriptor of an algorithmic function that is ap-
plied only to the specific score-part where it is defined. It
is executed every time that a note appears, and it is not ex-
ecuted on rests. This approach enables building a parallel
environment where the algorithmic functions could run at
different rates as each score-part could potentially evolve
independently over time.

The programming-expression marks scope can be defined
to cover the whole section or to be restricted to a single
note. In the first case, usually the commands are repeated
until it reaches the double-bar which enables reducing the
information in the score. In the second case, the command
is executed just one time in that specific note which is very
useful for initializations. The following paragraphs will
provide more details about the syntax and semantics of
programming-expression marks.

In the Hello World exercise, the expression mark “send
nth word to speech machine” appears in the first measure.
After making the text disambiguation by the parser in the
compilation stage, the text is split as follows: ’send’ (ac-
tion), ’nth word’ (identifier), ’to’ (connector) and ’speech
machine’ (identifier). The action send is interpreted dur-
ing live performance as sending an OSC message [20] ev-
ery time a note appears. The compiler searches internally
for the identifier value (nth word), if this entry exists, the
compiler replaces the identifier with the stored coding ex-
pression associated with this entry. In the Hola Mundo
score, the identifier “nth word” is mapped to the script ex-
pression “words[n]”. Using a similar approach, the iden-
tifier “speech machine” is mapped to a pre-defined OSC
message template. Additionally, the send action in Hola
Mundo associates the variable “words[n]” to the content of
the OSC message. Before the compilation stage, a map-
ping table that associates each identifier with its equivalent
is added.

All actions are assumed by the compiler to be repeated
every time a note appears until the music section ends (sep-
arated by double barline) except when the modifier ‘once’
is present. The ‘once’ modifier constrains the scope of the
action only to the current note (in contrast to the whole sec-
tion). Table 1 shows a complete list of actions for the ex-

127

ACTION MEANING
send send expression-message to port
increment var = var + 1
compute execute expression
assign var = expr
jump to goto measure
print print(expression) in console
stop clear all actions on the current section

Table 1. List of actions

Figure 3. Implementation block diagram.

amples in this paper. The second column shows an equiv-
alent pseudo-code of how the action is translated to the
language engine during the compilation phase.

5. IMPLEMENTATION

Dynamic Programming Languages such as JavaScript are
well suited for live environments as they enable interpret-
ing and executing code in real-time. This programming
approach is often referred as to Just-In-Time compilation
or dynamic compilation [21]. Our implementation of the
computational environment that interprets programming ex-
pression marks was written in C/C++ and has an embedded
JavaScript engine to perform the Just-In-Time compilation
of scripting code during live performance.

Figure 3 shows the block diagram of the actual imple-
mentation of the real-time environment based on the pro-
posed notation for music interactive systems. The core of
the implementation is the programming engine that inter-
prets the programming expression marks in the score dur-
ing a live performance. We use the music notation editor
software MuseScore 1 for creating, editing, and exporting
the score to MusicXML format.

The first step is to compile (transpile) the encoded version
of the musical score. This step involves text disambigua-
tion of the programming-expression marks in the score and
translation of these commands into machine instructions.
During this compilation stage, an encoded version of the
score in MusicXML format is mapped to an intermediate

1 https://musescore.org/.

scripting version in JavaScript that is stored in the pro-
gramming engine, and it contains the symbolic-music-time
locations where the instructions should be executed. Now
the environment is ready for execution.

The programming engine has an internal clock that esti-
mates the current symbolic music time, and based on that
time, the corresponding scripting instructions are executed.
As shown in the block diagram, an external signal with
the current symbolic time feeds the programming engine to
update the internal music-symbolic-time clock. Based on
this update the internal music-time is estimated. This ex-
ternal input signal is derived from the live performance of
the control-role parts(i.e. the human performed parts). In
our implementation the external control signal is received
via OSC. Furthermore, as shown on the block diagram, the
output of the system consists of OSC messages that are
sent to an external computational music framework.

6. CASE STUDY

A collection of short interactive exercises for MIDI con-
trolled piano were composed to evaluate the viability of
the proposed notation. Figure 4 shows the architecture
of the implemented environment. In this setup, a human
performed digital piano sends MIDI messages to a sim-
ple score following system implemented in Objective C
that essentially detects chords events. The score follow-
ing system estimates the current symbolic time position in
the score, and sends the value to the programming engine
via OSC.

Figure 4. Implementation diagram.

As shown in Figure 4, the interactions in these piano exer-
cises are focused on enhancing the human performance by
adding an automatic counter-part played by the MIDI-Host
application. The interactions are in essence minimalistic
but in the variety of process music [22], meaning that one
of the parameters of a music entity is gradually changed,
and it is the process itself which determines the overall
form of the piece [2]. Furthermore, this minimalistic ap-
proach to music composition is well-suited for evaluating
a symbolic representation of logical behaviors.

128

Figure 5. Score of ‘Cencerro Deslizante’.

Figure 6. Process description for ‘interpolate gliss at nth’.

During a live performance, OSC string messages are sent
from the programming engine to a MIDI Host applica-
tion developed in Objective C. The messages are strings
in JSON format, and they contain the chord notes to be
played by the MIDI Host Application. Note that the MIDI
Host does not add any logical layer to the interaction envi-
ronment. The JSON messages are mapped to MIDI mes-
sages in the MIDI Host controller application and played
back in the Digital Piano. In this context the digital piano
behaves as a hyper-instrument.

Figure 5 shows the first three measures of Cencerro
Deslizante, one of the exercises of the collection, and
Figure 6 shows a segment of the performance notes of this
interactive exercise. In this exercise, the automatic piano
part plays off-beat chords computed from an incremen-
tal process that interpolates between two chords. Each
incremental process runs over a complete section (dou-
ble barline) of the piece. It is explained in the perfor-
mance notes and notated in the score by the programing-
expression mark ‘interpolate gliss at nth’.

7. CONCLUSIONS

This research shows that it is possible to implement a pro-
gramming engine that understands a cohesive score repre-

sentation of interactive music that is independent of any
computational framework by extending music notation to
an algorithmic context. The present work proposes a new
compositional approach that does not intend to be appli-
cable in all cases of scored interactive music. Instead, it
introduces a new compositional mechanism for interactive
music which is strongly connected with traditional prac-
tices of writing music through notation and takes advan-
tage of the multi-functional semantic scope of expression
marks. We will focus our future research on developing a
cohesive representation of interactive music by defining a
formal syntax of programming-expression marks and cre-
ating a broad set of pieces to explore and enrich the differ-
ent dimensions of the introduced compositional practice.
This approach is well summarized by the following state-
ment of Roger Dannenberg: “Music evolves with every
new composition. There can be no ’true’ representation
just as there can be no closed definition of music” [15].

8. REFERENCES

[1] J. C. Risset, “Composing in real-time?” Contemporary
Music Review, vol. 18, no. 3, pp. 31–39, 1999.

[2] S. Reich, “Music as a gradual process,” in Writings on
Music, 1965-2000. Oxford University Press, 2002.

[3] E. Selfridge-Field, Beyond MIDI: the handbook of mu-
sical codes. MIT press, 1997.

[4] R. Rastall, The Notation of Western Music: An Intro-
duction. JM Dent and Sons, 1983.

[5] L. Treitler, Reflections on musical meaning and its rep-
resentations. Indiana University Press, 2011.

[6] D. M. Randel, The Harvard dictionary of music. Har-
vard University Press, 2003, vol. 16.

[7] J. Drummond, “Understanding interactive systems,”
Organised Sound, vol. 14, no. 2, pp. 124–133, 2009.

[8] M. Stroppa, “Live electronics or live music? towards a
critique of interactio,” Organised Sound, vol. 18, no. 3,
pp. 41–77, 1999.

129

[9] G. Wang, “A history of programming and music,”
in The Cambridge Companion to Electronic Music.
Cambridge University Press, 2007.

[10] M. V. Mathews, J. E. Miller, F. R. Moore, J. R. Pierce,
and J. Risset, The technology of computer music. MIT
press, 1969, vol. 9.

[11] H. Taube, “Common music: A music composition
language in common lisp and clos,” Computer Music
Journal, vol. 15, no. 2, pp. 21–32, 1991.

[12] B. Vercoe and D. Ellis, “Real-time csound: Software
synthesis with sensing and control,” in Proc. of the Int.
Conf. on Computer Music ICMC 1990, Scotland, 1990,
pp. 209–211.

[13] A. Cont, “Antescofo: Anticipatory synchronization
and control of interactive parameters in computer mu-
sic,” in Proc. of the Int. Conf. on Computer Music
ICMC 2008, Belfast, 2008, pp. 33–40.

[14] M. Puckette, “Pure data: another integrated computer
music environment,” in Proc. of the Int. Conf. on Inter-
college Computer Music Concerts, Tachikawa, 1996,
pp. 37–41.

[15] R. Dannenberg, “Music representation issues, tech-
niques, and systems,” Computer Music Journal,
vol. 17, no. 3, pp. 20–30, 1993.

[16] D. Topper, “Rtcmix for linux (part 1),” Linux Journal,
vol. 78, no. 1, p. 5, 2000.

[17] M. Good and G. Actor, “Using musicxml for file inter-
change,” in Proc. of the Int. Conf. on Web Delivering
of Music, IEEE WEDELMUSIC-2003, Leeds, 2003, p.
153.

[18] R. Perry, “The music encoding initiative (mei),” in
Proc. of the Int. Conf. on on Musical Applications Us-
ing XML - MAX 2002, Milan, 2002, pp. 55–59.

[19] J. McCartney, “Rethinking the computer music lan-
guage: Supercollider,” Computer Music Journal,
vol. 26, no. 4, pp. 61–68, 2002.

[20] M. Wright and A. Freed, “Open sound control: A new
protocol for communicating with sound synthesizers,”
in Proc. of the Int. Conf. on Computer Music -ICMC
1997, Thessaloniki, 1997, p. 10.

[21] J. Aycock, “A brief history of just-in-time,” ACM Com-
puting Surveys (CSUR), vol. 35, no. 2, pp. 97–113,
2003.

[22] I. Quinn, “Minimal challenges: Process music and the
uses of formalist analysis,” Contemporary Music Re-
view, vol. 25, no. 3, pp. 283–294, 2006.

130

TIMED SEQUENCES: A FRAMEWORK FOR COMPUTER-AIDED
COMPOSITION WITH TEMPORAL STRUCTURES

Jérémie Garcia
Universit de Toulouse – ENAC

Toulouse, France
jeremie.garcia@enac.fr

Dimitri Bouche, Jean Bresson
UMR STMS

IRCAM-CNRS-UPMC Sorbonne Universités
Paris, France

{bouche,bresson}@ircam.fr

ABSTRACT

The software framework we present implements a sim-
ple and generic representation of the temporal dimension
of musical structures used in computer-aided composition
software. These structures are modeled as ordered sets of
abstract “timed items” whose actual dates can be set and
determined following different strategies. The timed items
can be linked to an underlying action scheduling and ren-
dering system, and can also be used as temporal handles to
perform time stretching and hierarchical synchronization
operations. A graphical user interface associated with this
model can be embedded as a component within musical
editors. We give several examples of musical objects im-
plemented in this framework, as well as examples of time-
domain operations and user interactions.

1. INTRODUCTION

Contemporary music composers commonly use computer
systems to generate musical structures (scores, sounds,
control data for signal and media processing). Most of
these structures embed a fundamental notion of timing,
which is expressed differently depending on their nature,
on the tools used to create or manipulate them, or on the
approach of the composer working and producing them.
Working with time in consistent and efficient ways is there-
fore an important and challenging issue in computer music
practice and research [1, 2].

Let us take the example of a compositional process in-
volving the control of sound spatialization and the mo-
tion of sound sources defined with a set of 2D- or 3D-
trajectories — sequences of pairs {time, 3D-position} for
the different sound sources. Composers can face here sev-
eral non-trivial time-related tasks such as the inner tim-
ing of the trajectories, their synchronization with the con-
tent of the sound sources or with other trajectories, etc.
They may also want to integrate these trajectories within
a higher-level time-structure along with other musical data
— typically, in a score or in a Digital Audio Workstation.
Besides, all these operations are likely to be repeated and
spread at different levels of the compositional process, and

Copyright: c©2017 Jérémie Garcia et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

applied to other types of musical objects with similar tem-
poral characteristics.

Various approaches have been explored to unify and
synchronize temporal dimensions of signal and symbolic
structures in computer music environments, either from a
graphical point of view [3] or from a more formal, logical
perspective using temporal constraints [4], however with-
out focusing explicitly on user-interaction.

From a composer’s perspective, Stroppa and Duthen [5]
introduced the concept of pivots, as “virtual anchors that
are used to describe temporal objects [which] act as a skele-
ton of the temporal structure of the object and will be used
to organise various elements together”. Bel [6] followed a
similar approach to describe musical objects and satisfy
temporal constraints, but used a simpler model using a
unique pivot for each object, thus not capturing any pos-
sible complexity in the internal time structures.

The present project takes place in the OpenMusic com-
puter-aided composition environment [7]. It originates from
previous work on the control of sound spatialization pro-
cesses [8], and aims at facilitating the creation of musical
objects by providing a unified framework to support both
computational and graphical interaction for timing opera-
tions.

We propose a generic representation and software frame-
work designed as a “temporal backbone” for musical struc-
tures, representing them as simple sequences of timed com-
ponents, which we call timed-items. Timed-items can have
different roles to make for explicit structuring, time trans-
formations, or synchronization operations. They help han-
dling time both at the micro level, to specify the inner
structure of the musical objects, and at the macro level,
to organize them in compound structures.

We describe the architecture and the main characteristics
of the model in Section 2. We then present the correspond-
ing graphical user interface and interactions in Section 3.
In Section 4, we give several examples of musical objects
and interfaces implemented in OpenMusic. In Section 5,
we describe internal and external synchronization opera-
tions, and how this representation system supports the def-
inition and manipulation of global time structures in a com-
positional process.

131

2. MODEL AND ARCHITECTURE

2.1 Timed Sequences

We consider timed musical objects as subclasses of an ab-
stract superclass that we call a TIMED-SEQUENCE. This
class holds an ordered set of “timed items” which represent
basic components determining the temporal organisation
inside the musical object. Public accessors allow the user
(or programmer) to deal seamlessly with this list of items.
Subclasses of TIMED-SEQUENCE can either use these ac-
cessors to maintain it during the life of an instance, or re-
define them in order to redirect reading/writing and timing
operations to existing attributes of the structure. A couple
of additional methods can also be overridden to redefine or
complement the addition or deletion procedures of timed
items in a TIMED-SEQUENCE.

The main application programming interface (API) con-
tains the following functions:

- get-timed-item-list:
⇒ returns the list of timed items of a TIME-SEQUENCE

- set-timed-item-list:
⇒ sets a new list of timed items in a TIME-SEQUENCE

- make-timed-item-at-time:
⇒ returns an item created at a given date in a TIME-
SEQUENCE

- remove-timed-item:
⇒ removes an given item from a TIME-SEQUENCE

2.2 Timed Items

The class TIMED-ITEM is also provided as a default super-
class for the elements in a TIMED-SEQUENCE. Each item
has a time value (or date), which can be explicit (specified
by the user) or implicit. It is not mandatory indeed, that all
the elements in a TIMED-SEQUENCE have an explicit date:
if we consider a trajectory describing a motion in space, for
instance, a global duration might be specified for the mo-
tion, without a specific date assigned to every point in that
trajectory: in this case, points’ timing can remain implicit.

If its date is implicit, however, a TIMED-ITEM must be
included in a sequence where an explicitly-dated item is
present before and after it. The computation of a date is
then possible provided a measure of distance exists be-
tween two items of a given type, which allows for time
interpolation. 1 Implicit dates are therefore computed “on-
deman” (as in a lazy-evaluation approach) and are implic-
itly updated by any change in the TIMED-SEQUENCE.

Finally, a special tag (master) can be assigned to the
TIMED-ITEMs, meaning that they can be used as anchors
for global time transformation or synchronization opera-
tions. Only explicitly-timed items can be tagged as master,
and the first and last items of a sequence are always consid-
ered as master: they have a date assigned by default, and
are privileged anchors to stretch, compress or synchronize
the musical structures.

1 The same measure of distance, in the case of spatial trajectories for
instance, can be used to determine if two successive items are at the same
position (distance = 0). This implies an idea of stability or steadiness of
the structure over the duration defined by the two items.

2.3 Time-modification of Items

Interactions with the TIMED-SEQUENCE mostly consist in
setting the date of the TIMED-ITEMs by different means:
graphical or algorithmically. Depending on the type of the
item, this operation will yield different effects as illustrated
in Figure 1:

• Setting the date or moving an “untimed” item makes
it explicitly timed.

• Changing the date of an explicitly timed item affects
and updates the implicit date of its direct and indirect
untimed neighbours.

• Changing the date of a master item changes the date
of its direct or indirect timed neighbours and thus
impacts the implicit date of their direct and indirect
untimed neighbours as well.

The set of possible types of item: {untimed, timed,master}
is therefore strictly ordered, which introduces a hierarchy
in the temporal structure that influences the way explicit
or implicit dates are computed: the date of an item is sys-
tematically updated according to the dates of its closest left
and right neighbours of a superior type.

Figure 1. Impact of the time-modification of a timed-
item (horizontal arrows indicate the changes yield by the
initial item translation). a) Simple translation of a timed
item (with timed neighbours — no side-effect). b) Trans-
lation with update of an item with no explicit date on the
right (preserving a constant ratio). c) Translation and time
stretching between master timed items.

2.4 Rendering

The TIMED-SEQUENCE model also allows for a seamless
integration of musical objects in a generic rendering sys-
tem [9]. In addition to the previous API, the method collect-
actions allows a TIMED-SEQUENCE to return a list of ac-
tions and tasks to execute, related to the rendering of the
structure in a given time interval. Actions can just be as-
signed to TIMED-ITEMs, so that playing the musical se-
quence can be modeled as reading through the list of TIMED-
ITEMs in the corresponding interval, and triggering the cor-
responding actions. They can also be generated or interpo-
lated to produce more complex sequences of actions dy-
namically: sampling can be achieved for instance by pe-
riodic calls to the make-timed-item-at-time function, not
modifying the original sequence of TIMED-ITEMs.

132

Figure 2. Main view of the timeline-editor associated to a TIME-SEQUENCE. The TIMED-ITEMs of different types are
represented respectively as ◦ (untimed / implicit time), • (timed) and � (master).

3. GRAPHICAL EDITOR AND INTERACTIONS

A graphical user interface (GUI) is associated to the TIMED-
SEQUENCE. This GUI allows the visualization of the TIMED-
ITEMs and the execution of the most common operations
on time structures. The main view (called timeline-editor,
see Figure 2) lets the user select, add or delete timed items
via calls to the API functions. For instance, adding a point
in the timeline-editor (command+click) triggers a call to
make-timed-item-at-time and adds the returned item to
the sequence using set-timed-item-list. Setting/changing
the date of TIMED-ITEMs is essentially done by transla-
tions on the timeline using the mouse. Keyboard short-cuts
let user change the “type” of the items, mainly to turn stan-
dard items to master items and vice-versa.

Each master item creates a marker in the ruler visible at
the bottom of the view. The marker, displayed as a yellow
arrow, can be used as a proxy to move and synchronize
the master item with the ruler. A cursor is also displayed
as a vertical red line (around 1600 ms in Figure 2), which
can be linked to the playback and rendering functionalities
of the host environment to display or set the current play-
time.

4. IMPLEMENTATION OF MUSICAL OBJECTS

A core set of objects can be defined in the generic frame-
work introduced so far. It is possible to build such objects
directly on top of the proposed architecture (Section 4.1),
or by adapting existing objects to implement its API (Sec-
tions 4.2 and 4.3). The TIMED-SEQUENCE API and the
timeline-editor handle the time representation and manip-
ulations of the integrated objects.

4.1 Basic Timed Sequences

The TIMED-SEQUENCE model defines a generic type of
object to use in computer music applications. We call DATA-
STREAM a simple sequence of timed events directly inher-
iting from TIMED-SEQUENCE. The timed items in a DATA-
STREAM are called DATA-FRAMEs. They contain data and
perform specific actions to render these data. Subclasses
of DATA-FRAME include for instance MIDI events or Open
Sound Control (OSC) bundles, where data is a set of mes-
sages and the rendering transmits the messages via dedi-
cated protocols.

Figure 3 shows a prototype editor created for DATA-
STREAM objects, which plots DATA-FRAMEs (in this case,
representing OSC bundles) along the horizontal time axis.
The timeline-editor at the bottom is included as a compo-
nent in the main editor, and enables time manipulations on

the data frames, such as local/piecewise stretch and com-
pression, snap to grid, etc.

Figure 3. Editor for a sequence of data (class DATA-
STREAM) containing DATA-FRAMEs (in this case, OSC
bundles). Each DATA-FRAME is represented as a coloured
shape. The graphical parameters (shape, colour, size or
vertical position of the frames) are assigned using an arbi-
trary mapping with the data. Note the timeline-editor GUI
component at the bottom.

A specialization of the previous structures allows for the
implementation of a PIANO-ROLL representation as shown
on Figure 4. The class MIDI-NOTE is a specific DATA-
FRAME containing pitch, velocity and duration informa-
tion. When rendered, it produces two actions sending MIDI
key-on and key-off events.

Figure 4. Editor for a sequence of MIDI notes (PIANO-
ROLL) including a timeline-editor.

Since the model lets musical objects being built without
exhaustive specific timing, one could consider specifying
the date of two master items in a DATA-STREAM (DATA-
FRAMEs or MIDI-NOTEs) and let the system interpolate in-
termediate time values.

133

4.2 Timed Controllers: Curves and Automations

The TIMED-SEQUENCE API can also be used to improve
time manipulations in existing objects, such as the timed
controllers and automations commonly used in computer
music systems. It is straightforward to implement the ac-
cessors presented in Section 2 with a break-points function
(BPF) object, which contains an ordered list of 2D points,
and where the time dimension is implicitly associated to
one of these dimensions (x / horizontal axis). Likewise,
the timeline-editor can be embedded as a component in a
BPF editor, as presented in Figure 5.

Figure 5. Editor of a break-point function implement-
ing the TIME-SEQUENCE API, including a timeline-editor
component. Each point in the graph is considered as a
TIMED-ITEM.

4.3 Trajectories

As mentioned in the introduction, timing in trajectory spec-
ification is often a delicate problem. Indeed, although effi-
cient interfaces exist to draw and design 2D or 3D curves,
time specification must generally be done piecewise or us-
ing a global duration given to the entire movement.

The integration of the TIMED-SEQUENCE model in 2D or
3D curves is done through the definition of “timed points”,
an extension of 2D/3D points (including x, y and z co-
ordinates) and subtype of TIMED-ITEM. The embedded
API and graphical interface allow the user to easily per-
form time manipulations on such graphical structures.

In Figure 6 two master points control the global scaling
and synchronization of a trajectory. A timed point with
a defined date near the middle of the sequence splits the
overall morphology into two parts with relatively equiva-
lent durations. The rest of the points have no explicit date
(their positioning in time will be computed on-demand when-
ever needed, according to the dates of the timed and master
points).

5. SYNCHRONIZATION

Synchronization is one of the main time-domain operations
performed in musical software, and is often identified as a
key element of computer music systems [10]. Our frame-
work facilitates the implementation of intuitive synchro-
nization tools by connecting multiple timelines.

Figure 6. Editor of a 2D-curve in which only three points
have an explicit date. The other (implicit) dates are de-
duced to preserve a constant speed across the different seg-
ments.

5.1 Internal Synchronization

Sticking with the sound spatialization example, let us now
consider the case of multiple trajectories to control the mo-
tions of several sound sources. Time-synchronization strate-
gies are crucial in this case: how to make specific (spatial)
regions match in time?

The SPAT-SCENE is an interactive object/controller de-
signed for sound spatialization processes, made up from a
set of 3D trajectories (TIMED-SEQUENCEs) and connected
to interactive (real-time) visualization and rendering [11].
Figure 7 shows the editor developed for this object, where
the timeline-editor represents each trajectory in an individ-
ual track.

Figure 7. SPAT-SCENE editor. Each sound spatialization
trajectory is associated with a timeline in the timeline-
editor component at the bottom.

The aggregation of timeline views dedicated to each tra-
jectory in a single timeline-editor enables the implemen-
tion of local synchronization strategies in such compound

134

objects. First, the snap-to-grid functionality supports the
adjustment of the time positions to the closest items or
grid element within a certain range. This helps users to
precisely set items from different sequences at the same
date. Second, the markers created by the master items
fuse when they are at the same date, and therefore act as
proxies to all master items situated at this particular date.
This allows several master items from different timelines
that have been synchronized to be moved simultaneously,
and facilitates stretching and compression operation to the
neighbour segments of all corresponding objects. Figure 7
illustrates this behaviour with several master items being
selected and moved through the user interacting with a sin-
gle marker.

5.2 External Synchronization

The synchronization of master items can also occur at a
higher structural level, when several temporal objects are
combined to form more complex musical structures, for
instance within a sequencer.

Figure 8 illustrates a scenario in which the user decides
to synchronize two hand-drawn audio effect automations
with specific parts of a sound file. The scenario is im-
plemented in a musical container interface currently de-
veloped in OpenMusic on top of the same timed-sequence
model.

Before synchronizing the objects, the composer annotates
the sound file with two markers in order to define the begin-
ning of two “sections” A and B, and adds a master point in
BPF2 to synchronize with these markers. All master items
are collected out of the objects to their container’s context,
and lifted to the time ruler at the top of the sequencer in-
terface (represented as vertical yellow lines). From there,
the targeted operation requires dragging only a couple of
markers in the time ruler.

In Figure 8.a the beginning of both automation curves
(considered master points by default) is synchronized with
the first marker in the sound (beginning of section A). The
user action 1© then synchronizes the central master point
of BPF2 (marker displayed in red on the ruler at the top)
with the last point of BPF1 (also considered as a mas-
ter/synchronization point by default). This action ties to-
gether the two items, which can then be manipulated as
a single entity. 2 In Figure 8.b, the user performs action
2© to position this “grouped” marker at the beginning of

section B of the sound file, thereby modifying the length
of BPF1 and the relative lengths of the two segments in
BPF2. Finally, in Figure 8.c, action 3© connects the end
point of BPF2 to the end of the sound file, in order to ad-
just the duration of the second segment of the automation.
Figure 8.d shows the resulting sequence with synchronized
markers and items.

2 Similarly to the internal synchronization, a snap functionality allows
any dragged marker to be adapted to the position of the closest one within
a given time window.

Figure 8. Synchronization of two effect automation curves
with a sound. 1©, 2© and 3© represent user actions.

135

6. CONCLUSION

We introduced a programming and a graphical user inter-
face framework for the representation of time in musical
objects. We described the underlying concept of TIMED-
SEQUENCE, an abstract representation containing an or-
dered set of TIMED-ITEMs, and the corresponding API used
to represent musical objects through these simple struc-
tures. TIMED-ITEMs also facilitate explicit structuring of
an object by defining temporal anchors that can be used
to perform stretching and synchronization operations, both
internally within an object, or externally with other objects.

This framework therefore enables expressive means to
work with time either algorithmically or via graphical user
interfaces, and provides end-users with consistent visual-
ization and interaction mechanisms.

The TIMED-SEQUENCE model is currently implemented
in the Common Lisp Object System [12] and used as a
basis for the design of new interfaces and time structures
in the OpenMusic environment.

Future work will focus on the representation of symbolic
notation with our model in order to propose a comprehen-
sive systems for composers to describe and process time
structures in score-oriented frameworks. We also plan to
explore more advanced interaction mechanisms, for instance
considering weighted timed-items to control more sophis-
ticated stretching and synchronization operations.

7. ACKNOWLEDGEMENTS

This work is supported by the French National Research
Agency project EFFICACe ANR-13-JS02-0004.

8. REFERENCES

[1] R. B. Dannenberg, “Music Representation Issues,
Techniques, and Systems,” Computer Music Journal,
vol. 17, no. 3, pp. 20–30, 1993.

[2] H. Honing, “Issues on the Representation of Time
and Structure in Music,” Contemporary Music Review,
vol. 9, no. 1-2, pp. 221–238, 1993.

[3] J. Bresson and C. Agon, “Scores, Programs and Time
Representations: The Sheet Object in OpenMusic,”
Computer Music Journal, vol. 32, no. 4, 2008.

[4] A. Allombert, M. Desainte-Catherine, J. Laralde, and
G. Assayag, “A System of Interactive Scores Based on
Qualitative and Quantitative Temporal Constraints,” in
ARTECH 2008. Proceedings of the 4th International
Conference on Digital Arts, Porto, Portugal, 2008.

[5] M. Stroppa and J. Duthen, “Une représentation de
structures temporelles par synchronisation de pivots,”
in Colloque Musique et Assistance Informatique, Mar-
seille, France, 1990.

[6] B. Bel, “Time-setting of sound-objects: a constraint-
satisfaction approach,” in International Workshop on
Sonic Representation and Transform, Trieste, Italy,
1992.

[7] J. Bresson, C. Agon, and G. Assayag, “OpenMusic:
Visual Programming Environment for Music Compo-
sition, Analysis and Research,” in Proceedings of the
ACM international conference on Multimedia – Open-
Source Software Competition, Scottsdale, USA, 2011.

[8] J. Bresson and M. Schumacher, “Representation and
Interchange of Sound Spatialization Data for Compo-
sitional Applications,” in Proceedings of the Interna-
tional Computer Music Conference, Huddersfield, UK,
2011.

[9] D. Bouche and J. Bresson, “Planning and Scheduling
Actions in a Computer-Aided Music Composition Sys-
tem,” in Proceedings of the 9th International Schedul-
ing and Planning Applications Workshop (SPARK),
Jerusalem, Israel, 2015.

[10] P. Desain and H. Honing, “Towards a Calculus for Ex-
pressive Timing in Music,” Computers in Music Re-
search, vol. 3, pp. 43–120, 1991.

[11] J. Garcia, T. Carpentier, and J. Bresson, “Interactive-
Compositional Authoring of Sound Spatialization,”
Journal of New Music Research, vol. 46, no. 1, 2017.

[12] R. P. Gabriel, J. L. White, and D. G. Bobrow, “CLOS:
Integration Object-oriented and Functional Program-
ming,” Communications of the ACM, vol. 34, no. 9, pp.
29–38, 1991.

136

THE HOUSE HARMONIC FILLER: INTERACTIVE EXPLORATION OF
CHORD SEQUENCES BY MEANS OF AN INTUITIVE REPRESENTATION

Ángel Faraldo, Perfecto Herrera, Sergi Jordà
Music Technology Group, Universitat Pompeu Fabra

name.surname@upf.edu

ABSTRACT

In this paper we present an interactive two-dimensional
representation of musical chord progressions, integrated
into a computer program that generates house music har-
monic loops in MIDI format, based on a user’s input. Our
aim is to encapsulate relevant tonal information and dis-
play it in ways that are easy to understand for novices and
untrained musicians, facilitating the creative exploration of
musical ideas. We briefly reference previous work on tonal
visualisation and interaction, and introduce some measures
of tonal properties from the literature. We then present our
system and describe the two-dimensional harmonic map,
before discussing its outcomes and shortcomings, pointing
at future lines of research in the conclusions.

1. INTRODUCTION

Computers have become one of the epicentres of profes-
sional music making. This has not only lowered costs in
production, but has also facilitated music makers to be in
closer contact with –and in many cases, to take complete
care of– all stages of the music production chain, includ-
ing tinkering and brainstorming, composing, layering and
editing, recording, mixing, mastering and eventually, per-
forming. Moreover, computers potentially provide a new
realm of possibilities to the amateur musician and the cu-
rious mind, inviting them to engage in musical creation in
unprecedented ways, through a variety of educational tools
and games, digital musical instruments and accessible dig-
ital audio workstations (DAW’s).

In this paper, we introduce a two-dimensional represen-
tation of chord sequences, that allows users (especially
novices and musicians without formal education) to eas-
ily develop intuitions about certain tonal properties, like
modality and tonal tension. Our visualisation method is
integrated into a simple computer program that creates har-
monic loops in house music style, a popular subgenre un-
der the umbrella of Electronic Dance Music. As it will be-
come apparent, house music holds a number of properties
that make it suitable for our study.

Our explanation unfolds as follows: in the next Sec-
tion, we briefly present related work in the areas of pitch

Copyright: c©2017 Ángel Faraldo et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

Figure 1. Typical renditions of pitch spaces: the circle of
fifths (left) and a simple Tonnetz diagram (right).

space representations, digital interactive systems for har-
monic exploration, as well as some existing measures of
tonal properties. Then, we proceed to describe our com-
puter program in Section 3, with an emphasis on the two-
dimensional interactive space proposed. We discuss its
outcomes and limitations in Section 4, before concluding
with a summary and pointing at directions for future work.

2. BACKGROUND

2.1 Pitch Space Visualisations

Probably the most widespread representation of pitch
spaces is the so-called circle of fifths, which represents
relationships between adjacent keys. Richer in its repre-
sentative power is Euler’s Tonnetz (1739), displaying other
intervalic relationships (major and minor thirds alongside
the cycle of fifths), and upon which Riemann’s influential
tonal functional theory is grounded.

Several other pitch and chordal spaces have been de-
veloped since, following similar configurations. The ge-
ometrical representations of Longuet-Higgins (1962) and
Balzano (1980), which attempt to represent harmonic dis-
tance, are worth mentioning, for they have been used in
interactive musical systems [1, 2]. In any case, most of
these abstractions almost invariably lead to lattice struc-
tures similar to the Tonnetz [3], with perhaps the exception
of Shepard’s [4] and Chew’s [5] helicoidal models, that
attempt to bring closer the pitch-class, chordal and key do-
mains.

Recently, Bergstrom et al. [6] developed a system (iso-
chords) that visualises chord progressions and voicings at
playback time, resembling an animated Tonnetz. Other
efforts towards visual analysis of tonal structure are
mostly grounded in the works of Sapp [7, 8], evolving
into interesting analysis methods using Self Organising
Maps [9, 10] and simultaneously addressing multiple tem-

137

poral scales [11]. However, these representational tools are
developed with the analyst in mind, rather than the music
creative, and cannot be used in real time.

2.2 Measuring Harmonic Properties

Most of the representational methods we just outlined were
created to give account of certain tonal properties, be these
in the realms of purely music-theoretical concepts, like the
Tonnetz or the Spiral Array [5], or in the context of music
cognition, attempting to illuminate the ways in which we
humans listen to music [3, 4, 12]. It is in this area where
a number of measures of perceptual distance have arisen,
such as Lerdahl’s distance indicator between chords in the
context of multiple musical keys [3]. Recently, Bernardes
et al. [13] introduced a novel measurement that estimates
the perceptual proximity and consonance of note aggre-
gates based on a 12-dimensional Tonal Interval Space, and
which they use in their own generative system.

In the domain of harmonic consonance, Parncutt, has de-
voted a monograph to the study of the perceptual conso-
nance of chords and sequences [14], after the pioneering
works of Terhardt [15, 16]. However, this line of work is
inevitably connected to the study of timbre and psychoa-
coustics, and lays slightly off our discussion.

In the field of music theory, Temperley [17] suggested
different operations to measure various tonal properties of
pitch-class sets (henceforth pc-sets). Grounded on Euro-
classical 1 music theory and corpus analysis, he designed a
Bayesian framework to measure the tonal implication (the
key that a given pc-set implies), tonal ambiguity (a mea-
sure of the ambiguity of a pc-set to suggest one or several
keys) and tonalness (the degree to which a pc-set is char-
acteristic of the style he is studying) of pc-sets.

2.3 Interacting with Harmony

Several systems have been proposed to create, modify and
more generally interact with harmonic spaces in digital en-
vironments, be these chord progressions or scales. A pio-
neering work in the field, Levitt’s Harmony Grid (1986),
lets the user hover with the mouse over different pitch
space representations, sounding individual notes or var-
ious chord types (depending on the mode of operation)
in response [1]. Soon after, Holland developed a num-
ber of educational programs about harmony in which the
user could play simple chord progressions by tracing lines
with a mouse over a Longuet-Higgins relational space [2].
Bernardes et al. [13] recently proposed a generative har-
monic model based on a set of parameters (chord vocabu-
lary, consonance factor and distance) selected by the user.

In the realm of bodily interaction, Gatzsche et al. [19] de-
veloped a system to physically interact with tonal spaces
with hardware controllers, inspired in Chew’s Spiral Ar-
ray [5]. Similarly, Adeney came up with a multimedia
environment in which a performer can literally step over
different chord symbols projected on the floor as a two-
dimensional grid, creating progressions based on tonal

1 We take this term from Tagg [18] to refer to European Classical Mu-
sic of the so-called common practice repertoire, on which most treatises
on harmony are based.

functional harmony as the performer moves [20]. Fig-
ure 2 shows screenshots of the Graphical User Interfaces
(GUI’s) of the systems we just mentioned.

3. THE HOUSE HARMONIC FILLER

In this section, we describe our tentative model for interact-
ing with chord progressions in real time. We provide it as
an open source program, written in Pure Data 2 and avail-
able online. 3 The program reads chord sequences from
MIDI files, analyses their harmonic content and promotes
simple variations like changing the voicing, register, inver-
sion and rhythm of the sequences, generating MIDI data
that can be sent out to any chosen device or DAW.

We refer to the prototype we are describing as the House
Harmonic Filler, inspired by Moore’s nomenclature [21].
According to Moore, popular music styles can be differ-
entiated and characterized by observing four basic textural
functional layers, namely the explicit beat layer, the func-
tional bass layer, the melodic layer and the harmonic filler
layer.

3.1 Rationale

We are interested in assistive tools for creating electronic
popular music based on corpus analysis. We believe this
approach can help us overcome certain musical assump-
tions that might not apply to the modes of musical pro-
duction under consideration (cfr. [22, 23] for a description
of tonal properties of EDM), and help the novice or ama-
teur electronic music producer to become familiar with the
main features of a given style of music. Furthermore, sta-
tistical music analysis can be useful for the musicologist
in the task of observing and formalising new operational
principles.

Despite harmony not being a prominent aspect of many
electronic popular music genres, it is still prevalent in those
evolving directly from a song tradition, such as electro-pop
and disco variants. Our choice to develop this research on a
corpus of house music, is based on the following premises:

• House music is composed and performed mainly
with digital technology.

• Its basic structural unit is the loop, normally a 2, 4
or 8-bar circularly repeating sequence that is usually
layered together with other such loops, what creates
clear harmonic units without cadential points.

• House music, especially so-called deep house, is
usually composed with chord loops borrowed from
styles such as soul, rhythm-and-blues or even jazz,
using extended chords other than simple triads, what
makes it interesting in purely harmonic terms.

• Regarding instrumentation, deep house tracks often
present acoustic instruments, such as pianos, vibra-
phones as well as an extensive use of vocals, what
would eventually let us compare the output of our
system with corpora of other popular music styles.

2 http://puredata.info/
3 www.github.com/giantSteps/house-harmonic-filler

138

Figure 2. Graphical User Interfaces of various interactive applications dealing with harmony. From left to right: Levitt’s
Harmony Grid [1], Holland’s Harmony Space [2], Adeney’s HarmonyGrid [20], and Bernardes’s Conchord [13].

3.2 Chord Shuttles and Loops

House harmonic loops normally consist of sequences of
2 or 4 bars, with a tendency to have a single chord per
measure. However, 8-bar loops are less frequent, and in
most cases, they result from a repetition of a 4-bar pattern
with a small variation toward the end of the second half.

Currently, the House Harmonic Filler operates with two-
bar shuttles and four-bar loops. According to Tagg [18],
a chord shuttle consists in an ongoing oscillation between
two chords, normally of equal duration and importance,
what most of the times makes difficult –if useful at all– to
determine which chord is the tonic in a traditional sense,
effect which is enforced by the endless looping mecha-
nism. In fact, the tonic feel in loop-based music is mostly
determined by non-tonal compositional aspects, specially
the explicit beat layer and the functional bass layer men-
tioned above, as well as the structural arrangement of
loops, which results in timbral and density changes at reg-
ular hypermetric intervals [24, 25].

Moore [26] has studied the relation of specific chord pro-
gressions and different musical genres, attempting to iden-
tify specific styles (pop, rock and soul) based on a number
of harmonic patterns. We consider this a potentially fruit-
ful approach at differentiating specific electronic popular
music sub-genres.

For the current study, we have used limited resources
publicly available on the internet. We have gathered a col-
lection of MIDI files containing homophonic chord loops
under tags of deep house piano, 4 classic house piano 5

and deep house chords, 6 obtaining a total of 48 loops
which we considered sufficient to study the visualization
and interaction aspects that we are presenting.

3.3 General Operation

When we load a corpus of MIDI loops in the program,
the system detects the number of chords in each file, their
type, inversion and position in the 4-bar structure. The es-
timation of chord types is achieved via a lookup procedure
against intervalic patterns stored in a dictionary. Once the

4 www.loopmasters.com/genres/50-Deep-House/
products/3829-Deep-House-Piano

5 www.loopmasters.com/products/
461-Classic-House-Pianos

6 deep-house-chords.com/

chord sequence is determined, the system finds the root of
the first chord in the loop, and establishes it as the tonic.
We proceed in this fashion supported by the evidence that
in short and cyclical chord progressions –as the ones de-
scribed here,– the most natural presumption of a tonal cen-
tre lays on the first chord [24], especially if, as we cited
above, this is emphasised by non-tonal features, such as
density and timbral changes on a strict hypermetrical reg-
ularity. This hypothesis is also supported by Tagg [18].
After the analysis, the chord sequences are transposed to
pitch-class 0 (C), so that users can select the key of the
progression disregarding the original key.

All files in the corpus are analysed separately in terms
of harmony and rhythm. This way, users can combine all
rhythmic patterns in the corpus with the available chord se-
quences. Any chosen loop is presented in a simple display
(Figure 3), showing the original rhythmic pattern in light-
gray and the chord progression in Roman numeral nota-
tion. In the current version, user manipulations are limited
to changes in register, spread and inversion, as well as the
selection of key and some rhythmic transformations. Over-
all, the interface provides the following parameter controls:

• The pattern slider allows the user to select among
existing rhythmic patterns, ordered by density and
syncopation complexity.

• A density control changes the number of events
in the loop according to an agnostic density trans-
former [27], allowing to create rhythmic deviations
from the original pattern, presented in dark-gray in
the interface (Figure 3).

• The legato parameter sets the relative duration of the
events. Setting it to its maximum will make chords
last until the next attack.

• The octave fader transposes the chord progression
up or down.

• The spread slider controls the openness or closeness
degree of chords, i.e., their spread over different oc-
taves,

• while the register control affects their inversion type,
folding chords upwards or downwards.

139

Figure 3. Graphical user interface of the House Harmonic Filler. It is composed of a chord progression selector (left), a
simple visualisation of the chord sequence (top), and a few other controls to manipulate the sequence in real time.

• The key dial sets the key (tonic) of the progression.
As we will explain in the next subsection, this is the
pitch-class of the root of the first chord in the se-
quence. As the user might have observed in the GUI,
the key control does not imply any specific modality.
This is indeed only implied by the chord progression
selected in the 2D space.

• Last, we provide a number of memory slots, so that
users can store and recall between different states of
the system, as well as regular mute, midi channel
and volume controls to adjust the output parameters
of the program.

3.4 The Harmony Map

3.4.1 Harmonic Analysis

Previous versions of the House Harmonic Filler had a one-
dimensional drop-down menu, in which all harmonic pro-
gressions available were listed –after analysis,– in chro-
matic Roman numeral notation. All scale degrees are
therefore expressed as chromatic intervals with the tonic.
Figure 4 shows an example of a few such entries among
which the user would need to choose:

|I |[VIImaj7 |Im9 |IIm9 |

|I9 |[VIImaj9 |Vm11 |[IIm9 |

|Im |VIIm7 |VIm7 |Vmaj7 |

Figure 4. List of several chord progressions from our cor-
pus of deep house loops.

A flat ([) preceding a Roman numeral indicates a minor
or diminished interval, and a lower case m after represents
a minor chord; all non-flattened intervals refer to major
or perfect intervals. This way, we intend to overcome the
limitations of a mutually exclusive binary modal system,
in which Roman numerals represent diatonic degrees of
the scale. For example, in diatonic notation, III refers
to the minor triad located one major third (3M) above a
major tonic (I); and to the major triad one minor third
(3m) above on a minor mode (Im). In chromatic notation,
degrees refer unequivocally to a tonic, independently of
the modality of the excerpt. Let us consider the following
sequence:

|Im9 |IIIm7 |V7 |[VII7 |

Reading this sequence in chromatic Roman numeral no-
tation, if we assume, for example, I to be A, the progres-
sion results in:

|Am9 |C]m7 |E7 |G7 |

The familiar reader will notice that this progression
presents some mixed modality: first and last chords sug-
gest an aeolian minor quality; however, this is broken by
the second chord (which seems borrowed from the paral-
lel key of A major); the third chord is ambiguous in this
regard, since it belongs to both A major and A minor (har-
monic).

This type of notation might be helpful to understand
some harmonic features of the music under consideration,
a somewhat jazzy house music. Especially, that modal
variants (mixolydian, prhyrgian, etc.) are much more fre-
quent than in common-practice harmony, and that there is a

140

certain hybridisation of the major and minor modes. How-
ever, truth is that a regular user might be a bit disoriented
when choosing a harmonic progression from a list of such
entries according to her musical expectations.

3.4.2 Interactive Visualisation

In the latest version of the House Harmonic Filler we sub-
stituted the drop-down list of harmonic options with the
two-dimensional interactive space shown at the left of Fig-
ure 3. In this new harmony map, all 4-bar chord progres-
sions are represented as single dots in the space that users
can click on to select them.

The harmony map intends to represent in a simple way
some tonal properties of the chord progressions, regarding
modality and tonal tension, over which the user can make
herself an idea of the general tonal quality of the sequences
without dealing with theoretical notations. Dots at the bot-
tom of the graph are harmonically simpler than those at the
top, whereas the horizontal axis represents a modal contin-
uum from minor to major modes, passing through various
modal variants.

In our grid, the x-axis represents, from left to right, a
discrete progression of six possible modal variants, three
minor and three major modes, arranged in the following
order: phrygian, aeolian, dorian, mixolydian, ionian and
lydian. The criterion for choosing this order was to arrange
the various scalar possibilities from minor to major in the
smoothest possible way, that is, keeping as many common
notes as possible between nearby modes. In this setting,
the typical modes of reference, aeolian (minor), and io-
nian (major) are located symmetrically at both sides. Fig-
ure 5 shows the modal arrangement of the x-axis indicating
the changing notes between modes. To find the horizontal
position of a given chord progression, we extract its pitch-
class profile and calculate its euclidean distance to a set
of stored templates with the modal variants, selecting the
shortest interval.

The y-axis, also called the diatonic-chromatic axis, rep-
resents a measure of the overall tonal tension of the chord
progression. We have obtained this measure by count-
ing the number of different pitch-classes in the loop, to-
gether with the number of semitones between elements of
the pc-set. This simple measure positions diatonic chordal
progressions (with simple chords and diatonic notes) be-
low, and brings the more colourful, jazzy or chromatic se-
quences to the upper part of the graph.

4. DISCUSSION

The grid in Figure 3 shows our corpus of house music dis-
tributed in the harmonic map. According to the represen-
tation, the corpus has a number of minor and major pro-
gressions (rich in modal variants), with sequences ranging
from very diatonic at the bottom of the space to relatively
chromatic ones. For example, the sequence correspond-
ing to the red dot in Figure 3 corresponds to the following
progression:

|I5 |VI5 |

Figure 5. Modal distribution along the x-axis in the House
Harmonic Filler. Degrees in red highlight interval changes
across different modes.

The sequence is indeed highly diatonic. It presents a
tonic chord without a third (I5) followed by the same type
on the submediant (VI5). Therefore this progression has
no semitones. If we translate all notes in the sequence
to pitch-classes, reading the progression in C, we obtain
the collection [0,4,7,9]. Although this pc-set seems
clearly major (due to the presence of the tonic major chord
in the set) it lacks the seventh degree –that would determine
if this sequence is a ionian or mixolydian modal variant,–
as well as the fourth –what would define it as ionian or
lydian. Therefore, the dot is located in the middle of the
major left half of the map, according to the distribution in
Figure 5. This limitation to indicate the modal ambiguity
of some chord progressions, is one of the main shortcom-
ings of our system as it is.

Figure 6 shows images of the harmony map with two
other small corpora. For the sake of comparison, we have
created two sets of 20 MIDI files with 4-bar sequences of
jazz standards (as notated in the Real Book [28]) and pop-
rock songs from the Billboard dataset, respectively [29].
The only criterion to choose the sequences was that orig-
inal chord progressions were repeated identically at least
two times, in order to recreate the looping nature of our
sequences, even if these types of music are not fundamen-
tally based on loops. As it can be seen in Figure 6, the
jazz corpus has slightly more presence in the two upper
quadrants, what resonates with intuitions about jazz mu-
sic being more chromatic (with chord extensions and local
chromatic substitutions) that other musical styles. Alterna-
tively, the grid representing items from the Billboard hits,
clusters almost exclusively onto the lower quadrants, what
again, aligns with regular intuitions about pop-rock music
being mainly diatonic. Interestingly enough, a group of
5 points concentrate around the same area, exactly in the
middle of the horizontal axis. That might be explained by
the fact that a lot of rock music seems to be composed with
very similar –if not identical– harmonic structures.

At the time of this report, we have conducted informal

141

Figure 6. The two-dimensional harmony map with a small
corpus of jazz progressions (left) and pop-rock music hits
from the American Billboard (right).

testing with 15 subjects. All of them had some experience
in music making, although only 5 of them were formally
trained. In general, opinions were favourable regarding the
use of the two-dimensional space. Untrained musicians re-
garded the axis labels to be sufficiently clear (major/minor,
diatonic/chromatic), although they admitted they could not
understand the Roman numeral notation in the progression
display. Small frustrations arose from the limitation of the
available progressions and variation strategies, one of the
clear shortcomings of the program as it is now. At the mo-
ment, no chord expansion or substitution is possible, so the
user is left with a few options affecting chordal voicings,
plus a range of choice exclusively dependent on the pre-
loaded corpus.

5. CONCLUSIONS AND FUTURE WORK

In this paper we presented the House Harmonic Filler, a
computer program that generates house music loops and
variations, with an emphasis on a two-dimensional inter-
active space that represents chord progressions in an intu-
itive way. The reduction of the chord sequences as dots
was achieved with an ad hoc measure compressing rele-
vant information on modality and diatonicism. However,
certain modal ambiguities are not yet well represented in
the map, something that we will like to address in future
versions.

According to preliminary tests, this visualisation helps
users unfamiliar with music theoretical notions to navigate
among a closed set of possibilities. It is an endeavour for
the future to design and carry on a systematic evaluation,
based on user task-oriented experiments.

Similarly, we shall explore representations built over dif-
ferent measures, such as other types of harmonic distance
(cfr. Lerdahl [3]), consonance ratios (e.g. Bernardes et
al. [13]) and psychoacoustical dissimilarities, based on the
measures by Parncutt [14].

We also envision an expansion of the program to allow
interpolation between different chord progressions, over-
coming some limitations that arise when only small cor-
pora are available, as well as enabling a wider range of
variations of the existing chord sequences. We see that an
interpolation model could actually open up a space to think
about chord substitutions and chordal expansions in ways

that compel with the visual metaphor that we presented, as
well as with musical intuitions and theoretical knowledge.

Acknowledgments

This research has been partially supported by the EU-
funded GiantSteps project (FP7-ICT-2013-10 grant agree-
ment number 610591).

6. REFERENCES

[1] D. Levitt, “Representing musical relationships in the
harmony grid,” in Multimedia Interface Design in Ed-
ucation. Springer, 1992, pp. 117–132.

[2] S. Holland, “Interface design for empowerment: A
case study from music,” in Multimedia Interface De-
sign in Education. Springer, 1992, pp. 177–194.

[3] F. Lerdahl, Tonal Pitch Space. Oxford University
Press, 2001.

[4] R. Shepard, “Structural representations of musical
pitch,” The psychology of music, pp. 343–390, 1982.

[5] E. Chew, “Towards a mathematical model of tonality,”
Ph.D. dissertation, Massachusetts Institute of Technol-
ogy, 2000.

[6] T. Bergstrom, K. Karahalios, and J. C. Hart, “Iso-
chords: Visualizing Structure in Music,” in ACM Pro-
ceedings of Graphics Interface, 2007, pp. 297–304.

[7] C. S. Sapp, “Harmonic visualizations of tonal music,”
in Proceedings of the International Computer Music
Conference.

[8] ——, “Visual Hierarchical Key Analysis,” ACM Com-
puters in Entertainment, vol. 4(4), pp. 1–19, 2005.

[9] P. Janata, “Navigating Tonal Space,” Computing in Mu-
sicology, vol. 15, no. Tonal Theory for the Digital Age,
pp. 39–50, 2007.

[10] P. Toiviainen, “Visualization of Tonal Content in the
Symbolic and Audio Domains,” Computing in Musi-
cology, vol. 15, no. Tonal Theory for the Digital Age,
pp. 187–199, 2007.

[11] A. Martorell, “Modelling Tonal Context Dynamics by
Temporal Multi-Scale Analysis,” Ph.D. dissertation,
Universitat Pompeu Fabra, 2013.

[12] C. L. Krumhansl, Cognitive Foundations of Musical
Pitch. Oxford University Press, 2001.

[13] G. Bernardes, D. Cocharro, C. Guedes, and M. E. P.
Davies, “Conchord: An Application for Generating
Musical Harmony by Navigating in a Perceptually Mo-
tivated Tonal Interval Space,” in Proceedings of the In-
ternational Symposium on Computer Music Multidis-
ciplinary Research, 2015, pp. 1–16.

[14] R. Parncutt, Harmony: A Psychoacoustical Approach.
Springer-Verlag, 2014.

142

[15] E. Terhardt, “Pitch, consonance, and harmony,” Jour-
nal of the Acoustical Society of America, vol. 55(5), pp.
1061–1069, 1974.

[16] “The Concept of Musical Consonance: A Link be-
tween Music and Psychoacoustics,” Music Perception:
An Interdisciplinary Journal, vol. 1(3), pp. 276–295,
1984.

[17] D. Temperley, “The Tonal Properties of Pitch-Class
Sets: Tonal Implication, Tonal Ambiguity, and Tonal-
ness,” Computing in Musicology, vol. 15, no. Tonal
Theory for the Digital Age, pp. 24–38, 2007.

[18] P. Tagg, Everyday Tonality II: Towards a Tonal Theory
of What Most People Hear. The Mass Media Music
Scholar’s Press, 2014.

[19] G. Gatzsche, M. Mehnert, and C. Stöcklmeier, “Inter-
action with tonal pitch spaces,” in Proceedings of the
International Conference on New Interfaces for Musi-
cal Expression, 2008, pp. 325–330.

[20] R. Adeney, “The HarmonyGrid : Music, space and per-
formance in Grid Music Systems by,” Ph.D. disserta-
tion, Queensland University of Technology, 2011.

[21] A. F. Moore, Song Means: Analysing and Interpreting
Recorded Popular Song. Ashgate Publishing, 2012.

[22] A. Faraldo, E. Gómez, S. Jordà, and P. Herrera, “Key
Estimation in Electronic Dance Music,” in Proceedings

of the 38th European Conference on Information Re-
trieval, 2016, pp. 335–347.

[23] R. Wooller and A. R. Brown, “A framework for dis-
cussing tonality in electronic dance music,” in Pro-
ceedings Sound : Space - The Australasian Computer
Music Conference, 2008, pp. 91–95.

[24] K. Stephenson, What to Listen for in Rock: A Stylistic
Analysis. Yale University Press, 2002.

[25] M. Spicer, “(Ac)cumulative Form in Pop-Rock Music,”
Twentieth Century Music, vol. 1(1), pp. 29–64, 2004.

[26] A. Moore, “Patterns of Harmony,” Popular Music, vol.
11(1), pp. 73–106, 1992.

[27] S. Jordà, D. Gómez-Marı́n, Á. Faraldo, and P. Herrera,
“Drumming with style: From user needs to a working
prototype,” in 16th International Conference on New
Interfaces for Musical Expression, 2016.

[28] The Real Book – Volume I. Hal Leonard, 1970.

[29] J. A. Burgoyne, J. Wild, and I. Fujinaga, “An expert
ground truth set for audio chord recognition and mu-
sic analysis.” in Proceedings of the 12th International
Society for Music Information Retrieval Conference,
2011, pp. 633–638.

143

144

GENERATING EQUIVALENT RHYTHMIC NOTATIONS BASED ON
RHYTHM TREE LANGUAGES

Florent Jacquemard
INRIA Sorbonne Universités
STMS (IRCAM-CNRS-UPMC)

IRCAM, Paris, France
florent.jacquemard@inria.fr

Adrien Ycart
School of Electronic Engineering

and Computer Science
Queen Mary Univ. of London, UK

a.ycart@qmul.ac.uk

Masahiko Sakai
Graduate School of Information Science

Nagoya University, Japan
sakai@is.nagoya-u.ac.jp

ABSTRACT

We propose a compact presentation of languages of pre-
ferred rhythms notation as formal grammars. It is based on
a standard structure of rhythm trees capturing a wide range
of rhythms in Western notation.

As an application, we then describe a dynamic program-
ming algorithm for the lazy enumeration of equivalent rhythm
notations (i.e. notations defining the same durations), from
the simplest to the most complex. This procedure, based
on the notion of rhythm grammars has been implemented
and may be useful in the context of automated music tran-
scription and computer-assistance to composition.

1. INTRODUCTION

Music notation is for music very much like writing for
language. It serves as a support to convey ideas, to keep
track of them in time, and as a working support for musi-
cal expression. In natural languages, there can be several
synonyms to designate the same entity (such as ”Rome”,
”Roma”, ”capital of Italy”, ”city of the seven hills”, ”eter-
nal city”...) and one might prefer using one word over the
others depending on the context, a special connotation, the
linguistic register etc. Similarly, in common Western mu-
sic notation, there are often many different ways to write
a given sequence of durations, and the choice of one writ-
ing over another is up to the composer, and can be driven
by many reasons, among which are the musical context in
which it is written, or a particular interpretation or phrasing
that the composer wants to imply.

This is an important problem in applications related to
score generation, in particular automated music transcrip-
tion [1], score editors, or composer assistance environ-
ments [2]. In this context, it is interesting to assist users
as much as possible in choosing appropriate notations for
what they want to express.

A first question that arises is the definition of the domain
of rhythms notations that one want to consider: which divi-
sions (tuplets) are allowed? at which level? how many lev-
els of division can we nest? In other words, we need some

Copyright: c©2017 Florent Jacquemard et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

formalism to describe languages of rhythms. This corre-
sponds for instance to the codebooks in the transcription
procedure of [3], which are defined by subdivision schemas
(the sequence of authorized successive regular subdivisions
of a time interval), or similar notions already found in for-
mer work on transcription [4, 5, 6]. Another example is
the choices of quantization parameters in user preferences
of music editors such as Finale.

A second question is the design of efficient algorithms for
exploring the set of rhythm notations in a given language
that satisfies some property such as, for instance, the set of
rhythms defining the same effective sequence of durations.

In this work, we follow a language theoretic approach to
address these problems of rhythm notation. We propose
a notion of rhythm languages defined by formal context-
free (CF) grammars, following [7] (Section 3). It general-
izes the formalisms cited above, as well as a related for-
malism that we have used so far in a new tool for rhythm
transcription [8]. The rhythms defined by such a grammar
are, roughly, the derivation trees of the grammar, seen as
rhythm trees (RT). The latter are a tree structure for the rep-
resentation of timed sequences of events [9, 10], where the
events are stored in the leaves of the tree and the duration
are encoded in the tree structure, every branching defining
a uniform division of a time interval (Section 2). Simi-
lar representations have been supported since many years
as a native data structure for the representation of rhythms
in visual environment for composition assistance based on
functional programming languages such as Open Music or
PWGL [2, 11].

Using standard formalisms such as CF grammars for the
definition of rhythm languages allows to exploit efficient
construction and decision procedures from the literature.

Here, we use an algorithm for the enumeration of RTs de-
fined by a given acyclic grammar [12] (Section 3.4). The
enumeration follows a rank assigned to RTs by weights
added to the grammar’s rules. These weights can be seen
as a measure for rhythm complexity. The main advantages
of this algorithm is that it does not need to compute all the
RTs of the language in order to rank them, but instead,
thanks to a monotony property of the weight functions,
build the best trees from the best subtrees in a lazy way.

CF grammars are a concise and readable formalism to
define RT languages, but they are also expressive. The lan-
guages they define are regular tree languages [13], and as
such can be composed by Boolean operations. This en-

145

3

n 2

n

n

2

n 3

n n

2

n 2

3

n n

3(n, 2(, n), n) 2(n, 3(n, n,)) 2(n, 2(3(n, , n),))

qq q

3

q
3

! !! !! !

3

!

Figure 1. Rhythm Trees and corresponding notations.

ables incremental constructions of complex languages by
composition of elementary languages, in a user-friendly
fashion. In particular, it is possible to use Cartesian prod-
uct in order to construct the intersection of two tree lan-
guages. We use this principle (Section 4) to construct a
grammar defining the set of RTs from a given language L
which correspond to a given sequence σ of duration values.
Using the above-cited algorithm, we can then enumerate
by ascending weight the RTs of L with duration value se-
quence σ. We apply the same principle to provide a way to
find all rhythms that denote the merging of two voices into
one (Section 5).

2. RHYTHM TREES

A rhythm tree (RT) is a hierarchical representation of a se-
quence of timed events, where the events are in the leaves,
and the inner nodes define the durations by successive sub-
divisions of an initial time interval.

2.1 Syntax

In our settings, a RT is either:

a symbol n representing the beginning of an event, or

a symbol representing the continuation of an event, or

a tree of the form t = p(t1, . . . , tp) where p is a natural
number (smaller than a given bound) and t1, . . . , tp
is an ordered sequence of RTs.

The node labeled with p is called the root of t, and the
sub-RTs t1, . . . , tp are called the children of t.

Note that every inner node of a RT is labelled with the
arity (outer degree) of the node. We adopt this redundant
notation only for readability purpose.

Every occurrence of the symbol n represents the start-
ing date (onset) of an event. Some alternative symbols
could be used for distinguishing different kinds of events:
pitched notes, chords, rests etc (see Section 2.3). In this
paper however, we always use n for the sake of simplicity.

The symbol represents a a note that is tied to the previ-
ous one. In some cases, those tied notes can be denoted by
dots, see Section 2.3.

Example 1 We present in Figure 1 three examples of RTs
and the corresponding rhythm notations according to the
duration semantics defined in Section 2.2.

The first RT on the left is a triplet. Its second child is fur-
ther divided in 2 parts, and the first part is a continuation.
This means that the corresponding note (second note of the
RT) is tied to the previous note (first note).

In the second RT, we have a division by 2 and then by 3,
and a tie between the two last notes.

The last RT presents three levels of division, and two ties.
Note that the depth in the RTs reflects the beaming level
in the notation. For readability purposes, some tied notes
have been merged, for instance in the second example, the
last two tied sixteenth notes have been merged into one
single eighth note.

2.2 Semantics

To every RT t, we associate a sequence of positive rational
numbers called rhythmic value of t. This numbers corre-
spond to the inter-onset intervals (IOIs) between the onset
of events described in the RT. In the following, when con-
sidering the leaves of a tree, we will interchangeably use
the term IOI instead of positive rational number.

In order to define the rhythmic value of the RT t, we asso-
ciate to every node ν of t a positive rational number called
duration value, and denoted by dur(t, ν).

Intuitively, the duration of a node is divided uniformly in
the duration of its children, and is used to sum duration
of leaves. Formally,

If ν is the root of t, then dur(t, ν) = 1.

Otherwise, dur(t, ν) = dur(t,ν0)
t(ν0)

+ cdur(t, ν), where

ν0 is the parent of ν in t,

t(ν0) is the label of ν0 in t (i.e. its arity),

cdur(t, ν) = dur(t, ν′) if ν is a leaf and it has a
next leaf ν′ labelled with ,

cdur(t, ν) = 0 otherwise.

The choice of duration 1 for the root node is arbitrary. It
means that the fractions refer to divisions of one beat but
with different root durations, they could as well refer to
other orders of magnitude (bar etc). Note that the dura-
tions are expressed in beats (time units relative to a tempo),
which makes the definition of a tempo useless here.

The events represented by a RT are stored in its leaves.
Hence, the event’s durations, i.e. the actual rhythm corre-
sponding to a RT, denoted val(t), is defined from the dura-
tion values of its leaves. More precisely, let ν1 . . . , νk be
the enumeration, in depth-first ordering, of the leaves of t
labelled with n. The rhythmic value of t is the sequence

val(t) = dur(t, ν1), . . . , dur(t, νk).

It is the empty sequence when k = 0. Intuitively, if a
rhythm tree t represents the notation of a rhythm, its rhyth-
mic value represents the way this rhythm sounds.

Two RT t1, t2 are called equivalent, denoted t1 ≡ t2 iff
val(t1) = val(t2).

146

3

n 2

d n

n 3(n, 2(d, n), n)

!!

3

! "

Figure 2. Alternative representation for dots.

Example 2 The three RT of Figure 1 have a rhythmic value
of [12 ,

1
6 ,

1
3] and are therefore equivalent.

Deciding the equivalence of two given RT t1 and t2 can
be done simply by evaluating their respective rhythmic val-
ues (in linear time for each tree) and comparing the values.

2.3 Pitches, Rests, Grace Notes, Dots...

In the above RT representation, we consider only one generic
symbol n to represent any kind of event. Straightforwardly,
we could introduce new symbols labeling the leaves of RTs
in order to encode any kind of finite information on events
(pitches for notes or chords, trills, rests etc.

Alternatively, we could maintain along with a RT t a list
of event’s information of same length as the rhythm value
of t. This list can be used later to recover this information
(e.g. for rendering). These details are left out of this paper.

Grace notes are events of duration 0. The approach pre-
sented in this paper can deal with grace notes. Indeed, in a
RT, one note preceded by one or several grace notes can be
encoded in a single symbol, labelling a leaf. For instance,
the symbol nk could describe one note preceded by k grace
notes. The definition of the rhythmic value of a RT should
then be extended accordingly, by adding to the sequence k
times the value 0 at the appropriate place.

Moreover, in some case we could use in RTs a dot symbol
d in place of the tie symbol, with the same semantics. For
instance, in a RT containing a node n whose next sibling
has the form 2(, n), the could be replaced by the sym-
bol d representing explicitly a dot notation, see Figure 2.
The CF grammar formalism presented in Section 3 can do
matching of patterns such as the previous one, hence it it is
expressive enough to express the correct placement of dot
symbols. In the rest of the paper, we voluntarily omit the
dot symbols in grammars for simplicity purpose.

2.4 Related Rhythm Tree Formalisms

The definition of RTs used in this paper differs slightly
from the earlier definitions of rhythm trees in Patchwork [9]
and Open Music [10] (OMRT). In OMRTs, inner nodes
are labelled by integer values denoting the relative length
of durations of sibling nodes. For example, if an OMRT
has 2 sons labelled with 1 and 2, the second son is twice
as long as the first. Hence this tree corresponds to a triplet
where the two last notes are tied. This is exactly equivalent
as if the sons were labelled 2 and 4: only the ratios matter.
Note that these numbers have nothing to do with the num-
bers used in the above RT encodings, which are just the
arity of the inner nodes and carry no information. There-

fore, processing OMRTs requires some integer arithmetics
computations.

The standard formalism that we are using below to repre-
sent languages of rhythms (and the associated algorithms
e.g. for language enumeration) can only handle finite sets
of symbols. Therefore they are not appropriate to deal with
OMRTs and we preferred here an all-symbolic encoding of
RTs without integral values.

3. RHYTHM LANGUAGES

In this section, we propose a general finite representations
for sets of RTs called rhythm grammars. Their purpose is
to fix the kind of rhythm notations that we want to consider,
using declarative rules.

For instance, one rule may express that at some level, di-
vision by three is allowed but division by five is not. One
other rule can express that at some level we can have a leaf
labeled with a note (n) or labeled with a continuation ().

3.1 Rhythm Grammars

A rhythm grammar (RG) is a context-free grammar G =
(Q, q0, R) where Q is a finite set of non-terminals, q0 is
the initial non-terminal and R is a finite set of production
rules of one of the forms

q → q1, . . . , qp with q, q1, . . . , qp ∈ Q,

q → a with q ∈ Q and a ∈ {n, }.

Intuitively, these rules are applied from top to bottom to
generate RTs by replacement of non-terminals by subtrees.
A rule of the first kind (called inner rule) generate an inner
node of a RT, expressing a division by p of the duration of
this node. A rule of the second kind (called terminal rule)
generate a leaf of a RT, and expresses that the label a is
allowed at this leaf.

Generally in the literature, one considers the (context-
free) language of words generated by CF grammars – in
our case, they would be words over {n, }. However, re-
call that RTs encode events in the leaves but also durations
of these events in the inner nodes. Since we need these
two informations for rhythm encoding, we need both kind
of nodes, and therefore we will be more interested in the
set of RTs generated by a RG (which is a regular tree lan-
guage), than in the (context-free) language of the words
found in a traversal of the leaves of these RT.

Formally, the language Lq(G) of a RG G = (Q, q0, R) in
non-terminal q ∈ Q is defined recursively by

Lq(G) := {a if q → a ∈ R} ∪⋃

q→q1,...,qp∈R

{
p(t1, . . . tp) | t1 ∈ Lq1(G), . . . , tp ∈ Lqp(G)

}
.

The language of G is L(G) = Lq0(G).

147

Example 3 Let us consider the following RT G, with ini-
tial non-terminal q0.

q0 −→ n
q0 −→ q2, q2
q0 −→ q3, q3, q3

q2 −→
q2 −→ n
q2 −→ q4, q4
q2 −→ q5, q5, q5

q3 −→
q3 −→ n
q3 −→ q5, q5

q4 −→
q4 −→ n
q4 −→ q5, q5, q5

q5 −→
q5 −→ n

The three rules with left-hand side q0 express that the root
of RT in G’s language can be either a single event n, or a
division by 2, with children in q2, or a division by 3, with
children in q3.

At the next level, starting with q2, we can have leaves
labeled with or n, or division by 2 (with children in q4),
or division by 3 (with children in q5). Starting with q3,
we can have only leaves or division by 2 (with children
in q5). At the next level, q5 will generate only leaves (or
n) whereas at q4 we can have a last division by 3.

Note that rules of G are acyclic, and hence define a finite
RT language.

All the three RTs of Figure 1 are in the language of this
RG. The precise computations to obtain these RT are de-
scribed in Example 5 below.

3.2 Weighted Rhythm Grammars

We extend RG into weighted rhythm grammars (WRG)
by adding a weight (real value) to each production rule,
with the notations q −−→w q1, . . . , qp and q −−→w

′
a respec-

tively for weighted inner and terminal rules with weights
w and w′.

Example 4 We describe below a weighted extension of the
RG of Example 3.

q0 −−→0.1 n

q0 −−−→0.35
q2, q2

q0 −−−→0.45
q3, q3, q3

q2 −−→0.2
q2 −−→0.1 n

q2 −−→0.5 q4, q4
q2 −−→0.6 q5, q5, q5

q3 −−→0.2
q3 −−→0.1 n

q3 −−→0.5 q5, q5

q4 −−→0.2
q4 −−→0.1 n

q4 −−−→0.75
q5, q5, q5

q5 −−→0.2
q5 −−→0.1 n

The weights can be thought as penalties for symbols or
divisions. For instance, every note n induces a minimal
penalty of 0.1 whereas a continuation induces a penalty
of 0.2, in order to penalize ties. At level 0 (root), a du-
plet induces a penalty of 0.35 whereas for triplet it is a bit
bigger (0.45). The situation is similar at lower levels. See
Section 3.3 for lengthier discussion on choosing weights.

The weights in WRG are used to rank the RTs (by as-
cending weight). In order to associate to every RT a unique
weight by a WRG, we use the following notion of run. In-
tuitively, a run represents the sequence of application of
the grammar’s production rules in order to obtain a RT.
Formally, a run of a WRG G = (Q, q0, R) on a RT t is a re-
labelling of the nodes of t with production rules of R, such

q0

(
q3
n

)
q3

(
q5
) (

q5
n

)

(
q3
n

)
q0

(
q2
n

)
q2

(
q5
n

)(
q5
n

)(
q5
)

q0
(
q2
n

)
q2

q4

(
q5
n

)(
q5
)(
q5
n

)

(
q4
)

Figure 3. Runs on the RTs of Fig. 1 of the WRG of Ex. 4.

that for every inner node ν labeled with q −−→w q1, . . . , qp,
for every 1 ≤ i ≤ p, the ith children node of ν is labeled
by a rule of R of left-hand side qi.

Example 5 In Figure 3, we display runs of the WRG of
Example 4 on the three RTs of Figure 1. For the sake of
readability, we only display the left-hand side of rules on
inner nodes and the non-terminal and symbol on leaves
(the whole run can be easily recovered from this).

Note that there can be several runs for one RT of the lan-
guage (although it is not the case in the above example).

The weight of a run is the sum of weights of the rules at
all nodes of this run. The weight associated to a RT t by a
WRG G is either undefined if there exists no run of G on t,
or the minimum of the weights of the runs of G on t.

Example 6 The weights associated by the WRG of Exam-
ple 4 to the RTs of Figure 1 are respectively:

3(n, 2(, n), n) : 1.45
2(n, 3(n, n,)) : 1.45

2(n, 2(3(n, , n),)) : 2.3

3.3 Choice of the Weight Values

The choice of the weights in production rules is crucial,
as it is what will determine how the various RTs will be
ranked. Generally speaking, we want RTs to be ranked
according to their complexity. However, rhythmic com-
plexity is difficult to define because it is highly subjective,
and depends strongly of the context in which the rhythm
is embedded. Some studies have tackled the perception
of rhythmic complexity (see [14] for various definitions),
but to the best of our knowledge, none have treated of the
complexity of rhythm notation.

One naive definition would be to consider basic measures
such as the size and the depth of the RT: the more nodes
there are and the deeper the tree is, the more ”complex”
the rhythm is likely to be. The resulting weight function
would be of the form : q −−−−−→d+s∗p

q1, . . . , qp where d and
s are two positive coefficients penalizing the depth and the
size of the tree, respectively.

This definition shows its limits when comparing for ex-
ample a quintolet and a sextolet. The quintolet is quite un-
usual, and will often be seen as complex, while a sextolet
is much more common. Size alone cannot account for the
complexity of a notation. Same with depth: Õ ÕÕ is gener-
ally considered less complex than a quintolet, even though
its tree is deeper.

148

To go around this problem, a measure for notation com-
plexity that tries to take into account these musical consid-
erations was proposed in [8]. It is based on a ranking of
divisions complexity proposed in [15], in which arities are
ranked as follows, from less complex to more complex : 1,
2, 4, 3, 6, 8, 5, 7,... We can thus define a function β(p)
representing the penalty associated to an arity p, and the
weight function becomes q −−−→β(p)

q1, . . . , qp
Still, in this measure, the function β(p) is arbitrarily de-

termined, even though its contour is determined based on
musical considerations. To determine it more relevantly,
we could perform large-scale analysis of music score cor-
pora, and choose β(p) according to the frequency of each
arity (the higher the frequency, the lower the weight). We
could go even further in this corpus-based estimation of
weights by assigning to each production rule of our RG a
weight inversely proportional to its frequency in a corpus
of scores. This would allow us to not only take into ac-
count the arity of the nodes in the RT, but also the depth at
which they are found, and even the series of subdivisions
they are in, relatively to the grammar chosen.

Another advantage of this corpus-based approach is that
it can capture specific styles of notation. For example, if
the weights were computed with a corpus of contemporary
classical music scores, quintolet, septolet, and other artifi-
cial subdivisions would be less penalised than if a corpus
of baroque music was used. It would even be possible for a
composer to get personalised recommendations matching
their own preferences of notation by using a corpus of their
previous pieces.

3.4 k-best Parsing Algorithm

The k-best Parsing Algorithm [16] is a dynamic program-
ming algorithm that, given a weighted context-free gram-
mar G = (Q, q0, R), enumerates its k best runs (ranked by
their weight), where k is a parameter given by the user. In
[8], we proposed an implementation of this algorithm from
which the following stems. Here, we apply this algorithm
to the WRG G, and enumerate its least-weight RTs.

The algorithm uses a table which associates to every non-
terminal q ∈ Q two ordered lists of runs of G:

bests[q], containing the runs of G on RTs with q at the
root and of minimal weight, as well as their weights.

cands[q] (candidate bests), containing runs of G among
which the next best will be chosen.

In each of those lists, the runs are not stored in-extenso.
The elements of those lists are lists of pairs of the form(
〈q1, i1〉, . . . , 〈qp, ip〉

)
, where every qj ∈ Q and every ij is

an index in bests[qj], andR contains a rule q −−→w q1, . . . , qp.
Those lists will also be called runs in what follows.

3.4.1 Initialization of the table

For each q ∈ Q, bests[q] is initialy empty, and cands[q] is
initialized with one run

(
〈q1, 1〉, . . . , 〈qp, 1〉

)
for each rule

q −−→w q1, . . . , qp in R, with an unknown weight, and one

run () of weight w′ for each rule q −−→w
′
a in R.

3.4.2 Algorithm

The algorithm evaluates the weights of candidates in the
table in a lazy fashion, and transfers candidates of minimal
weights in the best list. It works recursively, by comput-
ing the weight of each run from the weights of its sons.
The main function, best(k, q), returns the k-th best run of
root q:

1. If best [q] already contains k elements or more, then
return the the k-th run of this list and its weight.

2. Otherwise, evaluate the weight of all runs in cand [q] as
follows: for a run

(
〈q1, i1〉, . . . , 〈qp, ip〉

)
∈ cand [q] whose

weight is unknown, call recursively best(ij , qj) for each
1 ≤ j ≤ p, and then evaluate the weight by summing
the weights of the sub-runs and the weight w of the rule
q −−→w q1, . . . , qp.

3. Once all the weights of the runs in cand [q] have been
evaluated, remove the run of smallest weight from this list,
add it to best [q] (together with its weight). Then add to
cand [q] the following next runs, with unknown weight:(
〈q1, i1+1〉, . . . , 〈qp, ip〉

)
,
(
〈q1, i1〉, 〈q2, i2+1〉, . . . , 〈qp, ip〉

)
,

. . . ,
(
〈q1, i1〉, . . . , 〈qp, ip + 1〉

)
. This step ensures us that

the next best is in the candidate list. Repeat 2. and 3. until
best [q] or cand [q] is empty (in the later case, best(k, q) is
undefined).

4. ENUMERATION OF EQUIVALENT RHYTHMS

Now we have all the elements to represent and enumerate
the set of rhythms equivalent to a given rhythm. Let us first
reformulate precisely, in the above settings, the problem
we are interested in:

given a weighted rhythm grammar G and a non-empty se-
quence σ of positive rational numbers (IOIs),

return a weighted rhythm grammar Gσ such that
L(Gσ) = {t ∈ L(G) | val(t) = σ}.

Hence, given a RT t, the WRG Gval(t) will represent the
set of WRT of G equivalent to t. Moreover, using the algo-
rithm of Section 3.4, we can enumerate this set.

4.1 Grammar Product Construction

Let G = (Q, q0, R). The construction of Gσ works as a
Cartesian product, following the similar construction for
tree automata [13]. The non-terminals of Gσ are pairs of
the form 〈τ, q〉 where q ∈ Q and τ is a part of σ, in a sense
explained below. Its initial non-terminal is 〈σ, q0〉, and ev-
ery production rule of Gσ is either of the form: 〈τ, q〉 −−→w a

such that q −−→w a ∈ R and τ is a singleton sequence, or
〈τ, q〉 −−→w 〈τ1, q1〉, . . . , 〈τp, qp〉 such that q −−→w q1, . . . , qp ∈
R and τ1, . . . , τp is a partition of τ in p parts of equal
length, where the length of a sequence of positive rational
numbers is the sum of its elements.

The only tricky point for partitioning τ in p parts is that
it may require to split some rational number r in two parts
r1 and r2, such that r = r1 + r2, where r1 will be the last
element of some τi and r2 will be the first element of τi+1

(necessarily a continuation). For instance, the partition of

149

[12 ,
1
6 ,

1
3] in two parts is [12], [

1
6 ,

1
3], but the partition of [16 ,

1
3]

in two parts of equal length is [16 ,
1
12], [

1
4], and in this par-

tition, 1
4 has to be a continuation since the duration 1

3 has
been cut into 1

12 + 1
4 .

Let us state this precisely. We consider non-empty se-
quences of positive rational numbers with a sign: −τ means
that the first element of the sequence τ is a continuation
and +τ means that it is not (the sign + may be omitted).
Now we define the concatenation� of signed sequences of
positive rational numbers by:

δ[r1, . . . , rn]�+[s1, . . . , sm] = δ[r1, . . . , rn, s1, . . . , sm]
δ[r1, . . . , rn]�−[s1, . . . , sm] =

δ[r1, . . . , rn + s1, s2, . . . , sm]

where δ is + or − and n,m ≥ 1.
The length of a signed sequence σ = δ[r1, . . . , rn] of

rational numbers is
∑n
i=1 ri, denoted ‖σ‖. A p-partition

of a signed sequence τ (for p > 0) is a sequence τ1, . . . , τp
of signed sequences such that τ1�. . .�τp = τ and ‖τ1‖ =
. . . = ‖τp‖ = ‖τ‖

p . Note that it is unique for a given couple
(τ, p).

Example 7 +[12 ,
1
6 ,

1
3] = +[12]�+[16 ,

1
3] and

+[16 ,
1
3] = +[16 ,

1
12]�−[14].

These two concatenation are 2-partitions.

Now we can describe precisely the construction of Gσ
from the RG G and the sequence σ. Every non-terminal of
Gσ is a pair made of a signed sequence τ of positive ratio-
nal numbers and a non-terminal q of G, denoted by 〈τ, q〉.
1. Gσ contains the non-terminal 〈+σ, q0〉 (initial).
2. For every non-terminal 〈τ, q〉 of Gσ , and every produc-
tion rule q −−→w q1, . . . , qp of G, Gσ contains the production
rule 〈τ, q〉 −−→w 〈τ1, q1〉, . . . , 〈τp, qp〉 such that τ1, . . . , τp
is the p-partition of τ , and Gσ contains the non-terminals
〈τ1, q1〉,. . . , 〈τp, qp〉.
3. For every singleton non-terminal 〈+[r], q〉 of Gσ (r ∈
Q+) and every production rule q −−→w n of G, Gσ contains
the production rule 〈+[r], q〉 −−→w n.
4. For every singleton non-terminal 〈−[r], q〉 of Gσ and
every production rule q −−→w of G, Gσ contains the pro-
duction rule 〈−[r], q〉 −−→w .

The size of Gσ is at most the size of G times the size of σ.
The correctness of construction follows from the property
that: L〈τ,q〉 = {t ∈ Lq | val(t) = |τ |}, where |τ | denotes
the absolute value of τ , i.e. the sequence τ without its sign.

4.2 Examples

Example 8 Let us consider the application of the above
procedure to the WRG G of Example 4 and the rhythmic
value σ = [12 ,

1
6 ,

1
3].

The initial non-terminal of Gσ is 〈σ, q0〉 (we omit the +
sign).

From the production rules of G starting with q0, and 2-
and 3-partitions of σ, we obtain

〈σ, q0〉 −−−→0.35 〈[12], q2〉, 〈[16 , 13], q2〉
〈σ, q0〉 −−−→0.45 〈[13], q3〉, 〈−[16 , 16], q3〉, 〈[13], q3〉

otations of value [1/2 1/6 1/3] (sche

! "
4
1 "

3 3 3

"" """"" "

" ! " "" " " !

3
3

3
3

3
3

"

3

" " " "4 " "" " " ""

" " !" " " "

3
5

3
3

3

" "" "

3
5

" " !" !7 " !" " """

" ! "" "

7
3

7

" "

3

" "10 """"" "

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Enumeration for σ = [12 ,
1
6 ,

1
3] and a more elab-

orate WRG than in Example 4. The RTs are separated by
double bars. Single bar separate two version with or with-
out dots of the same RT.

From the new non-terminals with singleton IOIs, we have

〈[12], q2〉 −−→
0.1

n 〈[13], q3〉 −−→
0.1

n

From the new non-terminal 〈[16 , 13], q2〉, we have:

〈[16 , 13], q2〉 −−→
0.5 〈[16 , 1

12], q4〉, 〈−[14], q4〉
〈[16 , 13], q2〉 −−→

0.6 〈[16], q5〉, 〈[16], q5〉, 〈−[16], q5〉

and then:

〈[16 , 1
12], q4〉 −−−→

0.75 〈[1
12], q5〉, 〈−[1

12], q5〉, 〈[1
12], q5〉

From the other non-singleton non-terminal 〈−[16 , 16], q3〉
we have:

〈−[16 , 16], q3〉 −−→
0.5 〈−[16], q5〉, 〈[16], q5〉

Finally, from the remaining singleton non-terminals:

〈[1
12], q5〉 −−→

0.1
n 〈−[1

12], q5〉 −−→
0.2

〈−[14], q4〉 −−→
0.2 〈[16], q5〉 −−→

0.1
n

〈−[16], q5〉 −−→
0.2

The language of this grammar contains the three RTs dis-
played in Figure 1, with the weights listed in Example 6.

Example 9 With a more elaborate WRG G (10 non-terminals
and 55 production rules) and the same σ as in Example 8,
we obtain a WRG Gσ with 73 non-terminals and 79 produc-
tion rules, whose language contains the 7 RTs displayed
Figure 4 (with or without dots).

One can notice in the examples that some of the notations
proposed do not seem to be generated by the grammars
described. For instance, in the middle example in Figure 1,
the notation displayed does not match exactly the structure
of the RT above: the matching notation should indeed be:

qq q

3

q

150

For the sake of readability, we grouped the ties between
equal note values. For instance, in the previous example,
we grouped the last two linked sixteenth notes into one
eighth note. This allows us to display simpler, more id-
iomatic and more compact solutions. This simplification
step is performed on the Lilypond translation of RTs gener-
ated by the grammars described, as a post-processing step,
by using simple rewriting rules.

4.3 RT Rewrite Rules

In [17, 18] we have proposed systems of rules for rewrit-
ing RTs into equivalent RTs. This includes rules such as
2(,)→ or 2(n,)→ n or 3

(
2(x1, x2), 2(x3, x4),

2(x5, x6)
)
→ 2

(
3(x1, x2, x3), 3(x4, x5, x6)

)
.

We have considered using RT rewriting for the exploration
of equivalent rhythm notations. However, we gave up due
to the complexity of this syntactic approach. Rewrite rules
as above can indeed be applied at any node of a RT, as
long as the subtree at this node matches the left-hand-side
of the rule. This gives generally, for a given non trivial
RT, many choices of rewrite positions and induces a high
divergence in the application of rewrite rules. To be appli-
cable, some restrictive rewrite strategy must be considered
and this strategies has to be proven complete.

In comparison, we found the above semantic approach,
based on rhythmic values, dramatically less complex.

5. POLYRHYTHMS

We present an application of our approach to obtain good
notations for polyrhythms, following studies in [19]. Po-
lyrhythms occurs when two or more rhythmic figures that
are not perceived as deriving directly one from the other, or
as simple manifestations of the same meter are played si-
multaneously [20]. In our context, it can be seen as having
simultaneously two RTs that do not share the same root-
level arities.

Merging two RTs that have different arities is not a trivial
task when considering only the trees. However, merging
two rhythms is trivial when considering only their onsets:
we only have to merge the two onset lists into one list, and
order onsets from the smaller to the greater.

To notate polyrhythms, we thus go around the problem of
merging trees by going through the time domain. We first
convert the two RTs into their rhythmic values, from which
we obtain the corresponding onset lists. We then merge
the two onset lists into one onset list, from which we get a
merged rhythmic value (as an IOI sequence). We then enu-
merate the equivalent notations of this merged rhythmic
value to obtain RTs corresponding to the merged polyrhythm.
A schema of this workflow can be found in Figure 5.

The rhythmic value obtained by merging two rhythmic
values σ1 and σ2 will be denoted as σ1 ‖ σ2. Intuitively,
σ1 ‖ σ2 corresponds to the sequence of durations obtained
by playing both σ1 and σ2 at the same time.
Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers σ1 and σ2,

Rhythm trees

Onsets

duration value, and denoted by dur(t, ⌫).
Intuitively, the duration of a node is divided uniformly in

the duration of its children, and is used to sum duration
of leaves. Formally,

If ⌫ is the root of t, then dur(t, ⌫) = 1.

Otherwise, dur(t, ⌫) = dur(t,⌫0)
t(⌫0)

+ cdur(t, ⌫), where

⌫0 is the parent of ⌫ in t,

t(⌫0) is the label of ⌫0 in t (i.e. its arity),

cdur(t, ⌫) = dur(t, ⌫0) if t(⌫) = and ⌫ has a
previous leaf ⌫0,

cdur(t, ⌫) = 0 otherwise.

The choice of duration 1 for the root node is arbitrary. It
means that the fractions refer to division of one beat but
with different root durations, they could as well refer to
other orders of magnitude (bar etc). Note that the dura-
tions are expressed in beats (time units relative to a tempo),
which makes the definition of a tempo useless here.

The events represented by a RT are stored in its leaves.
Hence, the event’s durations, i.e. the actual rhythm cor-
responding to a RT, denoted val(t), is defined from the
duration values of its leaves.

More precisely, let ⌫1 . . . , ⌫k be the enumeration, in depth-
first ordering, of the leaves of t labelled with n. The rhyth-
mic value of t is the sequence

val(t) = dur(t, ⌫1), . . . , dur(t, ⌫k).

It is the empty sequence when k = 0. Intuitively, if a
rhythm tree t represents the notation of a rhythm, its rhyth-
mic value represents the way this rhythm sounds.

Two RT t1, t2 are called equivalent, denoted t1 ⌘ t2 iff
val(t1) = val(t2).

Example 2 The three RT of Figure 3 have a rhythmic value
of 1

2 , 1
6 , 1

3 and are therefore equivalent.

Deciding the equivalence of two given RT t1 and t2 can
be done simply by evaluating their respective rhythmic val-
ues (it is done in linear time for each tree) and comparing
the values.

2.3 Pitches, Grace notes, Rests...

Note that in the above RT representation, we consider only
one generic symbol n to represent any kind of event.

Straightforwardly, we could introduce new symbols la-
beling the leaves of RTs in order to encode any kind of
finite information such as pitches, chords, rests etc.

Grace notes are events of duration 0. The approach pre-
sented in this paper can deal with grace notes. Indeed, in a
RT, one note preceded by one or several grace notes can be
encoded in a single symbol, labelling a leaf. For instance,
the symbol nk could describe one note preceded by k grace
notes. The definition of rhythmic value of a RT should then
be extended accordingly, by adding to the sequence k times
the value 0 at the appropriate place.

2.4 Open Music RTs

The definition of RTs used in this paper differs slightly
from early definitions of rhythm trees in Patchwork and
Open Music [REF]... In Open Music RTs, inner nodes are
labelled by integral values, and denote the relative length
durations of sibling nodes. For example, if a node has 2
sons labelled 1 and 2, the last son is twice as long as the
first. This is exactly equivalent as if they were labelled
2 and 4, only the ratios matter. Note that these numbers
have nothing to do with the numbers used in the above RT
encodings, which are just the arity of the inner nodes and
carry no information. We preferred here an all-symbolic
encoding in order to fit with the formal language frame-
work that we use to define rhythm languages.

3. RHYTHM LANGUAGES

In this section, we propose a general finite representations
for sets of RTs called rhythm grammars. Their purpose is
to fix the kind of rhythm notations that we want to consider,
using declarative rules.

For instance, one rule may express that at some level, di-
vision by three is allowed but division by five is not. One
other rule can express that at some level we can have a leaf
labeled with a note (n) or labeled with a continuation ().

3.1 Rhythm Grammars

A rhythm grammar (RG) is a context-free grammar G =
(Q, q0, R) where Q is a finite set of non-terminals, q0 is
the initial non-terminal and R is a finite set of production
rules of one of the forms

q ! q1, . . . , qp with q, q1, . . . , qp 2 Q,

q ! a with q 2 Q and and a 2 {n, }.

Intuitively, these rules are applied from left to right, to gen-
erate RT by replacement of non-terminals by subtrees. The
rules of the first kind (called inner rules) generate an inner
node of RT, expressing a division by p of the duration of
this node. The rules of the second kind (called terminal
rules) can be applied to a leaf of RT, and expresses that the
label a is allowed at these leaf.

Generally in the literature, one considers the (context-
free) language of words generated by CF grammars – in
our case, that would be words over {n, }. However, re-
call that RTs encode events in the leaves but also durations
of these events in the inner nodes. Since we need these
two informations in rhythm encoding, we need both kind
of nodes, and therefore we will be more interested in the
set of RTs generated by a RG (which is a regular tree lan-
guage), than in the (context-free) language of the words
found in a traversal of the leaves of these RT.

Formally, the language Lq(G) of a RG G = (Q, q0, R) in
non-terminal q 2 Q is defined recursively by

Lq(G) := {a if q ! a 2 R} [[

q!q1,...,qp2R

�
p(t1, . . . tp) | t1 2 Lq1(G), . . . , tp 2 Lqp(G)

.

The language of G is L(G) = Lq0(G).

duration value, and denoted by dur(t, ⌫).
Intuitively, the duration of a node is divided uniformly in

the duration of its children, and is used to sum duration
of leaves. Formally,

If ⌫ is the root of t, then dur(t, ⌫) = 1.

Otherwise, dur(t, ⌫) = dur(t,⌫0)
t(⌫0)

+ cdur(t, ⌫), where

⌫0 is the parent of ⌫ in t,

t(⌫0) is the label of ⌫0 in t (i.e. its arity),

cdur(t, ⌫) = dur(t, ⌫0) if t(⌫) = and ⌫ has a
previous leaf ⌫0,

cdur(t, ⌫) = 0 otherwise.

The choice of duration 1 for the root node is arbitrary. It
means that the fractions refer to division of one beat but
with different root durations, they could as well refer to
other orders of magnitude (bar etc). Note that the dura-
tions are expressed in beats (time units relative to a tempo),
which makes the definition of a tempo useless here.

The events represented by a RT are stored in its leaves.
Hence, the event’s durations, i.e. the actual rhythm cor-
responding to a RT, denoted val(t), is defined from the
duration values of its leaves.

More precisely, let ⌫1 . . . , ⌫k be the enumeration, in depth-
first ordering, of the leaves of t labelled with n. The rhyth-
mic value of t is the sequence

val(t) = dur(t, ⌫1), . . . , dur(t, ⌫k).

It is the empty sequence when k = 0. Intuitively, if a
rhythm tree t represents the notation of a rhythm, its rhyth-
mic value represents the way this rhythm sounds.

Two RT t1, t2 are called equivalent, denoted t1 ⌘ t2 iff
val(t1) = val(t2).

Example 2 The three RT of Figure 3 have a rhythmic value
of 1

2 , 1
6 , 1

3 and are therefore equivalent.

Deciding the equivalence of two given RT t1 and t2 can
be done simply by evaluating their respective rhythmic val-
ues (it is done in linear time for each tree) and comparing
the values.

2.3 Pitches, Grace notes, Rests...

Note that in the above RT representation, we consider only
one generic symbol n to represent any kind of event.

Straightforwardly, we could introduce new symbols la-
beling the leaves of RTs in order to encode any kind of
finite information such as pitches, chords, rests etc.

Grace notes are events of duration 0. The approach pre-
sented in this paper can deal with grace notes. Indeed, in a
RT, one note preceded by one or several grace notes can be
encoded in a single symbol, labelling a leaf. For instance,
the symbol nk could describe one note preceded by k grace
notes. The definition of rhythmic value of a RT should then
be extended accordingly, by adding to the sequence k times
the value 0 at the appropriate place.

2.4 Open Music RTs

The definition of RTs used in this paper differs slightly
from early definitions of rhythm trees in Patchwork and
Open Music [REF]... In Open Music RTs, inner nodes are
labelled by integral values, and denote the relative length
durations of sibling nodes. For example, if a node has 2
sons labelled 1 and 2, the last son is twice as long as the
first. This is exactly equivalent as if they were labelled
2 and 4, only the ratios matter. Note that these numbers
have nothing to do with the numbers used in the above RT
encodings, which are just the arity of the inner nodes and
carry no information. We preferred here an all-symbolic
encoding in order to fit with the formal language frame-
work that we use to define rhythm languages.

3. RHYTHM LANGUAGES

In this section, we propose a general finite representations
for sets of RTs called rhythm grammars. Their purpose is
to fix the kind of rhythm notations that we want to consider,
using declarative rules.

For instance, one rule may express that at some level, di-
vision by three is allowed but division by five is not. One
other rule can express that at some level we can have a leaf
labeled with a note (n) or labeled with a continuation ().

3.1 Rhythm Grammars

A rhythm grammar (RG) is a context-free grammar G =
(Q, q0, R) where Q is a finite set of non-terminals, q0 is
the initial non-terminal and R is a finite set of production
rules of one of the forms

q ! q1, . . . , qp with q, q1, . . . , qp 2 Q,

q ! a with q 2 Q and and a 2 {n, }.

Intuitively, these rules are applied from left to right, to gen-
erate RT by replacement of non-terminals by subtrees. The
rules of the first kind (called inner rules) generate an inner
node of RT, expressing a division by p of the duration of
this node. The rules of the second kind (called terminal
rules) can be applied to a leaf of RT, and expresses that the
label a is allowed at these leaf.

Generally in the literature, one considers the (context-
free) language of words generated by CF grammars – in
our case, that would be words over {n, }. However, re-
call that RTs encode events in the leaves but also durations
of these events in the inner nodes. Since we need these
two informations in rhythm encoding, we need both kind
of nodes, and therefore we will be more interested in the
set of RTs generated by a RG (which is a regular tree lan-
guage), than in the (context-free) language of the words
found in a traversal of the leaves of these RT.

Formally, the language Lq(G) of a RG G = (Q, q0, R) in
non-terminal q 2 Q is defined recursively by

Lq(G) := {a if q ! a 2 R} [[

q!q1,...,qp2R

�
p(t1, . . . tp) | t1 2 Lq1(G), . . . , tp 2 Lqp(G)

.

The language of G is L(G) = Lq0(G).

duration value, and denoted by dur(t, ⌫).
Intuitively, the duration of a node is divided uniformly in

the duration of its children, and is used to sum duration
of leaves. Formally,

If ⌫ is the root of t, then dur(t, ⌫) = 1.

Otherwise, dur(t, ⌫) = dur(t,⌫0)
t(⌫0)

+ cdur(t, ⌫), where

⌫0 is the parent of ⌫ in t,

t(⌫0) is the label of ⌫0 in t (i.e. its arity),

cdur(t, ⌫) = dur(t, ⌫0) if t(⌫) = and ⌫ has a
previous leaf ⌫0,

cdur(t, ⌫) = 0 otherwise.

The choice of duration 1 for the root node is arbitrary. It
means that the fractions refer to division of one beat but
with different root durations, they could as well refer to
other orders of magnitude (bar etc). Note that the dura-
tions are expressed in beats (time units relative to a tempo),
which makes the definition of a tempo useless here.

The events represented by a RT are stored in its leaves.
Hence, the event’s durations, i.e. the actual rhythm cor-
responding to a RT, denoted val(t), is defined from the
duration values of its leaves.

More precisely, let ⌫1 . . . , ⌫k be the enumeration, in depth-
first ordering, of the leaves of t labelled with n. The rhyth-
mic value of t is the sequence

val(t) = dur(t, ⌫1), . . . , dur(t, ⌫k).

It is the empty sequence when k = 0. Intuitively, if a
rhythm tree t represents the notation of a rhythm, its rhyth-
mic value represents the way this rhythm sounds.

Two RT t1, t2 are called equivalent, denoted t1 ⌘ t2 iff
val(t1) = val(t2).

Example 2 The three RT of Figure 3 have a rhythmic value
of 1

2 , 1
6 , 1

3 and are therefore equivalent.

Deciding the equivalence of two given RT t1 and t2 can
be done simply by evaluating their respective rhythmic val-
ues (it is done in linear time for each tree) and comparing
the values.

2.3 Pitches, Grace notes, Rests...

Note that in the above RT representation, we consider only
one generic symbol n to represent any kind of event.

Straightforwardly, we could introduce new symbols la-
beling the leaves of RTs in order to encode any kind of
finite information such as pitches, chords, rests etc.

Grace notes are events of duration 0. The approach pre-
sented in this paper can deal with grace notes. Indeed, in a
RT, one note preceded by one or several grace notes can be
encoded in a single symbol, labelling a leaf. For instance,
the symbol nk could describe one note preceded by k grace
notes. The definition of rhythmic value of a RT should then
be extended accordingly, by adding to the sequence k times
the value 0 at the appropriate place.

2.4 Open Music RTs

The definition of RTs used in this paper differs slightly
from early definitions of rhythm trees in Patchwork and
Open Music [REF]... In Open Music RTs, inner nodes are
labelled by integral values, and denote the relative length
durations of sibling nodes. For example, if a node has 2
sons labelled 1 and 2, the last son is twice as long as the
first. This is exactly equivalent as if they were labelled
2 and 4, only the ratios matter. Note that these numbers
have nothing to do with the numbers used in the above RT
encodings, which are just the arity of the inner nodes and
carry no information. We preferred here an all-symbolic
encoding in order to fit with the formal language frame-
work that we use to define rhythm languages.

3. RHYTHM LANGUAGES

In this section, we propose a general finite representations
for sets of RTs called rhythm grammars. Their purpose is
to fix the kind of rhythm notations that we want to consider,
using declarative rules.

For instance, one rule may express that at some level, di-
vision by three is allowed but division by five is not. One
other rule can express that at some level we can have a leaf
labeled with a note (n) or labeled with a continuation ().

3.1 Rhythm Grammars

A rhythm grammar (RG) is a context-free grammar G =
(Q, q0, R) where Q is a finite set of non-terminals, q0 is
the initial non-terminal and R is a finite set of production
rules of one of the forms

q ! q1, . . . , qp with q, q1, . . . , qp 2 Q,

q ! a with q 2 Q and and a 2 {n, }.

Intuitively, these rules are applied from left to right, to gen-
erate RT by replacement of non-terminals by subtrees. The
rules of the first kind (called inner rules) generate an inner
node of RT, expressing a division by p of the duration of
this node. The rules of the second kind (called terminal
rules) can be applied to a leaf of RT, and expresses that the
label a is allowed at these leaf.

Generally in the literature, one considers the (context-
free) language of words generated by CF grammars – in
our case, that would be words over {n, }. However, re-
call that RTs encode events in the leaves but also durations
of these events in the inner nodes. Since we need these
two informations in rhythm encoding, we need both kind
of nodes, and therefore we will be more interested in the
set of RTs generated by a RG (which is a regular tree lan-
guage), than in the (context-free) language of the words
found in a traversal of the leaves of these RT.

Formally, the language Lq(G) of a RG G = (Q, q0, R) in
non-terminal q 2 Q is defined recursively by

Lq(G) := {a if q ! a 2 R} [[

q!q1,...,qp2R

�
p(t1, . . . tp) | t1 2 Lq1(G), . . . , tp 2 Lqp(G)

.

The language of G is L(G) = Lq0(G).

duration value, and denoted by dur(t, ⌫).
Intuitively, the duration of a node is divided uniformly in

the duration of its children, and is used to sum duration
of leaves. Formally,

If ⌫ is the root of t, then dur(t, ⌫) = 1.

Otherwise, dur(t, ⌫) = dur(t,⌫0)
t(⌫0)

+ cdur(t, ⌫), where

⌫0 is the parent of ⌫ in t,

t(⌫0) is the label of ⌫0 in t (i.e. its arity),

cdur(t, ⌫) = dur(t, ⌫0) if t(⌫) = and ⌫ has a
previous leaf ⌫0,

cdur(t, ⌫) = 0 otherwise.

The choice of duration 1 for the root node is arbitrary. It
means that the fractions refer to division of one beat but
with different root durations, they could as well refer to
other orders of magnitude (bar etc). Note that the dura-
tions are expressed in beats (time units relative to a tempo),
which makes the definition of a tempo useless here.

The events represented by a RT are stored in its leaves.
Hence, the event’s durations, i.e. the actual rhythm cor-
responding to a RT, denoted val(t), is defined from the
duration values of its leaves.

More precisely, let ⌫1 . . . , ⌫k be the enumeration, in depth-
first ordering, of the leaves of t labelled with n. The rhyth-
mic value of t is the sequence

val(t) = dur(t, ⌫1), . . . , dur(t, ⌫k).

It is the empty sequence when k = 0. Intuitively, if a
rhythm tree t represents the notation of a rhythm, its rhyth-
mic value represents the way this rhythm sounds.

Two RT t1, t2 are called equivalent, denoted t1 ⌘ t2 iff
val(t1) = val(t2).

Example 2 The three RT of Figure 3 have a rhythmic value
of 1

2 , 1
6 , 1

3 and are therefore equivalent.

Deciding the equivalence of two given RT t1 and t2 can
be done simply by evaluating their respective rhythmic val-
ues (it is done in linear time for each tree) and comparing
the values.

2.3 Pitches, Grace notes, Rests...

Note that in the above RT representation, we consider only
one generic symbol n to represent any kind of event.

Straightforwardly, we could introduce new symbols la-
beling the leaves of RTs in order to encode any kind of
finite information such as pitches, chords, rests etc.

Grace notes are events of duration 0. The approach pre-
sented in this paper can deal with grace notes. Indeed, in a
RT, one note preceded by one or several grace notes can be
encoded in a single symbol, labelling a leaf. For instance,
the symbol nk could describe one note preceded by k grace
notes. The definition of rhythmic value of a RT should then
be extended accordingly, by adding to the sequence k times
the value 0 at the appropriate place.

2.4 Open Music RTs

The definition of RTs used in this paper differs slightly
from early definitions of rhythm trees in Patchwork and
Open Music [REF]... In Open Music RTs, inner nodes are
labelled by integral values, and denote the relative length
durations of sibling nodes. For example, if a node has 2
sons labelled 1 and 2, the last son is twice as long as the
first. This is exactly equivalent as if they were labelled
2 and 4, only the ratios matter. Note that these numbers
have nothing to do with the numbers used in the above RT
encodings, which are just the arity of the inner nodes and
carry no information. We preferred here an all-symbolic
encoding in order to fit with the formal language frame-
work that we use to define rhythm languages.

3. RHYTHM LANGUAGES

In this section, we propose a general finite representations
for sets of RTs called rhythm grammars. Their purpose is
to fix the kind of rhythm notations that we want to consider,
using declarative rules.

For instance, one rule may express that at some level, di-
vision by three is allowed but division by five is not. One
other rule can express that at some level we can have a leaf
labeled with a note (n) or labeled with a continuation ().

3.1 Rhythm Grammars

A rhythm grammar (RG) is a context-free grammar G =
(Q, q0, R) where Q is a finite set of non-terminals, q0 is
the initial non-terminal and R is a finite set of production
rules of one of the forms

q ! q1, . . . , qp with q, q1, . . . , qp 2 Q,

q ! a with q 2 Q and and a 2 {n, }.

Intuitively, these rules are applied from left to right, to gen-
erate RT by replacement of non-terminals by subtrees. The
rules of the first kind (called inner rules) generate an inner
node of RT, expressing a division by p of the duration of
this node. The rules of the second kind (called terminal
rules) can be applied to a leaf of RT, and expresses that the
label a is allowed at these leaf.

Generally in the literature, one considers the (context-
free) language of words generated by CF grammars – in
our case, that would be words over {n, }. However, re-
call that RTs encode events in the leaves but also durations
of these events in the inner nodes. Since we need these
two informations in rhythm encoding, we need both kind
of nodes, and therefore we will be more interested in the
set of RTs generated by a RG (which is a regular tree lan-
guage), than in the (context-free) language of the words
found in a traversal of the leaves of these RT.

Formally, the language Lq(G) of a RG G = (Q, q0, R) in
non-terminal q 2 Q is defined recursively by

Lq(G) := {a if q ! a 2 R} [[

q!q1,...,qp2R

�
p(t1, . . . tp) | t1 2 Lq1(G), . . . , tp 2 Lqp(G)

.

The language of G is L(G) = Lq0(G).

duration value, and denoted by dur(t, ⌫).
Intuitively, the duration of a node is divided uniformly in

the duration of its children, and is used to sum duration
of leaves. Formally,

If ⌫ is the root of t, then dur(t, ⌫) = 1.

Otherwise, dur(t, ⌫) = dur(t,⌫0)
t(⌫0)

+ cdur(t, ⌫), where

⌫0 is the parent of ⌫ in t,

t(⌫0) is the label of ⌫0 in t (i.e. its arity),

cdur(t, ⌫) = dur(t, ⌫0) if t(⌫) = and ⌫ has a
previous leaf ⌫0,

cdur(t, ⌫) = 0 otherwise.

The choice of duration 1 for the root node is arbitrary. It
means that the fractions refer to division of one beat but
with different root durations, they could as well refer to
other orders of magnitude (bar etc). Note that the dura-
tions are expressed in beats (time units relative to a tempo),
which makes the definition of a tempo useless here.

The events represented by a RT are stored in its leaves.
Hence, the event’s durations, i.e. the actual rhythm cor-
responding to a RT, denoted val(t), is defined from the
duration values of its leaves.

More precisely, let ⌫1 . . . , ⌫k be the enumeration, in depth-
first ordering, of the leaves of t labelled with n. The rhyth-
mic value of t is the sequence

val(t) = dur(t, ⌫1), . . . , dur(t, ⌫k).

It is the empty sequence when k = 0. Intuitively, if a
rhythm tree t represents the notation of a rhythm, its rhyth-
mic value represents the way this rhythm sounds.

Two RT t1, t2 are called equivalent, denoted t1 ⌘ t2 iff
val(t1) = val(t2).

Example 2 The three RT of Figure 3 have a rhythmic value
of 1

2 , 1
6 , 1

3 and are therefore equivalent.

Deciding the equivalence of two given RT t1 and t2 can
be done simply by evaluating their respective rhythmic val-
ues (it is done in linear time for each tree) and comparing
the values.

2.3 Pitches, Grace notes, Rests...

Note that in the above RT representation, we consider only
one generic symbol n to represent any kind of event.

Straightforwardly, we could introduce new symbols la-
beling the leaves of RTs in order to encode any kind of
finite information such as pitches, chords, rests etc.

Grace notes are events of duration 0. The approach pre-
sented in this paper can deal with grace notes. Indeed, in a
RT, one note preceded by one or several grace notes can be
encoded in a single symbol, labelling a leaf. For instance,
the symbol nk could describe one note preceded by k grace
notes. The definition of rhythmic value of a RT should then
be extended accordingly, by adding to the sequence k times
the value 0 at the appropriate place.

2.4 Open Music RTs

The definition of RTs used in this paper differs slightly
from early definitions of rhythm trees in Patchwork and
Open Music [REF]... In Open Music RTs, inner nodes are
labelled by integral values, and denote the relative length
durations of sibling nodes. For example, if a node has 2
sons labelled 1 and 2, the last son is twice as long as the
first. This is exactly equivalent as if they were labelled
2 and 4, only the ratios matter. Note that these numbers
have nothing to do with the numbers used in the above RT
encodings, which are just the arity of the inner nodes and
carry no information. We preferred here an all-symbolic
encoding in order to fit with the formal language frame-
work that we use to define rhythm languages.

3. RHYTHM LANGUAGES

In this section, we propose a general finite representations
for sets of RTs called rhythm grammars. Their purpose is
to fix the kind of rhythm notations that we want to consider,
using declarative rules.

For instance, one rule may express that at some level, di-
vision by three is allowed but division by five is not. One
other rule can express that at some level we can have a leaf
labeled with a note (n) or labeled with a continuation ().

3.1 Rhythm Grammars

A rhythm grammar (RG) is a context-free grammar G =
(Q, q0, R) where Q is a finite set of non-terminals, q0 is
the initial non-terminal and R is a finite set of production
rules of one of the forms

q ! q1, . . . , qp with q, q1, . . . , qp 2 Q,

q ! a with q 2 Q and and a 2 {n, }.

Intuitively, these rules are applied from left to right, to gen-
erate RT by replacement of non-terminals by subtrees. The
rules of the first kind (called inner rules) generate an inner
node of RT, expressing a division by p of the duration of
this node. The rules of the second kind (called terminal
rules) can be applied to a leaf of RT, and expresses that the
label a is allowed at these leaf.

Generally in the literature, one considers the (context-
free) language of words generated by CF grammars – in
our case, that would be words over {n, }. However, re-
call that RTs encode events in the leaves but also durations
of these events in the inner nodes. Since we need these
two informations in rhythm encoding, we need both kind
of nodes, and therefore we will be more interested in the
set of RTs generated by a RG (which is a regular tree lan-
guage), than in the (context-free) language of the words
found in a traversal of the leaves of these RT.

Formally, the language Lq(G) of a RG G = (Q, q0, R) in
non-terminal q 2 Q is defined recursively by

Lq(G) := {a if q ! a 2 R} [[

q!q1,...,qp2R

�
p(t1, . . . tp) | t1 2 Lq1(G), . . . , tp 2 Lqp(G)

.

The language of G is L(G) = Lq0(G).

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

Rhythmic values

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

Rhythmic values

duration value, and denoted by dur(t, ⌫).
Intuitively, the duration of a node is divided uniformly in

the duration of its children, and is used to sum duration
of leaves. Formally,

If ⌫ is the root of t, then dur(t, ⌫) = 1.

Otherwise, dur(t, ⌫) = dur(t,⌫0)
t(⌫0)

+ cdur(t, ⌫), where

⌫0 is the parent of ⌫ in t,

t(⌫0) is the label of ⌫0 in t (i.e. its arity),

cdur(t, ⌫) = dur(t, ⌫0) if t(⌫) = and ⌫ has a
previous leaf ⌫0,

cdur(t, ⌫) = 0 otherwise.

The choice of duration 1 for the root node is arbitrary. It
means that the fractions refer to division of one beat but
with different root durations, they could as well refer to
other orders of magnitude (bar etc). Note that the dura-
tions are expressed in beats (time units relative to a tempo),
which makes the definition of a tempo useless here.

The events represented by a RT are stored in its leaves.
Hence, the event’s durations, i.e. the actual rhythm cor-
responding to a RT, denoted val(t), is defined from the
duration values of its leaves.

More precisely, let ⌫1 . . . , ⌫k be the enumeration, in depth-
first ordering, of the leaves of t labelled with n. The rhyth-
mic value of t is the sequence

val(t) = dur(t, ⌫1), . . . , dur(t, ⌫k).

It is the empty sequence when k = 0. Intuitively, if a
rhythm tree t represents the notation of a rhythm, its rhyth-
mic value represents the way this rhythm sounds.

Two RT t1, t2 are called equivalent, denoted t1 ⌘ t2 iff
val(t1) = val(t2).

Example 2 The three RT of Figure 3 have a rhythmic value
of 1

2 , 1
6 , 1

3 and are therefore equivalent.

Deciding the equivalence of two given RT t1 and t2 can
be done simply by evaluating their respective rhythmic val-
ues (it is done in linear time for each tree) and comparing
the values.

2.3 Pitches, Grace notes, Rests...

Note that in the above RT representation, we consider only
one generic symbol n to represent any kind of event.

Straightforwardly, we could introduce new symbols la-
beling the leaves of RTs in order to encode any kind of
finite information such as pitches, chords, rests etc.

Grace notes are events of duration 0. The approach pre-
sented in this paper can deal with grace notes. Indeed, in a
RT, one note preceded by one or several grace notes can be
encoded in a single symbol, labelling a leaf. For instance,
the symbol nk could describe one note preceded by k grace
notes. The definition of rhythmic value of a RT should then
be extended accordingly, by adding to the sequence k times
the value 0 at the appropriate place.

2.4 Open Music RTs

The definition of RTs used in this paper differs slightly
from early definitions of rhythm trees in Patchwork and
Open Music [REF]... In Open Music RTs, inner nodes are
labelled by integral values, and denote the relative length
durations of sibling nodes. For example, if a node has 2
sons labelled 1 and 2, the last son is twice as long as the
first. This is exactly equivalent as if they were labelled
2 and 4, only the ratios matter. Note that these numbers
have nothing to do with the numbers used in the above RT
encodings, which are just the arity of the inner nodes and
carry no information. We preferred here an all-symbolic
encoding in order to fit with the formal language frame-
work that we use to define rhythm languages.

3. RHYTHM LANGUAGES

In this section, we propose a general finite representations
for sets of RTs called rhythm grammars. Their purpose is
to fix the kind of rhythm notations that we want to consider,
using declarative rules.

For instance, one rule may express that at some level, di-
vision by three is allowed but division by five is not. One
other rule can express that at some level we can have a leaf
labeled with a note (n) or labeled with a continuation ().

3.1 Rhythm Grammars

A rhythm grammar (RG) is a context-free grammar G =
(Q, q0, R) where Q is a finite set of non-terminals, q0 is
the initial non-terminal and R is a finite set of production
rules of one of the forms

q ! q1, . . . , qp with q, q1, . . . , qp 2 Q,

q ! a with q 2 Q and and a 2 {n, }.

Intuitively, these rules are applied from left to right, to gen-
erate RT by replacement of non-terminals by subtrees. The
rules of the first kind (called inner rules) generate an inner
node of RT, expressing a division by p of the duration of
this node. The rules of the second kind (called terminal
rules) can be applied to a leaf of RT, and expresses that the
label a is allowed at these leaf.

Generally in the literature, one considers the (context-
free) language of words generated by CF grammars – in
our case, that would be words over {n, }. However, re-
call that RTs encode events in the leaves but also durations
of these events in the inner nodes. Since we need these
two informations in rhythm encoding, we need both kind
of nodes, and therefore we will be more interested in the
set of RTs generated by a RG (which is a regular tree lan-
guage), than in the (context-free) language of the words
found in a traversal of the leaves of these RT.

Formally, the language Lq(G) of a RG G = (Q, q0, R) in
non-terminal q 2 Q is defined recursively by

Lq(G) := {a if q ! a 2 R} [[

q!q1,...,qp2R

�
p(t1, . . . tp) | t1 2 Lq1(G), . . . , tp 2 Lqp(G)

.

The language of G is L(G) = Lq0(G).

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

duration value, and denoted by dur(t, ⌫).
Intuitively, the duration of a node is divided uniformly in

the duration of its children, and is used to sum duration
of leaves. Formally,

If ⌫ is the root of t, then dur(t, ⌫) = 1.

Otherwise, dur(t, ⌫) = dur(t,⌫0)
t(⌫0)

+ cdur(t, ⌫), where

⌫0 is the parent of ⌫ in t,

t(⌫0) is the label of ⌫0 in t (i.e. its arity),

cdur(t, ⌫) = dur(t, ⌫0) if t(⌫) = and ⌫ has a
previous leaf ⌫0,

cdur(t, ⌫) = 0 otherwise.

The choice of duration 1 for the root node is arbitrary. It
means that the fractions refer to division of one beat but
with different root durations, they could as well refer to
other orders of magnitude (bar etc). Note that the dura-
tions are expressed in beats (time units relative to a tempo),
which makes the definition of a tempo useless here.

The events represented by a RT are stored in its leaves.
Hence, the event’s durations, i.e. the actual rhythm cor-
responding to a RT, denoted val(t), is defined from the
duration values of its leaves.

More precisely, let ⌫1 . . . , ⌫k be the enumeration, in depth-
first ordering, of the leaves of t labelled with n. The rhyth-
mic value of t is the sequence

val(t) = dur(t, ⌫1), . . . , dur(t, ⌫k).

It is the empty sequence when k = 0. Intuitively, if a
rhythm tree t represents the notation of a rhythm, its rhyth-
mic value represents the way this rhythm sounds.

Two RT t1, t2 are called equivalent, denoted t1 ⌘ t2 iff
val(t1) = val(t2).

Example 2 The three RT of Figure 3 have a rhythmic value
of 1

2 , 1
6 , 1

3 and are therefore equivalent.

Deciding the equivalence of two given RT t1 and t2 can
be done simply by evaluating their respective rhythmic val-
ues (it is done in linear time for each tree) and comparing
the values.

2.3 Pitches, Grace notes, Rests...

Note that in the above RT representation, we consider only
one generic symbol n to represent any kind of event.

Straightforwardly, we could introduce new symbols la-
beling the leaves of RTs in order to encode any kind of
finite information such as pitches, chords, rests etc.

Grace notes are events of duration 0. The approach pre-
sented in this paper can deal with grace notes. Indeed, in a
RT, one note preceded by one or several grace notes can be
encoded in a single symbol, labelling a leaf. For instance,
the symbol nk could describe one note preceded by k grace
notes. The definition of rhythmic value of a RT should then
be extended accordingly, by adding to the sequence k times
the value 0 at the appropriate place.

2.4 Open Music RTs

The definition of RTs used in this paper differs slightly
from early definitions of rhythm trees in Patchwork and
Open Music [REF]... In Open Music RTs, inner nodes are
labelled by integral values, and denote the relative length
durations of sibling nodes. For example, if a node has 2
sons labelled 1 and 2, the last son is twice as long as the
first. This is exactly equivalent as if they were labelled
2 and 4, only the ratios matter. Note that these numbers
have nothing to do with the numbers used in the above RT
encodings, which are just the arity of the inner nodes and
carry no information. We preferred here an all-symbolic
encoding in order to fit with the formal language frame-
work that we use to define rhythm languages.

3. RHYTHM LANGUAGES

In this section, we propose a general finite representations
for sets of RTs called rhythm grammars. Their purpose is
to fix the kind of rhythm notations that we want to consider,
using declarative rules.

For instance, one rule may express that at some level, di-
vision by three is allowed but division by five is not. One
other rule can express that at some level we can have a leaf
labeled with a note (n) or labeled with a continuation ().

3.1 Rhythm Grammars

A rhythm grammar (RG) is a context-free grammar G =
(Q, q0, R) where Q is a finite set of non-terminals, q0 is
the initial non-terminal and R is a finite set of production
rules of one of the forms

q ! q1, . . . , qp with q, q1, . . . , qp 2 Q,

q ! a with q 2 Q and and a 2 {n, }.

Intuitively, these rules are applied from left to right, to gen-
erate RT by replacement of non-terminals by subtrees. The
rules of the first kind (called inner rules) generate an inner
node of RT, expressing a division by p of the duration of
this node. The rules of the second kind (called terminal
rules) can be applied to a leaf of RT, and expresses that the
label a is allowed at these leaf.

Generally in the literature, one considers the (context-
free) language of words generated by CF grammars – in
our case, that would be words over {n, }. However, re-
call that RTs encode events in the leaves but also durations
of these events in the inner nodes. Since we need these
two informations in rhythm encoding, we need both kind
of nodes, and therefore we will be more interested in the
set of RTs generated by a RG (which is a regular tree lan-
guage), than in the (context-free) language of the words
found in a traversal of the leaves of these RT.

Formally, the language Lq(G) of a RG G = (Q, q0, R) in
non-terminal q 2 Q is defined recursively by

Lq(G) := {a if q ! a 2 R} [[

q!q1,...,qp2R

�
p(t1, . . . tp) | t1 2 Lq1(G), . . . , tp 2 Lqp(G)

.

The language of G is L(G) = Lq0(G).

Rhythm tree

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

Rhythm trees

Onsets

duration value, and denoted by dur(t, ⌫).
Intuitively, the duration of a node is divided uniformly in

the duration of its children, and is used to sum duration
of leaves. Formally,

If ⌫ is the root of t, then dur(t, ⌫) = 1.

Otherwise, dur(t, ⌫) = dur(t,⌫0)
t(⌫0)

+ cdur(t, ⌫), where

⌫0 is the parent of ⌫ in t,

t(⌫0) is the label of ⌫0 in t (i.e. its arity),

cdur(t, ⌫) = dur(t, ⌫0) if t(⌫) = and ⌫ has a
previous leaf ⌫0,

cdur(t, ⌫) = 0 otherwise.

The choice of duration 1 for the root node is arbitrary. It
means that the fractions refer to division of one beat but
with different root durations, they could as well refer to
other orders of magnitude (bar etc). Note that the dura-
tions are expressed in beats (time units relative to a tempo),
which makes the definition of a tempo useless here.

The events represented by a RT are stored in its leaves.
Hence, the event’s durations, i.e. the actual rhythm cor-
responding to a RT, denoted val(t), is defined from the
duration values of its leaves.

More precisely, let ⌫1 . . . , ⌫k be the enumeration, in depth-
first ordering, of the leaves of t labelled with n. The rhyth-
mic value of t is the sequence

val(t) = dur(t, ⌫1), . . . , dur(t, ⌫k).

It is the empty sequence when k = 0. Intuitively, if a
rhythm tree t represents the notation of a rhythm, its rhyth-
mic value represents the way this rhythm sounds.

Two RT t1, t2 are called equivalent, denoted t1 ⌘ t2 iff
val(t1) = val(t2).

Example 2 The three RT of Figure 3 have a rhythmic value
of 1

2 , 1
6 , 1

3 and are therefore equivalent.

Deciding the equivalence of two given RT t1 and t2 can
be done simply by evaluating their respective rhythmic val-
ues (it is done in linear time for each tree) and comparing
the values.

2.3 Pitches, Grace notes, Rests...

Note that in the above RT representation, we consider only
one generic symbol n to represent any kind of event.

Straightforwardly, we could introduce new symbols la-
beling the leaves of RTs in order to encode any kind of
finite information such as pitches, chords, rests etc.

Grace notes are events of duration 0. The approach pre-
sented in this paper can deal with grace notes. Indeed, in a
RT, one note preceded by one or several grace notes can be
encoded in a single symbol, labelling a leaf. For instance,
the symbol nk could describe one note preceded by k grace
notes. The definition of rhythmic value of a RT should then
be extended accordingly, by adding to the sequence k times
the value 0 at the appropriate place.

2.4 Open Music RTs

The definition of RTs used in this paper differs slightly
from early definitions of rhythm trees in Patchwork and
Open Music [REF]... In Open Music RTs, inner nodes are
labelled by integral values, and denote the relative length
durations of sibling nodes. For example, if a node has 2
sons labelled 1 and 2, the last son is twice as long as the
first. This is exactly equivalent as if they were labelled
2 and 4, only the ratios matter. Note that these numbers
have nothing to do with the numbers used in the above RT
encodings, which are just the arity of the inner nodes and
carry no information. We preferred here an all-symbolic
encoding in order to fit with the formal language frame-
work that we use to define rhythm languages.

3. RHYTHM LANGUAGES

In this section, we propose a general finite representations
for sets of RTs called rhythm grammars. Their purpose is
to fix the kind of rhythm notations that we want to consider,
using declarative rules.

For instance, one rule may express that at some level, di-
vision by three is allowed but division by five is not. One
other rule can express that at some level we can have a leaf
labeled with a note (n) or labeled with a continuation ().

3.1 Rhythm Grammars

A rhythm grammar (RG) is a context-free grammar G =
(Q, q0, R) where Q is a finite set of non-terminals, q0 is
the initial non-terminal and R is a finite set of production
rules of one of the forms

q ! q1, . . . , qp with q, q1, . . . , qp 2 Q,

q ! a with q 2 Q and and a 2 {n, }.

Intuitively, these rules are applied from left to right, to gen-
erate RT by replacement of non-terminals by subtrees. The
rules of the first kind (called inner rules) generate an inner
node of RT, expressing a division by p of the duration of
this node. The rules of the second kind (called terminal
rules) can be applied to a leaf of RT, and expresses that the
label a is allowed at these leaf.

Generally in the literature, one considers the (context-
free) language of words generated by CF grammars – in
our case, that would be words over {n, }. However, re-
call that RTs encode events in the leaves but also durations
of these events in the inner nodes. Since we need these
two informations in rhythm encoding, we need both kind
of nodes, and therefore we will be more interested in the
set of RTs generated by a RG (which is a regular tree lan-
guage), than in the (context-free) language of the words
found in a traversal of the leaves of these RT.

Formally, the language Lq(G) of a RG G = (Q, q0, R) in
non-terminal q 2 Q is defined recursively by

Lq(G) := {a if q ! a 2 R} [[

q!q1,...,qp2R

�
p(t1, . . . tp) | t1 2 Lq1(G), . . . , tp 2 Lqp(G)

.

The language of G is L(G) = Lq0(G).

duration value, and denoted by dur(t, ⌫).
Intuitively, the duration of a node is divided uniformly in

the duration of its children, and is used to sum duration
of leaves. Formally,

If ⌫ is the root of t, then dur(t, ⌫) = 1.

Otherwise, dur(t, ⌫) = dur(t,⌫0)
t(⌫0)

+ cdur(t, ⌫), where

⌫0 is the parent of ⌫ in t,

t(⌫0) is the label of ⌫0 in t (i.e. its arity),

cdur(t, ⌫) = dur(t, ⌫0) if t(⌫) = and ⌫ has a
previous leaf ⌫0,

cdur(t, ⌫) = 0 otherwise.

The choice of duration 1 for the root node is arbitrary. It
means that the fractions refer to division of one beat but
with different root durations, they could as well refer to
other orders of magnitude (bar etc). Note that the dura-
tions are expressed in beats (time units relative to a tempo),
which makes the definition of a tempo useless here.

The events represented by a RT are stored in its leaves.
Hence, the event’s durations, i.e. the actual rhythm cor-
responding to a RT, denoted val(t), is defined from the
duration values of its leaves.

More precisely, let ⌫1 . . . , ⌫k be the enumeration, in depth-
first ordering, of the leaves of t labelled with n. The rhyth-
mic value of t is the sequence

val(t) = dur(t, ⌫1), . . . , dur(t, ⌫k).

It is the empty sequence when k = 0. Intuitively, if a
rhythm tree t represents the notation of a rhythm, its rhyth-
mic value represents the way this rhythm sounds.

Two RT t1, t2 are called equivalent, denoted t1 ⌘ t2 iff
val(t1) = val(t2).

Example 2 The three RT of Figure 3 have a rhythmic value
of 1

2 , 1
6 , 1

3 and are therefore equivalent.

Deciding the equivalence of two given RT t1 and t2 can
be done simply by evaluating their respective rhythmic val-
ues (it is done in linear time for each tree) and comparing
the values.

2.3 Pitches, Grace notes, Rests...

Note that in the above RT representation, we consider only
one generic symbol n to represent any kind of event.

Straightforwardly, we could introduce new symbols la-
beling the leaves of RTs in order to encode any kind of
finite information such as pitches, chords, rests etc.

Grace notes are events of duration 0. The approach pre-
sented in this paper can deal with grace notes. Indeed, in a
RT, one note preceded by one or several grace notes can be
encoded in a single symbol, labelling a leaf. For instance,
the symbol nk could describe one note preceded by k grace
notes. The definition of rhythmic value of a RT should then
be extended accordingly, by adding to the sequence k times
the value 0 at the appropriate place.

2.4 Open Music RTs

The definition of RTs used in this paper differs slightly
from early definitions of rhythm trees in Patchwork and
Open Music [REF]... In Open Music RTs, inner nodes are
labelled by integral values, and denote the relative length
durations of sibling nodes. For example, if a node has 2
sons labelled 1 and 2, the last son is twice as long as the
first. This is exactly equivalent as if they were labelled
2 and 4, only the ratios matter. Note that these numbers
have nothing to do with the numbers used in the above RT
encodings, which are just the arity of the inner nodes and
carry no information. We preferred here an all-symbolic
encoding in order to fit with the formal language frame-
work that we use to define rhythm languages.

3. RHYTHM LANGUAGES

In this section, we propose a general finite representations
for sets of RTs called rhythm grammars. Their purpose is
to fix the kind of rhythm notations that we want to consider,
using declarative rules.

For instance, one rule may express that at some level, di-
vision by three is allowed but division by five is not. One
other rule can express that at some level we can have a leaf
labeled with a note (n) or labeled with a continuation ().

3.1 Rhythm Grammars

A rhythm grammar (RG) is a context-free grammar G =
(Q, q0, R) where Q is a finite set of non-terminals, q0 is
the initial non-terminal and R is a finite set of production
rules of one of the forms

q ! q1, . . . , qp with q, q1, . . . , qp 2 Q,

q ! a with q 2 Q and and a 2 {n, }.

Intuitively, these rules are applied from left to right, to gen-
erate RT by replacement of non-terminals by subtrees. The
rules of the first kind (called inner rules) generate an inner
node of RT, expressing a division by p of the duration of
this node. The rules of the second kind (called terminal
rules) can be applied to a leaf of RT, and expresses that the
label a is allowed at these leaf.

Generally in the literature, one considers the (context-
free) language of words generated by CF grammars – in
our case, that would be words over {n, }. However, re-
call that RTs encode events in the leaves but also durations
of these events in the inner nodes. Since we need these
two informations in rhythm encoding, we need both kind
of nodes, and therefore we will be more interested in the
set of RTs generated by a RG (which is a regular tree lan-
guage), than in the (context-free) language of the words
found in a traversal of the leaves of these RT.

Formally, the language Lq(G) of a RG G = (Q, q0, R) in
non-terminal q 2 Q is defined recursively by

Lq(G) := {a if q ! a 2 R} [[

q!q1,...,qp2R

�
p(t1, . . . tp) | t1 2 Lq1(G), . . . , tp 2 Lqp(G)

.

The language of G is L(G) = Lq0(G).

duration value, and denoted by dur(t, ⌫).
Intuitively, the duration of a node is divided uniformly in

the duration of its children, and is used to sum duration
of leaves. Formally,

If ⌫ is the root of t, then dur(t, ⌫) = 1.

Otherwise, dur(t, ⌫) = dur(t,⌫0)
t(⌫0)

+ cdur(t, ⌫), where

⌫0 is the parent of ⌫ in t,

t(⌫0) is the label of ⌫0 in t (i.e. its arity),

cdur(t, ⌫) = dur(t, ⌫0) if t(⌫) = and ⌫ has a
previous leaf ⌫0,

cdur(t, ⌫) = 0 otherwise.

The choice of duration 1 for the root node is arbitrary. It
means that the fractions refer to division of one beat but
with different root durations, they could as well refer to
other orders of magnitude (bar etc). Note that the dura-
tions are expressed in beats (time units relative to a tempo),
which makes the definition of a tempo useless here.

The events represented by a RT are stored in its leaves.
Hence, the event’s durations, i.e. the actual rhythm cor-
responding to a RT, denoted val(t), is defined from the
duration values of its leaves.

More precisely, let ⌫1 . . . , ⌫k be the enumeration, in depth-
first ordering, of the leaves of t labelled with n. The rhyth-
mic value of t is the sequence

val(t) = dur(t, ⌫1), . . . , dur(t, ⌫k).

It is the empty sequence when k = 0. Intuitively, if a
rhythm tree t represents the notation of a rhythm, its rhyth-
mic value represents the way this rhythm sounds.

Two RT t1, t2 are called equivalent, denoted t1 ⌘ t2 iff
val(t1) = val(t2).

Example 2 The three RT of Figure 3 have a rhythmic value
of 1

2 , 1
6 , 1

3 and are therefore equivalent.

Deciding the equivalence of two given RT t1 and t2 can
be done simply by evaluating their respective rhythmic val-
ues (it is done in linear time for each tree) and comparing
the values.

2.3 Pitches, Grace notes, Rests...

Note that in the above RT representation, we consider only
one generic symbol n to represent any kind of event.

Straightforwardly, we could introduce new symbols la-
beling the leaves of RTs in order to encode any kind of
finite information such as pitches, chords, rests etc.

Grace notes are events of duration 0. The approach pre-
sented in this paper can deal with grace notes. Indeed, in a
RT, one note preceded by one or several grace notes can be
encoded in a single symbol, labelling a leaf. For instance,
the symbol nk could describe one note preceded by k grace
notes. The definition of rhythmic value of a RT should then
be extended accordingly, by adding to the sequence k times
the value 0 at the appropriate place.

2.4 Open Music RTs

The definition of RTs used in this paper differs slightly
from early definitions of rhythm trees in Patchwork and
Open Music [REF]... In Open Music RTs, inner nodes are
labelled by integral values, and denote the relative length
durations of sibling nodes. For example, if a node has 2
sons labelled 1 and 2, the last son is twice as long as the
first. This is exactly equivalent as if they were labelled
2 and 4, only the ratios matter. Note that these numbers
have nothing to do with the numbers used in the above RT
encodings, which are just the arity of the inner nodes and
carry no information. We preferred here an all-symbolic
encoding in order to fit with the formal language frame-
work that we use to define rhythm languages.

3. RHYTHM LANGUAGES

In this section, we propose a general finite representations
for sets of RTs called rhythm grammars. Their purpose is
to fix the kind of rhythm notations that we want to consider,
using declarative rules.

For instance, one rule may express that at some level, di-
vision by three is allowed but division by five is not. One
other rule can express that at some level we can have a leaf
labeled with a note (n) or labeled with a continuation ().

3.1 Rhythm Grammars

A rhythm grammar (RG) is a context-free grammar G =
(Q, q0, R) where Q is a finite set of non-terminals, q0 is
the initial non-terminal and R is a finite set of production
rules of one of the forms

q ! q1, . . . , qp with q, q1, . . . , qp 2 Q,

q ! a with q 2 Q and and a 2 {n, }.

Intuitively, these rules are applied from left to right, to gen-
erate RT by replacement of non-terminals by subtrees. The
rules of the first kind (called inner rules) generate an inner
node of RT, expressing a division by p of the duration of
this node. The rules of the second kind (called terminal
rules) can be applied to a leaf of RT, and expresses that the
label a is allowed at these leaf.

Generally in the literature, one considers the (context-
free) language of words generated by CF grammars – in
our case, that would be words over {n, }. However, re-
call that RTs encode events in the leaves but also durations
of these events in the inner nodes. Since we need these
two informations in rhythm encoding, we need both kind
of nodes, and therefore we will be more interested in the
set of RTs generated by a RG (which is a regular tree lan-
guage), than in the (context-free) language of the words
found in a traversal of the leaves of these RT.

Formally, the language Lq(G) of a RG G = (Q, q0, R) in
non-terminal q 2 Q is defined recursively by

Lq(G) := {a if q ! a 2 R} [[

q!q1,...,qp2R

�
p(t1, . . . tp) | t1 2 Lq1(G), . . . , tp 2 Lqp(G)

.

The language of G is L(G) = Lq0(G).

duration value, and denoted by dur(t, ⌫).
Intuitively, the duration of a node is divided uniformly in

the duration of its children, and is used to sum duration
of leaves. Formally,

If ⌫ is the root of t, then dur(t, ⌫) = 1.

Otherwise, dur(t, ⌫) = dur(t,⌫0)
t(⌫0)

+ cdur(t, ⌫), where

⌫0 is the parent of ⌫ in t,

t(⌫0) is the label of ⌫0 in t (i.e. its arity),

cdur(t, ⌫) = dur(t, ⌫0) if t(⌫) = and ⌫ has a
previous leaf ⌫0,

cdur(t, ⌫) = 0 otherwise.

The choice of duration 1 for the root node is arbitrary. It
means that the fractions refer to division of one beat but
with different root durations, they could as well refer to
other orders of magnitude (bar etc). Note that the dura-
tions are expressed in beats (time units relative to a tempo),
which makes the definition of a tempo useless here.

The events represented by a RT are stored in its leaves.
Hence, the event’s durations, i.e. the actual rhythm cor-
responding to a RT, denoted val(t), is defined from the
duration values of its leaves.

More precisely, let ⌫1 . . . , ⌫k be the enumeration, in depth-
first ordering, of the leaves of t labelled with n. The rhyth-
mic value of t is the sequence

val(t) = dur(t, ⌫1), . . . , dur(t, ⌫k).

It is the empty sequence when k = 0. Intuitively, if a
rhythm tree t represents the notation of a rhythm, its rhyth-
mic value represents the way this rhythm sounds.

Two RT t1, t2 are called equivalent, denoted t1 ⌘ t2 iff
val(t1) = val(t2).

Example 2 The three RT of Figure 3 have a rhythmic value
of 1

2 , 1
6 , 1

3 and are therefore equivalent.

Deciding the equivalence of two given RT t1 and t2 can
be done simply by evaluating their respective rhythmic val-
ues (it is done in linear time for each tree) and comparing
the values.

2.3 Pitches, Grace notes, Rests...

Note that in the above RT representation, we consider only
one generic symbol n to represent any kind of event.

Straightforwardly, we could introduce new symbols la-
beling the leaves of RTs in order to encode any kind of
finite information such as pitches, chords, rests etc.

Grace notes are events of duration 0. The approach pre-
sented in this paper can deal with grace notes. Indeed, in a
RT, one note preceded by one or several grace notes can be
encoded in a single symbol, labelling a leaf. For instance,
the symbol nk could describe one note preceded by k grace
notes. The definition of rhythmic value of a RT should then
be extended accordingly, by adding to the sequence k times
the value 0 at the appropriate place.

2.4 Open Music RTs

The definition of RTs used in this paper differs slightly
from early definitions of rhythm trees in Patchwork and
Open Music [REF]... In Open Music RTs, inner nodes are
labelled by integral values, and denote the relative length
durations of sibling nodes. For example, if a node has 2
sons labelled 1 and 2, the last son is twice as long as the
first. This is exactly equivalent as if they were labelled
2 and 4, only the ratios matter. Note that these numbers
have nothing to do with the numbers used in the above RT
encodings, which are just the arity of the inner nodes and
carry no information. We preferred here an all-symbolic
encoding in order to fit with the formal language frame-
work that we use to define rhythm languages.

3. RHYTHM LANGUAGES

In this section, we propose a general finite representations
for sets of RTs called rhythm grammars. Their purpose is
to fix the kind of rhythm notations that we want to consider,
using declarative rules.

For instance, one rule may express that at some level, di-
vision by three is allowed but division by five is not. One
other rule can express that at some level we can have a leaf
labeled with a note (n) or labeled with a continuation ().

3.1 Rhythm Grammars

A rhythm grammar (RG) is a context-free grammar G =
(Q, q0, R) where Q is a finite set of non-terminals, q0 is
the initial non-terminal and R is a finite set of production
rules of one of the forms

q ! q1, . . . , qp with q, q1, . . . , qp 2 Q,

q ! a with q 2 Q and and a 2 {n, }.

Intuitively, these rules are applied from left to right, to gen-
erate RT by replacement of non-terminals by subtrees. The
rules of the first kind (called inner rules) generate an inner
node of RT, expressing a division by p of the duration of
this node. The rules of the second kind (called terminal
rules) can be applied to a leaf of RT, and expresses that the
label a is allowed at these leaf.

Generally in the literature, one considers the (context-
free) language of words generated by CF grammars – in
our case, that would be words over {n, }. However, re-
call that RTs encode events in the leaves but also durations
of these events in the inner nodes. Since we need these
two informations in rhythm encoding, we need both kind
of nodes, and therefore we will be more interested in the
set of RTs generated by a RG (which is a regular tree lan-
guage), than in the (context-free) language of the words
found in a traversal of the leaves of these RT.

Formally, the language Lq(G) of a RG G = (Q, q0, R) in
non-terminal q 2 Q is defined recursively by

Lq(G) := {a if q ! a 2 R} [[

q!q1,...,qp2R

�
p(t1, . . . tp) | t1 2 Lq1(G), . . . , tp 2 Lqp(G)

.

The language of G is L(G) = Lq0(G).

duration value, and denoted by dur(t, ⌫).
Intuitively, the duration of a node is divided uniformly in

the duration of its children, and is used to sum duration
of leaves. Formally,

If ⌫ is the root of t, then dur(t, ⌫) = 1.

Otherwise, dur(t, ⌫) = dur(t,⌫0)
t(⌫0)

+ cdur(t, ⌫), where

⌫0 is the parent of ⌫ in t,

t(⌫0) is the label of ⌫0 in t (i.e. its arity),

cdur(t, ⌫) = dur(t, ⌫0) if t(⌫) = and ⌫ has a
previous leaf ⌫0,

cdur(t, ⌫) = 0 otherwise.

The choice of duration 1 for the root node is arbitrary. It
means that the fractions refer to division of one beat but
with different root durations, they could as well refer to
other orders of magnitude (bar etc). Note that the dura-
tions are expressed in beats (time units relative to a tempo),
which makes the definition of a tempo useless here.

The events represented by a RT are stored in its leaves.
Hence, the event’s durations, i.e. the actual rhythm cor-
responding to a RT, denoted val(t), is defined from the
duration values of its leaves.

More precisely, let ⌫1 . . . , ⌫k be the enumeration, in depth-
first ordering, of the leaves of t labelled with n. The rhyth-
mic value of t is the sequence

val(t) = dur(t, ⌫1), . . . , dur(t, ⌫k).

It is the empty sequence when k = 0. Intuitively, if a
rhythm tree t represents the notation of a rhythm, its rhyth-
mic value represents the way this rhythm sounds.

Two RT t1, t2 are called equivalent, denoted t1 ⌘ t2 iff
val(t1) = val(t2).

Example 2 The three RT of Figure 3 have a rhythmic value
of 1

2 , 1
6 , 1

3 and are therefore equivalent.

Deciding the equivalence of two given RT t1 and t2 can
be done simply by evaluating their respective rhythmic val-
ues (it is done in linear time for each tree) and comparing
the values.

2.3 Pitches, Grace notes, Rests...

Note that in the above RT representation, we consider only
one generic symbol n to represent any kind of event.

Straightforwardly, we could introduce new symbols la-
beling the leaves of RTs in order to encode any kind of
finite information such as pitches, chords, rests etc.

Grace notes are events of duration 0. The approach pre-
sented in this paper can deal with grace notes. Indeed, in a
RT, one note preceded by one or several grace notes can be
encoded in a single symbol, labelling a leaf. For instance,
the symbol nk could describe one note preceded by k grace
notes. The definition of rhythmic value of a RT should then
be extended accordingly, by adding to the sequence k times
the value 0 at the appropriate place.

2.4 Open Music RTs

The definition of RTs used in this paper differs slightly
from early definitions of rhythm trees in Patchwork and
Open Music [REF]... In Open Music RTs, inner nodes are
labelled by integral values, and denote the relative length
durations of sibling nodes. For example, if a node has 2
sons labelled 1 and 2, the last son is twice as long as the
first. This is exactly equivalent as if they were labelled
2 and 4, only the ratios matter. Note that these numbers
have nothing to do with the numbers used in the above RT
encodings, which are just the arity of the inner nodes and
carry no information. We preferred here an all-symbolic
encoding in order to fit with the formal language frame-
work that we use to define rhythm languages.

3. RHYTHM LANGUAGES

In this section, we propose a general finite representations
for sets of RTs called rhythm grammars. Their purpose is
to fix the kind of rhythm notations that we want to consider,
using declarative rules.

For instance, one rule may express that at some level, di-
vision by three is allowed but division by five is not. One
other rule can express that at some level we can have a leaf
labeled with a note (n) or labeled with a continuation ().

3.1 Rhythm Grammars

A rhythm grammar (RG) is a context-free grammar G =
(Q, q0, R) where Q is a finite set of non-terminals, q0 is
the initial non-terminal and R is a finite set of production
rules of one of the forms

q ! q1, . . . , qp with q, q1, . . . , qp 2 Q,

q ! a with q 2 Q and and a 2 {n, }.

Intuitively, these rules are applied from left to right, to gen-
erate RT by replacement of non-terminals by subtrees. The
rules of the first kind (called inner rules) generate an inner
node of RT, expressing a division by p of the duration of
this node. The rules of the second kind (called terminal
rules) can be applied to a leaf of RT, and expresses that the
label a is allowed at these leaf.

Generally in the literature, one considers the (context-
free) language of words generated by CF grammars – in
our case, that would be words over {n, }. However, re-
call that RTs encode events in the leaves but also durations
of these events in the inner nodes. Since we need these
two informations in rhythm encoding, we need both kind
of nodes, and therefore we will be more interested in the
set of RTs generated by a RG (which is a regular tree lan-
guage), than in the (context-free) language of the words
found in a traversal of the leaves of these RT.

Formally, the language Lq(G) of a RG G = (Q, q0, R) in
non-terminal q 2 Q is defined recursively by

Lq(G) := {a if q ! a 2 R} [[

q!q1,...,qp2R

�
p(t1, . . . tp) | t1 2 Lq1(G), . . . , tp 2 Lqp(G)

.

The language of G is L(G) = Lq0(G).

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

Rhythmic values

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

Rhythmic values

duration value, and denoted by dur(t, ⌫).
Intuitively, the duration of a node is divided uniformly in

the duration of its children, and is used to sum duration
of leaves. Formally,

If ⌫ is the root of t, then dur(t, ⌫) = 1.

Otherwise, dur(t, ⌫) = dur(t,⌫0)
t(⌫0)

+ cdur(t, ⌫), where

⌫0 is the parent of ⌫ in t,

t(⌫0) is the label of ⌫0 in t (i.e. its arity),

cdur(t, ⌫) = dur(t, ⌫0) if t(⌫) = and ⌫ has a
previous leaf ⌫0,

cdur(t, ⌫) = 0 otherwise.

The choice of duration 1 for the root node is arbitrary. It
means that the fractions refer to division of one beat but
with different root durations, they could as well refer to
other orders of magnitude (bar etc). Note that the dura-
tions are expressed in beats (time units relative to a tempo),
which makes the definition of a tempo useless here.

The events represented by a RT are stored in its leaves.
Hence, the event’s durations, i.e. the actual rhythm cor-
responding to a RT, denoted val(t), is defined from the
duration values of its leaves.

More precisely, let ⌫1 . . . , ⌫k be the enumeration, in depth-
first ordering, of the leaves of t labelled with n. The rhyth-
mic value of t is the sequence

val(t) = dur(t, ⌫1), . . . , dur(t, ⌫k).

It is the empty sequence when k = 0. Intuitively, if a
rhythm tree t represents the notation of a rhythm, its rhyth-
mic value represents the way this rhythm sounds.

Two RT t1, t2 are called equivalent, denoted t1 ⌘ t2 iff
val(t1) = val(t2).

Example 2 The three RT of Figure 3 have a rhythmic value
of 1

2 , 1
6 , 1

3 and are therefore equivalent.

Deciding the equivalence of two given RT t1 and t2 can
be done simply by evaluating their respective rhythmic val-
ues (it is done in linear time for each tree) and comparing
the values.

2.3 Pitches, Grace notes, Rests...

Note that in the above RT representation, we consider only
one generic symbol n to represent any kind of event.

Straightforwardly, we could introduce new symbols la-
beling the leaves of RTs in order to encode any kind of
finite information such as pitches, chords, rests etc.

Grace notes are events of duration 0. The approach pre-
sented in this paper can deal with grace notes. Indeed, in a
RT, one note preceded by one or several grace notes can be
encoded in a single symbol, labelling a leaf. For instance,
the symbol nk could describe one note preceded by k grace
notes. The definition of rhythmic value of a RT should then
be extended accordingly, by adding to the sequence k times
the value 0 at the appropriate place.

2.4 Open Music RTs

The definition of RTs used in this paper differs slightly
from early definitions of rhythm trees in Patchwork and
Open Music [REF]... In Open Music RTs, inner nodes are
labelled by integral values, and denote the relative length
durations of sibling nodes. For example, if a node has 2
sons labelled 1 and 2, the last son is twice as long as the
first. This is exactly equivalent as if they were labelled
2 and 4, only the ratios matter. Note that these numbers
have nothing to do with the numbers used in the above RT
encodings, which are just the arity of the inner nodes and
carry no information. We preferred here an all-symbolic
encoding in order to fit with the formal language frame-
work that we use to define rhythm languages.

3. RHYTHM LANGUAGES

In this section, we propose a general finite representations
for sets of RTs called rhythm grammars. Their purpose is
to fix the kind of rhythm notations that we want to consider,
using declarative rules.

For instance, one rule may express that at some level, di-
vision by three is allowed but division by five is not. One
other rule can express that at some level we can have a leaf
labeled with a note (n) or labeled with a continuation ().

3.1 Rhythm Grammars

A rhythm grammar (RG) is a context-free grammar G =
(Q, q0, R) where Q is a finite set of non-terminals, q0 is
the initial non-terminal and R is a finite set of production
rules of one of the forms

q ! q1, . . . , qp with q, q1, . . . , qp 2 Q,

q ! a with q 2 Q and and a 2 {n, }.

Intuitively, these rules are applied from left to right, to gen-
erate RT by replacement of non-terminals by subtrees. The
rules of the first kind (called inner rules) generate an inner
node of RT, expressing a division by p of the duration of
this node. The rules of the second kind (called terminal
rules) can be applied to a leaf of RT, and expresses that the
label a is allowed at these leaf.

Generally in the literature, one considers the (context-
free) language of words generated by CF grammars – in
our case, that would be words over {n, }. However, re-
call that RTs encode events in the leaves but also durations
of these events in the inner nodes. Since we need these
two informations in rhythm encoding, we need both kind
of nodes, and therefore we will be more interested in the
set of RTs generated by a RG (which is a regular tree lan-
guage), than in the (context-free) language of the words
found in a traversal of the leaves of these RT.

Formally, the language Lq(G) of a RG G = (Q, q0, R) in
non-terminal q 2 Q is defined recursively by

Lq(G) := {a if q ! a 2 R} [[

q!q1,...,qp2R

�
p(t1, . . . tp) | t1 2 Lq1(G), . . . , tp 2 Lqp(G)

.

The language of G is L(G) = Lq0(G).

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

duration value, and denoted by dur(t, ⌫).
Intuitively, the duration of a node is divided uniformly in

the duration of its children, and is used to sum duration
of leaves. Formally,

If ⌫ is the root of t, then dur(t, ⌫) = 1.

Otherwise, dur(t, ⌫) = dur(t,⌫0)
t(⌫0)

+ cdur(t, ⌫), where

⌫0 is the parent of ⌫ in t,

t(⌫0) is the label of ⌫0 in t (i.e. its arity),

cdur(t, ⌫) = dur(t, ⌫0) if t(⌫) = and ⌫ has a
previous leaf ⌫0,

cdur(t, ⌫) = 0 otherwise.

The choice of duration 1 for the root node is arbitrary. It
means that the fractions refer to division of one beat but
with different root durations, they could as well refer to
other orders of magnitude (bar etc). Note that the dura-
tions are expressed in beats (time units relative to a tempo),
which makes the definition of a tempo useless here.

The events represented by a RT are stored in its leaves.
Hence, the event’s durations, i.e. the actual rhythm cor-
responding to a RT, denoted val(t), is defined from the
duration values of its leaves.

More precisely, let ⌫1 . . . , ⌫k be the enumeration, in depth-
first ordering, of the leaves of t labelled with n. The rhyth-
mic value of t is the sequence

val(t) = dur(t, ⌫1), . . . , dur(t, ⌫k).

It is the empty sequence when k = 0. Intuitively, if a
rhythm tree t represents the notation of a rhythm, its rhyth-
mic value represents the way this rhythm sounds.

Two RT t1, t2 are called equivalent, denoted t1 ⌘ t2 iff
val(t1) = val(t2).

Example 2 The three RT of Figure 3 have a rhythmic value
of 1

2 , 1
6 , 1

3 and are therefore equivalent.

Deciding the equivalence of two given RT t1 and t2 can
be done simply by evaluating their respective rhythmic val-
ues (it is done in linear time for each tree) and comparing
the values.

2.3 Pitches, Grace notes, Rests...

Note that in the above RT representation, we consider only
one generic symbol n to represent any kind of event.

Straightforwardly, we could introduce new symbols la-
beling the leaves of RTs in order to encode any kind of
finite information such as pitches, chords, rests etc.

Grace notes are events of duration 0. The approach pre-
sented in this paper can deal with grace notes. Indeed, in a
RT, one note preceded by one or several grace notes can be
encoded in a single symbol, labelling a leaf. For instance,
the symbol nk could describe one note preceded by k grace
notes. The definition of rhythmic value of a RT should then
be extended accordingly, by adding to the sequence k times
the value 0 at the appropriate place.

2.4 Open Music RTs

The definition of RTs used in this paper differs slightly
from early definitions of rhythm trees in Patchwork and
Open Music [REF]... In Open Music RTs, inner nodes are
labelled by integral values, and denote the relative length
durations of sibling nodes. For example, if a node has 2
sons labelled 1 and 2, the last son is twice as long as the
first. This is exactly equivalent as if they were labelled
2 and 4, only the ratios matter. Note that these numbers
have nothing to do with the numbers used in the above RT
encodings, which are just the arity of the inner nodes and
carry no information. We preferred here an all-symbolic
encoding in order to fit with the formal language frame-
work that we use to define rhythm languages.

3. RHYTHM LANGUAGES

In this section, we propose a general finite representations
for sets of RTs called rhythm grammars. Their purpose is
to fix the kind of rhythm notations that we want to consider,
using declarative rules.

For instance, one rule may express that at some level, di-
vision by three is allowed but division by five is not. One
other rule can express that at some level we can have a leaf
labeled with a note (n) or labeled with a continuation ().

3.1 Rhythm Grammars

A rhythm grammar (RG) is a context-free grammar G =
(Q, q0, R) where Q is a finite set of non-terminals, q0 is
the initial non-terminal and R is a finite set of production
rules of one of the forms

q ! q1, . . . , qp with q, q1, . . . , qp 2 Q,

q ! a with q 2 Q and and a 2 {n, }.

Intuitively, these rules are applied from left to right, to gen-
erate RT by replacement of non-terminals by subtrees. The
rules of the first kind (called inner rules) generate an inner
node of RT, expressing a division by p of the duration of
this node. The rules of the second kind (called terminal
rules) can be applied to a leaf of RT, and expresses that the
label a is allowed at these leaf.

Generally in the literature, one considers the (context-
free) language of words generated by CF grammars – in
our case, that would be words over {n, }. However, re-
call that RTs encode events in the leaves but also durations
of these events in the inner nodes. Since we need these
two informations in rhythm encoding, we need both kind
of nodes, and therefore we will be more interested in the
set of RTs generated by a RG (which is a regular tree lan-
guage), than in the (context-free) language of the words
found in a traversal of the leaves of these RT.

Formally, the language Lq(G) of a RG G = (Q, q0, R) in
non-terminal q 2 Q is defined recursively by

Lq(G) := {a if q ! a 2 R} [[

q!q1,...,qp2R

�
p(t1, . . . tp) | t1 2 Lq1(G), . . . , tp 2 Lqp(G)

.

The language of G is L(G) = Lq0(G).

Rhythm tree

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure [FIGURE TO DO]

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value �. onset(�) is a list defined as follows : for
0 < i < j + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and

sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of onsets, we define the following
function : given two series of extended onsets
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and �2 = (A, 1

3), (C, 1
6), (E, 1

2)
, then merge(�1,�2) = (AC 1

3), (C, 1
6), (E, 1

6), (G, 1
3

0 1
3
1
2
2
31

...Figure 4

6. CONCLUSIONS

Acknowledgments

You may acknowledge people, projects, funding agencies,
etc. which can be included after the second-level heading
“Acknowledgments” (with no numbering).

7. REFERENCES

[1] I. Shmulevich and D.-J. Povel, “Complexity measures
of musical rhythms,” Rhythm perception and produc-
tion, pp. 239–244, 2000.

[2] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference (ICMC), ser. Proceedings
of the 42nd International Computer Music Conference
(ICMC), Utrecht, Netherlands, Sep. 2016. [Online].
Available: https://hal.inria.fr/hal-01315689

[3] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[4] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Computational Linguistics, 2005, pp.
53–64.

[5] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference 2015, Florence, Italy,
May 2015. [Online]. Available: https://hal.inria.fr/
hal-01105418

[6] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Mathematics
and Computation in Music: 5th International Con-
ference, MCM 2015, ser. Lecture Notes in Artificial
Intelligence, D. M. Tom Collins and A. Volk, Eds., vol.
9110, Oscar Bandtlow and Elaine Chew. London,
United Kingdom: Springer, Jun. 2015, p. 12. [Online].
Available: https://hal.inria.fr/hal-01138642

Figure 4. Workflow to obtain notations corresponding to a
polyrhythm.

notations of this merged rhythmic value to obtain RTs cor-
responding to the merged polyrhythm. A schema of this
workflow can be found in Figure 4

5.1 Problem statement

We define a new operator on two rhythmic values �1 and
�2, denoted as merge(�1,�2), which returns a new rhyth-
mic value. Intuitively, merge(�1,�2) correponds to the
rhythm obtained by playing both �1 and �2 at the same
time.

Let us reformulate the problem of interest :

given a weighted rhythm grammar G and two non-empty
sequences of positive rational numbers �1 and �2,

return a weighted rhythm grammar G� such that
L(G�) = {t 2 L(G) | val(t) = merge(�1,�2)}.

This problem is very similar to the one we addressed in
part 4. All we have to do now is to define the merge oper-
ator.

5.2 Merging rhythmic values

Let onset(�) be the list of onsets corresponding to a rhyth-
mic value � of length l. onset(�) is a list defined as fol-
lows : for 0 < i < l + 1, onset(�)i =

Pi�1
j=0 �j

Example 8 If � = 1
2 , 1

6 , 1
3 , then onset(�) = 0, 1

2 , 2
3 , 1

Given a list of onsets on, we call the inverse transforma-
tion IOI(on), defined as follows : IOI(on)i = oni+1 �
oni.

hythm notations of value [1/5 2/15 1/15 1/5 1/15 2/15 1/5] (schema-05.tx

! " " #$ "
55

3
533

5

"%
" "
" "

"
"
#
#!&&&&& "41 "

"
" # ""%

"% "
"" "

"
"

33
5

3
5

3
5

"
" "! "

"
" "%3

$ &&&&& """ !" ""
"

! " " "
"

" "
33

5
33

5

"
" %
"

"! "" "
5

$ &&&&& " "% ""
"
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 5. Chopin Nocturne No 3 op. 9 and 6 alternative
notations merging both hands for 1st half of bar 9. Here,
�1 = 1

5 , 1
5 , 1

5 , 1
5 , 1

5 , and �2 = 1
3 , 1

3 , 1
3 .

In order to be able to be able to reconstitute the merged
rhythmic value, we also have to attribute to each rational
number the symbol it corresponds to (either a note, a chord,
a rest, etc). We thus consider extended rhythmic values
of the form (sym, r), where r is a rational number, and
sym is a symbol denoting a particular note, or a rest, or a
chord...

To interleave two series of extended onsets on1 and on2,
we define the recursive function interleave(on1, on2) :

if on1 is empty, return on2.

if on2 is empty, return on1.

otherwise, let (S1, o1) and (S2, o2) be the first element of
on1 and on2 respectively.

• If o1 = o2, return (o1, add(S1, S2)) :: interleave(rest(on1), rest(on2))

• Else, if o1 < o2 return (o1, S1) :: interleave(rest(on1), on2).

• Otherwise, return (o2, S2) :: interleave(on1, rest(on2)).

Here, :: denotes the concatenation operator, and add(S1, S2)
is a fonction that adds the two musical symbols (a note
added to another note gives a chord, a note added to a rest
gives a note, etc).
merge is then defined as follows : given two rhythmic

values �1 and �2, merge(�1,�2) = IOI(interleave(onset(�1), onset(�2))).

Example 9 If �1 = (C, 1
2), (E, 1

6), (G, 1
3) and

�2 = (A, 1
3), (C, 1

6), (E, 1
2) , then

merge(�1,�2) = (AC 1
3), (C, 1

6), (E, 1
6), (G, 1

3)

Note that in principle, we could merge two rhythmic val-
ues that are not the same length. Nevertheless, here, a
rhythmic value is always normalized to have a total du-
ration of 1.

An example is given Figure 5.

Figure 5. Workflow to obtain notations corresponding to a
polyrhythm.

return a weighted rhythm grammar Gσ such that
L(Gσ) = {t ∈ L(G) | val(t) = σ1 ‖ σ2}.

Therefore, this problem is very similar to the one we ad-
dressed in Section 4 and can be solved with the same pro-
cedure.

Example 10 Figure 6 presents a list of rhythms obtained
for [12 ,

1
2] ‖ [13 , 13 , 13], using the complex WRG mentionned

in Example 9.

All we need to do now is to define the ‖ operator. To a
rhythmic value σ = [d1, . . . , dp] we associate a sequence
of onsets onset(σ) = [o1, . . . , op+1] defined by oi =

∑i−1
j=1 dj

for all 0 < i ≤ p+ 1. Note that o1 = 0.

Example 11 If σ = [12 ,
1
6 ,

1
3], then onset(σ) = [0, 12 ,

2
3 , 1].

The inverse transformation, called IOI , associates to a
sequence of onsets ` = [o1, . . . , op+1] the rhythmic value
σ = [d1, . . . , dp] defined by di = oi+1− oi for all 1 ≤ i ≤
p. Finally,

σ1 ‖ σ2 = IOI
(
onset(σ1) ∪ onset(σ2)

)
.

Here, the operator ∪ denotes the interleaving of sequences
of onsets, performed as expected to respect the ordering of
onset values.

During the above processing, a special care must be given
to the handling of the events associated to the initial rhyth-
mic values σ1 and σ2, in order to reassign them properly
in σ1 ‖ σ2 (see Section 2.3). We leave these details out of
this paper.

Example 12 Figure 7 shows examples of rhythms obtained
for σ1 ‖ σ2 with σ1 = [15 ,

1
5 ,

1
5 ,

1
5 ,

1
5] and σ2 = [13 ,

1
3 ,

1
3]

corresponding to a split of Violin I part in Stravinsky’s Rite
of Spring.

151

tations of value [1/3 1/6 1/6 1/3] (sch

!

3 3 3

!! ! !!
4
1 !!

"!!!

3
3

3
3

!"!!!3 !!!

!

3 3 3 3

! ! !!!!!5 !!

!"!"! !

3
3

3
3

!!

3
3

!!!7 !! ! !!

! ! !! ! !

3
5

33

!

3

! ! !9 ! !! ! !!

!!! !!!!

3
7

33
5

!

3

!!!!11 "!!! !!!"

Music engraving by LilyPond 2.18.2—www.lilypond.orgFigure 6. RTs for the merge of [12 ,
1
2] and [13 ,

1
3 ,

1
3].

!
!

! "

55
3

533
5

!! !! !41
!

!! ""# !
! !

! "!

! ! !!
!

!!
3

5
3

5
3

5

! !
!

3

!! ! !3

#
!! !

!!
!

! !
!

!
! !

33
5

33
5

!! !!
!

! !
!5

! ! !!!

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 7. Stravinsky, The Rite of Spring (Violin I) and 6
alternative notations.

Note that in principle, we could merge two rhythmic val-
ues that are not the same length. Nevertheless, here, a
rhythmic value is always normalized to have a total du-
ration of 1.

6. CONCLUSION

We proposed a formalism based on formal grammars to
define languages of weighted rhythm trees, and a proce-
dure to lazily enumerate these trees by ascending weight.
It is applied, via grammar constructions, to the problem
of enumerating rhythm trees defining the same given se-
quence of durations (IOIs), and enumerating merges of two
polyrhythmic voices into one.

This has been implemented in C++ 1 , with command line
prototypes outputing the enumerations of RTs which were
then translated into a graphical representation in Lilypond.
The Lilypond code was moreover post-processed for the
improvements described at the end of Section 4.2.

After evaluation with this proof-of-concept prototype, this
implementation will be integrated as a dynamic library in
OpenMusic, for use in particular as a backend procedure
for the transcription framework of [8].

Acknowledgments

The authors would like to thank Karim Haddad for his
valuable knowledge and advices on rhythm and notation.

7. REFERENCES

[1] A. Klapuri et al., “Musical meter estimation and music
transcription,” in Cambridge Music Processing Collo-
quium, 2003, pp. 40–45.

[2] J. Bresson, C. Agon, and G. Assayag, “OpenMusic:
visual programming environment for music composi-
tion, analysis and research,” in Proc. of the 19th ACM
Int. Conf. on Multimedia. ACM, 2011, pp. 743–746.

[3] A. T. Cemgil, P. Desain, and B. Kappen, “Rhythm
quantization for transcription,” Computer Music Jour-
nal, vol. 24, no. 2, pp. 60–76, 2000.

[4] H. C. Longuet-Higgins and C. S. Lee, “The rhythmic
interpretation of monophonic music,” Music Percep-
tion: An Interdisciplinary Journal, vol. 1, no. 4, pp.
424–441, 1984.

[5] J. Pressing and P. Lawrence, “Transcribe: A compre-
hensive autotranscription program,” in International
Computer Music Conference Proceedings (ICMC),
1993, pp. 343–345.

[6] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: a critique of pure quantification,” in In-
ternational Computer Music Conference Proceedings
(ICMC), 1994, pp. 52–59.

[7] C. S. Lee, “The rhythmic interpretation of simple
musical sequences: Towards a perceptual model,”

1 http://qparse.gforge.inria.fr

152

Musical Structure and Cognition, vol. 3, pp. 53–69,
1985.

[8] A. Ycart, F. Jacquemard, J. Bresson, and S. Staworko,
“A Supervised Approach for Rhythm Transcription
Based on Tree Series Enumeration,” in International
Computer Music Conference Proc. (ICMC), 2016.

[9] M. Laurson, “Patchwork: A visual programming
language and some musical applications,” Sibelius
Academy, Helsinki, Tech. Rep., 1996.

[10] C. Agon, K. Haddad, and G. Assayag, “Representation
and rendering of rhythm structures,” in Proceedings
2d Int. Conf. on Web Delivering of Music, 2002.

[11] M. Laurson, M. Kuuskankare, and V. Norilo,
“An overview of PWGL, a visual programming
environment for music,” Computer Music Journal,
vol. 33, no. 1, pp. 19–31, Mar. 2009.

[12] L. Huang, “Advanced dynamic programming in
semiring and hypergraph frameworks,” in In COLING
Tutorial, 2008.

[13] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
C. Löding, D. Lugiez, S. Tison, and M. Tommasi,
Tree Automata Techniques and Applications. http:
//tata.gforge.inria.fr, 2007.

[14] I. Shmulevich and D.-J. Povel, “Complexity mea-
sures of musical rhythms,” Rhythm perception and
production, pp. 239–244, 2000.

[15] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: A critique of pure quantification,” in Proc. of
ICMC, Aarhus, Denmark, 1994, pp. 52–9.

[16] L. Huang and D. Chiang, “Better k-best parsing,” in
Proc. of the 9th Int. Workshop on Parsing Technology.
Association for Comp. Linguistics, 2005, pp. 53–64.

[17] P. Donat-Bouillud, F. Jacquemard, and M. Sakai,
“Towards an Equational Theory of Rhythm Notation,”
in Music Encoding Conference May 2015.

[18] F. Jacquemard, P. Donat-Bouillud, and J. Bresson, “A
Structural Theory of Rhythm Notation based on Tree
Representations and Term Rewriting,” in Proc. 5th
Int, Conf. on Mathematics and Computation in Music
(MCM), Springer LNAI vol. 9110, 2015.

[19] K. Haddad, “Fragments de recherche et
d’expérimentation: Eléments de réflexions autour
de l’écriture rythmique d’Emmanuel Nunes,” semi-
naire Mamux, Ircam, 2012.

[20] D. M. Randel, The Harvard dictionary of music.
Harvard University Press, 2003, vol. 16.

153

154

“DES PAS SUR L’INVISIBLE”
THE OCTAVE SPACE AND THE SELF-MULTIPLICATION PROCESS

Sílvia Mendonça
Universidade de Aveiro / INET-MD

silviat@ua.pt

ABSTRACT

The purpose of this paper is to describe the process, from

a composition standpoint, from which my piece Des pas

sur le invisible (2016) for clarinet or solo saxophone, was

composed. This work is part of a PhD in music in which I

propose a model of composition based on a self-multipli-

cation process, and was created within the context of the

Frederico de Freitas Interpretation Prize, Universidade de

Aveiro (May 2016 edition).

Starting from a pre-composing point of view, we will

consider the octave musical interval as a metaphor for the

self-multiplication process. This reflection allows us to

think the octave as a space and therefore, how the attribu-

tion of this extended dimension can be rethought in music,

leading us to new approaches of the composition practice.

The piece Des pas sur le invisible will show how this

approach can be accomplished, serving to illustrate a

thought that takes place outside the proper world of musi-

cal elements and considerations that can be decisive in the

musical discourse. It will show how the principle behind

the conception of this work can develop perspectives for

the composition notation practice and for future research.

1. INTRODUCTION

In this reflection we consider the temporal extension of the

compositional reality, in order to represent it through a set

of practices that rethink some of the compositional re-

sources and parameters, which can also serve the theoreti-

cal necessity that manifests itself in the contemporaneity

of this practice.

From the composer’s standpoint, compositional reality

originates from the encounter with the other, and it is pro-

jected in a movement from the exterior to the interior.

Therefore, there is the possibility of the conception of a

gesture to be seen not as the materialization of an idea but,

precisely the opposite, as an immersion in the space of con-

science, which places the idea itself in the horizon, i.e. the

limit.

This piece explores that thought from the concept of

unison: a metaphor of the encounter, a starting point to

think about self-multiplication, considering the octave as

1 ZAMBRANO, M. Pp. 32.
2 RAMEAU, Jean-Philippe. P. 86.

representation of the extended unison. Therefore, a treat-

ment is developed and applied to the musical discourse that

consists in filling that space, raising some questions about

musical notation.

2. THE OCTAVE: SELF-MULTIPLICA-

TION METAPHOR

It is from a musical gesture that we construct the self-mul-

tiplication metaphor, precisely because this self to which

we refer is consciousness itself. Consciousness can only be

thought from time, and more pronouncedly, from move-

ment. But time cannot be stopped or even fixed, leading us

to take the unison from the musical tuning point of view as

an ephemeral or even non-existent reality: a paradox. Con-

sequently, the self to which we refer is a reality impossible

to fix in the unity of the instant. The self is multiple, exist-

ing, from the temporal point of view, in succession.

“The vigil fullness takes place in man when he appears:

before others, before himself. So he is with others because

he is with himself. He lives in the present that is being pre-

sent, being sustained in this present that is reiterated in

uninterrupted acts: he succeeds himself.”1

The succession to oneself has a direct correspondence

with the multiplication process. It happens to itself, multi-

plying itself: unit that happens multiplying because it in-

tends to fix itself at every instant.

 “Unity is indifferent to production, and generates (en-

genders) nothing but itself. Unity either divided or multi-

plied will only create another unity.”2

In this context, we find a way to speculate about the self-

multiplication process, since in order to realize this phe-

nomenon - the multiplication - consciousness needs to un-

fold, to see itself from the outside. It is therefore essential

that a principle of reflection be given to it.

"The spirit, therefore, is the idea that in its return to itself

seeks to be fully realized, no longer as a negative of pure

exteriority, but taking place in a free world, that is, second

nature. The spirit appears concretely in man, for he is the

thinking being capable of producing another nature. The

spirit, as a man, puts his world "as something reflecting

upon itself," takes from nature the character "of another

before him," and makes it, rather than something opposite,

something made by him.”3

The correspondence that we find between this second na-

ture of consciousness, according to a reflective principle,

and the octave phenomenon, whether it is or not an abstract

3 SOUZA, Roberta Bandeira. Pp. 280-1.

Copyright: © 2017 Sílvia Mendonça. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution License 3.0

Unported, which permits unrestricted use, distribution, and reproduction

in any medium, provided the original author and source are credited.

155

convention, leads us to rethink seriously the very notion of

musical interval. The octave is the recognition of the ex-

tended unison.

“The proportion of the whole to its half or of the half to

the whole is so natural that it is the first to be understood.

This should predispose us in favor of the octave, whose ra-

tio is 1:2. The unit is the source of numbers, and 2 is the

first number; there is a close resemblance between these

two epithets, source and first [Fr. Principe and premier],

which is quite appropriate. Likewise, in practice, the oc-

tave is characterized by the name "replicate", all repli-

cates being intimately connected to their source (…).”4

It is through the central role of the octave, which mani-

fests itself as extension and duration, that we propose to

describe the creation of a limited space by polarizing

sounds formed on the basis of this interval. In this sense,

this is a space that is distributed in height planes represent-

ing different cosmos, which are distinguished precisely by

the differences of thinking and consequently of represent-

ing it, of (re)producing it.

3. THE UNISON AND THE INVISIBLE

SPACE OF THE OCTAVE

“Furthermore, the octave serves as a limit for all intervals,

so that everything generated by the division of the source,

after having been compared to this source, can also be

compared to its octave. (…) It is thus manifest that every

number multiplied geometrically always represents the

same sound, so to speak, or rather gives the replicate of

that sound which is its root.”5

It is because of the impossibility to fix the space between

two precisely equal sounds - in unison - that we choose to

take the space delimited by the octave as a space that is

unfixed, and in an extended sense, unrepresented. In fact,

we are actually considering it as a space that exists but, it

is not represented, it is invisible. It is a space that has to be

covered, but the way to fill it is not defined, and therefore,

it is indeterminate, timeless. In order to do that, we will

have to fix it somehow and establish references to do so:

we have to make sense of it. It is this need for meaning that

makes it an interior space: being a space in between, makes

it an interior space.

"When the temporality ends, the human being closes it-

self and opens, thus opening up within him cracks that do

not correspond to the different planes in which the vigil

unfolds, we would say, in combat formation. The spiral

coils on itself and the consciousness then appears in some

special point cutting off what is together in the vigil, sepa-

rating what is united, mixing what is separated according

to the images and, what is even more decisive, in function

of time itself." 6

The octave is a sort of shell, a skin, because it is a limit.

On one side, the exterior space, on the other, the inner

space. Both are considered. We take as reference the vari-

ous octaves from the same sound (harmonics), that is, their

multiplication, for the formation of distinct planes. Each

4 RAMEAU, Jean-Philippe. P. 82.
5 Ibid, Pp. 9-10.

plane represents a new dimension to be explored, precisely

from these sounds that will act as polarizing sounds.

"No experience appears alone, disconnected like a lone

star. The one that appears on the horizon of consciousness

is the center of others that revolve around it or accompany

it paling in its light or illuminating in its flicker."7

We take the polarization concept as reference. It is the

time passage, which allows the fixation and crystallization

of events in our memory, so that they can be used in the

future. Therefore, the space of the octave is opened, being

also a space of freedom, since it unfolds conceptually to

infinity for the return of a constructive idea.

4. DES PAS SUR L’INVISIBLE

Originally, the idea of exploring the octave space arises

with the desire to write a piece for overtone flute: Fujara.

This instrument, without finger holes, and tuned to a fixed

frequency, only allows to control harmonics of a funda-

mental sound through the intensity that is blown into the

tube. The main challenge would be to go through these

sounds by sweeping the space and by varying the funda-

mental parameter of intensity.

Afterwards, this same thought process was extrapolated

to another composition work for transverse flute. The first

challenge here was the definition of the fundamental note,

because in this case there is no longer the same rigidity of

the overtone flute. The interior of the octave itself can be

traveled with greater definition in terms of heights, since it

is a chromatic space.

Figure 1. Initial gesture of Des pas sur l'invisible for trans-

verse flute.

Figure 2. Final gesture of Des pas sur l'invisible for trans-

verse flute.

Later, came the opportunity to write for clarinet or saxo-

phone and the possibility of continuing to explore the ini-

tial idea, but now with the added challenge of using these

transposing instruments. This piece introduces, at the com-

position level, a new thought over the conception and writ-

ing of time and heights, introducing some indeterminate

elements, thus giving freedom to the performer in its inter-

pretation.

The three pieces adopt the same name: Des pas sur l’in-

visible. They all have the same starting point idea and take

the limit of the octave as the principle of composition, also

with the same point of arrival as the main focus: there is

always a movement to approach this limit, since the notes

that confine it are polarizing notes. But it is above all, a

continuous movement because once this limit has been

6 ZAMBRANO, M. Pp. 93.
7 Ibid, Pp. 79.

156

reached, it is transformed and gives us precisely a new

challenge that comes from overcoming it.

We will then, as a result, analyze the work Des pas sur

l'invisible for clarinet or saxophone. The piece was written

to be performed by clarinet or saxophone but also by any

instrument of those families. This feature that precedes the

conception of the work, allows us to return to the specula-

tions mentioned in the previous chapter, since we have

considered that the space of the octave is unregistered and

therefore, an indeterminate space.

5. DES PAS SUR L’INVISIBLE FOR

CLARINET OR SAXOPHONE

The score comprises of three staves, corresponding to

three main polarizing sounds: D4; D5 and D6 (transposed

sounds); respectively, the fundamental frequency, the 2nd

harmonic and the 4th harmonic. This way of representing

the different sounds underlines the importance of the oc-

tave interval between them, on the one hand, as the limit

of a space to be filled or traveled, and on the other hand,

as an intensive space: where different tensions, movements

and temporalities are generated:

Figure 3. Octave space.

To the space of each octave is initially assigned a partic-

ular atmosphere. As we traverse the three planes of the

piece, the instrumental timbre changes, as the heights be-

come less defined by the type of explored articulation.

5.1 First Space

The lower octave is the origin, it represents the first plane

to be presented, and it is the plane of the fundamental fre-

quency, the deepest plane, where all possible "selves" po-

tentially exist. The musical material consists of a polariz-

ing sound - D4 - and it is chromatically manifested accord-

ing to the interval module of Bb3 to Ab4 (minor seventh).

It is not a complete octave and due to its incompleteness,

the fact that it is an incomplete space turns it into a space

of unfolding, of transcendence – the will to leave itself. It

is characterized by measured vibrattos, trills, air sounds,

sung sounds.

Figure 4. Measured vibrato.

Figure 5. Sung sound.

Figure 6. Air sound.

5.2 Second Space

The intermediate plane represents the first octave of the

fundamental frequency as a polarizing sound - D5 - corre-

sponds to the plane where the self temporarily affirms, in-

terrupting from time to time the sound of the fundamental

frequency, containing sounds that do not correspond ex-

actly to a tuned octave and using quarter tones and tremo-

los to fill the space. The interval module to be explored is

B4 to F5. Because it lies between two planes, a lower one

and higher one, it is a compressed zone whose tension is

precisely created by the use of microtones and by the range

of an augmented fourth as the limit of the musical module.

Figure 7. Quarter tone.

Figure 8. Tremolos.

5.3 Third Space

In the third plane, with the polarization displaced one oc-

tave above the anterior plane - D6 - the idea of opening,

expansion and transcendence is again manifested, where

the musical module now appears from G5 to G6, a com-

plete octave. In this space it is also reached the extreme of

the highest register to be explored. However, although this

space is the most complete, because it comprises chromati-

cally the interval of the octave, it is an unstable space, of

impermanence, of transcendence. This feature of space is

explored in terms of timbre by the use of glissandi and

staccato.

Figure 9. Glissandi and staccato.

157

5.4 Time, continuity, duration

“Seen from the timelessness of the dream, time is overture,

a way of access and way to walk.”8

The indications concerning the time durations are distrib-

uted in several ways. First and foremost, there are blocks

of durations indicated below the score. These are general

durations, moments. Each moment represents a formal

variation that occurs in the discourse. These blocks are a

representation of the very structure or shape of the

piece, divided into four parts, as shown in Figure 10. It is

up to the performer to manage the time of each section ac-

cording to the characteristics of each sound space.

Figure 10. Des pas sur l’invisible form.

5.5 Section a

Duration: 75 seconds.

First Space: The same sustained note (fundamental sound)

with measured vibrato variations.

Figure 11. Measured vibrato variations.

Second Space: First space octave with microtonal varia-

tions of quarts of tone. They are interruptions of sustained

notes but of shorter duration.

Figure 12. Microtonal variations.

Third Space: Very short attacks on forte that intend to

leave outside the previously presented plans.

Figure 13. Short attacks.

8 Ibid, Pp. 76.

5.6 Sections b1, b2, b3

Duration: 90 seconds.

First Space: What previously corresponded to the meas-

ured vibrato develops in the sense of a greater sound activ-

ity with the trill of minor second ascending and groups of

demisemiquavers decelerating. It culminates with the arri-

val of a space of transcendence, lower than the previous

polarizing note D4. This note is now Bb3 and is reached

through the timbric dissolution of the instrument's sound,

consisting now of a sung sound: a glissando from D4 to

Bb3.

Figure 14. Measured vibrato development.

Figure 15. Glissando from D4 to Bb3.

Second Space: We continue to hear the punctual micro-

tones, which in B3 hold for longer, but now on the glis-

sando note sung in first space. A gesture presents a succes-

sion of tremolos within the scope of augmented fourth.

This zone pretends to be a space of simultaneity and con-

flict, mixing the two planes.

Figure 16. Tremolos succession over a glissando sung.

Third Space: The same short staccato attacks are now ar-

ticulated with small glissando gestures at increasing inter-

vals between the b three subsections, as an affirmation of

the non-permanence of this register. This is a more unsta-

ble and also less defined register zone, although these char-

acteristics give it a greater timbric elasticity.

Figure 17. Small glissando gestures.

158

5.7 Section c

Duration: 60 seconds.

The growing movement created in each space, precisely

because it signifies the register overture, culminates in the

emptying of the identity of each plane. The same gesture

is graphically explored for each polarizing note. The mi-

crotones are no longer heard, and all the D´s are reached

with appoggiaturas formed by the notes of the extremes of

each interval. The whole speech tends to merge into a sin-

gle gesture, which ends with the enlargement of the total

space reaching the low and high extremes of the register.

This originates the arrival of a new fundamental frequency

- Bb3 - the motto for section d of the piece.

Figure 18. The register overture.

5.8 Section d

Figure 19. Air sound.

Duration: 15 seconds.

Section d, the smallest, summarizes the whole movement

of the piece. It represents the opening of an oscillatory

space over a fundamental sound. This sound that emerges

stabilized as such in the end of the piece (B3), is also a

detuning of the initial sound (D4). As if through movement

there was also a descent or fall, a consequence of its own

gravity, the non-permanence and ultimately, the ephemer-

ality of the instant.

6. CONCLUSIONS

Although we consider the polarizing sounds, its bounda-

ries and connections by octave intervals, it is when we

traverse through this space that we give it an identity, we

crystallize it, even if it is done in an imperfect, circum-

scribed and temporary form. The space of the octave re-

sults in an archetrope of the unison idea – metaphor for

encounter and instant too.

These moments transform the space into movement or,

if you prefer, into blocks of movement - modulation of

time - time of consciousness and affirmation of the singu-

lar, the instant, the self. The "I" that can only be thought

from an interior space - the space of consciousness. Only

what is in consciousness actually exists.

The piece Des pas sur l'invisible is a way to conceive an

indeterminate space, an inner space, a space in between, in

constant reformulation by the search to know and to fix its

own limits. This boundary lies on the border between outer

and inner, which is also the border of the visible and the

invisible.

It is up to the subject/spectator/performer of the real to

analyze this visible and implied in order to formulate the

invisible as it seems/appears to him.

7. REFERENCES

[1] ZAMBRANO, Maria. 1994. Os sonhos e o tempo.

Relógio d’Água. Lisboa.

[2] RAMEAU, Jean-Philippe. 1971. Traite de l'harmonie

reduites a ses principes naturels. Courier Corporation.

https://books.google.pt/books?id=TdU-

trQ1cJLgC&n um=13. (24.02.2016, 18h15p.m.).

[3] SOUZA, Roberta Bandeira. 2010. A luta do espírito

na natureza: a vitória da liberdade in A noiva do

espírito. Natureza em Hegel. Organizadores: UTZ,

Konrad Utz e Marly Carvalho Soares. Edipucrs. Porto

Alegre.

http://ebooks.pucrs.br/edipucrs/naturezaemhegel.pdf

(25.05.2016 21:43 a.m.).

159

160

VEXATIONS OF EPHEMERALITY
EXTREME SIGHT-READING IN SITUATIVE SCORES - FOR MAKERS, PERFORMERS, AUDIENCES.

Sandeep Bhagwati

Concordia University Montréal
sandeep.bhagwati@concordia.ca

ABSTRACT
What do we do when we subject musicians and audi-

ences to music prompted by real-time scores? Such situa-
tive scores create a new kind of immanent relationship
between performers and audiences, between composers
and performers, composers and audiences – a relationship
whose ingrained disregard of context, memory, and
knowledge has often been ignored. The use of situative
scores seems to inscribe itself into a more general societal
trend that uses technology to ephemeralize our lives, to
decouple presence from its history. While this imma-
nence has often been perceived as a force for the emanci-
pation of performers and spectators, it can also give rise
to unaccountability. Do artistic practices that ephemeral-
ize our artistic 'regime of perception, sensation and inter-
pretation' (Rancière) - such as situative scores – foster
abuses of immanence?. In this paper, I will look at such
questions from the perspective of the performers, the
audiences and the makers of such scores – the composers.

1. INTRODUCTION
Being "in the ephemeral' (Rimbaud) was the dream-

come-true of a modernity that erased both the trace and
the unconscious, leaving humans without protection or
blanket within its transparent walls of glass. [1]

This paper is an exploration of doubts that have plagued
me for some time while working on situative scores of
various kinds1[2]– not without a modicum of success
over the years, both technological and artistic. Situative
scores create a new kind of relationship between per-
formers and audiences, between composers and perform-
ers, composers and audiences – a relationship whose
specificities, in the rush towards a workable technology,
often been ignored, or shelved for future reflection. For
me, that future is now. Especially as, in a broader context,
the use of situative scores seems to inscribe itself into a

1 In a previous paper, presented at TENOR 2016 [2], I proposed a
taxonomy for situative scores – i.e. scores that, in my definition, do not
build on linear, pre-existing and pre-sequenced information. Infor-
mation in such situative scores is only available ephemerally, i.e. while
it is displayed or accessed in a particular context. I proposed four differ-
ent types of situative scores: 1) rule-based 2) reactional 3) interactive
and 4) locative. While types 1) and 4) may be algorithmic in nature, but
can also be non-algorithmic, scores of type 2) and 3) are usually not
only algorithmic, but also require computer implementation. The subset
of situative scores that I am concerned with in this paper are scores of
all four types that use algorithms and computer technology to generate
and display unforeseeable score information to the musician[s] in real
time.

more general societal trend that uses technology to
ephemeralize our lives, to decouple presence from its
history.

While this immanence has often been perceived as a
force for the emancipation of performers and spectators,
its inherent disregard of context, memory and knowledge
can also give rise to irresponsibility, unaccountability and
intolerance, especially in the political sphere - as the past
year has so amply demonstrated. Do artistic practices that
ephemeralize our artistic 'regime of perception, sensation
and interpretation' [3] - such as situative scores – mirror
or even foster such abuses of immanence?

Situative scores today, especially those relying on digi-
tal technology, are structurally oblivious to skill acquisi-
tion and training, to transparent perception and analysis,
to comparison and re-reading (and, therefore, interpreta-
tion), to re-listening and its aesthetic interplay of famili-
arity and disturbance, to the social aesthetics and taxon-
omy of sounds, but also to their concrete, emotionally
charged materiality. Does this obliviousness tend to abol-
ish the very context that has made these scores arise? Or
are such situative scoring practices essentially parasitical2
[4] in nature - will they always rely on other art practices
to provide them with skilled performers and aesthetic
contexts of interpretation that they themselves are unable
to generate?

In the following, I will look at such questions from the
perspective of the performers, the audiences and the
makers of such scores. The issues they encounter in con-
tact with situative scores are different in each role. What
kind of relationship does 'extreme sight-reading' [5] en-
tertain with the inner dramaturgy and time of the per-
former? How can an audience understand, evaluate and
connect with a performance of a situative score? How
does the requirement to meta-compose a situative score,
and thus the necessity for a primarily non-linear, concep-
tual (i.e. not concretely sonic and dramaturgical) ap-
proach to composition affect the score maker's musical
imaginary? And, as all these roles are intertwined in the

2 The notion of the 'parasite' here is used as Michel Serres introduces it
in his eponymous book [4]: namely that parasites (outcomes that are
made possible by an act of communication but belong to neither sender
nor receiver) are unavoidable in all communication. He, however, does
not see this as unwelcome noise – rather, he reminds us that sometimes
the parasites can be much more interesting than the purported focus of
the communication. In other words: music academies train musicians
for a fixed-score environment; but in the process, they also generate the
very players and contexts that make real-time notation at all feasible.
Music for situative scores thus is a parasite, feeding on skills which
these performers would probably not have developed if situative scores
were all that existed. Yet: How long can a performing art sustain itself if
it does not educate its own performers? Copyright: © 2017 Sandeep Bhagwati. This is an open-access article

distributed under the terms of the Creative Commons Attribution License
3.0, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original author & source are credited. 161

process of musicking, how do these new demands and
affordances, some of them quite categorical, influence
each other in the co-emergence (or, possibly, co-
effacement) of a new kind of musicking ?

2. EXTREME SIGHTREADING:
PERFORMERS

"Does everything really have meaning? Aren’t there
some empty spaces remaining, whose emptiness is
perhaps their only meaning? Isn’t there a gap there, a
hole, between the image produced and the meaning it
supplies or dissimulates?" [6]

Jason Freeman introduced the term "Extreme Sightread-
ing" [5] to characterize the performers' experience with
real-time music scores – and to postulate a novel quality
of music performance that these scores seem to demand.
He discusses a variety of works that seem to highlight
four basic generative strategies3:

a. permutational (e.g. Gerhard Winkler's scores where
pre-notated elements are re-arranged on the fly, both in
time and on the screen),

b. parametric (e.g. Karlheinz Essl's Champ d'Action,
where musicians must combine several independently con-
trolled parameters into a comprovisational performance),

c. auto-reflexive (e.g.Nick Didkovsky's feedback score
Zero Waste where the pianist's valiant attempt at playing
an unplayable score directly generates the next page of this
score in an endless open loop)

d. co-creative (e.g. Jennifer Walshe's or Jason Freeman's
works where audience (or conductor) interactions influ-
ence how the score appears to the musician)4

Most real-time scores, including those I have contribut-
ed to or designed (discussed in [2] and [7]), use one or
more of these four strategies. While aesthetic concepts
and performance strategies may differ, real-time scores
all ask performers to subject their musicking to a series of
inherently unrehearsable constraints. The comparison
most often made here evokes the difference between
reading / learning-by-heart the text for a theatre perfor-
mance and - learning to speak a language.

When music notation is generated on the fly during
live performance, musicians have no opportunity to
practice and rehearse the score in advance... As musi-
cians practice a composition, their increasing familiar-
ity with the elements of the notation should help them
to perform it more accurately. But that familiarity
should also lead them to develop a richer, more per-
sonal musical language with which to interpret it. [5,
p.34]

Composers and musicians quoted by Freeman share
similar metaphors.

As musicians prepare to perform these kinds of piec-
es, Gerhard Winkler notes that the process “shifts
from ‘studying notes’ to … [getting to know…’how

3 Please note that the taxonomy offered here is not explicitly stated in
Freeman's paper – it is my reading of his text.
4 Any actual real-time score will obviously combine these four strate-
gies to various degrees and on different levels – I set them out simply as
workable analytical categories.

the system works’” … [Musicians] must not only play
the score in front of them as it unfolds, but they must
also “bring sense into this succession of un-expectable
moments” to create a personal, coherent interpretation
of that score. [5],[8]

Or, as a performer describes it:

“It would have been less interesting if we were totally
at the mercy of the notation. But once we got familiar
with the process and developed a common approach
to the notation . . . then it became more musical” [5,
p.35]

What is the interpretation (as Winkler calls it) that a
performer can bring to the score? Or, to re-use Freeman's
metaphor: once you speak the language of the score -
what do you speak about?

'Interpretation' is a term used in the context of fixed
scores to describe a process in which practise, repeated
readings, analysis, comparisons with other scores, infor-
mation about the musical or cultural context as well as
non-musical concepts and imaginaries are condensed into
the moment of performance. Can we really apply this
term to situative scores, where neither repeated readings
nor comparison are at all possible? While it may be an
instance of a larger creative undertaking, each ephemeral
performance stands uniquely for itself, is immanent to
this particular moment and place. Except for a broad
conceptual analysis of the performance context, the per-
former cannot enter into an interpretational discourse
with the score – simply because there is no discursive,
coherent or, simply, sequential score outside of the per-
formance.

Whenever I raise such questions in discussions, some-
one invariably accuses me of underrating the capacity of
performers to think on their feet, to analyze what they
play as they play. The preferred analogy here are team
players in football, rugby or hockey who have barely
milliseconds to move their body in a way that will outwit
their opponents – in order to perform successfully, they
must read the game while it is played. Swordfights are
another frequently cited example.

To which there are two types of answers: Firstly, team
players can read the game because they know its frame-
work so well, through years of training, that they can
perceive and focus on the tiniest variants and aberrations.
Most situative score players do not have this luxury, at
least not yet. Secondly, in all these endeavours failure is
possible (and discernible) - and the failure rate usually is
higher than any musician or composer would deem ac-
ceptable in the performance of a score. One can either
conclude that musicians are better at reading the oppo-
nent's (the score's) game than are swordfighters – or, as
seems more likely, that they have about the same propen-
sity for failure. Which means that most situative scores
are wrongly interpreted most of the time – an appropriate
and aesthetically coherent understanding to the elusive
score must therefore be a rare and fortuitous event. If one
takes this analogy to its logical conclusion, then a musi-
cian improvising without any score may have a better
chance of making sense of his own performance than a
musician performing a situative score.

162

Music performance, by definition, is transient in nature.
Sounds disappear, leaving their trace only within our
bodies and our memories. Each live performance speaks
of the fluidity of existence. In most musicking contexts,
however, this ephemerality is counter-balanced by the
kinds of immaterial mental architectures, compositions,
songs, melodies, rhythms, that become inner entities, part
of the software of the mind [9]5. Usually, these architec-
tures are inscribed in our minds and bodies through con-
stant re-enactment. Repetition and repeatability are sali-
ent features of all musicking, and even the most ardent
improvisers have their bag of tricks and their somatically
and psychologically inscribed, well-rehearsed set of ges-
tures, ideas, concepts.

In this perspective, the extreme sightreading of a con-
tinually mutating score implies a double ephemerality:
not only must all sound soon die away - the mental archi-
tecture of the piece itself, the score and its aesthetic de-
tails, specific juxtapositions and inner relationships – all
vanish into nothingness as soon as they appear. Is this
double ephemerality of real-time score performance a
strong artistic acknowledgement of life's general imper-
manence (as its proponents often claim) – or should it
rather be seen as a musical implementation of the built-in
obsolescence that underpins most capitalist production
and consumption? And is this double ephemerality of
performance conceivable as a self-contained aesthetic
practice – or must it, structurally and by necessity, sit as a
parasite on the simple ephemerality of current musical
life? Finally, does this emergent practice demarcate the
closing parenthesis of a millenial, eurological score-
oriented art music tradition - or does it afford new ave-
nues for critical and aesthetic discourse within this same
tradition?

3. TRANSPARENCE & OPACITY:
AUDIENCES

"Opacities can coexist and converge, weaving fabrics.
To understand these truly, one must focus on the tex-
ture of the weave and not on the nature of its compo-
nents. For the time being, perhaps, give up this old
obsession with discovering what lies at the bottom of
natures… The opaque is not the obscure…it is that
which cannot be reduced …" [10]

Are the above-mentioned critical challenges to the per-
former of a situative score perhaps compensated by an
enhanced or intensified aesthetic listening experience?
One could maintain, as indeed makers of situative scores
often assert in discussions, that audiences may be afford-
ed new kinds of aesthetic access, as well as new, more
emancipated roles in creative musicking - whether they,
in following the same score as the players, can aestheti-
cally engage with the difference between score and reali-
sation; or whether they, in actively or unconsciously
providing data to the score algorithms, are able to per-

5 An allusion to Pauline Oliveros's term "Software for People" whose
text scores are algorithmic scores open to situative input, but often non-
algorithmic in nature.

ceive themselves as aesthetic agents within the perfor-
mance.

Real-time notation systems, then, offer the opportuni-
ty to link the creative activities of listeners to conven-
tional musical ensembles during live performance.
This creates a feedback loop in which the audience in-
fluences the notation, the notation influences the per-
formers, and the performers, in turn, influence the au-
dience. [5, p.31]

Such co-creative, quasi-iterative loops6, as well as the
ability of the audience to keep comparative tabs on the
performers' interpretation, however, introduce a number
of novel non-musical factors into the aesthetic experi-
ence: like in many games, the interaction itself, its vagar-
ies and rewards, may easily command more attention
than the purely auditory experience.

Some audience members have become so obsessed
with the competitive elements emphasized by the an-
imation that the music itself has been relegated to
background listening for them." [5, p. 38]

The co-creative feedback loop between audience (or
some sort of conductor) and player via sound and score
evoked by Freeman, and exemplified in his works Glim-
mer (2004) and Flock (2007), but also by my own works
Native Alien (2009-12) and Fragile Disequilibria (2015)
rests on assumptions that invite scrutiny.

Firstly, Freeman himself already notes that a piece like
Didkovsky's Zero Waste requires an audience of fluent
score readers to fulfill its aesthetic goal. Any other listen-
er would simply have no chance of "getting" this piece.
Such expert audiences would be Theodor W. Adorno's
ideal listeners [11]7. To all others, the central premise of
the piece will remain as opaque as a ritual of a secret sect.
But even graphic real-time scores, which prima facie
seem to be easier to follow, are not entirely transparent to
the audience - not everyone moves between sonic and
visual semantics with ease and familiarity. Moreover,
traditions may differ in their visual culture as much as in
their music.

Regardless of tradition, however, one aspect that char-
acterizes those practices we call art music is their em-
brace of a sustained and critical discourse as an essential,
intertwined strand of their musicking. For such a dis-
course to be at all feasible, musical utterances must rest
on a modicum of convention. As a critic, or a cultured
listener, you can only perceive what you already know
(and have learned) to be relevant. Be they oral rules or
written scores, the quality of a musical rendering within a
tradition can only be ascertained by evaluating it against
sonic conventions [12]8 that lay down that tradition's
specific perceptual, formal and social predilections.

6 They are not truly iterative, because the transformation from input to
output within at least one of the three stages (the audience) is neither
repeatable nor algorithmic.
7 In his Introduction to Music Sociology (1962), Adorno classifies
listeners into expert listeners, adept listeners, cultured listeners, emo-
tional listeners and prejudice listeners – the categories describe a de-
crease in musical expertise in inverse correlation to a rising influence of
non-musical factors on the listeners' aesthetic enjoyment.
8 Shin Yan Sheng calls them "cultural acoustics".

163

Moreover, in most such traditions, such conventions
evolve in parallel with the music, reinforcing any given
"style" in a process of autopoiesis - until it seems worth a
new generation's while to depart from it, and thus define
a new tradition.

Thus, secondly, what are the rules and traditions gov-
erning the reception and listening attitudes with regard to
real-time scores? Given that this kind of musicking is
new even in its comprovisational procedure, which aspect
of a real-time score performance would offer inroads for
aesthetic criticism and musical engagement? Most reac-
tions that I heard to such a performance focus on the
legitimacy of the approach in general. And once that is
out of the way, the score-reading strategy, the virtuosity
of the musicians interacting with the technology - as if
the mere use of a specific technology, or its adequate
employ, already conferred aesthetic significance to the
resulting sound.

A critical engagement with the sonic content in itself
seems rare. I do not remember reading a single musical
analysis of a real-time score work, maybe for a lack of
proper analytic tools. Is this lack of critical engagement
with the music itself at all relevant to the practice - or
not? Many kinds of music do not need analysis to thrive.
Maybe real-time score performance is such a kind of
music, upheld by social use, without a layer of critical
reflection that would put it into same aesthetic orbit as art
music in general? Is it a new apparatus-specific aesthetic
sub-genre, similar perhaps to 'orchestra music' or 'electro-
acoustic music' or "oil painting" - or does it enter its
own, as yet perhaps unnamed and unclaimed, territory of
musical styles?

Thirdly, what exactly is the nature of the interaction
with the audience in Freeman's ideal feedback loop,
where "the audience influences the notation, the notation
influences the performers, and the performers, in turn,
influence the audience"? Freeman describes a social situ-
ation that in itself is not entirely new. Turino [13] men-
tions village dances in Ghana where the audience 'dances
its critique' of the drummers by dancing more or less
engagedly, thereby inducing changes in the performance
itself. Other traditions, such as Italian opera, khayal,
techno, include audience feedback that can serve to guide
and, in a limited way, co-create performances.

The innovation brought about by the co-creative score
thus seems to reside in the fact that its audience has a
more direct access not only to the surface structure of
performance, but also to its inner constitutedness, its
microstructure - through various interactive schemes and
strategies, the audience members may, at least in theory,
influence a variety of previously inaccessible musical
parameters. But how valid can such a claim to audience
co-creativity actually be - given the fact that, as we saw
above, the audience, for lack of repeatable and thus inter-
pretable feedback, does not really get the slightest chance
to formulate a critical, aesthetically differentiated posi-
tion vis-à-vis their live-experience.

Even more so in the cases where audiences are not
privy to the real-time score, nor get a chance to shape its
evolution: the knowledge that the music played by the
performer is not the result of a performer's or composer's
artistic decisions (whether made in the moment, as in free

improvisation, or offline, as in mnemonic or written
scores), but of their embodied reactions to a flux of
changing circumstance beyond their ken, may significant-
ly shift the import they attach to the aesthetic act of lis-
tening. As member of the audience, I sometimes ask
myself: where has all the music gone? All I hear is a
syntactically vaguely suggestive, sometimes mimetically
comprehensible sequence of sounds - but, despite my best
and sustained efforts at listening, I cannot engage with
them in any critical or even analytic manner. Their very
ephemerality seems to belie any message that would go
deeper than their performative framing. All to often, I at
some point will disengage my critical ear - and simply
wallow in the surf of the sound. A different mode of
listening, to be sure – but does not the composer's inten-
tion, the work of many software engineers and the aes-
thetic context of this presentation go to waste, if I can
only listen to their music as a sonic meditation that max-
imally offers me opportunities for highly subjective pat-
tern recognition (or, better, pattern invention) ?

The best I can make of some real-time performances is
to listen to them as a collateral outcome of an extremely
absorbing relationship of the performer with the evolving
score, where sonic events are treasured as traces of the
body expressive – a perhaps co-creative but, to me, aes-
thetically opaque loop to which I have very little possibil-
ity of access. What do we gain, both in knowledge and in
experience, when, instead of lifting the veil of sonic sur-
face that hides musical understanding from us, all we can
do is admire the texture of its weave?

4. META2-COMPOSING:
MAKERS OF SCORES

The genius is the characteristic product of bourgeois
culture…Today, in the period of the collapse of
imperialism, any pretensions to artistic genius are a
sham. [14]

Learned eurological composition9 has largely been a
quest for novel exercises in alienation.[15] The perceived
need for creators to go beyond their limited selves, to
transcend their own contingencies, to questions their
instincts and preferences, to escape the strictures of
socio-aesthetic conditioning, was a driving force behind
the success of notation and many of the conceptual
additions to the composer's toolbox that followed it -
isorhythm, alpha-numerical coding, Augenmusik,
serialism, modeling - to name but a few. All of these
conceptual strategies abstract the compositional process
from purely sonic or aural imagination, transport it to a
visual domain, where it can be manipulated and then fed
back (via an ever-refined and evolving notation) into the
sonic/aural domain. [16] This process of coding and
decoding the sonic liberates the composing imagination
from sound's intrinsic fickleness and ephemerality, by

9 I prefer this term to denote what others call "eurogenetic" or, more
simply "Western Art" music. "Eurological" encompasses these terms in
that it targets all music composition that follows the conceptual logic of
eurogenetic music composition – whether it is used by non-Western or
even non-human composers, and whether it acknowledges any "genetic"
link to Europe or not.

164

abstracting it from the immanence of the momentary and
placing it on a nicely defined operation table. Eurological
composition thus usually is a kind of meta-
composition10[17] - an offline intervention into sonic
reality.

Its alienation strategies have since been seamlessly
extended to provide a strong motivation for artificial
intelligence in music and other digital explorations of the
sonic. Situative scores, at first glance, seem to be driven
by this same impulse: to prepare the elusive sonic for
aesthetic consumption by manipulating its conceptual
representations. Many situative scores seem to be
designed to offer both composers and performers a
clinical detachment from the vagaries of actual sound:
once more, visual representations are used to describe
and denote sonic realities. In fact, all that seems to have
changed from the age-old tradition of written
composition is a vastly speeded-up process of score
generation.

But, of course, in a time-based art such as music, speed
is of huge import. With fixed scores, those that offer the
most productive resistance to immediate consumption,
those that, as it were, slow down digestion, tend to be
those that elicit the most sustained engagement. The
necessity for practicing, for inscribing a score into the
motoric body, becomes a significant factor of meaning
production and aesthetic significance. The resistance of a
score to both performer and listener is not, as one might
surmise, proportional to its undecipherability, nor to the
dexterity it demands, but rather to its conceptual
complexity, the effort that performer and audiences must
make to mentally engage with the multiple meanings
afforded by the score: we could call this process
"aesthetics-by-resistance".

An emergent score, destined to be ravenously
consumed in an act of extreme sight-reading, must by
necessity also be a score that offers less resistance (of any
kind) to the player. As noted above, it is very likely that
the player will skims the score, rather than actually
decoding it. He will thus not be able to feel a critical,
reflexive differance between the score and his sound. As
Freeman seems to rejoice:

"With real-time notation systems, the algorithm and hu-
man performer together create a single, merged sonic out-
put." [5, p.36]

This, in turn, means that all the compositional thought
that went into creating the ephemeral score will be lost in
performance, as the usual 'channel' of musical
communication between composer and audience is
jammed by the algorithmic aesthetic 'noise' of the
situative score. Like the audience that can only admire
the texture of the sonic weave without understanding
what lies beyond the momentary, composers must resign

10 This term is the same that Robert Rowe and others have used to
describe aspects of interactive algorithmic composition. My contention
here is that Rowe's "meta-composition" actually is what I would call
"meta2-composition" – the meta-level of a composition practice which
in itself is already meta-composing.

themselves to being content with meta2-composition:
instead of being cook book writers, they must become
cook book - designers. If, as argued above, conventional
written composition indead already is a meta-artistic
activity, one could label them as meta2-composers. This
embrace of an ever-increasing distance from sonic
material sounds uncannily like the beginning gambit of
one of those infamous infinite logical regressions, or like
the famous ancient political paradox: "Quis custodiet ipse
custodiam?"("Who guards the guardian himself?").
Indeed, in situative score performances, the question:
"Who composes the real-time score composer?" is both
relevant and irrelevant. Relevant, because a score design
is indeed always a design decision – and irrelevant,
because a better cook book layout does not always lead to
the cooking of a tastier meal. And the problem is not that
being a designer of cook book layouts, a composer of
composers of scores that give rise to music is not an
interesting position to be in. It obviously can be - the
question is more: whether assuming that role also can be
a satisfactory artistic decision. In another article [18], I
have indeed argued for the rich artistic terrain that meta2-
composition can afford intrepid composers – and yet:
sometimes, in listening to a performance of a situative
score that I designed, I feel like an impassioned and
successful inventor who went on to found a company
based on his ideas - and now spends his all day in
administrative and strategic meetings, in activities he
would never have wanted to engage in when he started.
Do composers of situational scores still have clandestine,
torrid affairs with fixed score composition? Alone, at
home, do they still tinker around to their heart's content
with paper, pen, tablet, softly humming a snatch of music
they are just about to write down to keep it from the fate
of all things ephemeral – oblivion ?

5. CONCLUSION
"Words about music are like a painted dinner!"

Infamous quip among musicians

A strong sentiment "Against Interpretation" (as in Susan
Sontag's eponymous book) [19], complemented by
George Steiner's hunger for "Real Presences" [20], has,
for the longest time, been a guiding star on my artistic
and intellectual path. The joys of unexpected epiphanies,
the interest in serendipitous harmonies between
seemingly conflicting formal processes, the inexhaustible
promises of opacity, the seemingly endless resources of
human performers, as well as the speed and diligence of
computers still are aspects of an almost childish
excitement to be a composer of this century, of my
personal now.

Yet recently, in the wake of recent alarming shifts in the
political and social atmosphere of the Western world, I
began to think about Cardew's contention that avantgarde
music serves imperialism [14]. Indeed, the rise in social
standing of free improvisation over the 1960s and 1970s
has often been associated with the widespread

165

unstiffening of western society's spinal columns, and the
concomitant, if gradual liberation that has since
permeated so many social contracts, always in the
direction towards a liberational ideology of ubiquitous
individualization and customization of values and social
contracts. [21] It is one of the ironies of our time that this
inner liberalization requires the exoskeleton of hyper-
formal, failure-intolerant systems to 'run'. [22, 23]

Are situative scores not technological incarnations of
this ideology, embodying an increasing refusal by
sensitive composers to be put on the spot, to be
categorized and brought to account? Do they not offer a
space of creative indecision for curious performers who
mistrust both the know-it-all bullishness of much
composed music and the get-it-or-get-out mentality of
free improvisation?

If no rules apply, the loudest and strongest prevail. If
music cannot be understood in an aesthetical way, other
senses will occupy our attention: we will shut down our
ears, and we will conceive of everything solely as
something to be looked at, for a millisecond – to be
instantly forgotten. Instead of all noise becoming music -
the dream of the moderns - all music will become noise.
It was our wish to make ourselves, and everyone who
cares to listen, aware of the beauty, uniqueness and
fragility of the ephemeral act. Instead, in an untimely
reversal, the ephemeral score, enacting a denial of all
musical signification, vexes us with its aggressive
absence of meaning, of connection, and of sense: Instead
of making our perception more and more aesthetic, its
ubiquity of potential aesthetica seems to have created a
rich domain for an-aesthetica [24].

 I have not yet given up on conceiving a situative score
that would allow performers, listeners and composers to
collaborate in intellectually and emotionally engaging
situative musicking. But I must first find some answers to
the many questions raised here.

REFERENCES

[1] Buci-Glucksmann, Christine. Ésthétique de l'éphémère.
Paris , 2003. p.46 quote translated by Sandeep Bhagwati

[2] Bhagwati, Sandeep, et al. "Musicking the Body Electric.
The "body:suit:score" as a polyvalent score interface for
situational scores." Edited by Richard Hoadley, Chris Nash and
Dominique Fober. Proceedings of the International Conference
on Technologies for Music Notation and Representation -
TENOR2016. Cambridge UK: Anglia Ruskin University, 2016.
121-126.

[3] Rancière, Jacques. Aisthesis. Scenes from the Aesthetic
Regime of Art. Translated by Zakir Paul. London/NYC: Verso,
2013.

[4] Serres, Michel. Le Parasite. Paris: Editions Grasset et
Fasquelle, 1980.

[5] Freeman, Jason. "Extreme Sight-Reading, Mediated
Expression, and Audience Participation: Real-Time Music
Notation in Live Performance." Computer Music Journal (MIT
Press) 32, no. 3 (2008): 25-41

[6] Zumthor, Paul. La mesure du monde . Paris: Seuil, 1993.
p. 15. translated by Burnham/Jenny Coulon

[7] Bhagwati, Sandeep. "Notational Perspective and
Comprovisation." In Sound & Score. Essays on Sound, Score
and Notation, by Paulo de Assis, William Brooks and Kathleen
Coessens, 165-177. Leuwen: Leuwen University Press, 2013.

[8] Winkler, Gerhard E. “The Real-Time Score. A Missing-
Link In Computer-Music Performance.” Proceedings of Sound
and Music Computing 2004. Paris: Ircam-Centre Pompidou,
2004. p.4

[9] Oliveros, Pauline. Software for People. Collected writings
1963-80. Baltimore: Smith Publications, 1984.

[10] Glissant, Edouard. Poetics of Relation. Translated by
Betsy Wing. Ann Arbor: University of Michigan Press, 1997
(orig.1990). p.191

[11] Adorno, Theodor W. Introduction to the Sociology of
Music. New York: Seabury Press, 1976.

[12] Lee, Yuan-Yuan, and Sin-yan Shen. “The Cultural
Acoustics of Chinese Musical Instruments.” In Chinese Musical
Instruments, by Yuan-Yuan Lee and Sin-yan Shen, 11-15.
Chicago: Chinese Music Society of North America, 1999.

[13] Turino, Thomas. Music as Social Life. Chicago:
University of Chicago Press, 2008.

[14] Cardew, Cornelius. Stockhausen serves imperialism, and
other articles: With commentary and notes. London: Latimer
New Dimensions, 1974. P.53

[15] Bhagwati, Sandeep. "Alienation Strategies in Trans-
Compositional Creative Musicking." Edited by Jonathan Impett.
Soundwork. Composition as Critical Technical Practice.
Leuwen: Leuwen UP, in process [2017/18]

[16] Bhagwati, Sandeep. "Notational Perspective and
Comprovisation." In Sound & Score. Essays on Sound, Score
and Notation, by Paulo de Assis, William Brooks and Kathleen
Coessens, 165-177. Leuwen: Leuwen University Press, 2013.

[17] Rowe, Robert. Interactive Music Systems - Machine
Listening and Composing. Cambridge, MA: MIT Press, 1993.
See also, by the same author: Machine Musicianship.
Cambridge: MIT Press, 2001.

[18] Bhagwati, Sandeep. "Musicking beyond Algorithms." In
Patterns of Intuition, by Gerhard (ed) Nierhaus. New York:
Springer, 2014.

[19] Sontag, Susan. Against Interpretation: And other essays.
New York: MMacmillan, 1966.

[20] Steiner, George. Real presences: is there anything in
what we say? London: Faber & Faber, 2010

[21] Toop, David. Into the Maelstrom: Music, Improvisation
and the Dream of Freedom. Before 1970. London: Bloomsbury
Academic, 2016.

[22] Small, Christopher. Musicking. The Meanings of
Performing and Listening. Middletown, CT: Wesleyan
University Press, 1998.

[23] Ziarek, Krzysztof. "The Work of Art in the Age of its
Electronic Mutability." In Walter Benjamin and Art, by Andrew
Benjamin, 209-2. London/NY: Continuum, 2005.

[24] Marquard, Odo. Aesthetica und Anaesthetica.
Philosophische Überlegungen. München: Wilhelm Fink Verlag,
2003

166

A HIERARCHIC DIFF ALGORITHM FOR COLLABORATIVE MUSIC
DOCUMENT EDITING

Christopher Antila
nCoda

christopher@antila.ca

Jeffrey Treviño
California State University, Monterey Bay

jtrevino@csumb.edu

Gabriel Weaver
University of Illinois, Urbana-Champaign

gweaver@illinois.edu

ABSTRACT

We describe an application of hierarchic diff to the collab-
orative editing of tree-based music representations, using
Zhang and Shasha’s tree edit distance algorithm as imple-
mented within the XUDiff tool. The edit distance between
two trees is the minimum number of edit operations neces-
sary to transform one tree into the other. We consider com-
mon operations on the score tree—deleting, changing, and
appending tree nodes—to derive a minimal edit sequence,
known as an edit script, and we compare the performance
of the widely used Longest Common Subsequence algo-
rithm against our approach. We conclude by summarizing
implications for the design of collaborative music docu-
ment software systems.

1. INTRODUCTION

1.1 Collaborative Document Creation Requires Diff
Algorithms

In distributed, collaborative document creation, multiple
editing agents may change the same original information
simultaneously, in complex and overlapping ways. To al-
low users to resolve conflicting edits and to create a reliable
and transparent edit history, robust systems for collabora-
tive editing often depend on Centralized Version Control
Systems (also known as Revision Control Systems (RCS)
and Source Code Management (SCM) systems). These
systems maintain a centralized information representation
(repository) and a history of users’ changes to it; the dif-
ference between two edited versions of the information
is known as a diff, and this difference can be calculated
and represented in various ways. Distributed, collaborative
music document editing presents unique challenges for the
implementation of version control systems, and especially
for the implementation of a diff algorithm.

1.2 The Longest Common Subsequence Algorithm as
Default Diff

Traditional document comparison algorithms, such as in
the Unix diff program, take two sequences of characters
as input and output an edit script to transform one sequence

Copyright: c©2017 Christopher Antila et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

into the other. An edit script consists of a sequence of edit
operations (usually insert, delete, and update) to transform
the first sequence relative to some entity—usually charac-
ters, words, or lines. The edit distance is the minimum cost
the edit script gives for each operation. The Longest Com-
mon Subsequence algorithm and its variants are the most
common for computing an edit script and cost.

The Longest Common Subsequence algorithm works well
in situations where the inputs are sequences of characters
and one needs to compare those sequences relative to char-
acters, words, or lines, but many modern file formats rely
on hierarchical object models to encode multiple levels of
meaning (e.g. XML, blocks of code). As such, different
algorithms for hierarchical structures become necessary.

Consider the following two problems that result from this
mismatch between character- or line-based diff tools and
tree-structured input. First, comparing documents in terms
of low-level entities (e.g. lines) may not result in changes
that are meaningful to the domain, because lines are of-
ten an artifact of presentation: for example, one can gen-
erate ‘noisy diffs’ by just changing whitespace. Second,
the manner in which one defines document similarity may
change depending upon the task at hand. A poet may get
along fine comparing texts in terms of lines, which reflect
part of the structure of the text. A musician, however, may
want to compare documents in terms of additional infor-
mation that a line-based approach discards. Our poet, after
all, may require a stanza-based representation. Other com-
munities present similarly various demands: scholars may
want to analyze and compare texts relative to other struc-
tures, such as paragraphs or sections.

1.3 Collaborative Music Information Requires a
Hierarchic Diff

These problems are of specific importance to version con-
trol for collaborative music document editing, both in terms
of usability as well as how one may want to define ‘mean-
ing’ and ‘similarity’ in musical information. First, the ‘noisy
diff’ problem—in reporting differences that are not rele-
vant to musicians—creates a usability problem. Although
programmers have become accustomed to noisy diffs and
the work-arounds they require, the low adoption rate of
computer-driven music analytic tools, and the general lack
of comfort among music scholars and artists with these
tools, suggest that a program producing diffs of meaning-
less changes would be poorly received by the community.
Second, the meaning of textually encoded music always
requires additional interpretation, and a one-dimensional

167

sequence of characters (the data structure for which LCS
diff was designed) will not allow musicians to compare two
different interpretations of the same musical information.

Instead, musicians need the ability to compare musical
information in the presence of its logical organization, which
must be expressed hierarchically. Therefore, musicians
need the ability to compare two versions of a hierarchi-
cal structure. Musicians may also want to compare two
versions of a score at different levels of abstraction, as rep-
resented by these hierarchical structures, or restrict com-
parison to entities with certain properties: for example, a
musician may want to compare two versions of a score in
terms of pitch class alone, or of higher-level features like
phrase structure. Moreover, a musician may want to filter
a score to compare two versions of only a single instru-
ment’s staff, or other musical abstractions. For any of this
to be possible, diff algorithms must compare edits to tree-
based document elements, rather than to document lines or
characters.

1.4 Relevant Precedents in the Music and Computer
Science Literatures

From the perspective of computer science, our proposed
approach leverages previous work from other domains in
both industry and in academia. Within industry, there are
proprietary, hierarchy-aware difference engines that com-
pare source code in a variety of edit operations, such as
the SmartDifferencer by Semantic Designs [1]. Within
academia, the tree diffing problem has been long studied
by theoretical computer science [2]. Researchers such as
Chawathe et al. and Cobena et al. have studied alternative
algorithms, such as subtree hashing, and even the use of
IDs to align subtrees before similarity computation [3, 4].
We employ the Zhang and Shasha tree difference algorithm
to solve the edit distance between trees [5, 6].

While this topic has been approached rigorously in the
computer science literature, few relevant precedents exist
in the music literature. Almost all software systems for
music document creation assume a single user, and collab-
orative music document creation exists largely as an exper-
imental pursuit. Precedents fall largely into the category of
systems for experimental music and interdisciplinary artis-
tic collaboration. Within these experimental systems, ver-
sion control for distributed workflows has been addressed
only implicitly. For example, although Wüst and Jordá
track versions in a recursively nested, tree-based structure,
in which each successive edit becomes a child node of the
version edited, they do not describe algorithms or inter-
faces for calculating edit distances on this version tree [7].
Likewise, other systems describe distributed collaboration
interfaces without addressing the interaction of data repre-
sentation and version comparison [8, 9].

2. APPLYING THE ZHANG AND SHASHA
ALGORITHM

2.1 The Zhang and Shasha Algorithm

Our initial approach uses Zhang and Shasha’s tree edit dis-
tance algorithm, as implemented within the XUDiff tool

[10]. The edit distance between two trees is the mini-
mum number of edit operations necessary to transform one
tree into another. The edit operations we consider include
deleting, changing, and appending tree nodes. As before, a
sequence of edit operations between two trees is called an
edit script and the total number of edits the edit distance.

There are several benefits to the Zhang and Shasha tree
edit difference algorithm. First, the algorithm produces
a tree edit distance that can function flexibly as a metric
(assuming the cost function is also a metric). For exam-
ple, collaborators can use distance metrics to explore the
similarity of an entire corpus of musical scores—rather
than just two scores—because the metric’s notion of dis-
tance aligns with our intuition about distance in the phys-
ical world. This distance metaphor allows designers to
leverage existing musical research in topological feature
similarity metrics, which expands the algorithm’s utility
beyond the notion of hierarchic diff, into new applications
such as automated recommendations based on similarity
measures [11, 12, 13]. Second, the algorithm is relatively
simple and lends itself to a straightforward implementation
that can be maintained by an open-source community. The
intent of the open-source community is to support an ex-
tensible framework for hierarchical comparison of a wide
variety of document types across a number of domains.
In the future, other algorithms, such as those mentioned
above, may be implemented to understand more about the
effect of different tree-edit distance algorithms on similar-
ity results.

after

43
before

Figure 1. An edit that switches the first and second voices
in a staff. Stem direction is the only visual difference, but
the underlying representation changes substantially.

2.2 A Comparative Example

Consider the case of a simple edit: exchanging a staff’s two
voices. That is, as shown in Figure 1, the upward-facing
stems of voice one become the downward-facing stems of
voice two, and vice versa.

While Common Western Notation displays only a change
of stem direction, a tree-based, hierarchic representation of
this musical information must alter both the labeling and
succession of elements. In the MEI XML representation
of a music document, the voice-switch example may be
encoded in the following way:

168

<staff n="1">
<layer n="1">

<note pname="a"/>
<note pname="b"/>
<note pname="c"/>

</layer>
<layer n="2">

<note pname="e"/>
<note pname="f"/>
<note pname="g"/>

</layer>
</staff>

After the voice swap, the encoding becomes:

<staff n="1">
<layer n="1">

<note pname="e"/>
<note pname="f"/>
<note pname="g"/>

</layer>
<layer n="2">

<note pname="a"/>
<note pname="b"/>
<note pname="c"/>

</layer>
</staff>

2.3 Diff Computation Performance Comparison

This example, although basic, motivates the need to to com-
pare representations of music in terms of hierarchical struc-
ture, rather than lines or characters. Figure 2 illustrates an
edit script that maps one version of the above MEI-encoded
score to another in terms of lines (LCS algorithm). The
line-based approach successfully captures the need to ex-
change the notes between layers; however, the algorithm
adds additional noise, because diff compares the MEI
rather than the hierarchical structure encoded by the MEI.
As a result, the total edit distance is 10. If practition-
ers are interested in understanding change relative to the
hierarchical object model of MEI, they will need to sift
through the noisy changes produced by a line-based com-
parison. As mentioned earlier, this may be problematic for
widespread adoption within the music community.

In contrast, Figure 3 illustrates an edit script that maps
one version of the above MEI-encoded score to another
in terms of MEI’s hierarchical object model (Zhang and
Shasha algorithm). As with the LCS algorithm, the tree-
based approach successfully captures the need to exchange
the notes between layers; however, unlike the LCS algo-
rithm, the edit distance between individual subtrees has
also been summarized. This can be helpful for interpre-
tation, as subtrees closer to the root represent higher-level
constructs within MEI, and practitioners can interpret the
comparison of the music at multiple levels of abstraction,
ranging from low-level notes (six notes, each with an
edit cost of 1) to higher-level layers (two layers, each
with an edit cost of 3) and staves (one staff, with an

<staff n="1">

 <layer n="1">

 <note pname="a"/>

 <note pname="b"/>

 <note pname="c"/>

 </layer>

 <layer n="2">

 <note pname="e"/>

 <note pname="f"/>

 <note pname="g"/>

 </layer>

</staff>

<staff n="1">

 <note pname="e"/>

 <note pname="f"/>

 <note pname="g"/>

 </layer>

 <layer n="2">

 <note pname="a"/>

 <note pname="b"/>

 <note pname="c"/>

 </layer>

</staff>

 <layer n="1">

delete, 1

delete, 1

delete, 1

delete, 1

delete, 1

insert, 1

insert, 1

insert, 1

insert, 1

insert, 1

Figure 2. The figure above illustrates the output of diff
applied to MEI. A total edit distance of 10 results from
updating the notes in layer 1 and layer 2 (cost of 6), as well
as updating layer tags (cost of 4). Nearly half of the edit
distance is ‘noise’ from deleting lines with layer tags, an
artifact of comparing versions in terms of lines instead of
MEI elements.

edit cost of 6). Most notably, the tree-based element-by-
element comparison reduces the edit distance to almost
half of that of the LCS algorithm: the edit distance has
been reduced to 6, from LCS’s 10, most of which was
noise from deleting lines with ‘layer’ tags (an artifact of
line-based comparison).

3. CONCLUSIONS

The recently emerged potentials of online, collaborative
music applications illustrate several ways that a robust, hi-
erarchic diff algorithm for music can enable newly col-
laborative musicology, composition, and music education
through document utilities [14, 15, 16, 17]. Yet the com-
mercial presentation of widely used digital engraving tools
still conflates the act of sharing with the act of collab-
oration, although these remain distinct from each other.
As a recent advertisement for the Sibelius engraving pro-
gram exhorts, ‘Collaborate more easily with others and
distribute your compositions for the world to hear. Share
scores through email, upload and publish them as sheet
music on ScoreExchange.com, and even share your com-
position as a video or audio file on YouTube, Facebook,
and SoundCloud’ [18]. While file exchange between mu-
sic authors remains crucial for musical creativity and col-
laboration beyond notation, it is time for engraving soft-
ware to embrace the potentials of genuinely collaborative
music document editing interfaces. But distributed music
document collaboration requires robust, intuitive version
control algorithms and interfaces, and designers must re-
assess the task of music representation in light of the need
for hierarchic diff. The superior performance of the Zhang

169

staff 1

layer 1

note a note b note c

layer 2

note e note f note g

staff 1

layer 1

note e note f note g

layer 2

note a note b note c

3,0 3,0

6,0

update, 1
update, 1

update, 1

update, 1
update, 1

update, 1

Figure 3. The figure above illustrates the output of
xudiff applied to MEI. A total edit distance of 6 results
from updating the notes in layer 1 and layer 2. Total costs
are aggregated across the hierarchical structure of the MEI
text.

and Shasha algorithm shown here suggests that purely tree-
based representations, such as MEI, should be adopted for
collaborative music software systems.

Acknowledgments

Research conducted for the nCoda project has been sup-
ported by Colorado College’s SEGway faculty support grant.

4. REFERENCES

[1] S. Designs, “Semantic Designs: Smart Differencer
Tool.” [Online]. Available: http://www.semdesigns.
com/Products/SmartDifferencer/

[2] P. Bille, “A Survey on Tree Edit Distance and Related
Problems,” in Theoretical Computer Science, vol. 337,
June 2005, p. unknown.

[3] S. Chawathe et al., “Change Detection in Hierarchi-
cally Structured Information,” in Proceedings of the
ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD ’96), June 1996, pp. 493–504.

[4] G. Cobéna et al., “Detecting Changes in XML Docu-
ments,” in Proceedings of the 18th International Con-
ference on Data Engineering. IEEE, February and
March 2002, pp. 41–52.

[5] K. Zhang and D. Shasha, “Simple Fast Algorithms for
the Editing Distance between Trees and Related Prob-
lems,” Siam Journal of Computing, vol. 18, pp. 1245–
1262, December 1989.

[6] K. Zhang, “The Editing Distance between Trees: Al-
gorithms and Applications,” Ph.D. dissertation, New
York University (NYU), 1989.

[7] O. Wüst and S. Jordà, “Architectural Overview of a
System for Collaborative Music Composition over the
Web,” in Proceedings of the 2001 International Com-
puter Music Conference. Citeseer, 2001, pp. 298–301.

[8] S. Balachandran and L. Wyse, “Computer-mediated
Visual Communication in Live Musical Performance:
What’s the Score?” in Arts and Technology, A. L.
Brooks, Ed. Springer, 2012, vol. 101, pp. 54–
62. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-33329-3 7

[9] D. Hepting and D. Gerhard, “Collaborative Computer-
aided Parameter Exploration for Music and Ani-
mation,” Computer Music Modeling and Retrieval,
pp. 158–172, 2005. [Online]. Available: http://www.
springerlink.com/index/XJXLV487NLUU9W9V.pdf

[10] G. Weaver, “Security-Policy Analysis with eXtended
Unix Tools,” Ph.D. dissertation, Dartmouth College,
2013.

[11] J. P. Bello, “Measuring Structural Similarity in Music,”
IEEE Transactions on Audio, Speech, and Language
Processing, vol. 19, no. 7, pp. 2013–2025, 2011.

[12] A. Berenzweig, B. Logan, D. P. Ellis, and B. Whitman,
“A Large-scale Evaluation of Acoustic and Subjective
Music-similarity Measures,” Computer Music Journal,
vol. 28, no. 2, pp. 63–76, 2004.

[13] Y. Panagakis and C. Kotropoulos, “Music Genre Clas-
sification via Topology Preserving Non-negative Ten-
sor Factorization and Sparse Representations,” in 2010
IEEE International Conference on Acoustics, Speech
and Signal Processing. IEEE, 2010, pp. 249–252.

[14] D. Martin et al., “LeadsheetJS: A Javascript Library
for Online Lead Sheet Editing,” in Proceedings of
The First International Conference on Technologies for
Music Notation and Representation, 2015.

[15] P. McCulloch, “THEMA: A Music Notation Software
Package with Integrated and Automatic Data Collec-
tion,” in Proceedings of The First International Con-
ference on Technologies for Music Notation and Rep-
resentation, 2015.

[16] Flat, “flat.io.” [Online]. Available: flat.io

[17] T. Bača, J. Oberholtzer, J. Treviño, and V. Adán, “Ab-
jad: An Open-source Software System for Formalized
Score Control,” in Proceedings of The First Interna-
tional Conference on Technologies for Music Notation
and Representation, 2015.

[18] Avid, “Sibelius: Features.” [Online]. Available:
http://www.avid.com/sibelius/features

170

Establishing connectivity between the existing networked
music notation packages Quintet.net, Decibel ScorePlayer

and MaxScore

Stuart James, Cat Hope, Lindsay Vickery, Aaron
Wyatt

Ben Carey, Xiao Fu, Georg Hajdu

Western Australian Academy of Performing Arts, Edith
Cowan University; Sir Zelman Cowen School of Music,

Monash University
 {s.james,l.vickery}@ecu.edu.au,

cat.hope@monash.edu,
music@psi-borg.org

Center for Microtonal Music and Multimedia (ZM4)
Hamburg University of Music and Theater (HfMT)

{ben.carey,xiao.fu,georg.hajdu}@hfmt-
hamburg.de

ABSTRACT
In this paper we outline a collaboration where
live internet-based and local collaboration be-
tween research groups/musicians from Decibel
New Music Ensemble1 (Perth, Australia) and
ZM42 (Hamburg, Germany), was facilitated by
novel innovations in customised software solu-
tions employed by both groups. The exchange
was funded by the Deutscher Akademischer
Austauschdienst3 and Universities Australia4.
Both groups were previously engaged in the
research and performance of similar musical
repertoire such as John Cage’s ‘Five’ (1988)
and ‘Variations I-VIII’ (1958-67) among others,
the performances of which utilise graphic, ani-
mated and extended traditional Western music
notation. Preliminary steps were taken to
achieve communication between the three exist-
ing network music notation packages, the Deci-
bel ScorePlayer, MaxScore and Quintet.net,
facilitating a merging – and ultimately an exten-
sion – of notational approaches previously pre-
scribed by each music notation package. In ad-
dition to the technical innovations required to
achieve such a project, we consider the out-
comes and future directions of the project, as
well as their relevance for the wider contempo-
rary music community.

1 Retrieved 26th Nov 2016 from http://www.decibelnewmusic.com/
2 Retrieved 26th Nov 2016 from http://www.hfmt-
hamburg.de/forschung/zm4/
3 Retrieved 26th Nov 2016 from https://www.daad.de/en/
4 Retrieved 26th Nov 2016 from https://www.universitiesaustralia.edu.au/

1. INTRODUCTION

Although many existing software solutions al-
low the display of music notation outside the
conventions of traditional Western music nota-
tion – graphic, animated, extended traditional
Western, and real-time notation (refer to Table
1) – a standardised format for communication
between these software packages in real-time is
yet to be established. Open Sound Control5 and
MIDI have long offered increasingly compre-
hensive solutions for dealing with sound genera-
tion, but have a few shortcomings when it
comes to dealing with the transmission of rich
graphics required for real-time eScore delivery
in live performance [1]. This leaves performers
of such music with the choice of only perform-
ing music using the prescribed methods em-
ployed by existing packages, or innovating their
own software solutions. Performers seeking to
collaborate with other innovators in the same
field face further limitations in that these soft-
ware solutions are likely to be incompatible due
to their software design, communication proto-
col, and the command syntax adopted.

In order to overcome this problem, the
strengths and limitations of the various software
packages used by the Decibel New Music En-
semble and the ZM4 research group (respective-
ly the Decibel ScorePlayer [2] App6 for the Ap-
ple iPad, and Quintet.net7 [3] and MaxScore8 [4]

5 Commonly known as OSC. Refer to Wright, M., Freed, A., & Momeni,
A. (2003). Open Sound Control: State of the Art 2003.’ International
Conference on New Interfaces for Musical Expression, Montreal, p. 153-
159.
6 Retrieved 26th Nov 2016 from https://itunes.apple.com/au/app/decibel-
scoreplayer/id622591851?mt=8
7 Retrieved 26th Nov 2016 from https://quintetnet.hfmt-
hamburg.de/wiki/pages/w7u7v9j3/Download.html

Copyright: © 2017 First author et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License
3.0 Unported, which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author and source are
credited.

171

with its recent extension, the NetCanvas [5], for
computers running MacOS or Windows) were
documented (see Table 1) alongside other real-
time notation packages to reach a viable stand-
ard for inter-application communication, in the
fashion of previous efforts such as the Max-
Unity3D Interoperability Toolkit [6], which
utilises TCP/IP socket connections to transfer
messages in real-time between Max and Uni-
ty3D, and PWGL and Noteability which instead
support the OSC standard [7].

8 Retrieved 26th Nov 2016 from
http://www.computermusicnotation.com/

Some of the primary questions raised in such
a collaboration are largely driven by how it may
be possible to overcome some of the intrinsic
differences of music notation packages in such a
way that it does not mean re-inventing the
wheel. There are a number of facets of this con-
solidation that are worth considering: the type of
score and the scope10 of the notation used,
whether it is fixed or animated, the nature of
networked performance and whether it is in-
tended for both local area network (LAN) and
wider area network (WAN) performance situa-

9 64-bit
10 Arguably, in the case of some animated scores, constraints may be
necessary, and such solutions may not address the scope of what is
possible with openGL and VR notation. The game industry, for exam-
ple, has already had to define a framework and syntax for animation.

Software Connectivity Protocol	and	Data	Type Traditional	Notation Graphic	Notation

Quintet.net	(1999)

• Quintet.net	Client
• Quintet.net	Server
• Quintet.net	Conductor
• Quintet.net	Viewer

Max	messaging	via	UDP	
and	TCP	socket	connec-
tions

Both	Generative	and	
Fixed	via	MaxScore

Yes.		Fixed	Animat-
ed,	Live-Animated,	
and	Live-
Generative	via	
MaxScore	(refer	to	
Figure	1)	[8]

1.1.1.1.1.1.1.1.1 M
axScore	(2008)

1.1.1.1.1.1.1.1.2 No	native	
support

1.1.1.1.1.1.1.1.3 Mes-
saging	is	possible	using	
Max/MSP	over	UDP	or	
TCP

1.1.1.1.1.1.1.1.4 Bot
h	Generative	and	Fixed

Yes.	Fixed	Animat-
ed,	Live-Animated,	
and	Live-
Generative	

Bach	[9]	(2012) No	native	support
Messaging	is	possible	
using	Max	over	UDP	or	
TCP

Both	Generative	and	
Fixed

via	slot	messages,	
requiring	an	exter-
nal	drawing	object

InScore	[10]	
(2012)

No	client	/	Server	architec-
ture	per	se,	rather	the	In-
Score	application	responds	
to	remote	OSC	messages	
received

OSC	Packets	over	UDP Both	Generative	and	
Fixed

Yes.	Fixed	Animat-
ed,	Live-
Permutated,	Live-
Animated,	and	
Live-Generative

Decibel												
ScorePlayer	
(2013)

Decibel	ScorePlayer	Client	/	
Server	over	a	TCP	socket	
connection

OSC	Packets	over	UDP Limited

Yes.	Fixed	Animat-
ed,	Live-
Permutated,	and	
Live-Animated

MaxScore.NetCanv
as	(Apr-Nov	2016)

• Internet	browser	appli-
cation

• NetCanvas	Server
• NetCanvas	Maxpatch	

abstraction
• NetCanvas	virtual-

reality	/	browser	client	

Rendered	PNGs	are	
streamed	as	formatted	
packets	of	base-649	byte	
arrays	over	a	TCP	web-
socket	connection

Both	Generative	and	
Fixed Yes.	Live-Animated

Table 1. Comparison of connectivity, protocol, and notation types for existing ScreenScore applications.

172

tions, and the technical aspects of integrating
both the networking protocol and syntax to al-
low such software solutions to talk with one
other and remain synchronised. These technical
aspects follow some key central ideas: the in-
teroperability of digital score solutions, multiple
devices, and software platforms; the need to
evaluate existing software dependencies of digi-
tal score solutions (see Table 2); the need to
further extend the feature set of such solutions;
and the need to consolidate some of the intrinsic
differences between existing software solutions.
Such aims of interoperability investigated in-
clude:
• Integration and synchronisation of Quin-

tet.net and the Decibel ScorePlayer
• Development of a Canvas score module for

the Decibel ScorePlayer and a Max abstrac-
tion responsible for converting the draw
commands from MaxScore to the Canvas
score in the ScorePlayer

• Transmission of OSC via network sockets
(over TCP/IP or UDP) to the
MaxScore.NetCanvas Server from the Dec-
ibel ScorePlayer and Max 7

• Integration of support for OSCblob mes-
sage packets over UDP to the ScorePlayer
app from Max 7, decoded as PNG textures
in the Decibel ScorePlayer

• Integration of support for layer crea-
tion/deletion, cursor automation, via exist-
ing Decibel message syntax in
MaxScore.NetCanvas from Max 7

Music Notation Pack-
age

Software Dependencies

Quintet.net	 Max	and	various	3rd	party	
externals	packages	

MaxScore	 Max,	Java	Music	Specifica-
tion	 Language	 (JMSL),	
and	 3rd	 party	 externals	
packages	

Bach	 Max	
InScore	 An	 external	 application	

capable	 of	 sending	 OSC	
messages	

Decibel	ScorePlayer	 None	
MaxScore.NetCanvas	 Max,	Java	Music	Specifica-

tion	 Language	 (JMSL),	
and	 3rd	 party	 externals	
packages	

Table 2. Comparison of Music notation Packages and
their software dependencies.

Figure 1. Categories of real-time and non-real-time mu-
sic notation. (Shafer, 2016).

2. DEVELOPMENTS IN THE DECIBEL
SCOREPLAYER

When the Decibel ScorePlayer was first devel-
oped, it was conceived of as a standalone appli-
cation without intrinsic software dependencies.
The application specifically focussed on graphic
and animated notation on a portable device (the
iPad), with the intention that multiple devices
could be synchronized in real-time over a Wi-Fi
network. The Decibel ScorePlayer is hard-coded
in objective-C and the binary application cur-
rently supports the iPad generation 2 and 3. The
motivations in using such an application were
driven largely toward ease of use for the end-
user, both composer and performer.
 The ScorePlayer adopted the zero configura-
tion networking DNS service discovery [11]
method in order to streamline the process of
connecting multiple devices over the network.
Each device broadcasts a service name deter-
mined by the score that is open, and the Score-
Player application adopts its own client-server
method involving the management of both a
primary and secondary server and remaining
clients on the network. The secondary server is
used as a backup primary server in case the ex-
isting primary server drops off the network.
This networking architecture has proven to be
robust in live performance settings. Over a peri-
od of some years of using this in live perfor-
mance, Decibel New Music ensemble have
found this to be a robust and reliable solution
for synchronously (or asynchronously) present-
ing scores over multiple devices.
 A number of enhancements to the Decibel
ScorePlayer were completed as part of the
Deutscher Akademischer Austauschdienst and

173

Universities Australia exchange. These includ-
ed providing WAN capability for the Score-
Player application, and the completion of sever-
al modules for the ScorePlayer allowing the
application to function in a number of different
modes: a 2D scrolling “Talking Board” mode, a
generative notation “Rodinia” Conduc-
tor/Performer/Audience mode, and a blank ex-
ternally controllable “Canvas” mode.

2.1 WAN Internet Connectivity

The ScorePlayer was originally intended for
synchronising multiple iPads over a Local Area
Network (LAN) [12]. However, one of the first
proposed outcomes of the research exchange
was to enable the ScorePlayer to synchronise
over a Wide Area Network (WAN) for telematic
performance. Decibel ensemble member Aaron
Wyatt extended the ScorePlayer to facilitate this
process, allowing the user to manually enter a
destination IP address so that a local iPad, as-
suming the role of a client via TCP, can remote-
ly connect to another iPad which in turn as-
sumes the role of a server (refer to Figure 3).
This development, after some testing, was in-
corporated as part of a telematic concert on oc-
casion of the Sound and Music Computing
Summer School 2016 between the Hochschule
für Musik und Theater in Hamburg, Germany,
Edith Cowan University in Perth, Western Aus-
tralia, and Stanford University in California,
United States. The concert successfully present-
ed a series of new works by participants of the
Summer School featuring performers from three
different countries around the world (Figure 2).

Figure 2. Three-way connectivity in a telematic perfor-
mance employing JackTrip for audio streaming and the
Decibel Score Player for synchronized score rendering
across 15 time zones.

Figure 3. The iPads connected during the telematic per-
formance at SMC2016 in Hamburg.

2.2 Talking Board Mode

In Vickery and Hope’s work ‘The Talking
Board’ (2011) [12] a graphical score-collage is
continuously repositioned during the perfor-
mance, moving smoothly in the vertical and
horizontal dimensions, and also jumping to par-
ticular new positions. The four performers real-
ize the work by interpreting the components of
the score that are framed by four colour-coded
planchettes (circles). Rather than following de-
fined pathways, the planchettes move in 2-
dimensions according to a set of behaviours
(wander, converge, flock, lead). An OSC net-
working protocol was implemented in the
ScorePlayer to synchronise the iPad score with
an external Max patch [13]. In the “talking
board” mode, external communication was in-
troduced to allow data on the score and plan-
chette positions to be used to control spatialisa-
tion and processing within Max.
 The behaviours are transmitted via OSC using
the following messages:

 /External/MoveBackground x1 y1
 (the xy position of the background collage).
 /External/MovePlanchette x1 y1
 (the xy positions of each planchette).

174

2.3 Rodinia Mode

Rodinia is a varied paradigm in the ScorePlayer:
a networked, generative and interactive, con-
ducting environment [14] allowing for control
by four "conductors" of generative notation for
four ensembles. The score includes three view
paradigms: audience, conductor and performer.
The work draws in part from the generative
functions developed for the Decibel Cage Vari-
ations App (Variations I and II).
 Vickery’s work ‘TECTONIC: Rodinia’ (2016)
employs a collision avoidant algorithm which
may modify the choices of each conductor. As
notational streams approach one another they
are pushed upward or downward according to
their evaluated mass. The controller interface is
operated by two hands (the iPad permits 11
simultaneous multi-touch points) [15] allowing
parameters to be specified simultaneously by
the Left hand (play/hold, articulation, duration
type) and Right hand (duration, pitch, dynamic,
rate and compass) (see Figure 4).

Figure 4. “Conductor View” in Lindsay Vickery’s
‘TECTONIC: Rodinia’ (2016).

Figure 5. “Performer View” in Lindsay Vickery’s
‘TECTONIC: Rodinia’ (2016).

 These parameters define the boundaries of
stochastically generated graphical events which
are distributed to the all of the iPads belonging
to the same stream on the network. Musicians
read the generative score in a “performer view”
where notation for each of the four ensembles is
scrolled right to left across the iPad screen (see
Figure 5).
 The “audience view” amalgamates the nota-
tion from each stream into a single score, to be
shown on a large screen behind the performers
for both audience and the conductors. Audience
view draws the streams of notation approaching
from four directions (left, right, top and bottom)
(see Figure 6). The notation “wraps” around
each time it completes the crossing from one
side of the score to the other.

Figure 6. “Audience View” in Lindsay Vickery’s
‘TECTONIC: Rodinia’ (2016).

The full range of conductor defined commands
as well as the current xy positions of each part
in the “audience view” are transmitted to Max
as OSC commands:

/External/Hold – (allowing the generative of notation
for a group to be halted).
/External/Articulation – (defining 6 articulation
types)
/External/DurationType - defining 4 duration types)
/External/BarValue - (defining duration, pitch, dy-
namic, rate and compass)
/External/Event – (xy position of each group)
/External/PlayerNumbers (defining the number of
players in each group)

175

This data is used to process and spatialise the
sound of each instrumental group according to
the conductor defined parameters in real-time.

2.4 Canvas Mode

The Canvas mode principally varies from previ-
ous modes in that it accepts external messages
defining core elements of a digital score, such as
the dynamic creation of layers and loading and
positioning of image files. In Canvas mode the
ordering, occurrence and motion of the score
segments can be determined externally by OSC
messages sent via UDP. Previously all score
generation – as found in the iPad implementa-
tions of Cage ‘Variations I’ (1958) and ‘Varia-
tions II’ (1961) or Vickery’s ‘TECTONIC:
Rodinia’ (2016) – and indeterminate elements –
as found in Hope’s ‘Liminum’ (2012) or Vick-
ery and Rose’s ‘Ubahn c1985: the Rosenburg
Variations’ (2012) – were generated using ran-
domised procedures within the ScorePlayer ap-
plication.
 Canvas mode allows composers to implement
generative and indeterminate works in the
ScorePlayer without the generative procedures
having to be hard-coded into the ScorePlayer
application. The concept was trialled with a pre-
existing score: Samuel Dunscombe's ‘Westpark’
(2012) for bass flute, bass clarinet and electron-
ics.11 In the original version of the work, the
score comprised 46 indeterminately presented
images and 4 dynamic markings that were
screened on networked laptops. Dunscombe
intends the performers to react almost instanta-
neously to the often rapidly changing images.
 The Canvas mode was used to define a back-
ground score layout and to place the score im-
ages and dynamics within separated parts for
each instrument.
 A Canvas mode score is defined by an .xml
file formatted as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE opus SYSTEM "opus.dtd">
<opus>
 <score>
 <name>Title</name>
 <composer>Composer Name</composer>
 <type>Canvas</type>

11 It also was used to create a new version of Vickery’s work ‘abstract
clouds of the western skies’ (2016) which had been originally authored
in MaxScore as part of the exchange.

 <duration>0</duration>
 <instructions>workinstructions.png</instructions>
 </score>
</opus>

This xml file and the required image files are
compressed in a .zip file, which is then given
the extension .dsz and loaded into the Decibel
ScorePlayer via iTunes12. Messages to define
the score changes from Max are transmitted as
OSC packets to the ScorePlayer over UDP. In
the Decibel ScorePlayer, a single image must be
loaded into a discrete graphics layer. The canvas
mode score accepts messages in the following
formats:

/Renderer/Create “name_of_layer” n x1 y1 x2 y2
(Where n defines 0 a layer that appears in all parts or
1…n the part in which this layer appears. x1 and y1
define the image (top left) x and y position and x2 and
y2 define the image (bottom right) x and y position in
pixels.)

/Renderer/LoadImage “name_of_layer”
imagename.png n
(where n is either 1 to auto size the image/0 to use the
image’s “actual size”)

/Renderer/Remove “name_of_layer”

/Renderer/SetPosition “name_of_layer” x y
(Where x and y define the top left coordinate of the
image in pixels).

Tests of the Canvas mode version (see Figure 7)
of the score suggest that the iPad score load
images more quickly than the original Max ver-
sion even though the commands are being
transmitted across a network.

Figure 7. Decibel ScorePlayer version of Samuel Dun-
scombe’s ‘Westpark’ (2012)

12 Retrieved 26th Nov 2016 from https://vimeo.com/140709500

176

The Canvas mode interestingly permits a greater
degree of "animation" than is normally found in
the Decibel ScorePlayer as layers can be reposi-
tioned and resized independently. This possibil-
ity has not yet been exploited in a creative work.

2.5 Interoperability between MaxScore and
the Decibel ScorePlayer

One of the further developments in progress as a
result of this research exchange has been the
investigation as to the viability for MaxScore to
use the Decibel ScorePlayer as a canvas window
to display generative notation. This process has
required sifting through the draw commands
Nick Didkovsky has formalised in [mxj
com.algomusic.max.MaxScore]. Currently,
Georg Hajdu has implemented the MaxScore
canvas in Max using JavaScript mgraphics
commands. However, as the draw commands in
the Decibel ScorePlayer Canvas module are
different, an abstraction in Max is necessary and
responsible for translating the commands from
MaxScore into the appropriate syntax. Further-
more, the display ranges are normalised accord-
ing to the size of the display window, and some
adjustment is made depending on the anchor
position of each graphical element displayed on-
screen.

MaxScore Decibel ScorePlayer
staffLine	 0.	 0.	 0.	 0.5	 20.	
51.	781.79364	51.	

/Renderer/Create staffline1
0 24 70 949 60
/Renderer/LoadImage
staffline1 StaffLine.png 0

tr 22. 75.96 0.5 Staff 0. 0. /Renderer/Create trebleclef
0 26 161 176 311
/Renderer/LoadImage
trebleclef TrebleClef.png 0

Table 3. Comparison of draw commands in MaxScore
and the Decibel ScorePlayer.

The research exchange has also been concerned
with the real-time transmission of graphical data
over the network. Certain restrictions in the size
of an OSC full-packet support the idea of split-
ting large files into smaller packets. Research is
in progress to determine the best way to trans-
mit media over the network.

3. DEVELOPMENTS IN
MAXSCORE.NETCANVAS

As a result of this collaboration, and in line with
development goals set out for the
MaxScore.NetCanvas project, a number of
changes were made in anticipation of the release
of NetCanvas beta 0.2. Firstly, NetCanvas now
supports the creation of multiple graphical lay-
ers, which can be animated via command sets
that can be created in Max and sent via the
NetCanvas Server. Parameters can be changed
in real-time via messages that follow the Score-
Player message syntax (see Appendix 1). This
major change allows for scrolling scores, opaci-
ty between layers and more exotic animations of
layers, which can be updated via websocket
connections made in the browser. Secondly,
cursor support was implemented following the
logic of Georg Hajdu’s composition ‘Carnage’,
originally composed for a joint concert between
the two research teams in Perth in July 2016.
Cursors can be controlled independently, instan-
tiated and destroyed, set to animate in a variety
of states and set to different shapes, sizes and
colours (Figure 8).

177

Figure 8. Sending customised cursor instructions from
Max to the NetCanvas using the messaging format sup-
ported by the Decibel ScorePlayer.

Figure 9. Changes made to the NetCanvas Server (above)
and the NetCanvas (below) to support the new messaging
format and cursor animation.

This involved some changes to the server code,
and the NetCanvas code (Figure 9). Following
the logic of the existing server implementation,
users build text files containing animation in-
structions in Max, which are transmitted when-
ever any changes are made. This technique
takes advantage of NetCanvas’ use of websock-
ets to push data to the browser clients, without
requiring interaction on the client side. This
makes for a very scalable system, which now
supports real-time notation, animated notation,
tablet and smartphone scores, network music
performance, VR notation, and is fully cross-
platform and accessible from Max, and can be
used in conjunction with the Decibel ScorePlay-
er.

4. CREATIVE WORK

The teams form Hamburg and Perth completed
and performed a number of works exploring
screenscore-based notation (Table 4.). These
works included the investigation of the possibil-
ities of both MaxScore and the Decibel Score-
Player, as well as one work exploiting the pos-
sibilities of both platforms.

New Works

Carey, B. Magnetic Visions VI (2016)
Fu, X. I Love Tiffany (2016)
Hajdu, G. Carnage (2016)
Hope, C. Great White (2016)

Vickery, L. abstract clouds of the western
skies (2016)

Vickery, L. TECTONIC: Rodinia (2016)
Adapted works
Dunscombe, S. Westpark (2012)
Vickery, L and
Hope, C. Talking Board (2012)

Table 4. Works developed during the residency.

Vickery’s ‘abstract clouds of the western skies’
(2016) is a nonlinear work in which a 68 meas-
ure "source score" is deconstructed into passag-
es and single measures to create a texture that
alternates indeterminate juxtapositions with
more synchronous linear "composed" passages.
It is the second work by the composer in this
formal framework (the first was ‘Improbable
Games’ (2010)). During the exchange version
for both MaxScore and the Decibel ScorePlayer

178

were created. The Canvas mode is used to de-
fine the score in the ScorePlayer, but unlike
Dunscombe’s ‘Westpark’ separate “parts” are
defined for each of the three performers (see
Figure 10). In the Decibel ScorePlayer perform-
ers change parts using a swipe up or down ges-
ture on the iPad screen [11].

Figure 10. Flute part of Vickery’s ‘abstract clouds of
the western skies’ (2016) in MaxScore (above) the Dec-
ibel ScorePlayer (below).

The main difference between Quintet.net and
the Decibel Score Player lies in how the pro-
gress of time is represented. While the Score-
Player, in its basic mode, moves the score under
a static play head, scores in Quintet.net are
shown as static pages over which a cursor is
moved from left to right. One of the pieces, that
originally existed for Quintet.net and therefore
had to be adapted to the ScorePlayer’s paradigm
is Xiao Fu’s composition ‘Tiffany’ written in
2011 for a flexible ensemble of musicians and
first performed as part of the Pentalocus net-
work concert between San Diego, Montreal,
New York, Belfast and Hamburg in November
2011. Her program notes state:

Works inspired by the Tiffany glass. I
used the five logos of the participating
school and split them into five parts,
each part is processed, and then rear-
ranged, in order to finally generate a
colorful "Tiffany glass Score".
The work's full-length is five minutes,
each page is one minute. From left to
right is time, from top to bottom is the
approximate pitch range.

If there is only one musical instrument in
a given location, different colors repre-
sent different playing techniques; or if
there is a duo or trio, different colors
represent a different instrument.
Each grid block can be a note, but the
players are free to choose among simul-
taneous blocks and can even jump be-
tween them as long as they have the
same color. White spaces are silence.
The height of each small block, repre-
sents dynamics, the higher the box the
louder.

Figure 11. A page from Xiao Fu’s composition ‘I Love
Tiffany’ (2016) for a networked music ensemble.

The only work to explicitly explore communica-
tion between the Decibel ScorePlayer and Quin-
tet.net at this point in the exchange is Cat
Hope’s ‘Great White’ (2016). This work was
scored for accordion and viola (or for any two
sustaining instruments) reading from the Deci-
bel ScorePlayer and two laptop performers con-
nected to Quintet.net.

Figure 12. Screen shot of Quintet.net Conductor with
built-in control of the Decibel Score Player.

179

Since the Quintet.net Conductor component—
via an instance of the MaxScore Editor—serves
the scores to the clients, we implemented a sub-
patch capable of communicating with the in-
stance of the Decibel ScorePlayer acting as a
server (see Figure 12). After a successful hand-
shake, the Quintet.net Conductor starts the per-
formance by sending the /Control/Play message
to the server, upon which it receives a constant
stream of ticks which it can sync its own clock
to. In this way activity scored for Quintet.net
was able to synchronise with the scrolling Deci-
bel ScorePlayer score and therefore the acoustic
instruments. This activity is indicated by four
sections of traditional notations that appear in
blocks on the score. The traditional notations
are excerpts of works from composers who had
spent some time in Hamburg: including György
Ligeti, Gustav Mahler, Georg Telemann and
Alfred Schnittke.
 The performers of Quintet.net are provided
with MIDI files of these excerpts, however cer-
tain notes have been removed by the composer
beforehand. They are free to interpret these files
in any way they wish for the performance, but
can only do that when indicated in the score.
 The title ‘Great White’ refers to the great
white dead men of music history and women
composer’s struggle to find a place in that histo-
ry. It is also a reference to the rare species of
(occasionally “man-eating”) shark that is hunted
in the composers’ home state of Western Aus-
tralia. The acoustic instruments interface with
the music excepts (already being altered by the
electronic performers) firstly by reading the
graphic score that ‘sidesteps’ the excerpt, then
tracing along the next one, then increasingly
‘interfering’ with the remaining excerpts - even-
tually blocking out most of the excerpt altogeth-
er, concluding with general confusion and a
‘free for all’ to close. The Quintet.net perform-
ers perform with the midi files – try as they
might, they cannot reproduce the masterworks
as they are notated on the score that they follow.

Figure 13. Score showing ‘tracing’, and some blocking,
of the third music excerpt in Cat Hope’s ‘Great White’.

Figure 14. Score showing more ‘blocking’ of the parts.

Figure 15. The version of the score for ‘Great White’
served by the Conductor to the Quintet.net Clients. The
cursor is sync’ed to the ticks sent by the Decibel Score
Player.

5. CONCLUSIONS

This research collaboration has allowed for
some progress in allowing for interoperability
between Quintet.net, the Decibel ScorePlayer,
MaxScore. Future research will focus on ex-
tending the Canvas mode in the ScorePlayer to
allow for drawing geometric shapes (and ani-
mated notation) using Core Graphics and Core
Animation. It is hoped that through this collabo-
rative research, some standardization can be
established for communication between various
digital score solutions, and that for the end user,
there may be some flexibility in the way in
which scores are delivered on screen. Future

180

development may also evaluate whether Ableton
Link – which is fast becoming a de facto stand-
ard for synchronising devices to Ableton
Live over local networks – is a worthwhile
means of synchronising various digital score
solutions. Although this approach, which
has been a key feature of this collaboration thus
far, is not designed to function over extended
distances, a custom synchronisation method
could also be developed or simply adapted from
existing solutions.

Acknowledgments

The exchange between the Hochschule fur Mus-
ik und Theater (HfMT Hamburg) and Edith
Cowan University (Perth) was funded by the
Deutscher Akademischer Austauschdienst
(DAAD) and Universities Australia.

6. REFERENCES
[1] J, Freeman. “Extreme Sight-Reading, Mediated

Expression, and Audience Participation: Real-Time
Music Notation in Live Performance,” Computer
Music Journal, 32(3), 2008, 25–41.

[2] C. Hope, A. Wyatt, & L. Vickery. “The Decibel
Score Player – A Digital Tool for reading Graphic
Notation.” Tenor Conference, Paris, France, 2015.

[3] G. Hajdu, "Quintet.net: An environment for
composing and performing music on the Internet,"
Leonardo, 38, 2005, 23-30.

[4] N. Didkovsky and G. Hajdu, "Maxscore: Music
notation in Max/Msp," in Proceedings of the
International Computer Music Conference, 2008,
483-486.

[5] B, Carey, & G, Hajdu. “Netscore: An image
server/client package for transmitting notated music
to browser and virtual reality interfaces.” Tenor
Conference, Cambridge, United Kingdom, 2016.

[6] I. I. Bukvic, & J-S Kim. “µ Max-Unity3D
Interoperability Toolkit.” Proceedings of the 2009
International Computer Music Conference,
Montreal, Canada, 2009.

[7] C. Agon, G. Assayag, M. Laurson, and C. Rueda.
“Computer Assisted. Composition at Ircam:
PatchWork & OpenMusic.” Computer Music
Journal 23(5), 1999, 59-72.

[8] S. Shafer. “Performance Practice of Real-Time
Notation.” Tenor Conference. Cambridge, United
Kingdom, 2016.

[9] A. Agostini, & D. Ghisi. “Gestures, Events, and
Symbols in the Bach Environment.” Actes des
Journées d’Informatique Musicale (JIM 2012),
Belgium, 2012.

[10] D. Fauber, Y. Orlarey, S. Letz, "INScore - An
Environment for the Design of Live Music Scores",
Proceedings of the Linux Audio Conference, LAC
2012.

[11] D. Steinberg. Zero Configuration Networking: The
Definitive Guide. O’Reilly Media, 2005.

[12] A. Wyatt, C. Hope, L. Vickery, & S. James. “Ani-
mated Music Notation on the iPad,” In Proc. Int.
Computer Music Conf. 2013, Perth, Western Aus-
tralia, 2013, 201-207.

[13] C. Hope, A. Wyatt, & L. Vickery. “The Decibel
Scoreplayer: Enriched Scores for the iPad,” in Proc.
Int. Computer Music Conf, 2015.

[14] L. Vickery, & S. James. “Tectonic: a networked,
generative and interactive, conducting environment
for iPad,” in Proc. Int. Computer Music Conf. 2016,
Utrecht, The Netherlands, 2016, 542-547.

[15] K. Yarmosh. App Savvy: Turning Ideas into iPad
and iPhone Apps Customers Really Want. O'Reilly
Media, 2010, p. 53.

[16] L. Vickery, C. Hope, & S. James. “Digital adaptions
of the scores for Cage Variations I, II and III,” in
Proc. Int. Computer Music Conf. 2012, Ljubljana,
Slovenia, 2012, 426-432.

181

APPENDIX

List of Commands for the Decibel ScorePlayer.

Note: For externals, only the following classes of com-
mands are forwarded to the iPad clients.

/Control /Renderer /Master
And only the following message classes are forwarded
to externals.

/External (This is not broadcast to iPad clients.)

/Control /Status /Tick
The following commands are for client server interac-
tion, and form part of the initial handshake.

/Server/ProtocolVersion versionString
Sent by the server to the client on initial connection.
The version string reflects the protocol version
used by the server and is of the format “Decibel Net-
working Protocol v13”.

/Server/RegisterDevice versionString identifier
playerVersion
Once the client receives the /Server/ProtocolVersion
message, it needs to respond to the server with this
message. The version string should match the one giv-
en by the server. If not, the player should abandon the
connection and alert the user. The identifier is the
hostname of the device. (Some rendering modules
give you the option of specifying the identifier. This is
mostly for interactions with externals.) The player-
Version is the version of the app itself. (At the time of
this writing, the current development version was
1.6.4)

/Server/ConnectionOK
If the /Server/RegisterDevice command was success-
ful, the server will notify the client with the above
message.

/Server/MakeSecondary
Once the handshake is completed, the server sends
this command to the client if there is not already a
backup server on the network. The client then sets it-
self up as a secondary server and informs the primary
server of the port number used for it.

/Server/SecondaryPort portNumber
The return command sent upon the creation of a sec-
ondary server, including the listening TCP port
number.

/Server/CancelSecondary
If the primary server doesn’t get a response from the
secondary server within a 3 second timeout period
then it elects a new client as a secondary (if there are
other clients on the network) and adds
the original secondary to a blacklist. It also sends this

command to the failed secondary to let it know that its
services are no longer required.

/Server/SecondaryServer address port
Once a backup server has successfully been estab-
lished, the primary server sends this message to all of
the connected clients. The clients should then connect
to the secondary server using the same handshake. If
the primary server goes down then the secondary
server seamlessly takes over.

/Server/RegisterExternal versionString up-
dPortNumber
This command is used by an external (for example a
Max patch) connecting to the server over UDP. The
versionString should match the one used to establish a
normal client/server connection, and the ud-
pPortNumber should be a port that the external is lis-
tening on for return messages.

/Server/RegisteredExternals address1 port1 ad-
dress2 port2...
The /Server/RegisteredExternals message is sent from
the primary server to the secondary server so that it
can maintain an up to date list of externals in the case
that it is called upon to replace the primary server.
Multiple externals can be specified in the argument
list.

/External/NewServer hostName udpPortNumber
If the secondary server takes over, it sends this com-
mand to all of the registered externals to notify them
that the server address has changed. The external
should then re-register with the secondary server. (The
secondary server clears the list of registered externals
after sending this message, taking the server change as
an opportunity to remove any dead externals from the
list.)

/Server/GetClientList
Sent from a client to the server to get a list of all of the
connected clients. (Used by the NetworkViewControl-
ler to show the state of the network.)

/Server/ClientList identifier1 playerVersion1 identi-
fier2 playerVersion2...
After receiving a client list request, the server re-
sponds with this message. The arguments are a list
of the identifiers (usually the hostnames) and the play-
er versions of the connected devices.

/Malformed
This special message is sent internally within the serv-
er module to alert it to the presence of a malformed
message within an OSC bundle. It is currently quietly
ignored, as is the malformed message.
These next commands are more general control com-
mands.

/Control/Play
Begins playback from the current location.

182

/Control/Reset
Resets the ScorePlayer. (Stops playback and sets the
score back to the starting location.)

/Control/Seek location
Seek to the specified location in the score. The loca-
tion should be a floating point value between 0 and 1.
For some scrolling scores, with an instruction area de-
fined to the left of the starting point, this value can be
set less than 0, but only while the score is stopped.

/Control/SetDuration duration
Sets the duration of the score in seconds. This com-
mand should not be sent while the score is playing. (In
newer versions of the score player it will be safely ig-
nored if this is the case. In older versions, this could
have unexpected results.)

/Control/SetOptions options...
Sets options for the current score. The possible op-
tions, and the format the argument list should
take, are defined by the individual renderer modules.

/Renderer
This class of message is passed by the player to the
renderer class. The “Renderer” component of the ad-
dress is added and stripped by the player to facilitate
routing – the renderer itself has no knowledge of its
existence.

/Status scoreName scoreType “Reserved” play-
erState location duration (“CurrentOptions” op-
tions...)
Returned from the master in response to a
/Master/GetStatus request. The scoreName and score-
Type arguments are used to verify the name of the
score and the rendering class used by it. (These were
added in Protocol version 12 when manual network
connections were first allowed. Zeroconf discovery
only finds servers that are running the same score as
defined by the name and composer.)
The “Reserved” argument is for the possible future
implementation of score version checking. PlayerState
shows the current state of the player – 0 for stopped, 1
for playing.
The location is the current location within the score as
a float between 0 and 1, and the duration is the current
length of the score in seconds. (Important for scores
where the duration can be changed.)
The “Current Options” argument is optional, and is
only present if the score has options that need to be
set. The remaining arguments that follow are options
and are dependent on the rendering module used.

/Tick location
The tick message is sent across the network every se-
cond by the master with a float argument between 0
and 1 which represents the current location within the
score.

/Master/GetStatus
Sent by clients after completing the handshake with
the server to request the current state of the score from
the master. (See /Status)

183

184

Barítono solista

Violín solista

mp f mf

a

p

a

mf pq = 84

p Sffz
mp

Bar. sol.

Vln.sol.

a

mf p

a

mf p

a

mf

a a a a a a

f6

mf mp

Bar. sol.

Vln.sol.

mf

a

f
f

a a a a a a a

11

mf f f mp

Bar. sol.

Vln.sol.

a

mf p

a

mf p

a

mf p

a

mf p

a

mf p16

mf

34

34

? + + o gliss. o + o +

para barítono y violín
Música:Tomás MarcoTexto: Miguel de Cervantes

Persiles avista Roma

&
vibratissimo ord.

gliss.
gliss. > >

o”“

? o + o + o

&
o“: ;

oscillato ord.

? Ÿ~~~~~~~~~~~ gliss.

&
senza vibr.

gliss.
gliss. Æ gliss.

gliss.
Æ o o o o o o”“

? o + o + o + o + o

&
o o“: ;

oscillato

Œ ˙# ˙# Œ Œ œ#J
œ#J ‰ Ó Œ œ# ™ œ# œ# ™ œ#

˙̇# ™
™ ˙̇# ™

™ ˙̇# Œ
œœ# œœ# Œ

˙# ™

œ# ™ œ# œ# ™ œ# Œ œ# œ œ# œ œ# œ œµ œnJ œ˜ œ#J œµ œnJ œ˜ œ#J ˙# Œ

œ<#>
Œ

œ# ˙# ™ œ˜
j œ œµ j œ# œ˜

j œ œµ j œ œµ j œ# ™
Œ

Œ ˙ œ Œ Œ œ#J œ#J ‰ Œ œ œ œ œ œ œ œ œ
Œ

˙̇# ™
™ œœ# ˙̇## Œ œœ# œœ##

œœ# œœ## Ó œœ œ œ# œ œ ™

œ œ ™ œ œ ™ œ œ ™ œ œ ™ œµJ œ œµJ œ# œ˜J œ œµJ œ# œ˜J œ œµJ œ# œ˜J œ ™

˙ ™ œ
J Œ œJ œ˜ œ#J œµ œnJ œ˜ œ#J œµ œnJ œµ œn ˙n

185

Bar. sol.

Vln.sol.

f

a

mf

a

mp

a

f

a

p

¡Oh!

fq = 10021

f mf mp f mp p mp mf
p

mf

Bar. sol.

Vln.sol.

gran de oh

f

po de ro sa oh

f

sa cro san ta al

f

ma ciu dad de

f27

mf mf p mf

Bar. sol.

Vln.sol.

Ro ma

mf

A ti mein cli no de vo to hu

31

mp p mp

Bar. sol.

Vln.sol.

mil de y nue vo pe re gri no

34

mf mf

44

44

? Ÿ~~~~~~~~~~~~~~~~~ + +

& pizz. arco o pizz.”“ arco gliss. glis
s. Ÿ~~ Ÿ~~ Ÿ~~~~~ ponte ord.

?

&
- alla punta ord.

?

&
sul tasto

?

&
ord. Ÿ~~~~~~~~~~~~

Œ œ#J Œ œJ Œ ˙ œ Œ
œJ ‰ Œ ˙ ˙ Ó Ó™ œ

‰ œj ‰
œ#J œj ‰

œ ™ ‰ œ#
œ

Œ
1

J Œ J Œ œ
œ ˙

Œ
ææ
æ̇
b ™

œ

œ œbJ ‰ œ œ œ œ œbJ ‰ œ œ œ œ œbJ ‰ œ œ œ ˙b Œ œ

œ ˙̇bb œ œ œb ™ œb œ ™ œJ œb ˙̇b œ œ ™ œb
ææ
æ̇
b œ œ

œj ˙ ™ œb œb ‰ œj œb œ œ œb œ œb œ œb

œb ™ œJ ˙ ‰ œ œJ ˙ œ œb œ œb œ œb œ œb œ œb œ œb œ œb œ œb

œ œb œ œ ™ œb œjœ œb ˙ ™ œ

œ œ œ ‰ œœbb œJ œJ ˙ œ œnJ

2

186

Bar. sol.

Vln.sol.

a

mf

quien ad mi ra ver

f

be

36

mf

Bar. sol.

Vln.sol.

lle za tan ta a

f

a a a a a a

q = 9038

mf f Sffz f
mf

Bar. sol.

Vln.sol.

mf

a a a a a a a a a a a a a

f

a a a a a a a

44

mp f f
Sffz

Bar. sol.

Vln.sol.

a a a

mf

tu vis ta quea tu

q = 10051

Sffz
f mf mp p

24

24

44

44

?

&

? U
&

falsetto

& . . - .
-

U
> >

o o o”“

&
falsetto falsetto

3

&
vibrtiss. Ÿ~~~~~~~~~~~ oscillato o”“

glis
s. gliss.

> >

& gliss.
U ? ord.

&
> >

glis
s.

∑U gliss.
ponte

Œ œ œb œ œb ™ œJ œ ™ œJ

œ œ# œn œ# œ œ# œ œ# œn œ# œn œ# œ œn œ œ# œn œ ™ œ œ œb œ œJ œ œ ™ œ œ

œb ™ œJ ˙b œb œ Ó Œ œn œj œ# œ# œn ‰ œ œj œj œ ™

œ œ œJ œb œ œJ œ œb œJ œœ ™
™ Œ

œœ# œœ##
Œ œœ# œœ# ‰

œn
J

˙ œ
Œ

Œ œ œ œ œ œ œ œ œ œ œ œJ œ# ™ Œ œ# œj œ# œ œ# œn j ‰ œ# œj ‰

œ ™ œj œ ™ œj œ ™ ‰
˙# R Œ R Œ

œœ# œœ#
Œ

œ# œ œj œ Œ Ó™ œ œjœ ™ œJ ‰ œ œJ

œœ# œœ#
Œ Œ R ‰ œJ

œJ ‰ œ œ œ œJ ææ
æ
œ ™

æææœ

3

187

Bar. sol.

Vln.sol.

fa ma sea de lan ta al

mf

in ge nio sus pen de

56

mp mf mp mf mp

Bar. sol.

Vln.sol.

aun que di vi no dea

mf

quel quea ver te ya do rar te vi no

60

mf mp

mf

Bar. sol.

Vln.sol.

mf

con tier noa fec

mf

to y con des nu da plan ta a

f

a a

e = 18064

mp mf mp mf mf

Bar. sol.

Vln.sol.

a a a a a a a

mp

a

f

a a a

f

a a a a

f

a a a a

f

a a a a a a a a a

68

mf mf mp

68

68

? Ÿ~~~~~~~~~~~~~~~~~~

&
ord.

.
- . - sul tasto

?

&
ord.

-
ponte ord.

?

&
gliss. . gliss.

gliss.

? Ÿ~~~

&
vibrtiss. ord. calando molto

gliss.
gliss.

ord.

œ ™ œ œ œJ ˙ ™ œ Œ œ œ œ œ œ ˙ ™ œ

æææœ ™ œJ œ œ œ œ œj ‰ œ ™ œJ œ œj œ ™ œ œj ‰ œj œ ™ œ

‰ œJ œ œ œ ™ œJ œ ‰ œJ œ œ œ ™ œJ ‰ œJ œ œ ™ œJ œ ™ œJ

œ œj ‰ œ ™ œj œ œ œ œj ‰ æææœ æææ̇™
æææœ æææœ æææœ æææœ

æææœ Œ œ

œ ‰ œJ
œ ™ œJ œ œJ ‰ œ œ œ œ ™ œJ œ ™ œJ Œ ™ œ œ œ

˙ œ œ œJ œ œ ™ œ œ œJ ‰ œJ œ ™ Œ œœ ™
™

œ œ œ œ œ œ œ# ‰ œœœœ‰
œœœœ‰ œ# œ# œ# œ#

‰
œ œ œ

œ œ œ œ œ œ Œ ™

˙̇ ™
™ œœ œœ œœ œœ ™

™

œœ ™
™ ˙̇ ™

™ œœ œœ œœ æææœ# ™

4

188

Bar. sol.

Vln.sol.

a

mf

a a a

mf

a a

mf

a a a

mf

a a a

mf

a a a

f

a a a

73

mp mp mp p mf f

Bar. sol.

Vln.sol.

a

f

a a a

f

a a a a a a a a a a a a a a a

79

f f mf mf mp mp p

Bar. sol.

Vln.sol.

mf

la tie

mf

rra de tu sue lo que con tem plo con

mf

la

q = 10083

p p p mp mf

Bar. sol.

Vln.sol.

san gre de már ti res mez cla da es

mf

la re li quiau ni ver

87

mf f f mf mf mf

44

44

44

44

?

&
Ÿ~~~~~~ portando

calando molto prestiss.Ÿ~~~~~~ molto lento

3

Ÿ~~~

?

&
Ÿ< >~~~~~

-
Ÿ~~~~~~ Ÿ~~~

?

&
alla punta ord. vibratiss. ord. Ÿ~~~~~~~~~~~

? 3

&
Ÿ< >~~~ senza vibr.

. . .
Ÿ~~

. .
3

œ œµ œ# Œ ™ œ˜ œ œµ Œ ™ œ# œ˜ œ Œ ™ œµ œ# œ˜ Œ ™ œ œµ œ Œ ™ œ˜ œ œµ Œ ™

Œ ™ œ ™
Œ ™ æææœ ™ Œ ™ œœ##

œœ
œœ‰ Œ ™ œ ™ Œ ™ œ ™ Œ ™ œ# ™

œ# œ˜ œ œ ™ œ# œn œ# œn œ œ# œn œ# œn œ# œn œ œ# œn œ# œn ™

œ<#> ‰
œ# œj œj œ# æææœ œj œj œ# æææœ œ# j œ# j æææœ œ œ# j

Ó™ œ œjœ ™ œ# ‰ œ œ œ ™ œJ ‰ œJ œ œ ™ œ#J Œ œ œ#

œ<#> j ‰
ææ
æ̇
#

ææ
æ
œ

ææ
æ̇ œ œ œ# ™ œ œ ˙̇# œ# ™ œJ ˙

œ œ œ# œ œ œ œ# ˙ œ Œ Œ œ œ œ# ˙ œ œ œ#

œ æææœ ˙
œ# œ œ œ œ œ æææœ œ# œ Œ œ#J œ ™ œ œj ‰ œj œ ™

5

189

Bar. sol.

Vln.sol.

sal del sue lo a

f

a a a a a a a

e = 18091

f

mp f f

Bar. sol.

Vln.sol.

a a a a a

f

a a

f

a a a a a

f

a a

99

f f mf f f mf f f

Bar. sol.

Vln.sol.

a

f

a nohay

mf

par teen ti

mf

que no sir va dee jem plo

q = 100109

mf f mf mf mf mf

Bar. sol.

Vln.sol.

mf

de san ti dad a sí como tra za da de

f

la ciu dad de Dios

115

mf f mf f mf f

38

38

44

44

?

&
ponte pizz.

?

&
arco pizz. arco pizz.

? Ÿ~~~~~~~~~~~

&
arco pizz.

arco

?

&
portando. . ord. . -3

œ œ# ˙ œ ˙ Œ œJ ‰ œJ œJ ‰ œJ ‰ œJ ‰ œ#J ‰ œJ œJ ‰ œ# j ‰ œJ ‰

æææœ ™
æææœ# æææœ ™ æææ̇™

Œ ‰ œ# j ‰ ‰ œ#J ‰ œj ‰ œJ ‰
œ# j ‰ ‰ œJ ‰ œnJ ‰ œn j

œ#J ‰ œJ œJ ‰ œ#J ‰ œ#J ‰ œ#J ‰ œ#J œn ‰ ‰ œ#J ‰ œJ ‰ œ# j œ ‰ ‰ œ#J ‰ œJ ‰ œnJ

‰ œnJ ‰ ‰ œ# j ‰ œ# j ‰ œnJ ‰ œn j ‰ Œ œ#J œ#J ‰ œ#J ‰ œj ‰ Œ œJ œJ ‰ œJ ‰ œj ‰

œ ‰ ‰ œJ ‰ Ó™ œ œ œ ˙ œ Œ œ œ œ œ œ œ ™ œJ

Œ œj œj ‰ œj Œ ææ
æ̇

™

ææ
æ
œ

ææ
æ̇

™ œJ œ œJ ‰ œ ™ ˙ œj œ ™

œ ™ ‰ œ œ œ œ ™ œJ œ œ ™ œœ œ ™ œJ ‰ œJ œ œ œ ™ œJ
˙

œ œ ™ œœ œ œ
œœ## œœ œ

œ œ œ œ ™ œœJ œ ™ œ œ œ ™
ææ
æ
œ ™

ææ
æ
œ
J ææ
æ
œ ™ œ œ œ

6

190

Bar. sol.

Vln.sol.

al

f

gran mo de lo a

mf p

a

mf p

a

mf p

a

mf p
q = 84

119

f f f mp
p

Bar. sol.

Vln.sol.

a

mf p

a

mf p

a

mf p

a

mf p f

a a a

124

mf f

Bar. sol.

Vln.sol.

f

a a a a a a a a

f

¡Oh!

q = 84
128

f f mp f

Bar. sol.

Vln.sol.

gran de ¡Oh!

f

po de

132

mp mf mf mf

34

34

24

24

? o + o + o + o +

&
o o”“

ponte

? o + o + o + o + gliss. gliss.

&
ord. o o o o o o o o”“

o o o o o o o”“

?
. ∑

&
“: ;Æ gliss.

gliss. Æ
”“

o o o o o o

?

&
ponte ord. portando ord.

3

œ ™ ‰ œJ œ œJ ˙ ™ œ ˙ ™

Œ Œ œ# ™ œ# œ# ™ œ# œ# ™ œ# œ# ™ œ# Œ

œ ˙ œ ˙ œ œ ˙ ™ Œ
˙# ™ œ

Œ æææœ#

Œ œ# ™ œ# œ# ™ œ# œ# ™ œ# œ# ™ œ# Œ
œJ œJ

œJ Œ

æææ˙<#> ™
æææœ# ™

‰ œœ œ œ# œ œ ™ ˙ ™ œ
J ‰ œœ œ œ# œ œ# œ# ™

R

Œ
œ œ œ œ œ œ œ œ Œ Œ œ

œœ# œœ##
œœ# œœ## Ó œ œ œ œ# œ œ ™

Œ ˙̇ œœ ™

™ ‰

˙ œ œb œbJ ‰ œ œb œb

œ œb œ œb œb œb œb œb œ œb œ œb œb œb œb œb ‰ œœbb ™

™ ‰ œœ œœ##
œœ œœ##J ‰ œœbb ™

™

7

191

Bar. sol.

Vln.sol.

ro sa ¡Oh!

f

sa cro san ta

136

mp mf mf f f

Bar. sol.

Vln.sol.

mf

al ma

mf

ciu dad de

f142

mf mf mf f

Bar. sol.

Vln.sol.

Ro ma

mf

a

p

a

mf p

a

mf p147

mf f mp mp

Bar. sol.

Vln.sol.

a

mf p f

a a a a a a a a a a a a

153

mf
mf mf mf

?

&
ponte

∑ ord.
portando ord.

?

&
senza vibr. oscillato molto

? o + o + o +

&
ord. gliss.

o o o”“

? o + o
calando molto

&
o“: ; senza vibr. ord. calando molto portando

˙ œ œb œbJ ‰ œ œb œb ˙b œb œb

œ œb œ œb œb œb œb œb œ œb œ œb œb œb œb œb ‰ œœ ™

™ ‰
œœbb ™
™ ‰ œœbb œœnn œœ ‰ œœbb ™

™

œ ™ ‰ œb œb œb œb ˙b œb œb

‰ œbJ œ ‰ œbJ œb ‰ œb j œb ‰ œœbb ™

™

œœbb ™

™ ‰

˙ ˙ ˙ ˙
Œ œ ™ œ œ ™ œœ ™ œ

œ œb œ œb œb œb œb œb œ œb œ œb œb œb œb œb œ œ œ œ œJ ‰
œ œ œ#

œ ™ œ Œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ

œ<#>
‰

œœJ
œœJ ‰ ‰ œœJ

œœJ ‰ ‰
œœJ

œœ ™
™

‰ Œ
œœ## œœ œœ## œœ

8

192

Bar. sol.

Vln.sol.

ff

a

p158

f f

?
U U

cerrando de golpe
la boca con la mano+

& U o o o o o o o o o o
o”“ oU

U

˙
Ó œ# œ#J ‰

œœ œœ## œœ œœ## Œ œ œ œ œ# œ œ# œ œ œ œ
œ# ™ œ#

J ‰ Œ

9

193

194

Vn solo

ancestral father

o

q = 60

 Bar solo

Voz

Dón de?- dón de?-

q = 80

7

/maː kʲʼa/-

 Bar solo

dón de?- u bi- sunt?

11

SP

Voz

/mḁ χa- nay?/-

15

ráfaga

4

4

3

4

3

4

4

4

3

4

4

4

3

4

4

4

4

4

3

4

4

4

3

4

&

-

o

- - -

o o

-

o
o

o
o

o

subharmonics

-

>

o

o

o

Para Alfredo Garcia y Florian Vlashi

Helena Palma

Voice Prints

?

∑

1: Preguntas

> .

-
>

∑

/

∑ ∑ ∑

(Ubykh: 'dónde')

&

o

>

o

o

-

o

∑ ∑

?

-

∑

&

∑

o

o

o

/

∑ ∑ ∑

(Ubykh: 'dónde están?')

&

-

o
o

o

o

o

o

o

-
Æ

>

Ÿ
~~~

∑

˙b œ œ œb ˙

œb ˙

œb

œ

˙b

˙b

œ

œ

œ

˙b

Œ

œB

R

œb

≈ ‰ Œ


œ˜
j

œ

œn

J

‰ Ó

˙ œ Œ

œb

œ

˙b

w

œb

œ

Ó

˙b

œb

˙

Œ

Ó
œ œ

œ

œ

œ

≈

œ

œ

œb

œ

œ

œ

œn

œ#

j

œ ™

œb

œ

œ œ

œ

œb

œn

œ

œ

œb

œb

œ

œb

J

œb

œ

j ˙

Œ
œ

œn

œ

J

‰

œµ ˙#

195



Voz

/sa ʃʼ- qʼáy?/-

19

SP

ráfaga

agresivo

ráfagas

 Bar solo

U-

bi
sunt?Dón de?- On són?-

23

 Bar solo

E bu- ria,- hi ja- de Ka

q = 60

29

 Bar solo

lue ni.- A pa- nus,- hi jo- de Am bo- li- hi jo- deA -

34

 Bar solo

pi Breo

espiritu guerrero

gan,- son of Brath, son of Sru, son of Goi del- Glas

43

3

4

2

4

3

4

3

4

3

4

2

4

3

4

3

4

3

4

2

4

3

4

3

4

2

4

3

4

3

4

4

4

2

4

3

4

4

4

2

4

3

4

2

4

4

4

/

∑

(Ubykh)

(Qué ha pasado?)

∑ ∑

&

Ÿ
~~~~~~~~~~~~~~~~~~~~~~~

.
>

o

.
>

o

o o o o
.
>

o

∑

>

o

'

o o

?

('¿Dónde están?')

∑ ∑ ∑

&

∑ ∑ ∑

o

o

o

o

-

o
o

3

?

∑

1: Antepasados

&

∑ ∑ ∑

?

?

>
,

>
,

,

œ

œ

œ

œ

œ

œb
œ

œn
œ

œb
œ

œn
œ

œœµn

J

‰ Œ

œ œ

œ

œ

œ

n

b

Œ

e

œ

e
n

b

∏
∏
∏
∏
∏
∏
∏ e

œ

e

b

∏
∏
∏
∏
∏
∏
∏

Œ

œ
™

œb

J

œ œb

˙

˙

œ

œb

œ

œ

œ

œ

œb

œ

‰
œb

j

œ

œb

œ

œb

J
‰

Ó Œ ‰

œ

J

œ
œ ˙b

œb

J

œ

J

œ

J

œ

J

œb

œb
œn

œb

œb

œ

œ

œb

e
œ

e

œb

e

œ

e

œ

e e ˙

˙ ˙
Œ ‰

œb

J

˙b ˙b

œb

J

œ

J

œ

J

œ

J

˙ œ œ

J

œ

J

˙

˙
Œ

œb

œ œ

J

œb

J

œb œ

J

œ

J

œ œ

J

œ

J

œ

J

œb

J

˙

2

196

 Bar solo

a

/ɑ ɔ- u uo- ɑ

- - -

49

 Bar solo

Voz

a

ɑ/

54

glos sa- /bhz/ spra che-

 Bar solo

Voz

They arechained in an e vent- of in fi- nite- du -

59

gju hë-

 Bar solo

ra tion.- a

/ɑ u-

a

o/-

63

4

4

3

4

4

4

3

4

2

4

3

4

4

4

2

4

3

4

4

4

2

4

3

4

4

4

4

4

4

4

?

∑ ∑ ∑

2: Canto - Recuerdos

&

o

o

o

o

o o

∑ ∑

?

∑ ∑ ∑ ∑

/

∑

(Griego)

(Ubykh)

∑

(Alemán)

&

3

3

?

∑

/

(Albanés)

∑ ∑ ∑

&

∑ ∑ ∑

?

∑

Canto - Recuerdos

∑

&

∑

canto violin

œ

J

œ#

J

œ

J

œ

J

œ

J

œ#

J

˙
œ

œ

j

œ

j
œ

J

œ#

J

˙

œ

œ

œ

œ

œ

˙# ™

˙

Œ

Œ œ œ Œ Œ œ œ œ Œ

Œ

œ

œ

œ

œ

œ

œ

Ó

œ

œ

œ

œ

œ

Œ

œ

œ

œ

œ

œ

œ#

Ó

œ

œ

Œ

œ#

J

œ

J

œ

J
œ

J

œ#

J

œ

J

œ#

J œ

j

œ#

J

œ

J

œ

J

œ#

J

œ œ Œ

œ#

œ#

˙

œ# ˙

Œ œ#

J

œ

J

œ

J

œ

J

œ#

J

œ

J

œ

Ó

œ#

œ
œ

œ

œn

œ

˙

œ

j

œ#

j

œ

j

œ

J

˙b

3

197

 Bar solo

Voz

a

67

sus vo ces- bra man- en el tiem po-

mp

 Bar solo

Voz

a

q = 100 q = 60

71

/ħ

pp

 Bar solo

Voz

su su- rros- del vien to.-

q = 100 q = 70

76

hi̥ i y- u o u/ /s

pp

Voz

f ɬ- s ʃ ʃ s pse/

82

2

4

3

4

2

4

3

4

2

4

3

4

2

4

3

4

2

4

3

4

2

4

3

4

3

4

3

4

?

∑ ∑ ∑

-

/

- > -

∑ ∑

&

'

>

∑

>

∑

?

-

-

-

∑ ∑

/

∑ ∑ ∑ ∑

-

&

∑ ∑ ∑

ruido del viento

o

o

o o

∑

o o

o

o

?

∑ ∑ ∑

-

p

o

r

t

.

∑

/

>

∑ ∑ ∑

&

∑ ∑

ruido del viento

o

o

o o

∑ ∑ ∑

o o

o

o

/

(fricativas del Ubykh)

(Albanés: 'por qué?')

∑

&

∑ ∑ ∑ ∑

3

3

œ

j

œ#

j

œ

J

œ

J

œb

œb

Ó œ

J

œ œ

J

œ œ

J

œ

J

œ

J

œ œ

J

œ

œ

œ

œ

#

˙

˙

˙

˙

Œ

œ

œ

œ

œ

n

b

b

˙

˙

˙

˙

n

#

Œ

œ œb

J

œ

J

œ

J

œn

J

œn
œ

j

œ#

j

œn

J

œ#

J

œ

œ

˙#

˙
™

œb

œ

œb

œn œ

œ

œ

œ

œ#

œ
œ#

J

œ

J

œ# ˙µ

˙ œ œ œ œ œ w

œ

œb

œ

œb œ

œ

œ

œ

œ ˙
™

˙ œ œ œ ˙
™

˙ Œ

œ#

œ
œ#

œ#

œ

œ#

œ#

4

198

 Bar solo

En mi me mo- ria- de la nie ve-

87

 Bar solo

Kroy kha- sis- Kroy kha- sis- laes pi- ra- al-

92

 Bar solo

del bra mi- do- del tiem em- - po

96

 Bar solo

die se- Da uer- was war sie?

98

 Bar solo

was war- sie war sie_ein Ze it- raum?-

102

3

4

3

4

3

4

3

4

2

4

2

4

4

4

2

4

4

4

2

4

4

4

2

4

4

4

3

4

3

4

?

∑

&

∑ ∑

>
.

'

>
.

'

?

(Escita: 'Cáucaso')

1: Llamada - Evocación

∑

&

∑ ∑

>

∑

?

3

?

3

∑

La duración

∑

&

o

o

-

o

∑

?

&

3

3

˙#
œ

J

œ

J

œ#

œ

œ#

j

œ

j

œ ˙
Ó Œ

œ<#>
Ó

˙

˙

˙

˙b

œ

œ

œ

œ

˙

˙

˙

˙

b

b

œ

œ

œ

œ

œb ™ œ

J

œb

œ ™ œ

J

œ

œ

J

œ

J

œ

œb

J

œb

J

˙b

œ

œ

œ

œ

n

b

b ˙

˙

˙

˙

œn

J

œ

J

œb

œb œ œb

œb

J

œ

J

œb

˙
Ó

Œ
œ

J

œ

J

œ

J

œb

J

œ

J

œ

J

œ ™

‰

Œ

œ#

œ

œ

œ

œ

˙

Ó ‰

œ

J

œ

J

œ

J

œb

œb

˙b

Ó

œn œ

œ

œ

J
œ

j

œb

œb

j

œb

j
œb

J

˙b

‰ Ó ‰

œb

œ

œb

œn

œb

˙

Ó Ó

œb

œb

5

199

 Bar solo

Et was-

Mess

ba

-

res- ei ne- Ge wiss- heit?-

106

 Bar solo

Voz

die Da uer- was ei n- Ge fühl das

111

Nein!

 Bar solo

Le bens- ge- fühl-

116

 Bar solo

a

/a ɛ

a

e/

-

-

la ne gra- bar ca-

121

4

4

2

4

4

4

2

4

2

4

4

4

2

4

4

4

2

4

4

4

6

4

4

4

6

4

4

4

?

&

∑

?

/

∑ ∑ ∑ ∑

&

∑

?

4

∑

Sinera

∑ ∑

&

∑

-

-

-

3

3

3

3

?

∑ ∑

&

> -

Ó

œ

J

œ

J

œ

œ œb
˙ ˙B

Ó Œ

œ

J

œ

J

œ

œ

˙

œ

œb

œb

œb

˙n

Ó Œ

œ
œ

œ

˙#

Ó Œ

œ

œ#

#

Ó Ó Œ ‰

œ

J

œ œ œ

œb
œ
™

J

≈œ

wb

Ó Œ

œn

Ó

¿

j

-

Œ

œ

œ#

#

œ

œ

œ

œ

˙

˙

n

b

Œ Ó Œ

œ
œ#

œ

˙b

˙ œb

œ

˙

Ó

Œ ‰

œb

œ
œ

œ
œb

œb œn

œ

˙b

œb
œb œn

œb

˙
˙

œ
œ œb

œ

œb

˙ œ

œ ˙

Œ

œ
œ

œb

˙

˙

E

E

˙

n

œ

œb

œb e

ee

œ

b

˙
Œ Œ

œb

œ œ
œ

œb

wb

Œ

œb

œb œn

6

200

 Bar solo

por mi vi gi- la- a a- ve pel meu

126

 Bar solo

som

vibrato

ni- del mar de Si ne- ra-

130

 Bar solo

als meus ulls

134

 Bar solo

ja no sa- ben sa ben-

137

 Bar solo

si nó- con tem- plar- r- di es- i sols per -

140

?

&

3

6

?

&

∑

3

?

∑

b

b

b

b

5

Recuerdos

&

b

b

b

b

∑

17

?

b

b

b

b

&

b

b

b

b

∑

9

7

?

b

b

b

b

&

b

b

b

b

∑ ∑ ∑

Œ

œ
œ

œb
˙

˙

˙
˙

Œ

œ œ

œb

˙b ™ œ

œb

œ

œn œ

œ

œb

œ œ

œb

œb

œ œ

œb
œb œb

œn

œ

œb
œ

œ

wb

˙b
˙b

Ó Œ

œ ˙
œ

œb

˙b
˙

Ó Œ

œ

œ
™
œ

œb
œb

œ
œ

˙n Ó Œ

œb
œb

Ó
œ œ

w

œ

œb
œ

œb

˙

Ó

œ
œ
œ
œ
œ
œ
œ
œ
œ
œ
œ
œ
œ
œ
œ
œ

œ

Ó

œ œ
œ

œ

˙

œ

œ

˙n

Ó Œ

œ
œ
œ
œ
œ
œ
œ

œ

œ

Ó Œ

œ
œ
œ

œn œb
œ

œn
œ
œ

œb

œ

œ œ

œb œ

˙ ™
œb

˙n

˙

Œ

œ œn

œ

Ó Œ
œ

œn
œ
œ
œ
œ
œ

œ

7

201

 Bar solo

duts a

/ɑ ɔ- o ɑ

a

ɑ/

- - - -

-

144

 Bar solo

com sen to- ro dar-

147

 Bar solo

ve lles- tar ta- nes- pels ri als- de Si ne- -

150

 Bar solo

ra Si

/i

ne

ɛe

-

-

ra

ə/

-

-

Si

i

ne

ɛː

-

-

ra

ə

-

-

Si

i

-

-

155

6

4

4

4

6

4

4

4

4

4

3

4

4

4

3

4

3

4

4

4

2

4

4

4

3

4

4

4

2

4

4

4

4

4

4

4

?

b

b

b

b

(elegir la vocal más resonante según el registro)

&

b

b

b

b

∑ ∑

?

b

b

b

b

&

b

b

b

b

∑

9

?

b

b

b

b

&

b

b

b

b

∑ ∑

3

5

?

b

b

b

b

n

n

n

n

6

/i -ɛ- ə : ə - ɛ

̃

ŋs/

Sinera : Areyns

>

>

&

b

b

b

b

n

n

n

n

∑

.

.

6

6

wn

œ œn

œ

œb

œb

œ

˙n

˙b

Œ

œ
œ

œ
œn

œ

œ
œ

œ
Ó

Ó
™ œ ˙ œ

œb

˙

Ó

œb
œ
œ
œ

œn
œn

œb
œ œ

œ

œ
œ
œ
œ
œ
œ

Ó Ó

œ
œb
œ

œn

œ

œn œb

œ

œ

œn

‰

œ œn œb
˙n

œµ ˙n œ# œ
˙

œn œ

w

Ó ‰
œn

œ

œb

œ œ

Œ Œ

œ

œ

œ

œb

wB Ó Œ

œ œ

j

œb

˙

œ œb

˙

œn

˙b

Ó Œ ≈

œ
œb

œ

œ
œb

œb

Œ Œ ≈

œ
œ

œ

œ
œ

œn

Œ

8

202

 Bar solo

ne

ɛeø

ra

ə

-

-

Si

i

nera

eøə

-

-

Si

i

ne

ɛø

-

-

ra

ə

-

-

Si

i

ne

ɛ

-

-

ra

ɵ

-

-

159

Voz

saa

ʃʷa

('mar')

swa

ʃʷa

('Mediterraneo)

swa

ʃʷa

-

-

163

 Bar solo

A

ɒ

reyns

ɑ

-

-

A

ɑ

reins

a

-

-

A

ɑ a

reyns

aɛ

-

167

molto

 expressivo

 Bar solo

A

a œ-

reyns

a-

171

molto expressivo

174

1

4

1

4

1

4

3

4

4

4

1

4

3

4

4

4

4

4

3

4

4

4

3

4

1

4

?

>

>

>

&

∑ ∑

/

∑

(Ubykh)

(tiempo

para respirar)

∑

&

∑ ∑ ∑

?

Solo se pronuncian las vocales

- -

>
-

&

∑

6
6

7

?

- -

-

-

-

∑

&

∑

6

&

œ

œb

œ

˙b

œ

œb

j

˙
Œ

œ œ

j

œ ˙

œ œ

j

œ

˙

Œ

Œ ‰

œ

J

œb

j

œ

‰ Œ

œ

œb

œ

Œ

˙ Ó
˙

˙

œ#

œ

œ

œ

œ

œ

œ#

œn

œ#
œ

˙

œ#

œ

˙n

œ#

j

œ
œ

˙

Œ

Œ

œ

œ

œ

œ

œ

œ

Œ Œ

œ

œ#

œ

œn

œ

œ

Œ

œ

œ

œ

œ

œ

œ#

œ
œ œb

œb

œ

Œ

œ
œ

œ
œ#

˙

Œ

Œ

œ

œ

œ

œ

œ

œ

Œ

œ
œ#

œ#

œn

j

œn

‰

œ

œ#

œ#

j

œn

‰

œ
œ

œ

œ#

œn

j

˙n
™

9

203

 Bar solo

ou

/o᷄u̯

vocales ɔ o u

o

ɔ̄

- o

oh

ei

e᷄i̯

vocales i e a

e

ɛ

e

e̥h

susurro

(¡qué bonito!)

o

o᷅ɔh

a

a

178

 Bar solo

o

ou̯h

ou

ou̯h

ju

yu

ju

yu

ju

yu

ju

yu

ju

yu

ju

yu

ju

yu

m

m

m

m-

aah!

a᷅h!

aou!

ɒɔou/

183

 Bar solo

a ah- a ah- - - - -

187

 Bar solo

ah

189

1

4

4

4

2

4

4

4

4

4

4

4

?

∑

Æ

-

>
.

Ÿ
~~~~~~~

Ÿ
~~~~~~~

?

.

.
. .

. .

.

> -

.
>

.

∑

?

&

?

&

œ

j

1

J
œ ™

œ Œ

œ

j
œ

J

‰ Œ

˙

˙ Ó

œ

j

œ

˙

Œ

1

J ‰

1

J ‰

œ

R

œ

R

œ

R

œ

R

œ

R

œ

R

œ

r

≈

œ
œ

˙

‰ Œ

œ

j

œ

Œ

˙

œ

œ

œ

j

˙

˙

˙

Ó

œ#

œ#

œ#

œ# œ

œ

œ

œ
œb

œn

œ

œb œ

œ

œ

œ
œn

œ#

œ

œn œ

œ

œ

œ

˙

˙

œ

œ#

œ

œ# œ# œn

œn
œn œb

œ# œn

œ# œ

10

204

Voice prints (VP) is a homage to our ancestors and
the languages they used as tools to create and ex-
pand over large locations powerful civilisations. Ubi
sunt? Where are our ancestors now? Have they
disappeared? Those people and the locations they
lived in are casted in infinite events created by our
thoughts. We can hear the resonances of their voices
in the roar of time. In VP the ancestors’ voices are
articulated by the voice of a baritone and of a vio-
lin who melt their timbre in resonances of the words
uttered by a distant father: harmonics 2, 3, 4, 5, 7,
and 9 of a fundamental Bb1 tone:

� � �
��

�� � ���

How do we get to know them? We get ac-
quainted with them by picking up out of those reso-
nances the identifying features from which the voices
of ancestors are assembled in our minds. We in-
vite you to listen what they have to say to you
and hence bring them back from an alleged Atlantis.
VP includes phonemes, words and sentences sung
and spoken in Scythian, Greek, Celtiberian (Luján,
2006; Rodríguez Ramos, 1997; Villar, 1995), Ubykh
(Charachidze, 1989; Dumezil, 1931; Fell, 2012; Lade-
foged, 2005), Albanian, Catalan, English, Galician,
German, Spanish. Music is set to fragments of po-
ems by Espriu (1946) (Cementiri de Sinera, poems
4, 17), Handke (1986) (Gedicht an die Dauer) and
Llamazares (1982) (Memoria de la nieve, poem 2).

Text in the composition to be sung or spoken

Section 1: Questions, invocations, calls:
Qu-word: Ubi (Lat), où (Fr), onde (Gal), dónde (Sp), wo (Ger), where (Eng), ku (Albanian), opoú (Class.
Gr), /ma:k’ja/ (Ubykh)1

(1) a. ¿Dónde están?
(Spanish)

b. Ubi sunt?
(Latin)

c. On són?
(Catalan)

d. /ma
˙
-ø-Xa-na-y/

where-3pa-be.pl-pl-q

‘Where are they?’
(Ubykh)

e. Ku janë ata?
(Albanian)

f. /sa.ø.S’.q’á.y/
what-3sa-become-prt-q
‘What happend?’
(Ubykh)

Section 1: Ancestors:

(2) Celtiberian names (García Quintela, 2005)
a. Eburia2 Kalueni
b. Apanus3 Amboli
c. Api4

(3) Celtic names
a. Fénius Farsaid (king of Scythia)
b. Goidel Glas
c. Sru
d. Brath
e. Breogan

1 Ubykh at UCLA: recording of speaker Tevfik Esenç made in 1986 by J. C. Catford.
2 Celtic female name used in Galicia. Derived from “-ya”, “eburo”, a celtic word refering to the coniferous tree ‘taxus

baccata’, ‘tejo común ibérico’ (texeiro, gal.). /beriya/, iberia
3 Brother of Apan. Apana is a female name derived from Api.
4 ‘mother’, ‘water’. Name of Scythian goddess.

205

Section 2: Chant. Events of memory evoked through language
Language (Eng), Glossa (Greek), /bhza

˚
/ (Ubykh), Sprache (German), Gjuhë (Albanian).

They are chained in an event of infinite duration.
Sus voces braman en el tiempo
Susurros del viento
/hi

˚
i-y u o u/

/s f ì s S s/ (Ubykh fricative consonants)
pse (Albanian: ‘why?’)
En mi memoria de la nieve.
Kroykhasis (Scythian)
En la espiral del bramido del tiempo. (Julio Llamazares, Memoria de la nieve)

Locations where memory dwells

(4) Section 6: Areyns5

a. Sinera
/si.nÉ.R@/

b. Areyns
/@.RÉñz/

c. /Swa/
‘mar’ (Ubykh)

d. /SwaSwá/
Mediterranean Sea (Ubykh)

(5) Scythia
a. Kroy-khasis

‘Caucasus’6

(6) Artabrian Coast

a. Arrotrebae
/ar.tR@B.Œ/
‘Artabria’

b. Artabri
‘the artabrian people’

c. Brigantis
/bRi.Gãn.ti̇s/
‘Brigantia’7

d. Ωκεανoς
okeanós
‘Ocean’

e. Atlantis8

5 Sinera, anagram of Areyns de Mar.
6 Pliny the Elder in Natural History (77-79 A.D.) attributes a Scythian origin to the name Caucasus “kroy-khasis” mean-

ing ‘(mountain) ice-shining with white snow’. Online Etymology Dictionary: http://www.etymonline.com/ index.php?term=
Caucasus

7 Name given by Breogan to the city of A Coruna.
8 Mythical island described in Plato’s dialogues Timaeus and Critias, which allegedly became submerge into the Atlantic

Ocean.

206

References
Charachidze, Georges. 1989. Ubykh. Pages 357 – 459
of: Hewitt, B. George (ed), The Indigenous Lan-
guages of the Caucasus. Vol. 2: The North West
Caucasian Languages. Delmar, N. York: Caravan
Books.

Dumezil, Georges. 1931. Le langue des oubykhs.
Paris: Champion.

Espriu, Salvador. 1946. Cementiri de Sinera. digital
book edn. Barcelona: La Sirena.

Fell, Brian. 2012. Case and agreement in Ubykh. ms.

García Quintela, Marco V. 2005. Celtic Elements in
Northwestern Spain in Pre-Roman times. e-Keltoi,
6, 497–569.

Handke, Peter. 1986. Gedicht an die Dauer. Frank-
furt am Main: Suhrkamp.

Ladefoged, Peter. 2005. Features and parameters
for different purposes. UCLA Working Papers in
Phonetics, 1 – 13.

Llamazares, Julio. 1982. Memoria de la nieve. Con-
sejo General de Castilla y León.

Luján, Eugenio. 2006. The Language(s) of the
Callaeci. e-Keltoi: Journal of Interdisciplinary
Celtic Studies, 6, 1–34.

Rodríguez Ramos, Jesús. 1997. Sobre el origen de la
escritura celtibérica. Kalathos: Revista del sem-
inario de arqueología y etnología turolense, 189–
198.

Villar, Francisco. 1995. Estudios de celtibérico y de
toponimia prerromana. Vol. 260. Universidad de
Salamanca.

207

208

Des pas sur l’invisible
for Clarinet or Saxophone

Sílvia Teles

209

Work created in the context of the Frederico de Freitas
Interpretation Prize (2016), Aveiro University.

Cover painting: Sofia Gomes. Solaris I, 2016.

210

Notation

The score comprises three staves corresponding to three main

polarizing sounds: D4; D5 and D6 (transposed sounds) the

fundamental, 2nd harmonic and 4th harmonic respectively.

The importance of the octave interval between these three sounds

is thus established, on the one hand, as the limit of a space to be

filled or traveled, and on the other hand as an intensive space:

where different tensions, movements and temporalities are

generated.

In the space thus defined the following main effects are attributed:

Continuously sustained note without vibrato (S.V.).

Quarter tone below.

Quarter tone above.

Measured vibratto.

Sung sound in glissando between the annotated notes. It
is also transposed. If necessary, sing to the octave.

Glissando. Do not emphasize
intermediate notes.

Air sounds.

Duration: 4' cca.

Momentary interruption of the actual presence of the
note D4 (transposed sound).

211

De
s p

as
 su

r l
’in

vi
si

bl
e

fo
r C

la
rin

et
 o

r S
ax

op
ho

ne
20

16

Sí
lv

ia
 T

“S
ee

n
fr

om
 th

e
tim

el
es

sn
es

s
of

 th
e

dr
ea

m
, t

im
e

is
ap

er
tu

re
, w

ay
 o

f a
ce

ss
 a

nd
 w

ay
 to

 w
al

k.
1

30
’’

(S
.V

.)

*
Tr

an
sp

os
ed

 s
ou

nd
s.

1 Z
AM

BR
AN

O
, M

ar
ia

. 1
99

4.
 O

s
so

nh
os

 e
 o

 te
m

po
. R

el
óg

io
 d

’Á
gu

a.
 L

isb
oa

.

212

gl
iss

.

12
’’

12
’’

12
’’

2

213

18
’’

6’
’

3

214

TERRAFORMATION: FOR VIOLIN OR VIOLA AND COMPUTER

Seth Shafer
University of North Texas

sethshafer@my.unt.edu

ABSTRACT

This paper introduces my real-time notation (RTN) work
Terraformation (2016–17) for violin or viola and computer.
Program notes, performance directions, and two score ex-
cerpts from violinist Florian Vlashi’s performance on May
25, 2017 at the Third International Conference on Technolo-
gies for Music Notation and Representation are included.

1. PROGRAM NOTE

Terraformation concerns a fusion of several disparate themes.
The first, and perhaps central, theme is that of terraforming.
This is the hypothesized large-scale transformation of an
inhospitable planetary body into one fit for Earth-like or-
ganic life. Popularized in science fiction, serious studies on
the procedures for terraforming come from the gradually
maturing scientific exploration programs on Earths moon,
Mars, and Venus. These issues prompt reflection on hu-
manity’s history of colonialism, abuse of resources, lack
of environmental concern, and how these might manifest
beyond our home planet.

At the same time, Terraformation is inspired by Philip
Johnsons sculptures and architecture at the Fort Worth Wa-
ter Gardens in Fort Worth, Texas. This urban park contains
several named “micro-environments”: Active Water Pool,
Aerated Water Pool, Quiet Water Pool, Mountain, Central
Square, Stage, and Events Plaza. The style of the Gardens
is minimal and angular. They give an abstracted impression
of a natural landmark such as a mountain or a river canyon,
ignoring many realistic details in favor of sensory appeal.

The connection between terraforming and the Fort Worth
Water Gardens is humanity’s attempt to fashion a world after
its own design. This world has rough edges and missing
details, no oceans and preciously little oxygen. Everything
is synthetically derived. We bring our plants and animals,
our histories and cultures. We also bring our diseases, our
selfishness, and our unchecked ambitions. Terraformation
is a creation story.

This piece uses a computer screen to display music nota-
tion that changes during the performance based on decisions
made by both the musician and the computer. In this way,
every performance is unique and unrepeatable.

Copyright: c�2017 Seth Shafer . This is an open-access article distributed under the

terms of the Creative Commons Attribution 3.0 Unported License, which permits un-

restricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

2. PERFORMANCE DIRECTIONS

2.1 Performance Overview

Terraformation uses real-time notation and requires the per-
former to sight-read music as it is algorithmically generated
during the performance. The goal of a performance of the
piece, therefore, is not perfect adherence to the demands
of the score, but a productive interaction between human
and artificial intelligence. The performer should attempt to
both read the music as accurately as possible and respond
to it intuitively, which will in turn influence the computer’s
musical decisions. The piece is “cartographically” com-
posed meaning that the large-scale structure is mapped by
the composer but the surface details are left to the computer
and performer to determine. The violist drives the notation
forward by briefly depressing a MIDI foot switch. Pressing
and holding the foot switch down will cycle through alter-
nate paths through the piece. The pacing and direction of
the piece are thus determined by the performer.

2.2 Real-Time Audio

A computer-generated audio component is generated live
during the performance. A microphone placed near the
performer allows the computer to analyze the performance
which then influences the resulting computer-generated au-
dio. In addition, the acoustic sound of the viola is both
amplified and processed by the computer.

2.3 Real-Time Notation, Sight-Reading, and
Improvisation

The notation is generated in the moment of performance
and requires the performer to sight-read the notation in front
of an audience. This is an incredibly vulnerable act to ask
the performer to engage in. The goal of a performance of
the piece, therefore, is not about perfect adherence to the
demands of the score, but about the collaborative interac-
tion between human and computer. The performer should
attempt to both read the music as accurately as possible and
respond to and influence the computer’s musical decisions.

Although the notation for Terraformation is displayed
with a great deal of precision, the composer realizes that
the high demands of sight-reading might place the musician
in a situation where a completely accurate rendering of the
notation will result in a stilted performance. On the other
hand, this piece requires no improvisation. For this reason,
the CPN elements are supplemented with the fingerboard
diagram and color gradients. It is the composer’s hope that
these additional notational elements can be read simultane-

215

ously so as to efficiently read the notation quicker and more
accurately.

In conversations with violist Michael Capone, he narrated
his music reading experience. He would often consult the
fingerboard notation at the start of a new system, approx-
imately placing his fingers while beginning to move the
bow. Next, he would quickly assess the rhythmic figure and
shape of the gesture, and begin playing the approximate
rhythm and gesture. Finally, he would closely read the CPN,
refining his hand position, rhythm, gesture, and other play-
ing parameters in the process. The entire procedure could
be summarized as approximation moving toward accuracy
over the course of each new system of notation.

2.4 Reading Notation From A Display

Due to the real-time nature of the notation, the musical
directions must be read from a computer display. In order
to facilitate ease of use for the performer, the software that
must be run during the performance is divided into two
applications: the score application, where real-time nota-
tion will appear for the musician to read and perform, and
the audio application, where a microphone input, speaker
outputs, and computer processing levels are set.

2.5 Rehearsal and Example Scores

Despite the fact that you will be sight-reading during per-
formance, this piece requires rehearsal. Rehearsal with the
software will give the performer a general sense of how the
piece unfolds, what you might expect to play, and an ear for

the types of interactions available between computer and
performer.

If rehearsal with the software is not possible, the composer
can provide several example scores. These are intended to
provide the performer with a sense of the work and not to
be used as live performance scores.

3. PERFORMANCE HISTORY

Terraformation was premiered by violist Michael Capone
on April 24, 2017 at the University of North Texas. A video
of the premiere performance is available here:
https://youtu.be/wrAcQiGzvVQ.

Florian Vlashi preformed the premiere of the violin ver-
sion of Terraformation at the Third International Confer-
ence on Technologies for Music Notation and Representa-
tion on May 25, 2017 at the University of A Coruña, Spain.

4. ACKNOWLEDGEMENTS

The composer would like to thank violist Michael Capone
for his enthusiastic collaboration in the development of this
piece.

5. FURTHER QUESTIONS

Please address all further questions and concerns directly
to the composer at sethshafer@gmail.com. Please contact
directly for links to download the performance software and
example scores.

216

Terraformation (2016–17) Seth Shafer

Score – Notation Window

1. Current Staff System: The current location in the piece is displayed in the upper section of the GUI.

2. Bow Contact Position Gradient: This color graphic informs the player where to place the bow on the instrument.
The color matches a location shown on the viola graphic (4) and should be read left-to-right in vertical
alignment with the common practice notation (3).

3. Common Practice Notation (CPN): The traditional symbols for pitches, rhythms, articulations, dynamics, and
other playing techniques are displayed here. Text indications for tempo and character are notated in the
top left corner.

4. Viola Graphic: This graphic serves as a reference for the bow contact position gradient (2) showing the physical
locations of the different colors.

5. Fingerboard Notation: This is a pictorial representation of the viola’s fingerboard. Each finger is notated with a
corresponding number and color on each of the instrument’s strings. The pitch of the lowest string is
displayed in black below. Further, the player may be asked to slide the hand position along the fingerboard
to an ending location indicated by small, colored circles. The pitch of the lowest string at the terminus of a
glissando is displayed in grey below.

6. Formal Map: This graphic informs the player of their current location in the overall form. The red bar progresses
from left-to-right at each press of the foot switch. The vertical axis of the graphic indicates expected areas
of intense rhythms, dynamics, or range. The current system number is displayed in the upper left hand
corner.

7. Read-Ahead Staff System: The lower section of the GUI allows the player to read ahead and anticipate upcoming
material.

217

Terraformation (2016–17) Seth Shafer

Performance Techniques

Double harmonic trill: quickly trill between two double-stopped harmonics using a legato bow. Pitches indicate

fingering location. Duration of the trill can be determined by the performer rather than the exact number
of notes.

Double harmonic trill with tremolo: quickly trill between two double-stopped harmonics using a tremolo bow.

Pitches indicate fingering location. Duration of the trill can be determined by the performer rather than
the exact number of notes.

Bow behind bridge: the orange gradient above the notation indicates that the performer bow behind the bridge.

Specific string and resulting pitch are indeterminate.

218

Terraformation (2016–17) Seth Shafer

Pizzicato strum: pluck chord using fingers. Direction of the strum is either indicated with up or down arrows, or (as

pictured here) is of indeterminate direction. Speed and character of the strum indicated in text.

Pizzicato glissando: pluck the string and immediately slide the left hand finger in indicated direction.

Ricochet bowing: throw down bow at the string with enough force to cause the bow to bounce on the string.

Ricochet bowing with glissando: glissando with left hand finger while performing a ricochet bow technique.

219

Terraformation (2016–17) Seth Shafer

Footswitch (Pedal) Technique
The performer controls the progression of the music by depressing a MIDI footswitch. When the performer has
finished playing the music on the current staff system, a quick press and release of the footswitch will cause the
music in the read-ahead staff system to move up to the current staff system.

The performer can choose alternative options from the read-ahead staff system by pressing and holding the
footswitch until the read-ahead staff system refreshes. The performance can execute a “long press” as many times as
they want to cycle unlimited alternative music options. When an option appears that the performer would like to
play, a “short press” on the footswitch will cause it to move up to the current staff system.

Flow Between Systems
In general, the performer should strive to connect each system of notation to the next to create a seamless musical
experience. However, the performer is free to speed up or slow down the pace of notation advancement in any way
that they deem musical.

220

Terraformation (2016–17) Seth Shafer

Study Scores
Overview
No single score can represent Terraformation. Individual performances can be captured and notated for study. Two
score excerpts from the same performance on May 25, 2017 by violinist Florian Vlashi at the Third International
Conference on Technologies for Music Notation and Representation are described and then presented below.

Tree Structure Score
Once selected music is selected by depressing the footswitch, the algorithms driving Terraformation create new
notation based on the current material. The performer has the power to select what to play. This choice affects the
outcome of subsequent music, which is in turn also open to performer selection. This creates a type of tree structure
of performer choice where future choices are dependent on previous ones.

The notation of the piece is therefore directly shaped by the performer’s selection process. The tree structure score
shows the performer’s choices in dark black notation connected by arrows. The light grey notation is indicative of
other choices that may have been available given the number of notation-generating parameters. These parameters
are printed above each system and describe the degree of variability at each moment in the piece. This single page of
Terraformation corresponds to the first six pages of the performer’s view score.

Performer’s View Score
Another way to examine Terraformation is from the vantage point of the performer. This score captures exactly what
was displayed during performance. As already described, the top system is the current staff system and the bottom
system is the read-ahead staff system.

221

&
O
RD

"#

> P!"#
$#
%&
'

1&
&'
($
31
44
35

%
&'

&ST
!
"$

"$

>
>

>
!"#
$#
%&
'

!"#
$#
%&
'

1&
&'
($
31
44
35

!"#
$#
%&
'

P
p

&SP
"$

æ p
F

1&
&'
($
31
44
35

&
ST

ST
%
&'

>
>

!"#
$#
%&
'

!"#
$#
%&
'

1&
&'
($
31
44
35

p

&M
ST

!
"#

O
RD

!
"$

#>
>

#> P

!"#
$#
%&
'

!"#
$#
%&
'

!"#
$#
%&
'

1&
&'
($
31
44
35

&M
ST

"#

æ
F

1&
&'
($
31
44
35

&
SP

%
&'

O
RD

!
"$

æ
æ

1&
&'
($
31
44
35

F
P

p

&O
RD

"$
!
"$

"$
SP

%
&'

#>
>

#>
>

!"#
$#
%&
'

!"#
$#
%&
'

!"#
$#
%&
'

!"#
$#
%&
'

p
p

1&
&'
($
31
44
35

&ST
%
&'

M
ST

"$

>
#>

!"#
$#
%&
'

!"#
$#
%&
'

1&
&'
($
31
44
35

&SP
SP

%
&'

"$

b>
>æ

b>
>æ

!"#
$#
%&
'

!"#
$#
%&
'

1&
&'
($
31
44
35

F
P

F
F

&SP
"$

æ p
F

1&
&'
($
31
44
35

&SP
"$

>1&
&'
($
31
44
35

F

&ST
"#

>
#

1&
&'
($
31
44
35

F
p

&O
RD

"#
%
&'

ST

>
b >æ

>
!"#
$#
%&
'

!"#
$#
%&
'

1&
&'
($
31
44
35

F
F

ƒ

F
&O

RD
!
"$

O
RD

"#
!
"$

>
>

>
!"#
$#
%&
'

!"#
$#
%&
'

!"#
$#
%&
'

1&
&'
($
31
44
35

F
Ï

&
O
RD

!
"$

O
RD

!
"$

æ
æ

1&
&'
($
31
44
35

F
P

&
SP

%
&'

b>!"#
$#
%&
'

1&
&'
($
31
44
35

p

&
O
RD

!
"#

> P
!
"#
$%&
'(
%$"
)
*$"
)
%+"
,,
('
-%
.%
)
#/
0$
12

!"#
$#
%&
'

&M
ST

O
RD

"#

>
> p

!"#
$#
%&
'

!"#
$#
%&
'

1&
&'
($
31
44
35

&O
RD

"$
SP

%
&'

>
>

!"#
$#
%&
'

!"#
$#
%&
'

1&
&'
($
31
44
35

&
O
RD

ST >
>

!"#
$#
%&
'

!"#
$#
%&
'

1&
&'
($
31
44
35

&
O
RD >!"#
$#
%&
'

1&
&'
($
31
44
35

&O
RD

SP
%
&'

#>
>

!"#
$#
%&
'

!"#
$#
%&
'

1&
&'
($
31
44
35

P
P

Rh
yt

hm
 V

ar
iab

les
Pi

tc
h P

at
te

rn
 V

ar
iab

les
Ar

tic
ula

tio
n V

ar
iab

les
Fr

et
 R

an
ge

Pi
tc

h-
cla

ss
Pi

tc
h-

cla
ss

 se
t

1 1 1 low 9
(0
37
)

Rh
yt

hm
 V

ar
iab

les
Pi

tc
h P

at
te

rn
 V

ar
iab

les
Ar

tic
ula

tio
n V

ar
iab

les
Fr

et
 R

an
ge

Pi
tc

h-
cla

ss
Pi

tc
h-

cla
ss

 se
t

2 2 2 low 9
(0
37
)

Rh
yt

hm
 V

ar
iab

les
Pi

tc
h P

at
te

rn
 V

ar
iab

les
Ar

tic
ula

tio
n V

ar
iab

les
Fr

et
 R

an
ge

Pi
tc

h-
cla

ss
Pi

tc
h-

cla
ss

 se
t

6 6 6 fre
e

fre
e

fre
e

Rh
yt

hm
 V

ar
iab

les
Pi

tc
h P

at
te

rn
 V

ar
iab

les
Ar

tic
ula

tio
n V

ar
iab

les
Fr

et
 R

an
ge

Pi
tc

h-
cla

ss
Pi

tc
h-

cla
ss

 se
t

4 4 4 fre
e 9

(0
37
)

Rh
yt

hm
 V

ar
iab

les
Pi

tc
h P

at
te

rn
 V

ar
iab

les
Ar

tic
ula

tio
n V

ar
iab

les
Fr

et
 R

an
ge

Pi
tc

h-
cla

ss
Pi

tc
h-

cla
ss

 se
t

6 6 6 fre
e

fre
e

fre
e

Rh
yt

hm
 V

ar
iab

les
Pi

tc
h P

at
te

rn
 V

ar
iab

les
Ar

tic
ula

tio
n V

ar
iab

les
Fr

et
 R

an
ge

Pi
tc

h-
cla

ss
Pi

tc
h-

cla
ss

 se
t

4 4 4 fre
e 9

(0
37
)

Se
th

 S
ha

fe
r

Tr
ee

 st
ru

ct
ur

e s
co

re
 ge

ne
ra

te
d o

n M
ay

 24
, 2

01
7 a

t t
he

 Th
ird

 In
te

rn
at

ion
al

Co
nf

er
en

ce

on
 Te

ch
no

log
ies

 fo
r M

us
ic

N
ot

at
ion

 an
d R

ep
re

se
nt

at
ion

 in
 pe

rfo
rm

an
ce

 by
 vi

oli
ni

st
Fl

or
ian

 V
las

hi

222

Seth Shafer

Performer’s view score generated on May 25, 2017 at the Third International Conference
on Technologies for Music Notation and Representation in performance by violinist Florian Vlashi

ª ª

223

ª ª

ª ª

224

ª ª

ª ª

225

ª ª

ª ª

226

ª ª

ª ª

227

228

HOMENAJE A CERVANTES: FOR VIOLIN, COMPUTER AND
PROJECTIONS

Richard Hoadley
rhoadley.net

music@rhoadley.net

ABSTRACT

This is a presentation of the dynamic score Homenaje a
Cervantes (Homage to Cervantes) created for violin, com-
puter and projections, originally commissioned for and first
performed at the University of A Coruna, Spain in May
2017. The piece has been composed using the software
packages SuperCollider and INSCORE; the violin part should
be played live from a laptop screen or a projection. The
texts used are the original Cervantes text, an English trans-
lation and a series of original poems created specially for
this project by the poet Phil Terry.

1. INTRODUCTION

This paper seeks to demonstrate selected aspects of the
technical and aesthetic structure of the composition Hom-
enaje a Cervantes; in particular it exposes and examines
the layers of code constructed to generate the notations for
performance by the violinist. Algorithmic material ma-
nipulating audio, text and graphics is generated through
scheduling of functions, audio analysis and in certain con-
figurations physical computing or a combination of these
elements. Functions and processes are constructed within
SuperCollider’s native language (sclang)[1]. Parts of the
piece have been arranged to allow interaction with a dancer
should one be available. These parts (primarily the sus-
tained violin material towards the end of the piece) utilise
the Microsoft Kinect for Xbox One sensor. SuperCollider
algorithms generate time, frequency, amplitude and con-
trol values which are then sent either to the SC synth or
via Open Sound Control (OSC), (using a custom SC class
developed by the author) to the programme INSCORE [2].
INSCORE is able to generate and control a variety of nota-
tions, including common practice music notation. While,
for both technical and musical reasons, I am currently most
involved with the latter aspect, I am involved in other col-
laborative projects making use of generative graphics and
text.

One way in which SuperCollider can be used is by select-
ing a line or larger region of code and ‘evaluating’ it. The
relevant code is rendered immediately (i.e. just in time, or
as soon as possible). If a section of code is enclosed within
two parentheses — (code here) — inserting the cursor at

Copyright: ©2017 Richard Hoadley et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

any point between these and pressing <enter> or equiva-
lent will evaluate that section of code. As the piece is to
a significant extent performed through such live evaluation
of code segments it can be said to exploit certain live cod-
ing practices. Due to the complex construction of much of
the code, however, only a minimal quantity of actual typed
coding is undertaken during any given performance. De-
ciding what is coded, when and how during a live coding
performance is a fascinating issue worthy of significant fu-
ture research. There is further discussion of live coding in
my own work in [3] and more about the generic idea of live
coding in [4].

To fully appreciate what follows some familiarity with
SuperCollider’s built in language sclang and Guido nota-
tion is desirable. The code is provided here for illustrative
purposes only. It will not run successfully without a variety
of dependencies.

At various points in the text I refer to passages from a
demonstration video. This can be found at the following
web address: http://rhoadley.net/video/homage.

2. TITLE

Figure 2 shows Homenaje’s title screen and code list-
ing 1 shows the relevant ‘live’ source code. The latter
demonstrates an important aspect of my use of INSCORE
in this case: the necessity to ‘reset’ particular groups of
elements at strategic moments. In this case, if Homenaje
has been played or rehearsed and we wish to return to the
beginning, many objects will have been displaced and re-
formatted. The apparently redundant codes here, such as
moving, scaling and (re-)setting the origin are necessary
for this reason. The code also shows the way in which
even in this digital environment, there is still a need for
reference to physical aspects of the score (e.g. page height
and width).

Lines of code beginning ~homage reference the INSCORE
class for SuperCollider prepared by the author. This is
purely a convenience class designed to make the coding
of Guido music notation within INSCORE easier and more
straightforward. In the following case, the following line
of code:

~homage.note("homageWin", 0, "a")

outputs to INSCORE the following OSC string:

/ITL/homageWin/score0 set gmn [a]

which INSCORE converts into the notation snippet shown
in figure 1. The INSCORE class, once complete, including

229

Figure 1: A simple INScore score.

properly prepared SC help files, will be made available for
public download 1 . As can be seen in line 19 of code list-
ing 1, the class makes use of INSCORE’s ability to make
use of fully formattable HTML code.

Figure 2: the title screen.

1
2 // the code listing below displays the title and formats the

score
3 (
4 ~pageWidth="28cm";
5 ~pageHeight="36cm";
6 ~myNoteArray = " "; // empty score
7 ~homage.note("homageWin", 0, ~myNoteArray);
8 ~homage.scale("homageWin", "score", 0, 0.5); // size the score
9 ~homage.move("homageWin", "score", 0, -1.4, -0.8, 1); //

position the score
10 ~homage.origin("homageWin", "score", 0, -1, -1); // position

the score
11 ~homage.htmlFull("homageWin", "html", 0, "Helvetica", "50pt",

"normal", "normal", 0.1, ~argbConvert.value([255, 100,
100, 100]), " ");

12
13 Task({ 0.25.wait;
14 ~homage.move("homageWin", "text", 0, 3.0, 3.0);
15 ~homage.scale("homageWin", "html", 0, 1);
16 ~homage.rotate("homageWin", "html", 0, 0, 0); // due to

later transformations, make sure the rotation of the text
is reset

17 ~homage.origin("homageWin", "html", 0, 0, 0);
18 ~homage.move("homageWin", "html", 0, 0, 0);
19 ~homage.htmlFull("homageWin", "html", 0, "Helvetica",

"50pt", "normal", "normal", 0.1, ~argbConvert.value([255,
100, 100, 100]), "homenaje a cervantes"); // this is the
title

20 }).play;
21)

Code listing 1: the title screen listing

3. MELODY

Once the title has faded, sounds of horses walking and
the wind blowing emerge, creating an atmospheric sonic

1 The current version can be downloaded here:
http://rhoadley.net/inscore/INScore.sc , but without documentation

Figure 3: Initial melody.

backdrop. Blurred coloured areas fade in and out. The
colours used (green, blue, grey and brown) are algorithmi-
cally generated variants of four prominent colours present
in the landscape of La Mancha[5] (see figures 4 and 5, the
latter of which shows the background colours in use).

Figure 4: Windmills and landscape at La Mancha, Spain,
showing the colours of the landscape used as backdrops for
the notations.

Figure 5: Example of colours from figure 4 used as back-
drop

Figure 3 shows a rendition of Homenaje’s opening melody,
and code listing 2 the equivalent code. Please refer to
the inline comments for more explanatory detail about the
code itself.

1
2 (

230

3 ~playViolin = true; ~myType = 1; // '~playViolin' set to true
will play an audio rendition of the melody. If a real
violinist is available, this should be set to false.
'~myType' provides options in the style of the rendition.
If '~playViolin' is true, then '~myStyle' set to 1 will
play louder, more vigorous sounding violin samples

4
5 Task({
6 // this is the Task that generates a version of the melody.

Note that there are still a lot of formatting issues to be
dealt with as music notation is so predominantly a
graphic/semantic language.

7
8 ~homage.colour("homageWin", "text", 0, [0,0,0,255]); // set

the colour
9 4.do({|i| ~homage.text("homageWin", 0, text: 4 - i);

0.5.wait; }); // generate a count in
10
11 // the three functions using ".stop" end any already running

function. We then clear the score and run the melody
generator (~doViolinMelWithCursorFunc) again.

12 ~colourFadeTask.stop; ~homageViolinMelTask.stop;
~homageCursorTask.stop;

13 ~homageViolinMelody = ~scoreFormat ++ " \\intens<\"f\",
dy=-10hs>";

14
15 // ~doViolinMelWithCursorFunc is the main function, which

calls on a further function to generate the melody, play
it, display it and synchronise it with a cursor to aid
real-time performance

16 ~doViolinMelWithCursorFunc.value(rrand(6, 15), [55, 74], 2,
[~minMaxAmp[0], ~minMaxAmp[1]], 120, ~myType, ~playViolin,
durFactor: 8, countIn: 2);

17
18 // the below displays the instruction "sempre tenuto e

marcato".
19 // both ~doViolinMelWithCursorFunc and ~colourFadeGlobal

fade the relevant element.
20 ~homage.text("homageWin", 0, text: "sempre tenuto e

marcato"); ~homage.colour("homageWin", "text", 0,
[0,0,0,255]);

21 ~colourFadeGlobal.value("~homage", "homageWin", "text", 0,
[255, 0], 4);

22 }).play; // end of melody generating task.
23)

Code listing 2: Top level code of opening melody

Code listing 2 is top level code. In performance, evalu-
ation of this complete section causes the main work to be
done by the function ~doViolinMelWithCursorFunc (see
code listing 3). This function synchronises
~doHomageViolinMel (line 4) with a moving cursor in-
tended to help the performer.

1
2 (
3 ~doViolinMelWithCursorFunc = ({ arg noteNum=4, range=[55, 62],

octaves=2, amplitude=[0.6, 0.8], time=120, type = 1,
play=true, durFactor=1.0, countIn = 2; // bpm

4 var cursorPosX=0.1, cursorPosY = -0.5;
5
6 // colour the score black
7 ~homageGuido[0][10] = [0,0,0,255];

~homage.colour("homageWin", "score", 0, [0,0,0,255]);
8
9 ~homageViolinMelTask.stop; ~homageCursorTask.stop; // stop

any existing tasks
10 ~homage.scale("homageWin", "score", 0, 0.45); // set the

scale
11 ~homage.tempo("homageWin", "cursor", 0, time); // set the

cursor tempo
12
13 // the function that generates the melody itself
14 ~doHomageViolinMel.value(noteNum, range, octaves,

amp:{amplitude.choose}, type: type, wait: true, play:
play, sayDone: true, waitFactor: (60/time)*0.5, mm: time,
scoreSize: ~scoreSize, durFactor: durFactor, countIn:
countIn);

15
16 ~homage.date("homageWin", "cursor", 0, 0); // the cursor
17
18 // describe the movement of the cursor
19 ~homageCursorTask = Task({
20 var date, noteWait, totalWait=0;
21 noteNum.do({|i|
22 ~homage.position("homageWin", "cursor", 0, cursorPosX,

cursorPosY);
23 if (cursorPosY == -0.5, { cursorPosY = -0.7 }, {

cursorPosY = -0.5 });
24 noteWait = (60/time);
25 totalWait = totalWait + noteWait;

26 noteWait.wait;
27 });
28
29 (totalWait*0.75).wait;
30
31 ~homageGuido[0][10][3] = 255; // set alpha channel to

opaque
32 ~colourFadeGlobal.value("~homage", "homageWin", "score",

0, [~homageGuido[0][10][3], 0], 3); // fade the score
33 }).play;
34 });
35);

Code listing 3: ⇠doViolinMelWithCursorFunc

The violin melody itself is generated (and optionally ei-
ther played, displayed or both) by ~doHomageViolinMel,
shown in code listing 4. Available arguments include:

• the number of notes;

• the range of the notes in terms of midi pitch;

• the range of the notes in terms of the number of oc-
taves potentially covered;

• the variety of durations to be used and the weight-
ings of those durations;

• the duration and amplitude of each audio rendered
note;

• whether to display the score at once or in real time,
whether to play it, whether to display it at all.

The process of ‘composing’ these algorithms is itself an
essential part of the creative act: each compositional ges-
ture will require different musical options. Arguments are
added (or, more rarely, taken away) as the aesthetic need
arises. If a function is used in a subsequent composition it
is likely that these arguments will be tidied up in order to
promote clarity and ease of use.

1 (
2 ~doHomageViolinMel = ({ arg num=10, range=[67, 74], numOct=2,

durRange=[0,1,2,3,4,5],
durWeight=[0.15,0.24,0.21,0.21,0.12,0.08], durFactor=1.0,
amp=1.5, wait=true, play=true, display=true,
waitFactor=0.25, type=1, halo=[4.0, 10.0], sceneNum=0,
sayDone=false, mm=120, scoreSize =
"\\pageFormat<w=20cm,h=24cm>", countIn = 2;

3 var durDictionary= Dictionary.newFrom(List[0, " ", 1,
"*1/8", 2, "*1/4", 3, "*1/4.", 4, "*1/2", 5, "*5/8", 6,
"*1/2.", 7, "*7/8", 8, "*1/1", 9, "*9/8"]), score =
scoreSize + "\\clef<\"treble\"> \\meter<\"2/4\">
\\tempo<\"[1/4]=" + mm + "\" ,dx=-5, dy=4> _ _", dur = 1,
note = rrand(range[0], range[1]), prevNote = 0, octave = [
0, 1].choose, chordInt = 0, chordDurString, chordDurNum;

4
5 ~homageViolinMelTask.stop; // stop any existing running tasks
6
7 if (~homageViolinMelody != "", { score =

~homageViolinMelody });
8
9 ~homageViolinMelTask = Task({

10 num.do({
11 if (durWeight == "choose", { dur = durRange.choose},

{ dur = durRange.wchoose(durWeight) }); // dur is the
number (1-8)

12
13 octave = numOct.rand; // choose octave
14
15 // if there is a repeated note, get a new one
16 while ({ note == prevNote },
17 {
18 note = rrand(range[0], range[1]); // pick a

pitch within the range
19 note = note + (octave*12); // transpose the

pitch to the octave chosen earlier
20 });
21

231

22 prevNote = note; // keep a record of the chosen note
23
24 // if there's a chord, you have to notate it

differently (a chord is indicated by setting 'dur' to 0)
25
26 if (dur == 0, {
27 chordInt = [8, 9, 10].choose; // choose the chord

interval. The interval will be a minor 6th, a major 6th
or a minor 7th as these are relatively straightforward
intervals for a violinist to play. If a chord is needed,
'dur' is set to zero, so we have to pick another duration.
We pick from the original list, but without the zero

which we don't want to pick again.
28
29 if (durWeight == "choose", { chordDurNum =

durRange.choose}, { chordDurNum =
durRange.wchoose(durWeight); });

30
31 // if zero has been chosen, pick something else from the list

until it isn't zero (the chord still needs a duration)
32 while ({chordDurNum == 0}, {
33 if (durWeight == "choose", { chordDurNum =

durRange.choose}, { chordDurNum =
durRange.wchoose(durWeight); });

34 });
35
36 chordDurString = durDictionary[chordDurNum]; //

string of the chord duration (i.e. "*1/4")
37
38 // add to the score string, if we are using a chord
39 score = score + "{" ++ ~guidoNoteMap.value(note) ++

chordDurString ++ "," ++
~guidoNoteMap.value(note+chordInt) ++ "}";

40
41 }, { // add to the score string if there *isn't* a

chord
42 score = score + ~guidoNoteMap.value(note) ++

durDictionary[dur];
43 });
44
45 // send to INScore if display is true
46 if (display == true, { ~homage.note("homageWin",

sceneNum, score) });
47
48 ~homageViolinMelody = score; // store the score data

in an environment variable
49
50 if (play == true, { // do we want to hear it?
51 if (dur == 0, { // if it's a chord
52
53 // for aggressive playback, type = 1
54 if (type == 1 , {
55 ~playViolinArcoSforzando.value(((chordDurNum)*waitFactor)*durFactor,

0.01, 0.5, 0.49, (note), 1.0, amp);
56 ~playViolinArcoSforzando.value(((chordDurNum)*waitFactor)*durFactor,

0.01, 0.5, 0.49, (note + chordInt), 1.0, amp); // second
note

57 },{
58 ~playViolinArcoGentle.value(((chordDurNum)*waitFactor)*durFactor,

0.01, (note + chordInt), 1.0, amp)
59 });
60
61 // the 'halo' effect generates a longer (usually quieter)

sustained note emanating from each `formally' played note,
creating a `halo' of sound. To switch off use halo = [0,0]

62 ~playViolinArcoGentle.value(rrand(halo[0],
halo[1]), 0.01, (note + chordInt), 1.0, amp);

63 });
64
65 if (type == 1 , { // aggressive or gentle?
66

~playViolinArcoSforzando.value((dur*waitFactor)*durFactor,
0.01, 0.5, 0.49, note, 1.0, amp)

67 }, {
68 ~playViolinArcoGentle.value((dur*waitFactor)*durFactor,

0.01, note, 1.0, amp);
69 });
70
71 ~playViolinArcoGentle.value(rrand(halo[0], halo[1]),

0.01, note, 1.0, amp);
72 }); // if play is false, we skip the above
73
74
75 if (wait == true, { // do we want the whole score at

once (false, we don't want to wait)?
76 if (dur == 0, { ((chordDurNum)*waitFactor).wait;

}, {(dur*waitFactor).wait; });
77 });
78 }); // end do
79
80 // tell us if you've finished playing/printing the melody
81 if (sayDone == true, {
82 "homageViolinMelody done".postln;
83 ~homage.colour("homageWin", "score", 0, [0,0,100,255]);
84 ~homageGuido[0][10] = [0,0,100,255];
85 });
86 }).play;
87 });

Code listing 4: ⇠doHomageViolinMel

3.1 The Aesthetics of Melody Generation

Straightfoward algorithms govern the details of the gen-
eration of this initial melody. It terms of compositional
process, the ideas are developed in ways that mirror (my
own) ‘standard’, non-digital compositional methods, fo-
cusing on traditional musical elements such as atmosphere,
tempo, dynamics, articulation and tessitura. The develop-
ment of the construction of the algorithm relies very much
on trial and error, although previous experience gained through
the previous development of algorithms has a substantial
influence.

In code listing 4, one of the first ‘decisions’ involves the
choice of duration for a new event. This involves a variety
of durations (line 2):

durRange=[0,1,2,3,4,5]

and corresponding probability weightings:

durWeight=[0.15,0.24,0.21,0.20,0.12,0.08]

Because the creative intention was to create short, inten-
sive, active and rhythmically metrical phrases, durRange
only consists of whole notes, where ‘1’ represents one qua-
ver’s duration. As the intended mood of these melodies is
vigorously active, the weightings favour the shorter dura-
tions with the most weighted duration being one crotchet
(one quarter note) in length. Ultimately, the final values for
these are achieved through repeated generation and regen-
eration until the aesthetically required balance is achieved.

Subsequent algorithms choose the octave of the pitch,
and the pitch itself, in this case a randomised value from
the provided range. A previous duration value of zero in-
dicates that a chord should be created, and as the violin-
ist must navigate the dynamic part at sight, only the most
straightforward violin diads are allowed: a minor or major
sixth or a minor seventh (code listing 4, line 26+).

The algorithm also includes the possibility of specifying
one of two different ‘styles’ of playback (should playback
be required in the absence of a human violinist). These
styles are either using louder samples with a sharp attack
or quieter samples with a more gentle attack.

4. TEXTS, CHORDS AND LINES

The next section of Homenaje (from about 2:50 of the
demonstration video) introduces sections of text from Cer-
vante’s original version of Don Quixote 2 as well as an En-
glish translation 3 . Text excerpts are accompanied by a va-
riety of musical figures, described as either lines or chords.
Each of these types of figures has originally appeared in
earlier compositions (e.g. Calder’s Violin[6] and How To
Play the Piano[7]).

4.1 Texts

The digital texts were converted into UTF-8 format text
files allowing for the straightforward inclusion of Span-
ish accents. During the set-up of the piece these files are
loaded into environment variables:

2 Original available here
3 English translation available here

232

g = File(~path ++
"text/quijote_sp_text_only_utf-8.txt","r");

~homSpWords = g.readAllString;
g.close;

The entire text is then converted to lowercase so avoid-
ing difficulties of sentence construction using upper-case
lettering:

~stanzaTextInputSp = ~homSpWords.toLower;

Only small pieces of the text are chosen for display. Due
to the size of the entire text and the time it can take to
choose a range within it, a smaller section is chosen in ad-
vance, and the smaller chunk to be used is taken from that
and stored in another environment variable. In the below,
a starting point is chosen from within the entire text, and
then a chunk of 1000 characters is chosen from that start-
ing point:

// used in ~generateFullStanza
~randPlaceInStream =

((~stanzaTextInputSp.size)-1200).rand;
~stanzaTextInputSpSmall =

~stanzaTextInputSp[~randPlaceInStream..
(~randPlaceInStream+1000)];

Below is the function ~homageTextFunc which auto-
mates this process. The arguments mean that the main
function will be run just once, and will produce a ‘stanza’
of one word and one line. After it has appeared, it will
fade out in between 0.2 and 6 seconds. The language cho-
sen will be English (a zero value is Spanish and a value
in between is the probability that one language or the other
will be chosen — a value of 0.5 will mean each language is
equally likely. At the same time a fragment is chosen from
audio files of readings of each version. This will have an
amplitude of between 0.1 and 0.35 (maximum amplitude
is nominally 1.0), and the function will pause between 1
and 4 seconds between lines and 2 and 7 seconds between
‘stanzas’:

~homageTextFunc.value(1, [1, 1], [0.2,
6.0], 1.0, [0.1, 0.35], [1.0, 4.0],
[2.0, 7.0]);

Code listing 5 contains a full listing of the function.

1 (
2 ~homageTextFunc = ({ arg doNum=40, stanzaDoNum=[1, 6],

stanzaFadeTime=[0.2, 6.0], langVar=0.5, ampArray=[0.1,
0.35], lineWait=[1.0, 4.0], stanzaWait=[2.0, 7.0];

3 ~stanzaRepeatTask.stop; ~stanzaTask.stop; // stop any
running tasks

4 ~stanzaRepeatTask = Task({
5 var lang = ~voiceBufEn;
6 doNum.do({ |i|
7 ("~homageTextFunc stanza:" + i ++ "/" ++

doNum).postln; // keep us informed
8 (
9 ~stanzaWordNum = [3, 6]; ~stanzaLineNum = [1, 3];

10 ~stanzaTask = Task({
11 var stanzaTaskNum = rrand(stanzaDoNum[0],

stanzaDoNum[1]);
12 stanzaTaskNum.do({ |i|
13 ("stanzaTaskNum:" + i ++ "/" ++

stanzaTaskNum).postln;
14

~generateFullStanzaOrig.value(rrand(stanzaFadeTime[0],
stanzaFadeTime[1]));

15 if (langVar.coin, { lang = ~voiceBufEn }, {
lang = ~voiceBufSp });

16 // here is the audio taken from readings of
the book in Spanish and English. Currently the audio is

chosen at random from within the files
17 if (0.99.coin, { ~fragmentSynthEnv =

Synth.new("fragmentSynthEnv", [\dur, rrand(3.1, 8.0),
\amp, rrand(ampArray[0], ampArray[1]), \bufnum,
lang.bufnum, \startPos, rrand(0, lang.numFrames), \rate,
1, \attack, 0.3, \sustain, 0.4, \release, 0.3, \effectBus,
~effect]); });

18 rrand(lineWait[0], lineWait[1]).wait;
19 });
20 }).play;
21);
22 rrand(stanzaWait[0], stanzaWait[1]).wait;
23 });
24 }).play;
25 });
26);

Code listing 5: ⇠homageTextFunc

1
2 (
3 // initialise variables
4 if (~stanzaLayerNum == nil, { ~stanzaLayerNum = 0 });
5 if (~stanzaSceneArray == nil, { ~stanzaSceneArray = [

nil,nil,nil,nil,nil,nil,nil,nil,nil,nil,nil] }); // this
array is to keep track of which object layers contain what
information and whether they are fading, rotating, growing
or shrinking, etc.

6 ~fullStanzaFontSize=10;
7
8 // the function
9 ~generateFullStanzaOrig=({ arg fadeTime=((4.0.rand)+0.5);

10 var colourRand=155.rand, alphaRand=(155.rand)+100,
hexColour, textStreamPortion="", randPlaceInStream,
fadeInAndOutRoutine;

11
12 // choose a layer that is not already involved (e.g. fading)
13 while ({ (~homageHTML[~stanzaLayerNum][12][1] == true) ||

~stanzaSceneArray.includes(~stanzaLayerNum) == true }, {
~stanzaLayerNum = 12.rand });

14
15 // set the font size, face, colour and alpha values
16 ~homageHTML[~stanzaLayerNum][15] =

((~fullStanzaFontSize.rand)+5).asString ++ "pt";
17 ~homageHTML[~stanzaLayerNum][14] = ~fontArray.choose;
18 hexColour = ~argbConvert.value([alphaRand, colourRand,

colourRand, colourRand]);
19 ~homageHTML[~stanzaLayerNum][10] = [colourRand, colourRand,

colourRand, alphaRand];
20 ~homageHTML[~stanzaLayerNum][11] = alphaRand;
21
22 // choose the larger section
23 randPlaceInStream =

((~stanzaTextInputSpSmall.size)-120).rand;
24
25 // choose the smaller text from within this
26 textStreamPortion =

~stanzaTextInputSpSmall[randPlaceInStream..(randPlaceInStream+120)];
27
28 ~stanzaText = ~createTextStreams.value(textStreamPortion,

~stanzaWordNum, ~stanzaLineNum);
29
30 ~phonemeSigns[~stanzaLayerNum] = ~stanzaText;
31
32 // this actually sets the text on screen
33 ~homage.htmlFull("homageWin", "html", ~stanzaLayerNum,

~homageHTML[~stanzaLayerNum][14],
~homageHTML[~stanzaLayerNum][15],
~homageHTML[~stanzaLayerNum][2],
~homageHTML[~stanzaLayerNum][3], 0.1, hexColour,
~phonemeSigns[~stanzaLayerNum]);

34
35 // move the text
36 ~homageHTML[~stanzaLayerNum][4] = (rrand(~winSize[0].neg,

~winSize[0]))*0.6;
37 ~homageHTML[~stanzaLayerNum][5] = (rrand(~winSize[1].neg,

~winSize[1]))*0.6;
38 // set to (slightly smaller than) the window bounds
39 ~homage.move("homageWin", "html", ~stanzaLayerNum,

~homageHTML[~stanzaLayerNum][4],
~homageHTML[~stanzaLayerNum][5], ~stanzaLayerNum);

40
41 // scale the text
42 ~homageHTML[~stanzaLayerNum][9] = rrand(4.0, 8.0);
43 ~homage.scale("homageWin", "html", ~stanzaLayerNum,

~homageHTML[~stanzaLayerNum][9]);
44
45 // now start to fade the text
46 ~htmlFadeFull.value("~homage","homageWin", "html",

~stanzaLayerNum, ~homageHTML[~stanzaLayerNum][14],
~homageHTML[~stanzaLayerNum][15],
~homageHTML[~stanzaLayerNum][2],
~homageHTML[~stanzaLayerNum][3], 0.1,
~phonemeSigns[~stanzaLayerNum],
[~homageHTML[~stanzaLayerNum][11], 0],

233

~homageHTML[~stanzaLayerNum][10], fadeTime);
47
48 // collect more than one to avoid repetition when the

actions overlap...
49 ~stanzaSceneArray = ~stanzaSceneArray.add(~stanzaLayerNum);
50 if (~stanzaSceneArray.size > 10, { ~stanzaSceneArray =

~stanzaSceneArray.drop(1) });
51 });
52)

Code listing 6: ⇠generateFullStanzaOrig

4.2 Lines and Chords

Lines and chords are two types of generative musical fig-
ures both of which have appeared in earlier compositions.
More detail about lines and chords, their construction, and
the manner of their representation can be found in [7].

5. WINDMILLS

One of the main focuses of Homenaje must be, of course,
La Mancha’s infamous windmills (see figure 4). I had dis-
cussed with Phil Terry whether he might have any ideas re-
garding the text of Don Quixote and he composed a series
of twelve ‘quixotes’, each of which took a famous scene
from the book and created a ‘concrete’ poem from each in
the shape of a windmill. Below is the text of the first one:

Wicked breed
Unimaginable adventures
Monstrous giants
Happy memory

“What giants?"
Said Sancho Panza.
“Those giants that you
can see over there"

replied his master
“with long arms".

Great service, raw novice, arduous combat,
cowardly creatures 4

We made audio recordings of Phil reading out each of
the poems and these recordings accompany the concrete
visualisations during performance.

Figure 9 shows its implementation visually in INSCORE.
This demonstrates more of the text-based features of the
programme. In the demonstration video the passage begins
at about 4:40.

4 The scene to which this refers can be found in Book 1, Chapter 8,
available here

Figure 9: Quixotes: concrete poetry by Phil Terry.

Code listing 7 is rather lengthy, combining as it does
complex graphical placements of textual elements.

1
2 ~quixotes = ({ arg windmillNum = 1, num,

wmSpeedOffsetMinMax=[0.35, 0.45], dilapidation=10,
scale=1.0, xOffset=0.5, yOffset=0.5;

3
4 // font size needs to be mapped onto the number of

characters in each word or line so that the cosmetic
appearance of the windmill graphics can be maintained.

5 var font = "Garamond", text, fontSize, fontSizePt,
fontSizeSpec = ControlSpec(26, 10, 'lin', 1, 20),
wmSpeedOffset = [rrand(wmSpeedOffsetMinMax[0],
wmSpeedOffsetMinMax[1]), rrand(wmSpeedOffsetMinMax[0],
wmSpeedOffsetMinMax[1]), rrand(wmSpeedOffsetMinMax[0],
wmSpeedOffsetMinMax[1]), rrand(wmSpeedOffsetMinMax[0],
wmSpeedOffsetMinMax[1])], windmillVarNum =
((windmillNum-1) * 14), var windmillTask;

6
7 ~homageHTML.size.do({ |i|
8 ~homageHTML[i][9] = scale; // define scale (html 9)
9 ~homage.scale("homageWin", "html", i, ~homageHTML[i][9]);

10 });
11
12 // windmill blades (lines 0 - 3) text and size
13 4.do({|i|
14 ~homageHTML[i+windmillVarNum][13] =

~quixotesArray[num][i];
15 fontSize =
16 fontSizeSpec.map((~homageHTML[i+windmillVarNum][13].size/12.0)-1.0);
17 ~homageHTML[i+windmillVarNum][17] = fontSize.asString ++

"pt";
18 fontSizePt = ~homageHTML[i+windmillVarNum][17];
19 ~homage.htmlFull("homageWin", "html", i+windmillVarNum,

font, fontSizePt, text: ~homageHTML[i+windmillVarNum][13]);
20 // move them
21 ~homage.move("homageWin", "html", i+windmillVarNum,

~homageHTML[i+windmillVarNum][4] + yOffset * scale;,
~homageHTML[i+windmillVarNum][5] + xOffset * scale);

22 });
23
24 // middle lines text size
25 7.do({ |i|
26 ~homageHTML[i+4+windmillVarNum][13] =

~quixotesArray[num][i+4];
27 ~homageHTML[i+4+windmillVarNum][17] = "18pt";
28 ~homage.htmlFull("homageWin", "html", i+4+windmillVarNum,

font, ~homageHTML[i+4+windmillVarNum][17], text:
~homageHTML[i+4+windmillVarNum][13]);

29 });
30
31 // last three lines text size
32 3.do({|i|
33 ~homageHTML[i+11+windmillVarNum][13] =

~quixotesArray[num][i+11];
34 fontSize =
35 fontSizeSpec.map((~homageHTML[i+11+windmillVarNum][13].size/12.0)-1.0);
36 ~homageHTML[i+11+windmillVarNum][17] = fontSize.asString

++ "pt";
37 fontSizePt = ~homageHTML[i+11+windmillVarNum][17];
38
39 ~homage.htmlFull("homageWin", "html",

i+11+windmillVarNum, font, fontSizePt, text:
~homageHTML[i+11+windmillVarNum][13]);

40 });
41
42 // position of body
43 if (dilapidation == 0, { 7.do({|i|

~homageHTML[i+4+windmillVarNum][7][2] = 0; }) });
44
45 // note the role of dilapidation here. Each time the

function is run during performance, the value of

234

dilapidation increases and so the windmills gradually
become more and more uneven.

46 7.do({ |i|
47 ~homage.move("homageWin", "html", i+4+windmillVarNum,

~homageHTML[i+4+windmillVarNum][4] + yOffset +
rrand(dilapidation.neg*0.005, dilapidation*0.005) * scale,
~homageHTML[i+4+windmillVarNum][5] + xOffset +
rrand(dilapidation.neg*0.005, dilapidation*0.005) * scale);

48 });
49
50 // create and rotate the last three lines...
51 ~homage.rotate("homageWin", "html", 11+windmillVarNum, zPos:

0);
52 ~homage.rotate("homageWin", "html", 12+windmillVarNum, zPos:

110);
53 ~homage.rotate("homageWin", "html", 13+windmillVarNum, zPos:

250);
54
55 // and move them
56 3.do({|i|
57 ~homageHTML[i+11+windmillVarNum][4] =

~homageHTML[i+11+windmillVarNum][4];
58 ~homage.move("homageWin", "html", i+11+windmillVarNum,

~homageHTML[i+11+windmillVarNum][4] + yOffset * scale,
~homageHTML[i+11+windmillVarNum][5] + xOffset * scale);

59 });
60
61 // spin the blades
62 windmillTask = Task({
63 var zPos1 = (rrand(1.75, 2.25)*wmSpeedOffset[0]);
64
65 while ({ ~homageHTML[0+windmillVarNum][12][3] == true },

{
66 ~homage.drotate("homageWin", "html", 0+windmillVarNum,

zPos: zPos1);
67 ~homage.drotate("homageWin", "html", 1+windmillVarNum,

zPos: (rrand(1.75, 2.25)*wmSpeedOffset[1]));
68 ~homage.drotate("homageWin", "html", 2+windmillVarNum,

zPos: (rrand(1.75, 2.25)*wmSpeedOffset[2]));
69 ~homage.drotate("homageWin", "html", 3+windmillVarNum,

zPos: (rrand(1.75, 2.25)*wmSpeedOffset[3]));
70 0.04.wait;
71 });
72 }).play;
73 });

Code listing 7: ⇠quixotes

Figure 10: ⇠quixotes showing increasing dilapidation.

Figure 11: ⇠quixotes flying off.

5.1 Dilapidation

One of the more expressive arguments of the function
~quixotes (code listing 7) is dilapidation. This value
determines the ‘tidiness’ of the windmills generated and,
reflecting Don Quixote’s deteriorating hold on reality, each
time the function is called the value is increased and as a
consequence the windmills’ movements become increas-
ingly uneven and unpredictable. Figure 10 shows two wind-
mills demonstrating this. After a certain level of dilapida-
tion is reached in performance, the windmills disintegrate
completely (see Figure 11) and ‘fly off’ the ‘page’.

As dilapidation increases, so too does the disintegration
Phil Terry’s reading of his Cervantes-inspired poems. With
each verse the audio is rendered using decreasing bit and
sample rates, making it increasingly incomprehensible. The
effects of dilapidation are clearly visible and audible from
about 6:00 in the demonstration video.

6. PICASSO

The final section of Homenaje features Picasso’s 1955
black on white sketch of Don Quixote, his horse Roci-
nanate, his sidekick Sancho Panza as well as a number of
windmills. The drawing was made on August 10, 1955
for the August 18-24 issue (No. 581) of Les LETTRES
françaises, a weekly French journal directed by Aragon, in
celebration of the 350th anniversary of the publication of
Don Quixote, Part I [8].

The image has been cut into 23 pieces, some of which can
be seen in figure 12. These pieces appear and fade along
with the musical algorithms used. In the case of this scene,
the musical ideas are initially based around guitar samples
(along with occasional harp samples), reflecting the impor-
tance of the guitar in Picasso’s output: in 2011 there was
an exhibition at MOMA — Picasso: Guitars 1912-1914
(here: https://www.moma.org/calendar/exhibitions/1088).
The music consists of a variety of idiomatic guitar ideas
and gestures: mordents and turns, strumming, and plucked
melody lines (see code listing 8), which combine and build
into a rhythmic texture (see about 7:40 in the demonstra-
tion video and code listing 9).

1
2 // a single guitar note

235

3 // throughout this section the amplitude of the guitar is
governed by the environment variable ~guitarAmp which
makes it easier to balance the sound in performance
environments with different acoustics.

4
5 1.do({ ~guitarNote = ([50, 57].choose)-12;

~playGuitar.value(2.1, 0.01, ~guitarNote, 1.0,
~guitarAmp); }); ~picassoPartAppearFunc.value(rrand(0.001,
0.01), 1, false, false);

6
7 1.do({ ~guitarNote = ([50, 57, 62, 64, 67, 69, 71, 73

].choose)-12; ~playGuitar.value(2.1, 0.01, ~guitarNote,
1.0, ~guitarAmp); });
~picassoPartAppearFunc.value(rrand(0.001, 0.01), 1, false,
false);

8
9 // a few notes

10 // included are functions ~picassoPartAppearFunc and
~picassoPartAppearNoFadeFunc which manage the appearance
and fading of the divided Picasso sketch

11 // the guitar notes are taken from a central array of values
12 (
13 Task({
14 var numNotes = rrand(4, 8);
15 var waitTime = rrand(0.05, 0.13);
16
17 numNotes.do({ |i|
18 1.do({ ~guitarNote = ([50, 57, 62, 64, 67, 69, 71, 73

].choose)-12; ~playGuitar.value(2.1, 0.01, ~guitarNote,
1.0, ~guitarAmp); });

19 if (i == (numNotes-1), {
20 ~picassoPartAppearFunc.value(rrand(0.001, 0.01), 1,

false, false);
21 }, {
22 ~picassoPartAppearNoFadeFunc.value(2.0, 1, false,

false, rrand(100, 255), 0);
23 });
24 (waitTime*(rrand(0.95, 1.05))).wait;
25 });
26 }).play;
27);
28
29
30 // low strum
31 4.do({ ~guitarNote = ([50, 57, 62, 64, 67, 69, 71, 73

].choose)-24; ~playGuitar.value(2.1, 0.01, ~guitarNote,
1.0, ~guitarAmp); });
~picassoPartAppearFunc.value(rrand(0.001, 0.01), 1, false,
false);

32
33 // arg octave = 0, amp = 3.0;
34 ~guitarStrumFunc.value(2, ~guitarAmp);
35
36 // a variety of twists and turns
37 ~guitarTwistFunc.value(2, ~guitarAmp*0.25, true);

~picassoPartAppearFunc.value(rrand(0.005, 0.05), 1, false,
false);

38 ~guitarTwistFunc.value(6, ~guitarAmp*0.25, false);
~picassoPartAppearFunc.value(rrand(0.005, 0.05), 1, false,
false);

39 ~guitarTwistFunc.value(12, ~guitarAmp*0.25, false);
~picassoPartAppearFunc.value(rrand(0.005, 0.05), 1, false,
false);

40
41 // many turns
42 Task({ rrand(2, 8).do({ ~guitarTwistFunc.value(12,

~guitarAmp*0.25, false); rrand(0.1, 0.4).wait;
~picassoPartAppearFunc.value(rrand(0.001, 0.01), 1, false,
false); }); }).play;

43
44 Task({ 4.do({ ~picassoPartAppearFunc.value(rrand(0.001, 0.01),

1, false, false); ~guitarTwistFunc.value(12,
~guitarAmp*0.3, false); rrand(0.1, 0.4).wait; }); }).play;

45
46 Task({ rrand(4, 12).do({ ~guitarTwistFunc.value(12,

~guitarAmp*0.25, false); rrand(0.1, 0.4).wait; }); }).play;
47
48 ~playGuitar.value(0.1, 0.01, 55, 1.0, ~guitarAmp);

~picassoPartAppearFunc.value(rrand(0.001, 0.01), 1, false,
false);

49
50 ~playTinyGuitarStream.value(rrand(4, 24), true,

{rrand(~guitarAmp*0.01,~guitarAmp)});
~picassoPartAppearFunc.value(rrand(0.001, 0.01), 2, false,
false);

51
52 ~playTinyGuitarStream.value(rrand(4, 24), true,

{rrand(~guitarAmp*0.01,~guitarAmp)});
53
54 // guitar 'strum' function in funcs
55 ~guitarStrumFunc.value(14, ~guitarAmp);
56
57 // a small, quiet, relatively metrical guitar melody:
58 ~playTinyGuitarStream.value(rrand(4, 24), true);

~guitarStrumFunc.value(2, amp: ~guitarAmp);
59
60 // play short burst of guitar melody
61 (
62 Task({
63
64 rrand(4, 12).do({
65 ~guitarNote = [50, 57, 62, 64, 67, 69, 71, 73].choose;

66 ~playGuitar.value(2.1, 0.01, ~guitarNote, 1.0,
~guitarAmp);

67 ~picassoPartAppearFunc.value(rrand(0.001, 0.01), 2,
false, false);

68 });
69
70 rrand(4, 18).do({
71 ~playGuitar.value(10.5, 0.01, ([50, 57, 62, 64, 67, 69,

71, 73].choose)-12, 1.0, ~guitarAmp);
72 rrand(0.125, 0.13).wait;
73 ~picassoPartAppearFunc.value(rrand(0.001, 0.01), 2,

false, false);
74 });
75 }).play;
76);
77
78 // harp
79 (
80 Task({
81
82 rrand(4, 12).do({
83 ~guitarNote = [50, 57, 62, 64, 67, 69, 71, 73].choose;
84 ~playHarp.value(2.1, 0.01, ~guitarNote, 1.0, 0.4);
85 ~picassoPartAppearFunc.value(rrand(0.001, 0.01), 1,

false, false);
86 });
87
88 rrand(4, 18).do({
89 ~playHarp.value(10.5, 0.01, ([50, 57, 62, 64, 67, 69,

71, 73].choose)-12, 1.0, 0.4);
90 rrand(0.125, 0.13).wait;
91 ~picassoPartAppearFunc.value(rrand(0.001, 0.01), 1,

false, false);
92
93 });
94 }).play;
95)
96
97 // guitar and harp together
98 (
99 Task({

100
101 rrand(8, 18).do({
102 ~guitarNote = [50, 57, 62, 64, 67, 69, 71, 73].choose;
103 ~playGuitar.value(2.1, 0.01, ~guitarNote, 1.0,

~guitarAmp);
104 });
105
106 rrand(8, 18).do({
107 if (0.25.coin, {
108 ~playGuitar.value(10.5, 0.01, ([50, 57, 62, 64, 67,

69, 71, 73].choose)-12, 1.0, ~guitarAmp);
109 }, {
110 ~playHarp.value(10.5, 0.01, ([50, 57, 62, 64, 67, 69,

71, 73].choose)-12, 1.0, 0.5);
111 });
112 rrand(0.125, 0.13).wait;
113 });
114 }).play;
115)

Code listing 8: Picasso and guitars ’live coding’

1
2 // then automated and strictly in time
3 (
4 ~guitarTranspose = 0;
5 ~guitarOctave = 0;
6 ~picassoCol = [100, 255];
7
8 ~autoGuitarTask = Task({
9 var myWait = 0.125;

10
11 ~autoGuitarTask.stop;
12 ~strumTask.stop;
13
14 ~strumTask = Task({ // the initial 'strum'
15 rrand(4, 10).do({
16 ~guitarNote = [50, 57, 62, 64, 67, 69, 71, 73

].choose;
17 ~playGuitar.value(2.1, 0.01,

~guitarNote+~guitarTranspose+~guitarOctave, 1.0,
~guitarAmp);

18 if (0.9.coin, {
19 ~picassoPartAppearFunc.value(rrand(0.01, 0.01),

16, false, false, ~picassoCol);
20 }, { ~picassoPartAppearFunc.value(rrand(0.1, 1.2),

16, false, false, ~picassoCol);
21 });
22 });
23
24 rrand(16, 36).do({
25 ~playGuitar.value(10.5, 0.01, (([50, 57, 62, 64,

67, 69, 71, 73
].choose)-12)+~guitarTranspose+~guitarOctave, 1.0,

236

~guitarAmp);
26
27 if (0.9.coin, {
28 ~picassoPartAppearFunc.value(rrand(0.01, 0.01),

16, false, false, ~picassoCol);
29 }, { ~picassoPartAppearFunc.value(rrand(0.1, 1.2),

16, false, false, ~picassoCol);
30 });
31 myWait.wait;
32 });
33 }).play;
34 myWait.wait;
35 }).play;
36)

Code listing 9: The guitar texture algorithm

(i)

(ii)

(iii)

Figure 12: Three renditions of Picasso, guitars and
melody.

The guitar-sound-based texture is then augmented by vi-
olin melodies, to be played by the live violinist, based on

the original melody developed earlier in the piece, but now
using the tonality of the rhythmic guitar texture as a tonal
basis. These melodies gradually take over the texture, be-
coming more and more sustained as the guitar fades (from
about 10:30, see code listing 10). The notes from which
those played are chosen are provided by the array

~chordNotes

which can be coded live, or taken from a set of arrays
(see code listing 10) based on the chords shown in figure
13. Harmonically, they comprise fourths and fifths with a
more complex overtones and harmonics.

Figure 13: Two tonally ambiguous chords forming the ba-
sis of some of the harmonies of the ‘sustained string’ sec-
tion of Homenaje

1
2 // chord Notes
3 ~chordNotes = [50, 57, 62, 64, 67, 69]; // d, a, d, e, g, a
4 ~chordNotes = [50, 57, 62, 64, 67, 69, 71]; // + b
5 ~chordNotes = [50, 57, 62, 64, 67, 69, 71, 73]; // + c#
6
7 ~chanceOfNote = 0.8;
8
9 ~chordNotes = [50, 57]; // fifth

10 ~chordNotes = [50, 57, 64]; // two fifths
11 ~chordNotes = [50, 57, 64, 71]; // three fifths
12 ~chordNotes = [50, 57, 64, 67, 71]; // three fifths
13
14 ~chordNotes = [50, 57, 61, 64, 66, 68, 78];
15 ~chordNotes = ~chordNotes + 8
16 ~chordNotes = ~chordNotes - 8
17 ~chordNotes = [43, 50, 57, 64, 71];
18 ~chordNotes = [43, 50, 57, 61, 64, 66, 68, 78];
19
20 ~chanceOfNote = 0.7;
21
22 ~chordNotes = [37, 43, 50, 57, 66, 73, 80, 83, 87]; // d, a,

f#, c#, g#, b, d#
23 ~chordNotes = [50, 57, 66, 73, 80, 83];
24 ~chordNotes = [50, 57, 66, 73, 80];
25
26 ~chanceOfNote = 0.6;
27
28 ~chordNotes = [50, 57, 66, 73]; // d, a, f#, c#
29 ~chordNotes = [66, 74, 73];
30 ~chordNotes = [73];

Code listing 10: Sustained string texture at end

At this point the Picasso sketch is complete and its parts
fade in and out, rotating, until they disappears altogether
along with the violin music.

7. CONCLUSIONS

Homenaje is a composition that consciously extends the
integration of text and image with music, a process that be-

237

(i)

(ii)

(iii)

Figure 6: Other renditions of the melody are shown here.
Note that in (iii) the melody changes colour from black to
dark blue when the fade out begins to indicate this to the
instrumentalist.

Figure 7: A rendition of text, lines and chords.

gan with the music-dance-text piece Choreograms in which
18th century dance notations appeared alongside contem-
porary poetry, audio and music notations. It formalises the
structures put in place in earlier pieces, most notably the
sets of object arrays that allow the storage of each objects
state (e.g. location, colour, alpha value, rotation).

Each project spent composing with SuperCollider and IN-
SCORE convinces me of the flexibility and power of these
pieces of software, both individually and in combination.
Each piece of software allows virtually complete control
not only over the tools and mechanisms involved, they also
allow maximum freedom over how they themselves can be
controlled. Both SuperCollider and INSCORE can be used
as standalone pieces of software, or as engines to be con-
trolled from other preferred resources. The fact that sclang
is able to deal so effectively with rather obscure and arbi-
trary text-based functionality such as converting text to all
lower (or all upper, or any number of other string trans-
formations) demonstrates both its flexibility and the im-
portance of that flexibility in cross-domain work. There is
little doubt that all of these factors make the investigation
of links and mappings between diverse expressive domains
particularly suitable for these resources and there is enor-
mous potential for discovery and expression.

8. REFERENCES

[1] S. Wilson, D. Cottle, and N. Collins, Eds., The Super-
Collider Book. Cambridge, MA: MIT Press, 2011.

[2] D. Fober, Y. Orlarey, and S. Letz, “Inscore – an envi-
ronment for the design of live music scores,” in Pro-
ceedings of the Linux Audio Conference, 2012, pp. 47–
54.

[3] R. Hoadley, “Live coding, live notation, live per-
formance,” in Electronic Visualisation and the Arts
(EVA 2016), ser. Electronic Workshops in Computing
(eWiC), J. P. Bowen, G. Diprose, and N. Lambert, Eds.,
British Computer Society. British Computer Society,
2016, pp. 34–41.

[4] N. Collins, A. McLean, J. Rohrhuber, and A. Ward,
“Live coding in laptop performance,” Organised
Sound, vol. 8, no. 3, pp. 321–330, 2003.

[5] Google, “Google map,” June 2017. [Online]. Avail-
able: https://goo.gl/maps/EmhqzZdmeA52

[6] R. Hoadley, “Calder’s violin (performance),” in Pro-
ceedings of the International Computer Music Confer-
ence. Athens, Greece: ICMA, September 2014.

[7] ——, “How to play the piano,” in Proceedings of the
ICMC, H. Timmermans, Ed., ICMA. Utrecht, Nether-
lands: HKU University of the Arts Utrecht, 2016, pp.
176–180.

[8] A. G. L. Ré, “A possible source for picasso’s drawing
of don quixote,” Cervantes: Bulletin of the Cervantes
Society of America, vol. 12, no. 1, pp. 105–110, 1992.

238

Index of Authors

Antila, Christopher, 167

Baratè, Adriano, 25
Bell, Jonathan, 99
Bhagwati, Sandeep, 161
Bouche, Dimitri, 131
Bresson, Jean, 131

Calvo-Zaragoza, Jorge, 17
Carey, Ben, 171
Cherfi, Samira, 91

Faraldo, Angel, 137
Freeman, Jason, 125
Fu, Xiao, 171
Fujinaga, Ichiro, 17

Garcia, Jérémie, 131
Giezeman, Geert-Jan, 79

Hajdu, Georg, 9
Hajdu, George, 171
Ham, Jeremy J., 39
Hamdi, Fayçal, 91

Haus, Goffredo, 1
Herrera, Perfecto, 137
Hoadley, Richard, 229
Hope, Cat, 171
Hron, Terry, 111
Hunt, Samuel J., 69

Jacquemard, Florent, 145
Jordà, Sergi, 137

Kim-Boyle, David, 33

Ludovico, Luca A., 1, 25

Malt, Mikhail, 51
Marco, Tomas, 185
Martinez Nieto, Juan Carlos, 125
Matuszewski, Benjamin, 99
Mendonça, Silvia, 155
Miller, Daniel, 57
Mitchell, Tom, 69

Nash, Chris, 69

Palma, Helena, 195

Rigaux, Philippe, 91

Sakai, Masahiko, 145
Shafer, Seth, 117, 215
Sluchin, Benny, 51
Stuart, James, 171

T, Silvia, 209
Thion, Virginie, 91
Travers, Nicolas, 91
Treviño, Jeffrey, 167

van Nuss, Jelmer, 79
Vickery, Lindsay, 171
Vigliesoni, Gabriel, 17

Warren, Kristina, 105
Weaver, Gabriel, 167
Wiering, Frans, 79
Wyatt, Aaron, 171

Ycart, Adrien, 145

	Preamble
	Cover
	Publishing informations

	Conference Program
	Keynote: Musical archiving technology
	Digitization of historial music archives: Preserving the past, embracing the future

	Session 1: Music Transcription
	Macaque. A tool for spectral processing and transcription
	A machine learning framework for the categorization of elements in images of musical documents
	A web interface for the analysis and performance of aleatory music notation

	Session 2: Graphic Notation
	The 3-D score
	An architectural approach to 3D spatial drum notation
	A CAP for graphic scores. Graphic notation and performance

	Session 3: Visualisation and Analysis
	Are scores maps? A cartographic response to goodman
	How can music visualisation techniques reveal different perspectives on musical structure?

	Session 4: Ontology
	Melody retrieval and composer attribution using sequence alignment on RISM incipits
	Formalizing quality rules on music notation. An ontology-based approach

	Session 5: Voice
	SMARTVOX. A web-based distributed media player as notation tool for choral practices
	Notated control as composed liveness in works for digitally extended voice

	Session 6: Interaction
	Notating electroacoustic music for performers from a practitioner's experience
	Performer action modeling in real-time notation
	Expression marks for programming interactive music

	Session 7: Music
	Timed sequences: A framework for computer-aided composition with temporal structures
	The house harmonic filler: Interactive exploration of chord sequences by means of an intuitive representation
	Generating equivalent rhythmic notations based on rhythm tree languages
	``Des pas sur l'invisible''. The octave space and the self-multiplication process

	Session 8: Collaboration
	Vexations of ephemerality
	A hierarchic diff algorith for collaborative music document editing
	Establishing connectivity between the existing networked music notation packages Quintet.net, Decibel Score Player and MaxScore

	Concert
	Persiles avista Roma
	Voice prints
	Des pas sur l'invisible
	Terraformation
	Homenaje a Cervantes

	Index of Authors

